
Diffraction from nonperiodic models of cellulose crystals

Yoshiharu Nishiyama • Glenn P. Johnson •

Alfred D. French

Received: 13 December 2011 / Accepted: 3 January 2012 / Published online: 20 January 2012

� Springer Science+Business Media B.V. (outside the USA) 2012

Abstract Powder and fiber diffraction patterns were

calculated for model cellulose crystallites with chains

20 glucose units long. Model sizes ranged from four

chains to 169 chains, based on cellulose Ib coordi-

nates. They were subjected to various combinations of

energy minimization and molecular dynamics (MD) in

water. Disorder induced by MD and one or two layers

of water had small effects on the relative intensities,

except that together they reduced the low-angle

scattering that was otherwise severe enough to shift

the 1 �1 0 peak. Other shifts in the calculated peaks

occurred because the empirical force field used for

MD and minimization caused the models to have small

discrepancies with the experimental intermolecular

distances. Twisting and other disorder induced by

minimization or MD increased the breadth of peaks by

about 0.2–0.3� 2-h. Patterns were compared with

experimental results. In particular, the calculated

fiber patterns revealed a potential for a larger number

of experimental diffraction spots to be found for

cellulose from some higher plants when crystallites

are well-oriented. Either that, or further understanding

of those structures is needed. One major use for

patterns calculated from models is testing of various

proposals for microfibril organization.

Keywords X-ray � Fibril � Elementary �
Microfibril � Amorphous

Introduction

Many technologies have contributed to our knowledge

of cellulose structure such as optical, electron and

atomic force microscopy, as well as infrared, Raman,

and nuclear magnetic resonance spectroscopy. Despite

these other methods and the fact that cellulose fibers

were first placed in an X-ray beam nearly 100 years

ago, experimental diffraction patterns continue to be

of interest. Diffraction patterns are important because

they directly reflect the time- and spatially-averaged

organization of atoms in the sample. However, fibrous

samples present greater challenges than do the indi-

vidual crystals of small molecules that are on the scale

of hundreds of microns larger. Fibers usually contain

large numbers of nanometer-scale crystals. Ideally,

those crystallites are aligned with their long axes

parallel to the fiber axis but with random rotational

orientations about their long axes. Compared to

powders, fiber diffraction patterns allow unambiguous
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determination of one of the three repeated dimensions

in the crystallites, making definition of the remaining

two dimensions less difficult and generally reducing

overlap of the diffracted intensity. However, some

samples of cellulose are powders with more or less

random orientation of the crystallites in all three

directions. Powder diffraction patterns are often

obtained more conveniently and can furnish valuable

insights on the sample in question. Still, their inter-

pretation can usually be informed by the more detailed

information from fibrous samples.

Enough information is available to determine a

crystal structure at atomic resolution if highly oriented

fiber specimens with large crystallites are analyzed, as

was the case for a series of cellulose allomorphs

(Nishiyama et al. 2002, 2003a; Langan et al. 2001;

Wada et al. 2004, 2009) and related crystals (Nishiyama

et al. 2011). Those specimens gave sharp diffraction

spots whose intensities could be extracted rather

accurately. Although many diffraction spots still over-

lap due to the cylindrical averaging in fibers, structural

features such as primary alcohol group orientation could

be directly obtained by applying classical crystallo-

graphic approaches.

On the other hand, most practical samples of

cellulose have smaller crystallite sizes, complicated

textures (supramolecular structures) that result in

lower orientation, and structural defects or paracrys-

tallinity. Some percentage of water may be present,

with an unknown effect. As a consequence, there is

insufficient data to solve for more than a few variables

so the atomic coordinates cannot be obtained directly

from diffraction data. Instead, the structure is often

analyzed by trial-and-error methods that compare

experimental diffraction data with diffraction intensi-

ties calculated from a series of atomistic molecular

models. The model giving the best agreement is the

most plausible one. Once the crystal structure is

thought to be known from samples with relatively

large crystals, however, then the crystallite size,

texture and disorder can be studied with trial and

error approaches. These traits are thought to also be

important for understanding the various properties of

cellulose from various sources.

Interpretation of diffraction data to understand the

additional structural aspects is not trivial (Fernandes

et al. 2011), being somewhat dependent on the models

that are employed to compensate for such deviations

from traditional crystals. Interpretations of such

diffraction patterns are typically based on simple

analytical expressions. For example, because greater

widths of the diffraction peaks correspond to smaller

numbers of crystallographic planes, and hence dimin-

ished crystallite size, that size can be assessed with the

Scherrer equation (Azároff and Buerger 1958; Alex-

ander 1969). For example, this relationship was used

to evaluate the peak widths in Fig. 1. Also, diffraction

intensities have often been assumed to arise from a

combination of sharp peaks arising from the crystal-

line component and from smooth scattering from

amorphous regions. However, that thinking may be

problematic.

Observations by microscopy, hypotheses on the

morphogenesis, and molecular modeling often lead to

structural models that do not necessarily fit this

simplistic, two-phase view. For example, cellulose is

thought to crystallize in proximity to the polymeriza-

tion site where many chains are simultaneously

produced and deposited, leading to a continuous, fine

but crystalline filament. In these filaments, no amor-

phous regions have been observed, and disordered, or

strained regions seem to be very small (Nishiyama

et al. 2003b). Yet the notion of ‘‘degree of crystallin-

ity’’ is still often used to interpret the diffraction profile

to provide the relative masses of crystalline and

amorphous material in a given sample. Based on NMR

Fig. 1 Powder diffraction patterns calculated with Mercury

software (Macrae et al. 2008) based on the cellulose Ib crystal

structure (Nishiyama et al. 2002) and specified peak widths at

half maximum (pwhm) ranging from 0.1� to 1.6�. Crystallite

sizes are indicated, based on the Scherrer equation [(5), below]

constant K of 1.0. In this case the high background at

2-h = 18.5� for the upper curve (with 1.6� peak width at half

height) arises only from the overlapping of broad peaks;

no ‘‘amorphous’’ material is present. There are no peaks in the

range of 8–13�, because of the implicit assumption of infinite

crystallite size, unlike the patterns shown below in Fig. 3
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experiments (Newman 1998), a kind of irreversible

aggregation was proposed to occur during the pulping

process, leading to a ‘‘paracrystalline’’ region that

corresponds to a different notion from the paracrys-

tallinity defined for polymer diffraction analysis

(Hosemann 1962).

X-ray, neutron and electron diffraction structure

refinements typically depend on defining a unit cell.

That cell, with its constituent atoms, repeats on a

lattice that extends to infinity, as a working approx-

imation of the arrangement of atoms in the sample.

This assumption is employed even for molecules such

as polymers in which the crystal cross-sections are

measured in nanometers. However, in such small

systems, the surface molecules constitute a relatively

large portion of the total number of molecules in

the crystal and should therefore also contribute to the

wide angle X-ray scattering or diffraction.1 Because

the surface molecules of crystals have considerably

different environments than those on the interior, they

are likely to deviate substantially from the structure of

the crystalline core. That should affect the diffraction

pattern. In this context, we felt a necessity to relate

experimental diffraction data to different computer

models proposed based on different techniques.

Approaches involving computerized molecular

models are appealing. With just the known unit cell

dimensions and crystal symmetry, even small models

can successfully predict the hydrogen bonding and

other packing details of cellulose crystal structures

(Ford et al. 2005). Atomistic computer models of

polysaccharide crystals can now be constructed that,

at least in cross section, equal or exceed the apparent

crystallite sizes in cellulose samples. These models can

initially be based on repeated translations of the unit

cell coordinates provided by determination of the

crystal structure, or on other, more hypothetical

arrangements. Ideally, a molecular dynamics (MD)

simulation would reproduce the thermal motion of

the atoms and give representative arrangements to the

surface molecules and thermal disorder inside the

crystals. Various MD studies (Heiner et al. 1995;

Hardy and Sarko 1996; Kroon-Batenburg and Kroon

1997; Baker et al. 2000; Mazeau and Heux 2003; Yui

et al. 2010), have been reported (see Bergenstråhle

et al. (2007) and Bellesia et al. (2010) for more

thorough reviews) but the behavior of model cellulose

crystals is quite force-field dependent. Each force field

is rationalized and justified based on fits to experimen-

tal properties and/or quantum mechanics calculations,

and should in principle predict the correct behavior

of a molecule. However, because of the absence of a

consensus among the results from different force fields,

it is important to compare the outcome of molecular

simulation with experimentally available data.

Besides the selected force field, another factor in

the outcome is the type of model crystal. In the present

work, we employ the ‘‘mini-crystal’’ method, in which

the complete, finite crystal is described. Another

approach, the ‘‘infinite crystal’’ method, relies on a

typically smaller model that is repeated at periodic

boundaries to calculate bulk effects. The latter

approach can compensate for the relatively short

chain length of the models (in our case 20 glucose

residues) and avoids twisting and ‘‘uncontrolled edge

effects’’ (Mazeau and Heux 2003). In fact, size,

twisting, and edge effects are of major interest in the

present work. Regarding length, many of the charac-

teristics observed in the present models were similar

to those observed with model chains of only eight

residues (Nishiyama et al. 2008), so very long or

infinite models were not deemed necessary for the

present work. Long (not infinite) models would be

needed, of course, if we were concentrating on the

disorganized regions along the molecular length that

give rise to a regular spacing (Nishiyama et al. 2003b).

Software for calculating diffraction patterns such as

shown in Fig. 1 from the atomic coordinates within

the repeating unit cell of periodic structures is

readily available (Spek 2008; Macrae et al. 2008),

but computer models lose their repeating unit cell and

their periodicity, when subjected to energy minimiza-

tion or MD. Therefore, software for calculating the

diffraction pattern from finite, mini-crystal models

must account for each atom’s position in the aperiodic

computer model. The stumbling block was that such

software was not available. Subsequently, suitable

software for powder patterns became available (Wojdyr

2011), and one of us (YN) has developed software that

can simulate the more-informative fiber patterns. These

all-atom programs explicitly change the diffraction

patterns to account for different values of the crystal

length and width.

1 In a crystal composed of a 10 9 10 array of polymeric

molecules, 36 would be on the surface (36%). In a conventional,

sub-millimeter size single-crystal for diffraction, the fraction of

molecules on the surface is much less than one percent.
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Herein we explore issues of crystallite size, mod-

eling method, and the effects of water molecules on

the calculated patterns. Our approach is mostly

qualitative, in that it is based on visualization of

calculated diffraction patterns and comparison with a

few experimental patterns. It is in the trial-and-error

spirit, extended from likely atom positions in the

unit cell, to an explicit inclusion of all atoms in the

proposed structure. In addition to learning more about

crystalline cellulose, the software for non-periodic

materials also provides the opportunity to better

understand the nature of ‘‘amorphous’’ cellulose.

Materials and methods

Samples for diffraction

Highly crystalline cotton cellulose had been previ-

ously prepared from desized, scoured and bleached

fabric. It was cut to 20 mesh in a Wiley mill and

subjected to 2.5 N HCl at reflux for 40 min, a

procedure that was optimized to give samples with

the most crystalline diffraction pattern (Rowland et al.

1971). Scanning electron microscopy showed that

some of the fiber cell wall structure remained.

Diffraction methods

The highly-crystalline powder sample from hydro-

lyzed cotton was mixed with a fine powder of CaCO3

(as calibrant) crystals milled using an agate mortar and

pestle. The mixture was put in a soda-glass capillary

with 0.5 mm outer diameter. The sample capillary was

placed on a collimated sample holder in a simple

Warhus vacuum camera. A point focused CuKa
radiation from an X-ray tube filtered with a Ni foil

was used as the incident beam with various exposure

times. The diffraction was recorded on a Fujifilm

Imaging plate that was read with an Image plate

reader BAS 1800II. Diffraction intensity profiles were

obtained from the two-dimensional data by circularly

integrating the intensities after correcting for the

detector tilt using in-house software. The sample-to-

detector distance was determined from the peak

position of calcite at d = 3.055 Å. No background

corrections were made but the intensity data were

scaled as needed for optimal comparison with the

calculated patterns. A diffraction pattern of a ramie

fiber bundle from ADF’s archives had been recorded

with a precession camera and CuKa radiation. Also,

a previously published (Nishiyama et al. 2002)

synchrotron diffraction pattern from the crystal struc-

ture determination of tunicate cellulose Ib was incor-

porated in a comparison figure.

Modeling methods

Models were constructed, typically with the Mercury

software (Macrae et al. 2008), based on repetition of the

dominant fraction in the cellulose Ib unit cell (Nishiy-

ama et al. 2002). For this work, the model crystals were

built so that the (1 �1 0) and (1 1 0) planes form the

surfaces, widely thought to be a realistic representa-

tion (Nishiyama 2009). They were named ‘‘original’’

models. Both energy minimization (fully minimized in

vacuum, e = 1.0) and MD simulations were per-

formed using Amber9 or 10, and the Glycam04

(Kirschner and Woods 2001a; Basma et al. 2001;

Kirschner and Woods 2001b) or Glycam06 (Kirschner

et al. 2008) parameters (we did not find significant

differences in the results for the various combina-

tions.) MD simulations used the TIP3P water molecule

(Jorgensen et al. 1983). Initially, water was added and

the energy was minimized with the cellulose mole-

cules held fixed (group 1). After minimization, the

system was heated over 20 ps to 300 K with the

cellulose tightly restrained (equilibrated at constant

volume) and then equilibrated at constant pressure

(groups 2 and 3). MD models were then simulated

without restraints for 100 ps (group 4) although

substantial alteration of the structure occurred almost

instantly. After simulating in the presence of solvent,

the cellulose was removed along with 0, 1 or 2

solvation shells. To clarify, the only difference within

each of the four groups of MD models with a given

number of cellulose chains was the number of solvent

shells that were included when calculating the pat-

terns. Including the model that retained the original

coordinates, the minimized version thereof and the

models from the MD runs, there were 14 different

models for which patterns were calculated.

Calculated diffraction patterns

IðSÞ ¼
X

m

X

n

fmfn
sin Srmn

Srmn
ð1Þ
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Powder patterns

The Debyer software (Wojdyr 2011) that we used is

based on the well-known (Alexander 1969) Debye

scattering equation (1), where I is the intensity as a

function of S. S is related to the scattering angle 2h by

S = 4p(sinh)/k, fm and fn are the atomic scattering

factors for the mth and nth atoms, and rmn is the

distance separating them. Since the intensity is

averaged out over all directions, the intensity profile

is equivalent to a powder diffraction trace after

Lorentz-polarization corrections. Alexander’s 1969

book states that ‘‘in practice, this procedure is

obviously limited to rather small atomic aggregates,

even when electronic computers are used’’, referring

to calculations such as those carried out by the Debyer

program. Forty years later, an ordinary desktop

computer requires only a few minutes to calculate a

pattern equivalent to a powder diffractometer trace

for a large model crystal.

Fiber patterns

Fiber diffraction patterns were calculated with the

programs, Calcdiff and Convolute. Convolute takes

the output from Calcdiff and further distributes the

calculated intensity to account for the crystallite

orientation distribution angle. Since the models with

which we are concerned do not have rigorous period-

icity in any direction, as is the case for all mini-crystal

approaches, we calculate the intensity in three-

dimensional Cartesian reciprocal space. Then the

average is spread over concentric circles so as to

account for texture with fiber symmetry, instead of

over concentric spheres that would be used in the case

of powdered samples.

In Calcdiff, the scattering intensity of a group of

atoms in scattering vector k is expressed as (2)

IðkÞ ¼ FðkÞj j2¼
X

m

fm expð�ik � rmÞ
�����

�����

2

ð2Þ

where F is the structure factor and fm is the atomic

scattering factor for atom m. Since we assume a fiber

texture, the three-dimensional diffraction pattern will be

cylindrically averaged around the fiber axis. This is done

by converting the Cartesian scattering vector k(x, y, z)

into cylindrical polar coordinates k0(R, Z, /), where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

Z ¼ z

/ ¼ arccosðx=RÞ

and the relative intensity

IðR; ZÞ ¼
Zp

0

IðR; Z;/Þd/

was calculated using the QAG algorithm that is

implemented in the gnu scientific library (Galassi

et al. 2009).

The fiber texture can be expressed as a probability,

P(/), to find the unique axis of a non-periodic object

making an angle / with respect to the macroscopic

fiber axis. The Convolute program considers the

orientation distribution of the object around the unique

axis to be flat. The intensity intrinsic to the individual

object I(R, Z) is expressed in polar coordinates as I(r,

r), where r is the angle with respect to the chain axis

and r is the distance from the center (see Scheme 1).

Now the diffraction intensity at position r in reciprocal

space of the experimental frame due to the macro-

scopic fiber will be the contribution of intensity I0(r, r)

of objects whose orientation makes an angle r with

vector r. Introducing the angular parameter x to

describe the rotation around the vector r, the intensity

due to the ensemble of crystallites in the fiber can be

described as (3)

Iðb; rÞ ¼
Z

I0ðr; rÞ
Z

Pð/; b; r;xÞdxdr ð3Þ

r

σ

β ϕ

z

ω

Scheme 1 Position of a reflection in reciprocal space due to a

crystal inclined by angle u with respect to the fiber axis (Z). The

reflection makes an angle r with the main axis of the crystal (r)
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Integration over x was conducted independent of r

and the result was stored in memory as a function of b
and r. When the diffraction pattern is calculated in

polar coordinates, the integration becomes a simple

matrix operation. For a given resolution r, the array of

intensity as a function of the azimuthal angle b will be

(4)

Ibr ¼
X

r

PbrI0rr ð4Þ

The program Convolute first calculates the matrix Pbr

using an arbitrary orientation function (in this particular

case, a Gaussian distribution function centered at the

fiber axis z with a standard deviation of 5�) and stores it

in memory. Then Convolute converts the cylindrically

averaged individual object diffraction pattern into polar

coordinates and applies the above matrix operation.

Finally the intensities are remapped back to two-

dimensional Cartesian coordinates.

Graphical representations

Powder diffraction intensities from experiment or the

Mercury (Fig. 1) or Debyer (Figs. 3, 6) calculations

were plotted with Slidewrite Plus (http://www.

slidewrite.com). Fiber diffraction data from Calcdiff

and Convolute were rendered with ImageJ (Rasband

2011) to resemble diffraction patterns collected on film

or image detectors. Atomistic images of the model

crystals were prepared with the UCSF Chimera package

from the Resource for Biocomputing, Visualization, and

Informatics at the University of California, San Fran-

cisco (supported by NIH P41 RR-01081) (Pettersen

et al. 2004).

Results

Models

Figure 2 shows examples of different models used in

the present report. The smallest crystal model involv-

ing four chains is featured for this purpose because it

can be shown in greatest detail. The amount of

disorder in the cellulose for the equilibrated model is

typical of all models that had undergone that proce-

dure, but the amount of twist in the fully minimized

and in the MD models is exaggerated compared to that

in the larger models because of the small crystal size.

Larger models with 6 9 6 and 12 9 12 chains are also

shown, without hydrogen atoms or water.

Powder patterns

Figure 3 shows the powder diffraction patterns for

models with 4, 16, 36, 64, 100, and 144 cellulose

chains, calculated with the Debyer program. All of

these patterns were normalized to have the same

maximum intensity and then shifted by different

amounts to allow presentation of the curves without

excessive overlap. The upper set of patterns is for the

bare original models, the middle set is for the models

equilibrated at constant volume with one solvation

shell, and the lower is for the MD models with two

solvation shells. In particular the original models show

significant low-angle scattering between 2-h = 10�
and 2-h = 13�. It dominates the pattern for the

smallest models, producing opposite trends in the

diffraction intensity for the 2 9 2 (4-chain) model

compared to the other curves. Even the largest models

are affected, with smaller oscillations obvious in

the 2-h = 10–15� range. These oscillations affect the

apparent positions of the peaks, especially the 1 �1 0

peak just before 2-h = 15�.

The curves in Fig. 3 for the models equilibrated at

constant volume with one solvation shell indicate much

less of the low-angle scattering than was seen for the

upper set from original models. Therefore, the peak

positions of the equilibrated models were taken as the

standard ones. Examination of the other models in the

set showed that the small-angle scattering was substan-

tially diminished when two conditions were met: water

had to be present, and there had to be some deviation of

the structure from the original coordinates. Models with

minimized water but the original cellulose coordinates

retained the scattering above 2-h = 10�, as did the fully

minimized, equilibrated and MD models with no water

present. Because the water in the equilibrated models

had little apparent effect on the pattern except for the

reduction of the low-angle scattering, most of the focus

of this report relies on those models and patterns in

preference to the bare original models.

We do not fully understand the low-angle scattering

or more precisely, the reduction of it by the combi-

nation of surrounding water and reduced order in the

cellulose. It may be that the water provides a ‘‘matrix

324 Cellulose (2012) 19:319–336
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effect,’’ allowing a gradual decrease in electron

density between the cellulose and the vacuum sur-

rounding the model. We found similar low-angle

scattering and reduction for hexagonal models also

created in this project, on both the powder and fiber

patterns. These peaks are clearly not Bragg peaks, as

indicated by their absence in Fig. 1.

The bottom set of curves in Fig. 3 indicates that

substantial changes have taken place because of MD

simulation. Curves for the energy minimization mod-

els with no water were nearly identical, as were MD

curves with one water (not shown). As seen in Fig. 2,

the most obvious changes in the models are the

twisting, especially extensive in the smaller models,

and the surface disorder in the models subjected to

MD. The effect of twist on the patterns is discussed

further below. Despite the visually dramatic changes

in these models from being subjected to the Glycam

force field, the effects on the diffraction patterns are

relatively subtle. The 2 9 2 model curve is most

affected and could be described as having more

exaggerated peak broadening than when the 2 9 2

model was well-ordered. The other curves are also

slightly broader, with the breadth differences dimin-

ishing for the larger crystals (see an analysis of peak

breadths, below).

In the bottom group of Fig. 3, other than the

substantially changed curve for the 2 9 2 model, the

clearest differences from the top and middle groups of

curves are shifts of the peak positions, including the 2

0 0 peak at about 2-h = 23�. This results from changes

in the intermolecular spacings. The contraction in

spacing perpendicular to the fiber axes can be seen in

Fig. 2 for the 6 9 6 and 12 9 12 models. In Nishiy-

ama et al. (2008), distances were measured for a small

model crystal that had undergone 10 ns of MD. Those

Fig. 2 Model crystallites used to calculate diffraction patterns.

In the cluster of four models on the upper left are views looking

down the chain axes of four-chain models. In that cluster,

clockwise, from the upper left: a 2 9 2 (four-chain) model

based on the original coordinates; a model resulting from MD

simulation; an energy-minimized model, and an equilibrated

restrained model with two solvation shells. Note the regularity

of the energy-minimized model compared to the MD model. On

the lower left, the four models show the same models

perpendicular to the chain axes, with the energy-minimized

structure last. The upper right four images are of 6 9 6 and

12 9 12 models, viewed down the chain axis, before and after

energy minimization, and the four images at the lower right are

views perpendicular to the molecular axes
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distances corresponded to what would have been the

unit cell dimensions if periodic order had been

preserved. Based on those dimensions, the 19-chain

MD model in that work would have had a 2 0 0 peak at

2-h = 23.91� instead of 23.01�. The movement of the

2 0 0 peak to larger 2-h values indicates a shorter

distance between the (2 0 0) planes. A third manifes-

tation is the intensity change in the range of

2-h = 33–35�. On the upper and middle sets of

patterns, the peak at about 2-h = 34.5� is actually a

composite (see also Fig. 1 in the 33–35� 2-h region).

Interpretation of these changes is aided substantially

by the fiber diffraction patterns in Fig. 5. Here, on

these powder patterns, 0 0 4 moves to the left by more

than a degree. This is best detected on the powder

patterns for the smallest models, where the other peaks

are not well developed. The smaller 2-h values for the

0 0 4 peaks indicate a slightly longer chain length, also

detectable by measuring the models in Fig. 2. This is

also in agreement with Nishiyama et al. (2008), where

the corresponding change was from the original 0 0 4

peak at 2-h = 34.56� to the MD peak of 2-h = 33.89�.

Because the a- and c-unit cell dimensions are shrink-

ing and expanding, respectively, the contributors to

the composite peak will move in opposite directions

and break it up.

Powder peak profiles

The profiles of the 2 0 0 peak as calculated by the

Debyer program were assessed, both for the unscaled

maximum peak height, and for the peak width at half

height. Models with 100 chains in a 10 9 10 diamond

array and 91 chains in a hexagonal array were

examined. The 91-chain model consisted of one central

(2 0 0) sheet of 11 chains, and two sheets of six to 10

chains arranged in decreasing size on either side of the

central sheet. It had been constructed starting with an

11 9 11 diamond (similar to the models in Fig. 2) and

the top and bottom 15 chains were removed.

Peak breadths can provide information on both the

crystallite size and on the disorder. The Scherrer

equation (5) (Patterson 1939) relates the minimum

crystallite size s to the breadth.

s ¼ Kk
b cos h

ð5Þ

In (5), K is the ‘‘shape factor’’, k is the wavelength, b is

the peak width at half height (2-h, expressed in

radians), and h is the position of the peak (half of the

2-h value). The value of K is often given values of

about 0.9 but can range from 0.6 to 2.08. Other traits of

the crystals that can broaden diffraction peaks include

strain, faults and dislocations. In the present work, it is

of interest to learn how much the disorder introduced

by MD or minimization broadens the peaks.

Table 1 shows that the original models had the

greatest peak heights, and the fully minimized and MD

models had the lowest heights. Because the 91-chain

model only has 11 rows of (2 0 0) sheets and the

Fig. 3 Powder diffraction patterns calculated with Debyer

software based on models with 4, 16, 36, 64, 100, and 144

chains. Models in the upper set are from original Ib coordinates,

the central set includes restrained equilibrated models with one

solvation shell, and the lower set is for molecular dynamics

models with two solvation shells. As these models progressed in

size, there was a complete new outer layer of molecules
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100-chain model has 19, the peak heights are higher

for the 100-chain model. The ranking of the peak

heights from the two models are mostly the same

except for a switch of the ranking of the min-ws2 and

the eqv-ws1 models. It is not easy to determine

absolute peak heights from experiment.

The fully minimized and MD models generally had

the greatest peak widths as well, with the exception for

the 91-chain min-ws2 model. The peak widths were

assessed by scaling the diffraction data so that the 2 0 0

peak maxima were 100 and then finding the locations on

the 2-h axis where the calculated intensities on either

side of the peak were closest to 50. The data values

before and after that point were used in a linear

interpolation to provide the 2-h values at 50% maximum

height. The water shells generally decreased the max-

imum intensities, especially the second one. Besides

disorder, another reason for the broader peaks for the

MD and minimized models is their smaller crystallite

size perpendicular to the (2 0 0) planes; the distance is

compressed because of the Glycam force field. Accord-

ing to the Scherrer equation with a K of 1.0, the peak

width of 1.43� for the original 100-chain crystal

corresponds to a size in the direction perpendicular to

the (2 0 0) planes of 63 Å, and the size of the fully

minimized crystal would be 56 Å. For the comparable

91-chain models, the values are 44 and 40 Å, respec-

tively. The size (63 Å) from the original 100-chain

crystal in the direction perpendicular to the (2 0 0) planes

is smaller than the expected distance of 19 planes times

the interplanar spacing of 3.9 Å = 74 Å, perhaps

because some of the planes have very few cellulose

molecules in them. At the top and bottom of the diamond

(see Fig. 2, upper right) there are rows with one, two, or

three chains for example. The agreement for the

91-chain model, with a minimum of six chains in its

(2 0 0) planes, is closer (11 9 3.9 = 42.9 Å).

Fiber diffraction patterns

Figure 4 shows a pattern calculated with Calcdiff,

along with labels that indicate the equator, some of the

layer lines (hk1, hk2), the meridian, as well as some of

the important diffraction spots. Also indicated is low-

Table 1 Raw heights and peak widths at half height

91-Chain hexagonal models 100-Chain diamond models

Modela Raw peak

height

Peak width at half

height

Modela Raw peak

height

Peak width at

half height

2-h (�) 2-h (�)

orig 78.0 2.06 orig 104.4b 1.43

min-ws0 77.2 2.06 min-ws0 103.5 1.43

min-ws1 76.0 2.04 min-ws1 100.8 1.43

eqp-ws0 75.5 2.05 eqp-ws0 100.6 1.42

eqv-ws0 74.2 2.06 eqv-ws0 99.3 1.43

eqp-ws1 71.0 1.98 eqp-ws1 90.7 1.42

eqv-ws1 69.9 1.99 min-ws2 90.5 1.45

min-ws2 64.1 2.23 eqv-ws1 89.4b 1.42

eqp-ws2 62.6 2.08 eqp-ws2 82.4 1.44

eqv-ws2 61.5 2.09 eqv-ws2 81.4 1.44

md-ws0 59.4 2.25 md-ws0 77.5 1.57

full min 58.9 2.27 full min 75.5 1.62

md-ws1 55.4 2.16 md-ws1 69.5 1.56

md-ws2 47.9 2.33 md-ws2 62.9b 1.59

a Model name codes ‘‘orig’’ and ‘‘full min’’ refer to the model based on original coordinates and then fully minimized, respectively.

‘‘min’’ refers to models based on original coordinates but with minimized water, and ‘‘md’’ to models subject to unrestrained MD.

‘‘eqp’’ and ‘‘eqv’’ refer to models with restrained cellulose and unrestrained water, equilibrated at constant pressure and volume,

respectively. The number of water shells is designated by ‘‘ws#’’ where # is either 0, 1 or 2. Peak widths are based on CuKa radiation,

1.5418 Å
b Diffraction pattern displayed in Fig. 3
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angle scattering along the meridian, parallel to the

fiber axis. The spacing in that low-angle scattering is

reciprocal to the length of the crystal, some 104 Å.

There is also low-angle scattering along the equator.

The output from Calcdiff that gave this pattern serves

as input to a second program, Convolute, which adds

the effect of the crystallite orientation distribution, as

shown in the patterns of the following figure.

Figure 5 shows an array of calculated fiber diffrac-

tion patterns, each with a direct representation of

reciprocal space. The patterns were calculated to appear

as if they were made with a precession camera.

Therefore, the layer lines are not curved as they would

be if they were in ‘‘flat plate’’ patterns made with a

conventional camera and Cu radiation. Also, the

meridional reflections are all brought into the sphere

of reflection. All were made with the fiber axes assumed

to be vertical, with a standard deviation for the crystallite

orientation of 5�, leading to the short arcs for the

diffraction spots. The maximum intensity was adjusted

in ImageJ to be 5% of the maximum value found in the

region of the 2 0 0 reflection except for the patterns for

the 2 9 2 models. Their maximum intensity was 10% of

the maximum in the 2 0 0 region. Again, the models have

4, 16, 36, 64, 100, and 144 cellulose chains.

Each of the six individual images (Fig. 5a–f) is

composed of two calculated patterns. The left sides are

for the MD models, with one solvation shell, and the

right sides are for the better-ordered, equilibrated

models with one solvation shell. As mentioned above,

the 0 0 4 spots on the MD patterns are closer together

than on the right side, indicating a longer 0 0 4 spacing

and longer model crystal, since each model has 20

glucose residues.

One of the main features of interest in this series of

calculated diffraction patterns is the development of

crystallinity as the model size increases. The increased

sharpness of the individual spots for the equilibrated

models, compared to the MD models, is also apparent,

especially for the smaller models. All of the patterns,

except perhaps the one from the 2 9 2 MD model,

have well developed layer lines that result from the

20-residue long model crystals. That length, more than

100 Å, is longer than distances perpendicular to the

molecular axis in all but the biggest of our models.

Because the chains remained in an extended confor-

mation and near periodicity is enforced in that

direction by covalent bonds, the layer lines are

reasonably well-developed. It is instructive to contrast

the amount of information from the fiber pattern in

Fig. 5a with that of the powder pattern in Fig. 3 for the

same 2 9 2 models.

An important question about the crystallite surfaces

regards how the surface molecules contribute to the

diffraction pattern. How would the apparent crystallin-

ity of an equilibrated model, with just four chains (our

2 9 2 model) compare with the MD model with 16

chains (our 4 9 4 model)? To an extent, the equilibrated

2 9 2 model could be taken as a crystalline core for the

4 9 4 MD model, with disordered surface molecules.

As seen in Fig. 5, the left side of Fig. 5b (the MD model

with 16 chains) is better resolved into individual

reflections than is the right side of Fig. 5a (the

equilibrated 2 9 2 model). As the model size increases,

this effect seems to diminish, but the addition of surface

chains enhances the resolution of the diffraction pattern

instead of detracting from it. Quantitative comparisons

are more difficult because of the discrepancies in spot

positions and overlap because of the dimensional

changes induced in the MD models by the force field.

Another point of interest concerns the development

of discernable splitting of the 1 �1 0 and 1 1 0 spots on

the equator. In the powder patterns in Fig. 3, there is

some separation in all three types of 8 9 8 and larger

models. This is borne out in the fiber patterns as well.

The splitting is one indicator of the size of cotton

crystals, the diffraction patterns of which typically

have clear separation of these two diffraction maxima.

Fig. 4 Calculated diffraction pattern based on the 12 9 12

model with original Ib coordinates, using the Calcdiff program.

The equator and meridian are labeled, as are the hk1 and hk2

layer lines. Low-angle scattering is indicated, as are some of the

prominent reflections
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Fig. 5 a–f are calculated diffraction patterns after the use of the

Convolute program. The models have 4, 16, 36, 64, 100, and 144

chains, respectively. The left half of each figure is from an

unrestrained MD run with one solvation shell, and the right half
is for the same size model with restrained equilibration MD. By

placing the pattern for the restrained model (e.g., the right half of

c) next to the next larger unrestrained MD pattern (the left half of

d), the effect of adding a layer of surface chains to the crystal is

visualized. Each left-side model, being under the control of the

Glycam force field, has a longer c-axis spacing so the distances

between its layer lines are slightly shorter
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This observation alone indicates that the cotton

cellulose crystallites, which give patterns with visibly

diminished intensity between the two reflections, are

at least as big as an 8 9 8 model. However, when

drawing that conclusion, it must be remembered that

any reduction of the monoclinic angle c would

increase the overlap (reduce the splitting) of these

two reflections (Fernandes et al. 2011).

Comparison with experiment

Figure 6 compares an experimental powder pattern

from microcrystalline cellulose of cotton with a

pattern from a 10 9 10 model that was equilibrated

and includes one solvation shell. The experimental

pattern was recorded with CaCO3 (calcite) powder for

calibration, and the peak at 29.23� 2-h (3.055 Å) is

from that structure. The discrepancy of the 2 0 0 peak

positions is due to the small difference in d-spacing,

and thus the lattice parameters, between tunicin

cellulose used for the model and cotton cellulose,

which furnished the experimental pattern. The 2 0 0 d-

spacing of cotton is reported to be about 1% larger than

that of tunicin (Wada et al. 1997). This might be due to

small disorder inside the crystal or due to limited

crystal size that reduces the attractive long-range

London dispersion interactions. The observed and

calculated peak widths at half-height for d2 0 0 are

comparable. This is notably without correction for

instrumental line-broadening, so the true cotton

diffraction pattern’s peak width must be somewhat

narrower. Therefore, a 10 9 10 model should be the

minimum size.

Figure 7 shows an archived experimental diffrac-

tion photograph from scoured and bleached ramie

fibers, captured with a precession camera. Inset on this

experimental pattern, in the lower right-hand quad-

rant, is a calculated pattern from an equilibrated

10 9 10 model with two solvation shells. The typical

characteristics for cellulose I are present on the

experimental pattern, such as the three very strong

distinct spots on the equator (1 �1 0, 1 1 0 and 2 0 0) and

the 0 0 4 meridional reflection that correspond to the

peaks on the powder patterns in Fig. 1 at about 2-

h = 14.5�, 16.5�, 23.0� and 34.5�, respectively.

Wherever spots appear on the experimental pattern,

they agree well with calculated ones. The experimen-

tal pattern is somewhat underexposed but shows a

distinct separation between the 1 �1 0 and 1 1 0 spots. It

will be interesting to learn whether more modern

diffraction technology can increase the number of

Fig. 6 Comparison of a cotton cellulose powder diffraction

pattern of high crystallinity (Corr. MCC) with the pattern

calculated for a 10 9 10 model based on tunicate cellulose

coordinates. Also on the experimental pattern is the peak for the

CaCO3 calibration. The discrepancy in positions of the cellulose

peaks is due to the difference in unit cell parameters for the two

kinds of cellulose structures

Fig. 7 Experimental ramie cellulose diffraction pattern taken

with a precession camera. The inset lower-right quadrant is from

a 10 9 10 restrained equilibrated model with two solvation

shells
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diffraction spots that are visible from such higher-

plant cellulose samples, to be more comparable to the

calculated diffraction pattern. One hope for better

resolution of the weaker spots is the use of synchrotron

radiation. However, the number of spots on a

synchrotron X-ray pattern for ramie (Paul Langan,

personal communication) is very similar to the number

of spots in Fig. 7, and a reasonably important element

could be missing from our models.

Figure 8 combines a quarter (upper left) of a

synchrotron diffraction photograph of tunicate cellu-

lose from the work in Nishiyama et al. (2002) and a

quarter of a pattern (lower left) from that work based

on the processed experimental data. The right half is a

calculated pattern from our computer model based on

a 13 9 13 array of chains that was equilibrated along

with one solvation shell. There is substantial resem-

blance among the patterns although there are also

differences. Not only do the left-side patterns extend

to longer distances,2 but the spots are better resolved,

indicating that the computer model is too small. As in

Figs. 4 and 5, the fine spacings on the equator and

meridian of the calculated pattern are from low-angle

scattering that arises from the finite size of the model

and sharp cutoff. The left-side patterns exhibit some

variation in the observed intensities for the equivalent

upper and lower layer lines. For example, see the first

few spots from the meridian on the upper and lower

first and second layer lines. In any case, exact

agreement with the calculated pattern cannot be

expected because the discrepancy index (R factor)

based on the structure factors (the intensity square

roots) is 18.6% (Nishiyama et al. 2002).

Twisting

In the present work, the patterns calculated from

models that had twisted, either from energy

minimization or MD, were not decidedly different

from the original, untwisted models in their overall

character. Any effect from twisting must be separated

from the other effects of the Glycam force field, which,

we note retains many details of the original crystal

structure such as the hydrogen bonding system at room

temperature. Just looking at the character of the spots

regarding their sharpness or peak widths, there is little

to distinguish the patterns from an untwisted model

from those of a twisted model one size larger. The

peak positions and relative intensities are, at least

potentially, too affected by the small discrepancies in

the model for making any decision on twisting. Any

judgment based solely on breadth of the reflections

would require exact knowledge of the number of

chains in the crystal.

One difference that may ultimately be useful in

resolving this question is shown in Fig. 9. It shows

only lower right quarters of full diffraction patterns

(no water present) before convolution, such as in

Fig. 4. The image on the left is from an untwisted,

12 9 12 original model, whereas the image on the

right is from a fully minimized and twisted 12 9 12

Fig. 8 Comparison of a calculated diffraction pattern from a

13 9 13 model (right) with experimental results for tunicate

cellulose (left). The upper left quadrant is for the experimental

data, and the lower left is for the processed experimental data.

The thin-line box on the left side corresponds to the area of the

calculated pattern on the right

2 The range of the calculated diffraction was selected after

consideration of the number of atoms in the model and the

number of pixels for which the intensity must be calculated.

These factors determine the computer time required for the

calculation. Some of the software used for projects other than

reported in this paper was limited in the sizes of data arrays that

could be handled. Considering that some models were as large

as 94,700 atoms and 18 different size crystals were modeled,

each with 14 variations of water content, energy minimization

and molecular dynamics, the selected step sizes of 0.003 S out to

0.597 S were considered adequate for the present purposes.

Larger calculated patterns are definitely possible.
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model. While the layer lines on the pattern from the

untwisted model on the left have a constant height, the

layer lines on the right have a slice-of-pie shape, with a

decided slant to some of the spots. A similar pattern

from a 6 9 6 fully minimized model (Fig. 9, center)

has wedges with larger angles because the smaller

crystal model is more twisted. Careful analysis of the

shapes of arced reflections on experimental patterns

could reveal whether the intensity distribution is

resulting from a normal distribution of single fibril

orientations or is a flatter composite of adjacent

centers.

Proposal of Matthews et al

Besides the continual twisting of the model of

Matthews et al. (2006), the unit cell dimensions and

conformation of the central chain were substantially

different from the accepted crystal structure. Namely,

their CSFF force field had reduced the monoclinic

angle from 96.5� to 90� and changed the a- and b-unit

cell dimensions from 7.784 to 8.47 Å and from 8.201

to 8.112 Å, respectively, the former in response to a

change in the O6 conformation on the central chain

from the otherwise rarely observed tg orientation to

the gg conformation. The gg conformation is often

observed in crystals of related small molecules.

Their proposed structure was sketched with stan-

dard bond lengths and angles according to the

published molecular drawings and geometrical data.

The unit cell was propagated into a model 7 9 7

crystal otherwise similar to the original models herein.

Its calculated diffraction pattern (Fig. 10a, right half)

was compared with one from a 7 9 7 array based on

the published Ib crystal structure (Fig. 10a, left side).

The two sides of Fig. 10a are qualitatively and

quantitatively different. Consider especially the dif-

ferences in the meridional spots for the fifth and sixth

layer lines that are strong on the pattern from our

version of the structure of Matthews et al., but absent

on the Ib pattern. Figure 10b shows patterns resulting

from energy minimization with the Glycam force field

of the two models, with subsequent crystal twisting.

Again the patterns are quite different in detail.

Discussion

As mentioned in the introduction, the ability to

calculate diffraction patterns is not novel. What moves

the present work into a rare category is the calculation

of diffraction patterns from models of cellulose that do

not have a conventional unit cell, one that is period-

ically reproduced in all three dimensions to infinity (or

at least thousands of Ångstroms.) In a recent effort on

cellulose crystal size and shape, only the equatorial

diffraction intensities were calculated (Newman

2008). Newman’s pattern also showed substantial

low-angle scattering. More recently, a paper that

calculated a powder pattern based on the Debye

scattering equation became available (Driemeier and

Calligaris 2011). It concerns an elegant determination

of the degree of crystallinity. The authors encountered

several of the same technical issues such as preferred

Fig. 9 Lower right quadrants of three diffraction patterns from

Calcdiff, without Convolute. Left: the lower right quadrant of

Fig. 4, a 12 9 12 model with original coordinates. Right: the

pattern from a minimized 12 9 12 model, showing a slight

slice-of-pie shape to the individual layer lines. Center: a pattern

from a minimized 6 9 6 model (see Fig. 2). Its slice-of-pie

shape is more exaggerated because the 6 9 6 model is more

twisted than the 12 9 12 model
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orientation in the experimental samples, and low-

angle scattering from the models (they used a model

with propagated original coordinates and no water).

Models described in the present study were almost

all based on the simple, nearly square ‘‘diamond’’

models that have surfaces parallel to the (1 1 0) and (1 �1 0)

diagonals of the unit cell, the accepted shape for some

types of cellulose (Elazzouzi-Hafraoui et al. 2008).

Other models tested in the present project were

truncations of the models shown, with removal of

equal numbers of chains near the top and bottom

corners, parallel to the (2 0 0) planes. Chain removal

gives a hexagonal shape to the crystal cross section.

Only one of those models, with 91-chains, contributed

to the data reported herein. As a group, however,

powder patterns of hexagonal structures showed

lower, wider 2 0 0 peaks relative to the diamond

model crystals having similar total numbers of chains,

perhaps to the extent that experimental patterns can

be compared with the calculated ones for further

guidance on this point. Other, more elaborate models

for the crystallite size and arrangements have been

proposed. In one (Ding and Himmel 2006), the

microfibrillar unit is composed of seven 36-chain

crystallites, each with six totally crystalline core

chains, covered by two progressively less crystalline

layers of chains. The tools used in the present effort

to calculate diffraction patterns, or their successors,

could be applied to test those and other more

complicated model structures. However, from the

calculated patterns based on the Matthews et al.

structure, it seems likely that the basic molecular

structures will be more similar to the current Ib
structure than the radically different models of

Matthews et al. (2006).

A special case of complexity of the computer

models is the possibility of twisting and bending the

crystallites. In the present work, the twisting was a

consequence of applying a molecular mechanics force

field that also caused other minor changes in the

structure. Further work is anticipated where the models

will undergo the dimensional changes by the force field

but not allowed to twist. Patterns from those models

could be compared with patterns from twisted models.

It may be that the slice-of-pie-shaped layer lines from

twisted models can also help sort this problem out.

Another approach would be to determine and refine

the structure based on the calculated patterns from the

twisted models. Would such a structure, based on the

conventional assumption of periodicity in all three

dimensions, fit the calculated pattern as well as fits of

conventional structures to the experimental patterns?

Another concern is for the quality of the experi-

mental results that will be combined with calculated

diffraction patterns in future work. Many of the

questions for such studies will depend on fairly subtle

distinctions, and that will require highly accurate,

well-resolved experiments. Consider our assessment

Fig. 10 Comparisons of patterns from 7 9 7 models based on

the Nishiyama et al. (2002) Ib structure and the structure of

Matthews et al. (2006). a The left side is from the original Ib
coordinates, and the right side from coordinates from a sketch of

the Matthews et al. structure, incorporating the published

geometry but using standard bond lengths and angles. Both

models are periodic. b The energy-minimized, twisted (non-

periodic) versions of the structures in a
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of the impact of the MD and energy-minimized

models on the breadths of the 2 0 0 peaks. Additional

broadening of the MD and minimized models com-

pared to the original coordinate models was present,

but in the rather small range of 0.2–0.4� 2-h.

For most conventional natural fiber samples, the

microfibril organization is complex inside a (biolog-

ical) cell that is typically tens of micrometers wide.

Standard X-ray sources having a beam diameter of a

few hundred lm will average out all orientations

of the many fibers and thus result in a less-resolved

fiber pattern. Advanced synchrotron sources with

microfocus beam size are becoming more and more

available. When highly oriented polymer segments

can be probed using such beams, it will be possible to

obtain more informative diffraction patterns. Even if

the microfibril diameters were small, the diffraction

pattern would only be blurred in the direction perpen-

dicular to the microfibrils. Such highly oriented

structures would give patterns that would be rich in

information, as can be seen in Fig. 5a, b. Likewise,

although the force field that we used is current, it

would be helpful in these matters if the unit cell

dimensions for the minimized and MD models were

closer to those of the experiments.

Conclusions

Diffraction studies and computer modeling continue

to be important methods in the study of polymers. In

the case of cellulose, the details of the size and shape

of the crystallites are especially important subjects.

This work links these two realms. Powder patterns

based on conventional software can almost instantly

provide illustration of the relationship between crys-

tallite size and diffraction for cellulose, requiring only

the unit cell information. However, that software does

not provide a way to evaluate non-periodic computer

models for their diffraction patterns. Instead, software

that considers as input all of the atoms in an entire

computer model is needed. Some previous work with

such powder patterns was acknowledged, but we

believe that the simulated fiber diffraction patterns for

cellulose models are without precedent. Likewise,

these are the first, as far as we know, patterns based

on model structures that were energy-minimized or

subjected to MD.

The major focus of the present paper, other than to

introduce the calculations of diffraction patterns from

non-periodic structures, was to show the development

of crystallinity in collections of cellulose chains.

Although the sizes for crystallites from different

sources have been determined previously, they are

controversial, and the present approach allows explicit

consideration of realistic environmental factors such

as water. The MD models were more crystalline than

the equilibrated models of the next smaller size. This

argues against the proposed two-phase fibrillar struc-

ture with a crystalline core and completely disordered

surface. On the other hand, the fact that the present

calculations support crystallite sizes larger than the

36-chain structures that are widely considered to result

from biosynthesis may be more of a reminder of the

diversity of cellulose sources. Fernandes et al. (2011)

concluded, based on NMR and infrared spectroscopic

methods as well as low-angle neutron and wide-angle

X-ray scattering that the crystallites in spruce wood

consisted of only 24 chains. Their diffraction patterns

have considerably broader peaks than the cotton,

ramie, and tunicate patterns in the present work,

however.

An important finding, based on the powder

pattern line profile analysis, is that the distortions

from MD or minimization of the model crystallites

broaden the diffraction peaks and therefore indicate

somewhat smaller crystallites than their models.

In the case of the 100-chain diamond model, the

apparent crystallite size was diminished by about

7 Å, roughly equivalent to two layers of cellulose

chains. The 91-chain diamond model was similarly

reduced, by about 4 Å, or one layer of chains. Also,

the shape factor, K = 1.0 was apparently more

appropriate for the hexagonal crystal because its

calculated dimension was much closer to the Scher-

rer value than the diamond crystal’s.

One of the major issues in the present work was the

impact of low-angle scattering on the calculated

diffraction patterns. To avoid substantial disruption

of the pattern, we found that it was necessary to

include both water molecules and some minor disorder

in the atomic positions. This probably compensates for

the fact that our computer models are essentially

isolated single entities, with or without the water,

whereas the experiments are done on many crystallites

adjacent to each other.
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