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Abstract Self-standing composite films consisting

of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cel-

lulose nanofibril (TOCN) and anionic poly(acrylam-

ide) (PAM) in various weight ratios were prepared by

casting and drying of homogeneous mixtures of

aqueous TOCN dispersion and PAM solution. PAM/

TOCN composite films consisting of 25 % PAM and

75 % TOCN had clearly higher Young’s modulus

(13.9 GPa) and tensile strength (266 MPa) than

100 % TOCN film (10.8 GPa and 223 MPa, respec-

tively) or 100 % PAM film (4.9 GPa and 78 MPa,

respectively), showing that PAM molecules have

mechanical reinforcement ability in TOCN matrix.

Some attractive interactions are likely formed between

TOCN element surfaces and PAM molecules. In

contrast, no such mechanical improvements were

observed for poly(vinyl alcohol)/TOCN or oxidized

starch/TOCN composite films prepared as references.

Moreover, the mechanical properties of the PAM/

TOCN composite films were further improved by

controlling molecular mass and branching degree of

the PAM. The high optical transparency and low

coefficient of thermal expansion of the 100 % TOCN

film were mostly maintained in the TOCN composite

film containing 25 % PAM.

Keywords TEMPO-oxidized cellulose
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Introduction

In this century, fundamental and application studies of

nanocelluloses, i.e., cellulose nanocrystals (CNCs)

and nanofibrillated celluloses (NFCs), have been

rapidly expanding. Nanocelluloses have advantages

as bio-based nanomaterials compared with other

currently high-profile nanomaterials such as metal

nanowires, electrospun nanofibers, carbon nanotubes,

and graphenes. First, new apparatus such as grind-

stone-type homogenizers, water collision-type

homogenizers, and new microfluidizers have been

developed to efficiently convert wood cellulose fibers

suspended in water to highly fibrillated NFCs (Isogai

2013). Second, several pretreatments of wood cellu-

loses have been reported to reduce the energy

consumption of NFC preparation during mechanical

disintegration treatment in water, such as mild endo-

glucanase treatment, carboxymethylation, cation

polymer-addition, esterification, and oxidation. These

pretreatments also allow the degree of nanofibrillation
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of NFCs to be increased (Klemm et al. 2011; Isogai

et al. 2011; Isogai 2013), decreasing the energy

consumption of their preparation.

Because NFCs prepared using only mechanical

treatment in water or in combination with enzymatic

and carboxymethylation pretreatments have high

crystallinities, Young’s modulus, tensile strengths,

and surface areas, and form network structures in

aqueous dispersions and dried materials, self-standing

films, coating layers, foams, and composites of NFCs

have advantageous and unique properties in terms of

mechanical strength, optical transparency, thermal

stability, and gas-barrier performance (Henriksson

et al. 2008; Eichhorn et al. 2009; Siqueira et al. 2010;

Siró and Plackett 2010; Sehaqui et al. 2010, 2011; Liu

et al. 2011).

We have developed 2,2,6,6-tetramethylpiperidine-

1-oxy radical (TEMPO)-mediated oxidation as a

pretreatment to convert wood cellulose fibers to

completely individualized TEMPO-oxidized cellulose

nanofibrils (TOCNs) with homogeneous widths of

&3 nm dispersed in water (Saito et al. 2006, 2007;

Isogai et al. 2011). Anionic sodium carboxylate groups

are densely and regularly present on TOCN element

surfaces, with the result that osmotic effects and

electrostatic repulsion act efficiently between the

anionically charged TOCN elements both during mild

mechanical disintegration treatment in water and in

the subsequent dispersed state (Okita et al. 2010;

Hirota et al. 2010). TOCN elements maintaining

sufficiently nano-dispersed states in matrix polymers,

the individual TOCN elements will efficiently

mechanically reinforce TOCN/polymer composites

(Li et al. 2010) owing to the high Young’ modulus

(&140 GPa) and ultimate tensile strength (1–3 GPa)

of TOCNs (Iwamoto et al. 2009; Saito et al. 2013).

However, because TOCNs are highly hydrophilic

owing to abundant sodium carboxylate groups, some

surface-treatments of TOCNs must first be carried out

to efficiently develop nanocomposite effects in hydro-

phobic matrix polymers such as poly(styrene) and

poly(L-lactide) (Johnson et al. 2011; Bulota and

Hughes 2012; Bulota et al. 2012; Fujisawa et al. 2013).

Because the original TOCN elements are individ-

ually dispersed in water, TOCN-containing compos-

ites are more easily prepared with water-soluble

polymers or water-dispersible nanoclays through

drying of the aqueous mixtures. When poly(vinyl

alcohol) or hydroxypropyl cellulose was used as a

water-soluble polymer matrix with TOCNs, nanocom-

posite behavior was observed for TOCN-containing

composite films and fibers prepared under certain

conditions (Johnson et al. 2009; Endo et al. 2013).

Montmorillonite-TOCN composite films and layer-

by-layer coated films of TOCN/chitin nanofibrils,

prepared using water as a co-dispersion media,

showed unique mechanical, optical, and oxygen-

barrier properties (Wu et al. 2012; Qi et al. 2012).

Poly(acrylamide) (PAM) is another water-soluble

synthetic polymer. Nonionic, anionic, cationic, and

amphoteric PAMs with various molecular masses,

charge densities, and branching degrees have been

synthesized to obtain suitable performance as dry

strength additives or retention aids for the wet-end

process of papermaking (Yoshimoto et al. 2004; Wang

et al. 2006; Baraki 2013). Because PAM molecules

have abundant C=O and NH2 groups, both of which

can form hydrogen bonds with cellulosic fibers, PAM

molecules may also contribute to the mechanical

reinforcement of TOCN films when PAM/TOCN

composite films are fabricated under suitable condi-

tions. Moreover, because sodium carboxylate groups

and hydroxyl groups are present in high density on

TOCN element surfaces, both C=O and NH2 groups

present in each PAM repeating unit are expected to

form attractive interactions with such functional

groups of TOCN surfaces, which may improve the

mechanical properties of PAM/TOCN composite

films.

In this study, therefore, PAM/TOCN composite

films were fabricated by casting and drying of

homogeneous mixtures of PAM solution and TOCN

dispersion with various weight ratios. The mechanical,

optical, and thermal properties of the films were

characterized to elucidate the mechanical reinforce-

ment behaviors of PAM molecules with various

molecular masses and branching degrees in TOCN

matrix, with the aim of designing suitable PAM/

TOCN composite films for various end uses.

Experimental

Materials

A commercially available softwood bleached kraft

pulp (SBKP) for papermaking (Nippon Paper Co.,

Ltd., Tokyo, Japan) was used as the original wood
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cellulose (Shinoda et al. 2012). The SBKP was soaked

in 0.1 M HCl at room temperature for 2 h for

demineralization, and then washed through repeated

filtration with water. A 50 % aqueous solution of

acrylamide was purchased from Mitsui Chemicals,

Inc. (Tokyo, Japan). Poly(vinyl alcohol) (PVA: JF-17,

saponification degree[98 %, Japan Vam & Poval Co.

Ltd., Osaka, Japan) and oxidized starch (MS #3800,

Nihon Shokuhin Kako Co. Ltd., Tokyo, Japan) were

used as 0.15 % (w/w) aqueous solutions after disso-

lution in water through adequate heat treatment. All

other reagents were purchased from Wako Pure

Chemical (Osaka, Japan) and used as received.

Preparation of TOCN/water dispersion

A TEMPO-oxidized cellulose was prepared from

SBKP according to a previously reported method

(Shinoda et al. 2012), in which a TEMPO/NaBr/

NaClO system with 5.0 mmol NaClO per gram of

SBKP was used in water at pH 10 and room

temperature. The TEMPO-oxidized cellulose thus

obtained was post-oxidized with NaClO2 in an acetate

buffer at pH 4.8 for conversion of the small amount

of C6-aldehydes present in the TEMPO-oxidized

cellulose to C6-carboxyl groups. The obtained

TEMPO-oxidized cellulose had a carboxylate content

of 1.40 mmol g-1, as determined by conductivity

titration (Saito and Isogai 2004). An aqueous

0.15 % (w/w) slurry of the TEMPO-oxidized cellulose

was disintegrated using a blender-type homogenizer

(Excel Auto ED-4, Nissei, Japan) at 15,000 rpm for

5 min, and subsequently sonicated at 19.5 kHz and

300 W output power with a 26 mm probe tip (US-300T,

Nissei, Japan) for 6 min to prepare a TOCN/water

dispersion. The dispersion was then centrifuged at

12,000g for 20 min to remove unfibrillated or partly

fibrillated fraction. The nanofibrillation yields of the

TOCN/water dispersions were approximately 95 %.

Preparation of aqueous PAM solutions

PAMs were synthesized in water through free-radical

polymerization from acrylamide with small amounts

of an ionic monomer and a branching agent. Milli-Q

water was used in all PAM synthesis experiments. A

typical procedure was as follows. An aqueous 50 %

acrylamide solution (77 g), 98 % acrylic acid (4.5 g),

sodium methallylsulfonate (0.1 g), sodium hydroxide

(2.2 g), and water (300 g) were placed into a four-

necked flask equipped with a reflux condenser, and the

mixture was heated to 60 �C in a nitrogen atmosphere.

Then, an aqueous 0.5 % ammonium persulfate solu-

tion (10 g) was added to the mixture, which was

allowed to react at 85 �C for 2 h. An anionic 9.8 %

PAM solution was obtained after the reaction was

quenched by inhibitor addition and cooled to room

temperature. Other PAMs with different molecular

masses and branching degrees were prepared by

adding different amounts of reagents or under differ-

ent conditions.

Preparation of PAM/TOCN, PVA/TOCN,

and starch/TOCN composite films

An aqueous 0.15 % TOCN dispersion and a 0.15 %

PAM, PVA, or starch solution were blended in various

weight ratios at pH 6–7, and the mixture was stirred for

at least 30 min and then degassed through centrifuga-

tion. The mixture was then poured into a poly(styrene)

petri dish, and dried at 40 �C for 2 days. The self-

standing, approximately 10 lm thick PAM/TOCN,

PVA/TOCN, and starch/TOCN composite films thus

obtained were conditioned at 23 �C and 50 % relative

humidity (RH) for more than 1 day before analyses.

Analyses of polymers

The molecular mass parameters of the PAMs, PVA, and

starch were measured by size-exclusion chromatogra-

phy (SEC) with right angle-laser light scattering

(RALLS). The SEC conditions were as follows:

0.1 % (w/w) sample concentration, 500 lL injection

volume, 0.8 mm min-1 flow rate, and column temper-

ature of 40 �C. A guard column (PWXL; Tosoh, Japan)

and two SEC columns packed with a cross-linked

methacrylate polymer gel (GMPWXL; Tosoh) were

used. The detector cells were kept at 40 �C. The sample

solution and eluent (0.05 M phosphate buffer at pH 6.8)

were filtered through 1.0 and 0.3 lm disposable

membranes (Advantec Toyo Ltd., Japan), respectively,

before analysis. The electrical charges of the polymers

were determined using colloidal titration; 10 mg of

0.05 % aqueous PAM solution was titrated using a

poly-ionic titrant with an opposite charge to that of the

sample, using a Mütek PCD-04 streaming current

detector (Germany). The cationic and anionic titrants

used were 0.0025 N poly(diallyldimethylammonium
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chloride) and potassium poly(vinyl sulfate),

respectively.

Analyses of composite films

Light transmittance spectra of the PAM/TOCN com-

posite films were measured using a UV–Vis spectro-

photometer (JASCO, V-670, Japan). The thickness of

the films was calculated from the interference patterns

that appeared in their transmittance and/or reflectance

spectra obtained using a JASCO analysis program,

according to a previously reported method (Lin and

Chen 2009). The refractive indices of the PAM/TOCN

composite films used for calculation of film thickness

were 1.55, which was measured at 589 nm wavelength

using an Abbe refractometer (Atago, NAR-1T SOLID,

Tokyo, Japan) with the sodium D-line. The surface

morphology of the films was observed using a

Nanoscope IIIa atomic force microscope (AFM:

Veeco Instruments, USA) in tapping mode. Tensile

tests of the approximately 10 lm thick films were

carried out using a Shimadzu EZ-TEST tensile tester

with a 500 N load cell and a 10 mm span length.

Specimens in 30 and 2 mm length and width, respec-

tively, were measured at 1 mm min-1, and at least 10

specimens were measured for each sample. The

moisture content of films conditioned at 23 �C and

50 % RH were calculated gravimetrically from their

dried weights obtained after vacuum drying at room

temperature for 12 h. The thermal expansivity of the

films was determined using a Shimadzu TMA-60

instrument. The measurements were performed on

films dried at 120 �C for 10 min to remove the residual

water present in the original films in a nitrogen

atmosphere at 0 % RH under a 0.03 N load, at

temperatures from 30 to 120 �C with a heating rate

of 5 �C min-1.

Results and discussion

Preparation of PAM/TOCN composite films

It has been reported that aqueous TOCN dispersions

consist of completely individualized TOCN elements,

and thus have high light-transmittances and show

birefringence when observed between cross-polarizers

(De Souza Lima and Borsali 2004; Isogai et al. 2011).

Self-standing TOCN films prepared from aqueous

TOCN dispersions through casting and drying also

have high light-transmittances (Saito et al. 2006;

Fukuzumi et al. 2009).

In this study, self-standing PAM/TOCN composite

films of various weight ratios were first prepared using

an anionic PAM, which had weight-average and

number-average molecular masses, a radius of gyra-

tion, and a charge density of 2,060,000, 404,000,

57.8 nm, and -1.06 meq g-1, respectively. Thus, the

PAM and TOCN used both had anionic charges in

water at pH & 7. In preliminary experiments, it was

found that the homogeneous TOCN dispersion turned

to a gel on addition of a cationic PAM, owing to

formation of cross-linking between the anionic TOCN

elements and cationic PAM molecules. In contrast, the

anionic PAM/TOCN dispersion was flowable and

highly transparent without any formation of gel

particles, and the resulting PAM/TOCN composite

film was transparent as well (Fig. 1a–c). All the PAM/

TOCN composite films, irrespective of the PAM/

TOCN weight ratios, had high light-transmittances of

&90 % at 600 nm. The clear interferences of the

UV–Vis spectra observed for all composite films

(Fig. 1c) indicate high smoothness of the film surfaces

and uniformity of the film thickness over large surface

areas (Takahashi et al. 2009; Wu et al. 2012;

Fukuzumi et al. 2013). The AFM images showed that

the film surfaces consisted of randomly-oriented

TOCN elements. Because the morphological sharp-

ness of TOCN elements were similar between the two

AFM images (Fig. 1d), it was difficult to conclude

from these AFM images alone that each TOCN

element was partly covered with PAM molecules in

the PAM/TOCN composite film.

Properties of PAM/TOCN, PVA/TOCN,

and starch/TOCN composite films

The self-standing PAM/TOCN, PVA/TOCN, and

starch/TOCN composite films were prepared from

homogeneous dispersions of various polymer/TOCN

weight ratios. The moisture content and film density of

the composite films are depicted in Fig. 2. Moisture

contents of 100 % PAM and starch films were higher

than that of the 100 % TOCN film, indicating that

PAM and starch molecules formed disordered struc-

tures in the films and had groups much more accessible

to moisture than those in the 100 % TOCN film. In

contrast, the PVA sample, which has a lower
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molecular mass than those of PAM and starch, as

described later, may form somewhat ordered struc-

tures owing to its lower molecular mass (Endo et al.

2013), resulting in lower moisture contents of the

PVA/TOCN composite films with increasing PVA

content. The density of PAM/TOCN and PVA/TOCN

composite films decreased with increasing polymer

content, while that of starch/TOCN films was roughly

constant. These density data may reflect pore volumes

in the composite films.

Typical strain–stress curves of the composite films

are shown in Fig. 3, and the Young’s modulus and

tensile strength of the composite films are summarized

in Fig. 4a, b, respectively. The 100 % TOCN film had

remarkably high Young’s modulus and tensile

strength, 10.8 GPa and 223 MPa, respectively, com-

pared with those of 100 % PAM, 100 % PVA, and

100 % starch film, which were lower than 5 GPa and

80 MPa, respectively. This is because TOCN film

consists of nanoelements with high aspect ratios

([200) and high crystallinity (&75 %) (Iwamoto

et al. 2009; Fukuzumi et al. 2009; Saito et al. 2013).

It is noteworthy that the Young’s modulus and

tensile strength of the TOCN film were clearly

increased by compositing with 10 and 25 % PAM,

while no such improvement of mechanical properties

was observed for the PVA/TOCN or starch/TOCN

composite films. In particular, the Young’s modulus,

tensile strength, and yield stress of the TOCN film

were raised by averages of 29, 19 and 58 %, respec-

tively, for the 25 % PAM/75 % TOCN composite

film. Thus, only the PAM sample among the polymers

used in this study was found to have a characteristic

TOCN matrix reinforcement ability, although both

PVA and starch molecules have numerous hydroxyl

groups which may also have the potential to form

hydrogen bonds with hydroxyl groups present on

TOCN surfaces.

These results indicate that some attractive interac-

tions formed at the interfaces between TOCN element

surfaces and PAM molecules in the composite films,

while no such interactions existed in the PVA/TOCN

or starch/TOCN composite films. The specific rein-

forcement behavior of the 25 % PAM/75 % TOCN

composite film may partly be explainable in terms of

the surface charges of the two components; the PAM

molecules and TOCN elements used had anionic

charges of 1.06 meq g-1 and 1.4 mmol g-1, respec-

tively. Suitable electrostatic repulsions present

between anionic PAM molecules and anionic TOCN

elements in both the dispersed state and during the

drying process may have brought about sufficient

nano-dispersion of the TOCN elements without

aggregation in the dried films. Similar results have

also been observed for montmorillonite/TOCN com-

posite films, in which both the nanoclay particles and
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the TOCN elements had anionic surface charges (Wu

et al. 2012).

The characteristic chemical structure of PAM may

also participate in the mechanism for the mechanical

reinforcement of the TOCN matrix; the amide struc-

ture of the C=O and NH2 groups in each repeating unit

of PAM can form hydrogen bonds with the hydroxyl

groups of TOCN surfaces. Moreover, these polar

functional groups may also form attractive interac-

tions with dissociated carboxylate groups abundantly

present on TOCN surfaces, while the hydroxyl groups

of PVA or starch molecules cannot form such positive

interactions with sodium carboxylate groups on the

TOCN surfaces.

Figure 5a, b show the elongation at break and work

of fracture, respectively, of the composite films. The

elongation at break decreased with increasing polymer

content in the films up to 50–60 %, indicating mostly
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diminished ductile properties for these composite

films. However, the 100 % polymer films had elon-

gations at break greater than those of the composite

films containing 50–60 % polymer. Especially, the

100 % PVA film had an extremely large elongation at

break of &48 %. The work of fracture was increased

only for the 10 % PAM/90 % TOCN composite film

(from 11.5 to 13.2 MJ m-3), whereas the other

composite films had lower work of fractures than that

of the 100 % TOCN film. Thus, most of the composite

films were rather brittle, although the detailed mech-

anism explaining these results is unknown at present.

The thermal expansion behavior of the PAM/

TOCN composite films was also measured. The

coefficients of thermal expansion (CTEs) of the

100 % TOCN and the 25 % PAM/75 % TOCN films

had similar values of 5.6 and 6.4 ppm K-1, respec-

tively. These low CTE values resulted from the high

crystallinity of the TOCN elements (Nishino et al.

2004; Abe et al. 2007; Fukuzumi et al. 2009), and

hence the low CTE value of TOCN was mostly

maintained in the 25 % PAM/75 % TOCN composite

film.

Effects of molecular mass parameters of PAMs,

PVA, and starch on properties of composite films

It is well known that the molecular masses, branching

degrees, and charge densities of PAMs used as wet-

end additives in papermaking sensitively influence

their retention behavior and the resultant mechanical

properties of PAM-containing paper and board (Yo-

shimoto et al. 2004; Hubbe 2006; Wang et al. 2006;

Baraki 2013). Hence, we synthesized various PAM

samples with different molecular masses and branch-

ing degrees, and studied their mechanical reinforce-

ment behavior in PAM/TOCN composite films. The

relationships between weight-average molecular mass

(Mw) and radius of gyration (Rg) of the synthesized

PAMs as well as the PVA and starch samples,

determined by SEC-RALLS, are shown in Fig. 6.

The synthesized PAM samples are classified into

two groups depending on their branching degrees;

low- and highly-branched PAMs. These two PAM

groups were synthesized by controlling the amount of

the branching agent added. 25 % PAM/75 % TOCN

composite films were then prepared using these

samples, and their mechanical properties were eval-

uated in terms of the Mw values of the PAMs (Fig. 7).
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When low-branched PAMs were used, both the

Young’s modulus and tensile strength of the 25 %

PAM/75 % TOCN composite films increased with

PAM Mw, and exhibited maximum values at around

2–3 MDa. PAMs with higher Mw than these rather

decreased both the Young’s modulus and tensile

strength, showing that optimal PAM Mw values exist

for the mechanical reinforcement of TOCN. More-

over, the highly-branched PAMs gave higher Young’s

modulus and tensile strength to the composite films

than the low-branched PAMs, when compared at

similar Mw. Consequently, the molecular mass values

of the PAMs greatly influenced the resultant mechan-

ical properties of the composite films. The low

Young’s modulus and tensile strength of the PVA/

TOCN film in Fig. 5 are partly explainable in terms of

the low Mw of the PVA used, whereas the results for

the starch/TOCN composite film could not be eluci-

dated in terms of Mw alone.

Conclusion

Aqueous solutions of anionic PAM, PVA, or oxidized

starch were homogeneously mixed with TOCN disper-

sions without forming any aggregates, providing highly

transparent self-standing polymer/TOCN composite

films after casting/drying of the mixtures. The PAM/

TOCN composite films had high light-transmittances of

&90 % at 600 nm wavelength, irrespective of PAM

content from 10 to 60 %, showing that the TOCN

elements maintained their nano-dispersed state in the

composite films. Both the Young’s modulus and tensile

strength of the TOCN film were improved by compos-

iting with 25 % PAM of 2–3 MDa in Mw, while its high

optical transparency and thermal stability were mostly

unchanged. In contrast, no such mechanical reinforce-

ment behavior was observed for PVA/TOCN or starch/

TOCN composite films. Thus, some attractive interac-

tions may form at the interfaces between TOCN

surfaces and PAM molecules of 2–3 MDa, particularly

at around 25 % PAM content. However, no such

interactions exist between TOCN elements and either

PVA or starch molecules. The anionic charge and/or the

specific amide structure in each repeating unit of the

PAM molecules may have brought about the clear

mechanical reinforcement of the TOCN matrix.

Because the molecular mass, charge density, and

branching degree of PAMs are controllable within our

current synthesis technologies, which have been accu-

mulated in production of various PAMs used as wet-end

additives in papermaking, it is possible to design the

present PAM/TOCN composite films to have adequate

mechanical properties for various end uses.
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