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Abstract An efficient method for covalently linking

of cellulose and clay using a click chemistry based

strategy is reported. Azide and alkynyl derivatives of

silane were synthesized and used for silanization of

cellulose and clay respectively. Functionalized cellu-

lose and clay were then coupled using Cu(I) catalyzed

azide–alkyne cycloaddition reaction, resulting in a

covalent linkage between them. Successful synthesis

of the silane derivates was established using Fourier

transform infrared (FTIR) and nuclear magnetic

resonance. Silanization of cellulose and clay with

azide and alkynyl derivatives and the formation of a

triazole linkage were confirmed using FTIR.
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Keywords Micro crystalline cellulose (MCC) �
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Abbreviations

APTES (3-aminopropyl)triethoxysilane

DCC N,N’-dicyclohexylcarbodiimide

DMAP 4-dimethylaminopyridine

DCM Dichloromethane

DMSO Dimethylsulphoxide

DMA Dimethylacetamide

EtOAc Ethyl acetate

EDC.HCl 1-Ethyl-3-(3-dimethyllaminopropyl)

carbodiimide hydrochloride
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PyBOP Benzotriazol-1-yl-

oxytripyrrolidinophosphonium-

hexafluorophosphat PyBOP

HBTU O-Benzotriazole-N,N,N’,N’-tetramethyl-

uronium-hexafluoro-phosphate

Introduction

Cellulose is the most abundant natural polymer

(Bovey and Winslow 1981, Krassig et al. 1986). Due

to its high availability, recyclability and biodegrad-

ability, cellulose is widely used in many industries,

including but not limited to, paper production, phar-

maceutics, food, and reinforcement in polymer com-

posites (Okiyama et al. 1992; Bledzki and Gassan

1999; Zimmermann et al. 2004; Orts et al. 2005;

Coffey et al. 2006; Czaja et al. 2006; Garcia de

Rodriguez et al. 2006; Hoenich 2007; Wan et al. 2007;

Maren et al. 2009; Abdul Khalil et al. 2012). Cellulose

fibers are used as reinforcement to enhance me-

chanical properties of polymers (Bledzki and Gassan

1999; Mohanty et al. 2000, 2002; Ludvik et al. 2007).

However, poor dispersion of cellulose and limited

binding between cellulose and the polymer matrix is

the key issue (Eichhorn et al. 2010). Cellulose fibers

tend to agglomerate, which reduces their efficacy as

reinforcement material. While surface functionaliza-

tion of cellulose (Abdelmouleh et al. 2002, 2005; Ly

et al. 2008; Xie et al. 2010), silanization for example,

is used for enhanced binding between fibers and

polymer matrix; addition of clay, on the other hand, is

employed for better dispersion of cellulose and

improved fire retardancy of the composites (White

2004; Ludvik et al. 2007; Liu et al. 2012). Although,

addition of clay allow better dispersion of cellulose;

mechanical properties of the composites either do not

improve significantly (Thunwall et al. 2008) or even

degrade (Ludvik et al. 2007). The reason for this

discrepancy was attributed to the insufficient binding

between clay and cellulose. Hence, for improved

mechanical properties, enhanced interfacial interac-

tion between clay and cellulose is desired.

Here we report a possible method for enhancing

interfacial binding between cellulose and clay using

azide–alkyne cycloaddition based click reaction. Click

chemistry is considered as the best method for linking

molecular species of different kind (Rostovtsev et al.

2002; Himo et al. 2005). Click reactions received great

attention because of the mild reaction conditions,

absence of byproducts leading to easy purification of

the products and the possibility of using environmen-

tally benign solvents or solvent free conditions. Click

reactions are performed even in living system for the

detailed study of biochemical reactions (Dam and

Caruso 2012; Thirumurugan et al. 2013; Yang et al.

2014). Click reactions have also been used to synthe-

size functional materials, nanoparticles, catalysts and

also in synthesis of a large number of drugs (Qin et al.

2010; Liebert et al. 2006; Binder and Sachsenhofer

2007; Fournier et al. 2007; Moses and Moorhouse

2007; Karaaslan et al. 2013). Click chemistry has

found its place in material synthesis, where it has been

used mainly for the incorporation of functional groups,

which are otherwise difficult to achieve.

Azide and alkynyl derivatives of silane were

synthesized and covalently coupled to cellulose and

clay respectively. The azide and alkyne groups were

then linked by Cu(I) catalyzed click reaction resulting

in covalent binding between cellulose and clay.

Surface silanization of clay (Papalos 1966; Manna

et al. 1999; Freeman et al. 2000) and cellulose

(Abdelmouleh et al. 2002, 2005; Ly et al. 2008; Xie

et al. 2010) has been reported previously. Surface

functionalization of clay and covalent bonding with

polymer (Wheeler et al. 2006) has been demonstrated

earlier. Moreover, cellulose is also chemically cross-

linked with other polymer (Chang et al. 2008).

However, we could not find any literature on covalent

coupling between cellulose and clay not to mention

any click chemistry between the two. In this paper,

click chemistry route to covalently couple cellulose

and clay is demonstrated.

Materials and methods

(3-aminopropyl)triethoxysilane (APTES) and propi-

olic acid were purchased from Thomas Baker

(chemicals) Pvt. Ltd (India), N,N’-dicyclohexylcar-

bodiimide (DCC), 4-dimethylaminopyridine (DMAP)

were purchased from RFCL limited (India), dichlor-

omethane (DCM), dimethylsulphoxide (DMSO),

ethyl acetate, silica gel (60-120), citric acid were

purchased from Thermo fisher scientific India Pvt. Ltd

Mumbai (India), dimethylacetamide (DMA), petro-

leum ether, sodium sulfate, silica gel (100-200),
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sodium bicarbonate, NaCl saturated solution, N2 gas

was purchased from SD fine-chem Limited Mumbai

(India). 1-ethyl-3-(3-dimethyllaminopropyl)carbodi-

imide hydrochloride (EDC.HCl), benzotriazol-1-yl-

oxytripyrrolidinophosphonium-hexafluorophosphat

(PyBOP) and O-benzotriazole-N,N,N’,N’-tetram-

ethyluronium hexafluorophosphate (HBTU) were

purchased from Sigma-Aldrich (USA). Cellulose

powder were supplied by Maple Biotech Private

Limited Pune (India).

For the characterization of synthesized compounds,

Fourier transform infrared (FTIR) (PerkinElmer,

Spectrum Two, USA) and nuclear magnetic resonance

(NMR) spectra (Jeol spectrometer) were recorded. 1H

and 13C NMR spectra were recorded either on a Jeol

spectrometer 400 MHz (100 MHz for 13C) or on a

500 MHz (125 MHz for 13C) NMR spectrometer at

25 �C. The 1H NMR signals are referenced to

tetramethylsilane (d = 0.00 ppm) and the 13C NMR

peaks are referenced to residual CHCl3 signal

(d = 77.0 ppm).

Synthesis of N-(3-

(triethoxysilyl)propyl)propiolamide (AMIPTES)

AMIPTES (3) was synthesised using (3-aminopropyl)

triethoxysilane (1) (APTES). APTES, 1.05 mL

(4.52 mmol), was dissolved in 20 mL of DCM,

followed by the addition of DCC 1.12 g (5.42 mmol),

DMAP 0.055 g (0.452 mmol) and 0.3 mL (4.97 m-

mol) of propiolic acid (2) into the 100 mL round

bottom flask and stirred for 18 h at room temperature

under inert atmosphere. After completion of the

reaction, the mixture was poured into separating

funnel and extracted with 20 mL of saturated sodium

bicarbonate solution followed by 5 mL saturated

solution of citric acid. The crude reaction mixture

was purified via column chromatography (Scheme 1).

Synthesis of (3-azidopropyl) triethoxysilane

(AZIPTES)

The AZIPTES (5) was synthesised using (3-chloro-

propyl)triethoxysilane (CPTES): 4 mL (16.61 mmol)

of (3-chloropropyl)triethoxysilane (4) was dissolved

in 60 mL of DMA and stirred with 5.35 g (16.61 m-

mol) of TBAB and 1.29 g (19.93 mmol) of NaN3, and

refluxed for 24 h. After the completion, the reaction

mixture was extracted with diethyl ether and water.

The organic layer again washed with brine followed

by drying over sodium sulphate. The solvents were

removed under reduced pressure and the crude reac-

tion mixture purified through column chromatography

(Scheme 2).

Silanization of microcrystalline cellulose (MCC)

with AZIPTES

Preparation of NaOH treated MCC

Microcrystalline cellulose (33.00 g) was washed in

600 mL solution of 0.1 M NaOH, by ultrasonicating

the mixture for 10 min followed by stirring for

30 min. After 30 min, the MCC was washed with DI

water (5 cycles) to make it neutral. This step was

performed to remove any impurities on cellulose.

O
Si NH2

O

O
Si

H
N

O
O

O
HO

O
DCC, DMAPO

DCM
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Scheme 1 Synthesis of N-(3-(triethoxysilyl)propyl)propiolamide (AMIPTES)

Scheme 2 Synthesis of (3-

azidopropyl) triethoxysilane

(AZIPTES)
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Surface modification of MCC

MCC surface was functionalized with 1, 3, 5 and 10 %

(w/w) AZIPTES. Calculated amounts of AZIPTES (1,

3, 5, 10 %,w/wwith respect toMCC)were dissolved in

100 mL of 80:20, ethanol–water system separately;

afterward 5.00 g of dryMCCwas added into each silane

solution and stirred at room temperature for 1.5 h,

followed by 10 min of ultrasonication. The solutionwas

then transferred in the petridish and kept in oven at

45 �C for 24 h to evaporate ethanol and functionalize

the cellulose.After functionalizing,MCCwas scratched

from petridish and collected in a well stopper bottles.

Silanization of kaolinite clay by AMIPTES

To silanize clay, 10, 30 and 60 % of AMIPTES (w/w

with respect to kaolinite clay) was dissolved in

Scheme 3 Azide and alkyne derivatives of silane. N-(3-(triethoxysilyl)propyl)propiolamide (AMIPTES) (i) and (3-azidopropyl)

triethoxysilane (AZIPTES) (ii)

Fig. 1 FTIR confirming the incorporation of azide derivative of

the silane on microcrystalline cellulose (MCC)

Fig. 2 FTIR spectra confirming successful functionalization of

kaolinite clay by alkyne derivative of silane

Fig. 3 Successful covalent bonding between cellulose and

clay. Alkyne and azide peaks disappeared after the click

chemistry reaction
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200 mL of 80:20, ethanol–water system in a 250 mL

round bottom flask. Dry kaolinite was added to each

solution and the reaction mixture was allowed stir for

2 h. After that the mixture was ultrasonicated for

10 min. The mixture was transferred into petridish and

kept in the oven at 100 �C for 24 h to dry after which,

the dry modify clay was scratched with spatula and

collected into well stopper bottles.

Click chemistry between kaolinite clay and MCC

A double-necked 100 mL round flask equipped with a

magnetic stirrer was set and 15 mL of DMSO was

added into it. Into that, 0.20 g of 30 % N-(3-(tri-

ethoxysilyl)propyl)propiolamide treated kaolinite clay

and 5 % 3-azidopropyl triethoxysilane treated cellu-

lose were added followed by 0.30 g of CuBr and the

mixture was refluxed at 150 �C for 12 h. After

stopping the reaction, the mixture was filtered and

washed several times by ethyl acetate and water. After

drying the product at 80 �C for 12 h, it was scratched

from filter paper and collected for further analysis.

Results and discussion

Spectral characterization of AMIPTES

FTIR spectrum (supplementary information S1) of

AMIPTES (Scheme 3i) shows absorption bands at

3257, 2952, 2883, 2823 and 2109 cm-1 that are

associated with –N–H stretching in secondary amine,

alkyl –C–H stretching (2952–2823 cm-1), and –C:C

stretching of alkynyl group, respectively. The spec-

trum shows a band at 1648 cm-1 that is associated

with the stretching vibrations of the –C=O of amide

group.
1H-NMR (CDCl3, 500 MHz, Fig. 4) d 0.58 (t, 2H),

1.17 (t, 9H), 1.61 (m, 2H), 2.77 (s, 1H), 3.24(q, 2H),

3.76 (q, 2H), 6.72 (s, 1H); 13C-NMR (CDCl3,

Fig. 4 1H NMR spectra of N-(3-(triethoxysilyl)propyl)propiolamide
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100 MHz, Fig. 5), d 7.81, 18.35, 22.44, 42.18, 58.55,

73.05, 75.19, 77.21, 152.34.

Spectral characterization of AZIPTES

FTIR spectrum (supplementary information S2) of

AZIPTES (Scheme 3ii) shows absorption bands at

2977, 2926 cm-1 that are associated with –C–H

stretching in alkyl groups and 2096 cm-1 that corre-

sponds to the –N:N stretching of nitrile group.
1H-NMR (CDCl3, 500 MHz, Fig. 6) d 0.67 (t, 2H),

1.19 (t, 3H), 1.23 (m, 2H), 1.66 (t, 2H), 3.79 (q, 2H);
13C-NMR (CDCl3, 100 MHz, Fig. 7), d 13.80, 14.18,
18.30, 53.60, 58.43.

Silanization of MCC and kaolinite

The silanization of MCC and kaolinite was achieved

by using suitably functionalized silane derivatives.

The halogenated silyloxy compound (4) was treated

with sodium azide and TBAI to get the desired

AZIPTES (5) quantitatively. MCC was functionalized

with AZIPTES (3, 5, and 10 % w/w) as discussed in

‘‘Silanization of microcrystalline cellulose (MCC)

with AZIPTES’’ section and was characterised by

FTIR spectra. A stretching band at 2906 cm-1 was

observed for functionalized MCC, which is the

characteristic band for –N:N group. On increasing

the weight percent of AZIPTES from 1 to 10 % in

MCC, the band at 2100 cm-1 became more intense (as

shown in Fig. 1) suggesting successful functionaliza-

tion of MCC with AZIPES.

Kaolinite was linked with alkyne derivate of silane.

AMIPTES was successfully obtained by the coupling

between corresponding acid (2) and amine (1) in the

presence of DCC and DMAP. Attempted coupling

between the same by using different coupling agents

like EDC.HCl, HBTU, PyBOP gave complicated

reaction mixtures. Functionalized kaolinite with vary-

ing amounts of silane was analysed by FTIR spectra. A

stretching band at 2110 cm-1 was observed in all the

proportion of AMIPTES in kaolinite; which is the

Fig. 5 13C NMR spectrum of N-(3-(triethoxysilyl)propyl)propiolamide
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characteristic peak for –C:C group (as shown in

Fig. 2).

Click chemistry product

After the successful functionalization of cellulose and

kaolinite with azides and alkyne respectively, click

chemistry was performed by using CuBr as a catalyst

in DMSO at 150 �C. The obtained product was

washed with organic solvents and water and charac-

terised by FTIR. FTIR spectra (Fig. 3) exhibited the

disappearance of alkyne and azide peaks confirming

successful reaction. The method is an efficient route

for conjugating cellulose to clay.

Discussion

The objective of the presented work was to enhance

interfacial interaction between cellulose and clay.

In polymer composites, cellulose is added as

reinforcement while clay is used for better dispersion

of cellulose. However, poor interfacial interaction

between the clay and cellulose leaves us wanting for

more (Ludvik, Glenn et al. 2007, Thunwall, Boldizar

et al. 2008). Cellulose and clay are separately used as

fillers in many polymers and both suffer from their

limited interfacial interactions with the polymer

matrix. Individually, cellulose and clay have been

surface functionalized to enhance their interactions

with polymer matrix. Clay, for example, was surface

functionalized with silane to enhance its interaction

with rubber (Dai and Huang 1999). Silane chemistry

on cellulose is also attempted (Abdelmouleh et al.

2002, 2005; Ly et al. 2008; Xie et al. 2010).

Considering the prior art in silane based chemistries

on cellulose and clay, same was employed to func-

tionalize cellulose and clay.

While functionalization results in surface groups

that enhance physical interactions between the com-

ponents; for enhanced mechanical properties,

Fig. 6 1H NMR spectrum of (3-Azidopropyl)triethoxysilane

Cellulose (2015) 22:1615–1624 1621

123



chemical reactions that result in covalent bond are

welcomed more. Hence, instead of targeting end

groups on silane that would have enhanced only

physical interaction between cellulose and clay, azide

and alkyne that can form covalent bonds were

selected. Moreover, azide–alkyne cycloaddition reac-

tion does not produce any by-product, making the

choice of this chemistry further easier.

To realize azide–alkyne cycloaddition reaction,

silane derivatives were synthesized as has been

mentioned in ‘‘Synthesis of N-(3-(triethoxysi-

lyl)propyl)propiolamide (AMIPTES)’’ and ‘‘Synthesis

of (3-azidopropyl) triethoxysilane (AZIPTES)’’ sec-

tions. The products were characterized using FTIR and

NMR (Figs. 4–7). While azide derivative of silane

was used to functionalize cellulose, clay was func-

tionalized with alkynyl derivative (‘‘Silanization of

microcrystalline cellulose (MCC) with AZIPTES’’

and ‘‘Silanization of kaolinite clay by AMIPTES’’

sections). FTIR confirmed the successful incorpora-

tion of the groups onto the surface of clay and

cellulose. Increasing the amount of silane derivatives

during functionalization resulted in sharper peaks of

the corresponding functional group. For example, the

azide peak at *2100 cm-1 (Fig. 1) increasingly

became stronger when the azide was increased from

1 to 10 % during functionalization of cellulose.

Similar results, albeit not as strong, were also observed

in alkynyl functionalization of clay (Fig. 2). A weak

band could be due to low efficiency of reaction.

Following successful incorporation of azide and

alkynyl derivatives of silane on cellulose and clay

respectively, click reaction was performed using CuBr

as acatalyst in DMSO (‘‘Click chemistry between

kaolinite clay and MCC’’ section). The specific

stretching band at *2055 cm-1 for azide and at

*2117 cm-1 alkyne group disappeared from the

products confirming successful azide–alkyne cycload-

dition reaction. The covalent interaction between

cellulose and clay was hence realized. Further studies

on the effect of this bond formation on mechanical

properties can be performed.

Fig. 7 13C NMR spectra of (3-Azidopropyl)triethoxysilane
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The silane functionalization followed by click

reaction to covalently bind two components, cellulose

and clay in this case, is presented. It will be interesting

to study the mechanical properties of the product. This

chemistry can be incorporated in other systems as well

where covalent bond between two components is

desired.

Conclusion

The present study is focused to incorporate covalent

linkage in functionalized MCC and kaolinite using

click chemistry. For this, the AMIPTES and AZIPTES

were synthesised and used to functionalize kaolinite

clay and MCC, respectively. These functionalized

kaolinite and MCC were characterized by their

specific stretching bands at 2055 and 2117 cm-1

respectively. Finally these bands disappear in the

FTIR of the conjugate obtained after the click reaction

between functionalized MCC and kaolinite.
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