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Abstract
We consider a system consisting of a star and two planets in co-orbital motion. The masses of
the planets are much smaller than the mass of the star. The problem is planar, the motion of
all three bodies taking place in a fixed plane. Since the co-orbital motion corresponds to the
1:1 mean motion resonance, it can be studied by methods developed to investigate resonance
effects. In this work, we employ one of the semi-analytical methods intended for studying
resonance effects—an adiabatic approximation proposed by J. Wisdom. Evolutionary equa-
tions are constructed, which describe secular effects in the dynamics of the system. Using
them, various scenarios for the behaviour of the system over long time intervals are analysed
in detail. For clarity, diagrams are provided illustrating possible variants of secular evolution.

Keywords Three body problem · Co-orbital motion · Averaging method · Adiabatic
invariants

1 Introduction

Let us consider the “planetary” version of the general three-body problem: the mass of one of
the bodies significantly exceeds the mass of the other two; and these two smaller bodies are
moving around the massive body in slightly perturbed Keplerian orbits. Such a version of the
three-body problem can be considered as amodel of an exoplanetary system comprising a star
and two planets. Astronomical discoveries in recent decades have shown that the motion of
planets in exoplanetary systems can differ significantly from the motion of the solar-system
planets, which are describing concentric nearly circular orbits located approximately in the
same plane. In particular, there is reason to expect the emergence of co-orbital motion in
some exoplanetary systems — a regime in which two planets are orbiting a host star with
approximately the same period (Laughlin and Chambers 2002; Beaugé et al. 2007; Cresswell
and Nelson 2009).

The theoretical possibility of co-orbital motion of celestial bodies was established in the
18th century by Euler and Lagrange (Szebehely 1967). In the Solar System, a large number
of asteroids are known to be in co-orbital motion with Jupiter (Emery et al. 2015). However,
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a situation when two celestial bodies of comparable masses are in co-orbital motion has so
far been observed only in satellite systems of giant planets (Yoder et al. 1989).

A comprehensive review of studies of co-orbital motion in the planetary version of the
three-body problem is given in (Tan et al. 2022). The most detailed analysis of the properties
of co-orbital motion was probably carried out by Giuppone et al. (2010) and Leleu et al.
(2018). In particular, Giuppone et al. (2010) and Leleu et al. (2018) paid special attention
to the so-called anti-Lagrangian modes of co-orbital motion, which differ from classical
Lagrangian solutions primarily in the orientation of periastrons (see also Hadjidemetriou and
Voyatzis 2011).

The study of co-orbital motion in (Giuppone et al. 2010) and (Leleu et al. 2018) was based
on selecting some representative initial modes of motion and analysing their subsequent
evolution using numerical integration of the equations of motion. The fact that co-orbital
motion corresponds to a 1:1 MMR stimulates efforts to obtain additional information about
its properties through approaches developed in the theory of resonant effects in Hamiltonian
systems. One such approach is the Wisdom adiabatic approximation (Wisdom 1985). An
analysis of the secular evolution of co-orbital motion in the adiabatic approximation has
already been carried out in (Sidorenko et al. 2014; Sidorenko 2018, 2020), but only in the
context of a restricted three-body problem. To study co-orbital motion in the general three-
body problem, a number of modifications were required to be introduced into Wisdom’s
approach.

Wisdom’s approach is based on an interpretation of resonance effects given in texts on the
modern theory of Hamiltonian systems, see for example Arnold et al. (2006). The behaviour
of the system at MMR is characterised by dynamical processes over three time scales: “fast”,
“semi-fast”, and “slow”. A “fast” dynamical process is the orbital motion of resonant bodies.
A “semi-fast” process is a variation of the resonant phase (a combination of average longitudes
and some of the osculating elements of bodies). The “slow” dynamics comprises secular
evolution of the shapes and orientation of orbits.

It isworth noting thatWisdom’s approach ismost efficient in situationswhere it is sufficient
to consider the behaviour of two slow variables to characterise secular effects. If this is the
case, then the secular effects can be quite clearly described by drawing evolutionary diagrams.
In the general three-body problem, such a simplification is possible when the motion of all
bodies occurs in a fixed plane � of a constant orientation. (Specifically, if the barycentre
of the system is at rest, the plane � is fixed.) Further, when studying co-orbital dynamics,
we shall limit our consideration to this case only. Since Giuppone et al. (2010) and Leleu
et al. (2018) also concentrated their attention on planar co-orbital motions in the planetary
version of the general three-body problem, we hope that our investigation will be a useful
complement to these studies. The approach we apply allows us to establish properties of
motion that could not be studied by the methods used by Giuppone et al. (2010) and Leleu
et al. (2018) (e.g. quasi-probabilistic transformation of co-orbital motion modes).

Here is a brief description of our research. In Sect. 2, we derive the equations of motion
in the planar three-body problem in a form convenient for the application of perturbation
technique. In Sect. 3, using a double averaging (over orbital motion and over the variation of
the resonant phase), the evolutionary equations are constructed that describe secular effects in
co-orbital motion. In Sect. 4, these equations are applied to study the evolution of co-orbital
motion when the masses of the planets are equal. To understand the influence of differences
in the masses of planets on the evolution of motion, in Sect. 5, as an example, we consider the
dynamics of the system in the case when one planet is twice as massive as the other. Section
6 establishes a connection between the characteristics of anti-Lagrangian solutions, and an
important parameter of co-orbital motions — the deficit of angular momentum. Section 7
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concerns with quasi-probabilistic transformations of co-orbital motion modes. The extent to
which themodel used and the results obtained relate to the possible co-orbital dynamics in real
exoplanetary systems is briefly discussed in Sect. 8. The paper concludes with Sect. 9, which
lists the main results and indicates the possible directions for further research. In Appendices
A and B, for small values of the angular momentum deficit of the system, approximate
formulae are derived for some quantities that determine the qualitative properties of motion.

2 Equations of motion

To write down the equations of motion, we introduce a non-inertial astrocentric reference
frame, the axes of which maintain constant directions in the absolute space. We denote the
radius vectors of the planets relative to the star as r1 and r2. The units of measurement are
taken in such a way that the gravitational constant and the total mass of the system are equal
to 1. The total mass of the planets will be denoted with μ; in what follows, μ is treated
as a small parameter of the problem. The masses of the planets are equal μμ̄1 and μμ̄2,
respectively (it is implied that μ̄1 + μ̄2 = 1, μ̄k > 0). The semimajor axes of the planets’
osculating orbits are assumed to be of order 1.

We start bywriting down the equations ofmotion of planets around a star in the Lagrangian
form

d

dt

(
∂L
∂ ṙk

)
− ∂L

∂rk
= 0 (k = 1, 2), (1)

where

L(ṙk, rk) = T (ṙk) +U (rk),

T (ṙk) = 1

2

{
μ
[
μ̄1(1 − μμ̄1)ṙ

2
1 + μ̄2(1 − μμ̄2)ṙ

2
2

]− 2μ2μ̄1μ̄2(ṙ1, ṙ2)
}
,

U (rk) = μ

[
μ̄1(1 − μ)

r1
+ μ̄2(1 − μ)

r2

]
+ μ2μ̄1μ̄2

|r1 − r2| .

After a transition to canonical variables pk = ∂T /∂ ṙk , rk , the equations of motion assume
the form

∂pk
dt

= − ∂H
∂rk

,
∂rk
dt

= ∂H
∂pk

, (k = 1, 2).

where

H(pk, rk) = T (pk) −U (rk),

T (pk) = 1

2

[
1

μ

(
p21
μ̄1

+ p22
μ̄2

)
+ 1

1 − μ
(p1 + p2,p1 + p2)

]
.

It can be shown that p1 and p2 are equal to themomenta of the planets in an inertial coordinate
system, with the origin in the barycentre (Laskar and Robutel 1995; Morbidelli 2002).

Following Robutel et al. (2016), we introduce “scaled” impulses p̄k = pk/μ to remove a
singularity in the expression for kinetic energy at μ → 0. The change in variables

(pk, rk) �→ (p̄k, rk)
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is a canonical transformationwith the valencyμ−1. After this transformation theHamiltonian
of the system takes the form

H̄(p̄k, rk) = H̄0(p̄k, rk) − μV (p̄k, rk) + O(μ2) ,

where

H̄0(p̄k, rk) = H̄01(p̄1, r1) + H̄02(p̄2, r2), H̄0k(p̄k, rk) = p̄2k
2μ̄k

− μ̄k

rk
(k = 1, 2),

V (p̄k, rk) = μ̄1μ̄2

|r1 − r2| − μ̄1

r1
− μ̄2

r2
− 1

2
(p̄1 + p̄2, p̄1 + p̄2).

We observe that H̄0k(p̄k, rk) is the Hamiltonian of an integrable system describing the
motion of an object of mass μ̄k in a field with potential−μ̄k/rk . The “action-angle” variables
for this system are the well-known Delaunay elements (Morbidelli 2002). Since we are
considering the case where the planets do not leave the plane � in their motion, then to
characterise the motion of each planet we need only two pairs of the Delaunay elements
(Szebehely 1967, Ch. 7)

Lk = μ̄k
√
ak, lk,

Gk = Lk

√
1 − e2k , �k .

Here, ak , ek , �k denote the values of the semimajor axis, eccentricity, and longitude of the
periastron of the k-th planet’s orbit in the limiting case of μ = 0 (i.e., in the case where both
planets actually become “test particles” moving around a star of unit mass). The difference
between the Keplerian elements introduced in this way and the traditionally used osculating
elements is of the order of μ, so in a qualitative study of the evolution of motion over long
time interval (∼ μ−1) this difference can be neglected.

After the canonical transformation

(p̄k, rk) �→ (Lk,Gk, lk,�k) ,

the Hamiltonian of the problem can be written as

H̄ = − μ̄3
1

2L2
1

− μ̄3
2

2L2
2

− μV (L1, L2,G1,G2, l1, l2,�1 − �2) + O(μ2). (2)

The arguments of the disturbing function in (2) are written in such a way to emphasise
its dependence on the difference in periastron longitudes, not on the value of each of the
quantities �k separately.

Taking the last property into account, it is reasonable to replace variables Gk , �k with
variables

P� = 1

2
(G1 + G2), P� = 1

2
(G1 − G2),�� = �1 + �2,�� = �1 − �2. (3)

It is easy to check that formulae (3) define a canonical transformation. The variable P� ,
conjugate to the cyclic variable�� , is the first integral of the problem. Its value is proportional
to the value of the angular momentum of the system relative to the barycentre.
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3 Derivation of evolutionary equations

3.1 The region of co-orbital motion in the phase space of the system

In the phase space of the system, the MMR 1:1 is realised in the region defined by the
condition

|μ̄2L1 − μ̄1L2| <∼μ1/2. (4)

In this region, λ̇1 − λ̇2 ∼ μ1/2, where λk = lk + �k are the planets’ mean longitudes.
To study resonant phenomena, it is necessary to make a change in variables, after which

one of the phase variables will become the resonant phase

ϕ = λ1 − λ2 = l1 − l2 + ��.

This procedure can be accomplished in various ways. Below, we shall discuss the circum-
stances under which one or another option turns out to be preferable. For definiteness, now
we introduce ϕ using the canonical transformation

(L1, L2, P�, P�, l1, l2,��,��) �→ (P̄ϕ, P̄l , P̄�, P̄�, ϕ, l,��,��), (5)

defined by the generating function

S1 = (l1 − l2 + ��)P̄ϕ + l1 P̄l + �� P̄� + �� P̄�. (6)

Under transformation (5), the old and new variables are connected by the relations

P̄ϕ = −L2, P̄l = L1 + L2, P̄� = P�, P̄� = P� + L2, l = l1.

In the resonant region (4), the following estimates for the evolution rates of the “angular”
variables l, ϕ, �� , �� are valid:

dl

dt
∼ 1,

dϕ

dt
∼ μ1/2,

d��

dt
∼ d��

dt
∼ μ.

The next step in constructing evolutionary equations is averaging the perturbing function
V over the fast variable l. The result can be written down as

〈V 〉l = μ̄1μ̄2W + . . . , (7)

W = 1

2π

∫ 2π

0

[
1

|r1(l) − r2(l2(l))| − (ṙ1(l), ṙ2(l2(l))
]
dl.

The dots in (7) denote the terms, which depends only on the values of the semimajor axes of
the planets’ orbits. For the analysis being carried out, these terms are unimportant.

To find the value of W , it is necessary to solve the Kepler equation to determine the
position of both planets. It is convenient to replace the integration over l with an integration
over the eccentric anomaly E1 of the first planet. In this case, it will be sufficient to solve the
Kepler equation only to determine the position of the second planet:

W = 1

2π

∫ 2π

0

[
1

|r1(E1) − r2(l2(E1))| − (ṙ1(E1), ṙ2(l2(E1))

]
(1 − e1 cos E1)dE1, (8)

where

l2(E1) = (E1 − e1 sin E1) − ϕ + ��.
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Since Hamiltonian (2) is the first integral of the problem, then in the case of a weakly
perturbed Keplerian motion of the planets (i.e. in the absence of their close approaches), we
have:

μ̄3
1

L2
1

+ μ̄3
2

L2
2

≈ const .

After averaging, P̄l = L1 + L2 will also become a first integral. Given the two restrictions
on the possible values of Lk , we conclude that in the cases, where the equations of motion
averaged over l describe correctly the dynamics of the system, there is no secular evolution of
the variables Lk . Respectively, the change in the values of the semimajor axes of the planets’
orbits is reduced to small oscillations around a = P̄2

l .
If the eccentricity of the second planet exceeds the eccentricity of the first planet, then to

speed up the solution of the Kepler equation, one can calculate W using the formula

W = 1

2π

∫ 2π

0

[
1

|r1(l1(E2)) − r2(E2)| − (ṙ1(l1(E2)), ṙ2(E2))

]
(1 − e2 cos E2)dE2,

where

l1(E2) = (E2 − e2 sin E2) + ϕ − ��.

Todo this, the resonant phase should be introduced by a canonical transformation of variables,
with the generating function

S2 = (l1 − l2 + ��)P̄ϕ + l2 P̄l + �� P̄� + �� P̄�.

In this case, the fast variable is l = l2, so an averaging must be carried out over l2 (and it
becomes possible to proceed to an integration over E2).

3.2 Intermediate system

When resonant effects in Hamiltonian systems are studied, it is convenient to carry out some
rescaling of the variables in the resonance region (4) after an averaging over the fastest
processes (Arnold et al. 2006). Instead of t , we take τ = μ1/2t as the independent variable.
As the variable conjugate to ϕ, we introduce

� = P̄∗
ϕ − P̄ϕ

μ1/2 .

Here P̄∗
ϕ = −μ̄2

√
a is the value of the variable P̄ϕ at the exact MMR 1:1 in the limiting case

μ = 0.
After standard transformations detailed in Arnold et al. (2006), we obtain the following

system describing the evolution of the phase ϕ and the slow variables P̄�,�� in the resonant
zone (4):

d�

dτ
= −μ̄1μ̄2

∂W

∂ϕ
,

dϕ

dτ
= 3�

μ̄1μ̄2 P̄4
l

, (9)

d P̄�

dτ
= εμ̄1μ̄2

∂W

∂��

.
d��

dτ
= −εμ̄1μ̄2

∂W

∂ P̄�

,

where ε = μ1/2.
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One more scaling transformation,

�̃ = �

μ̄1μ̄2 P̄l
, P̃� = P̄�

P̄l
, P̃� = P̄�

P̄l
, τ̃ = τ

P̄3
l

, ε̃ = μ̄1μ̄2ε, (10)

brings Eq. (9) to a more universal form, in which the parameters do not appear explicitly.
This rescaling actually reduces the consideration of the co-orbital motion of planets to the
case of ak ≈ 1.

Note that after all these transformations the averaged equations of motion retain their
Hamiltonian form (despite having a non-standard symplectic structure):

d�̃

d τ̃
= −∂

∂ϕ
,

dϕ

d τ̃
= ∂

∂�̃
, (11)

d P̃�

d τ̃
= ε̃

∂

∂��

,
d��

d τ̃
= −ε̃

∂

∂ P̃�

,

where

 = 3�̃2

2
+ W̃ (ϕ,��, P̃�, P̃�), W̃ (ϕ,��, P̃�, P̃�) = P̄2

l W (ϕ,��, P̄�, P̄�, P̄l).

In the general case, in system (11), the variables ��, P̃� vary much slower than the
variables ϕ, �̃. Therefore, in what follows we shall call the first two equations in (11) “the
fast subsystem”, while the other two will be called “the slow subsystem”.

The momenta P̃� , P̃� and the mean eccentricities ek of the planets are connected by the
relations

μ̄1

√
1 − e21 + μ̄2

√
1 − e22 = 2 P̃�, μ̄1

√
1 − e21 − μ̄2

√
1 − e22 = 2 P̃�. (12)

Differentiating (12) with respect to τ̃ , we obtain

de1
d τ̃

= −
√
1 − e21
μ̄1e1

d P̃�

d τ̃
,

de2
d τ̃

=
√
1 − e22
μ̄2e2

d P̃�

d τ̃
. (13)

On the other hand, it can be shown that if by substitution P̃�(e1, e2), P̃�(e1, e2) we
transform W̃ and ∂W̃/∂ P̃� into the functions with the arguments ϕ, ��, e1, e2, then

∂W̃

∂ P̃�

∣∣∣∣∣
P̃�=P̃�(e1,e2),P̃�=P̃�(e1,e2)

= −
√
1 − e21
μ̄1e1

∂W̃

∂e1
+
√
1 − e22
μ̄2e2

∂W̃

∂e2
. (14)

From relations (13) and (14), it follows that the equations of the slow subsystem can be
written as

de1
d τ̃

= −ε̃

√
1 − e21
μ̄1e1

∂W̃

d��

,
de2
d τ̃

= ε̃

√
1 − e22
μ̄2e2

∂W̃

d��

, (15)

d��

d τ̃
= ε̃

⎛
⎝
√
1 − e21
μ̄1e1

∂W̃

∂e1
−
√
1 − e22
μ̄2e2

∂W̃

∂e2

⎞
⎠ .

Using equations for the slow subsystem in the form (15), we formally increase the dimen-
sionality of the system. It however should be taken into account that the analysis of the
planets’ motion will be carried out for fixed values of P̃� , and will thus be restricted to a

123



25 Page 8 of 29 V. Sidorenko

manifold with a certain value of the integral of the angular momentum. On this manifold, the
dimension of the phase flow coincides with the dimension of the phase flow of system (11).
To parameterise the corresponding integral manifolds, it is convenient to use, instead of P̃� ,
the quantity σ given by the formula

σ = 1 − 2 P̃� = 1 − μ̄1

√
1 − e21 − μ̄2

√
1 − e22. (16)

The quantity σ characterises the angular momentum deficit of the system (Laskar 2017). In
otherwords, it is the difference between themaximal possible value of the angularmomentum
in co-orbital motion (this maximum corresponding the case of e1 = e2 = 0) and the angular
momentum in the system under study.

Remark. The dependence of the qualitative properties of motion on σ , established below,
also remains valid in the case when the condition ak ≈ 1 is not satisfied. For this dependence
to remain valid, σ must be interpreted as a normalised angular momentum deficit (Chambers
2001; Turrini et al. 2020).

In the process of constructing evolutionary equations, system (11) and its modification,
obtained by writing the slow subsystem in the form (15), is an important intermediate stage
for us. So it is natural to call this system intermediate.

The solutions of the intermediate system are in some sense reversible: if

ϕ(τ̃ ), �̃(τ̃ ), e1(τ̃ ), e2(τ̃ ),��(τ̃ )

is a solution, then

2π − ϕ(−τ̃ ), �̃(−τ̃ ), e1(−τ̃ ), e2(−τ̃ ), 2π − ��(−τ̃ )

will also be a solution.

3.3 Restrictions on the possible values of planets’ eccentricities in co-orbital motion

From the conservation of the total angularmomentum, one canfind restrictions on the possible
values of the eccentricities of exoplanets in motion at a given value of σ . Although the
derivation of these restrictions is straightforward, it appears that they have not been written
down in previous studies of the co-orbital motion of exoplanets.

Let us assume for definiteness that the mass of the first planet does not exceed the mass of
the second planet: μ̄1 ≤ μ̄2. If σ ≤ μ̄1, then the possible values of the planets’ eccentricities
ek satisfy the inequalities

ek,min ≤ ek ≤ ek,max, (17)

where

ek,min = 0, ek,max =
√
1 −

(
1 − σ

μ̄k

)2
, k = 1, 2.

In the case of μ̄1 < σ ≤ μ̄2, we should put in (17)

e1,min = 0, e2,min =
√
1 − (1 − σ)2

μ̄2
2

and

e1,max = 1, e2,max =
√
1 −

(
1 − σ

μ̄2

)2
.
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Fig. 1 Behaviour of the function W̃ with fixed ��, e1, e2. Panel a: �� = 60◦, e1 = e2 = 0.3; since there is
a local maximum, Trojan modes are possible. Panel b: �� = 60◦, e1 = 0.9, e2 = 0.3; since there is no local
maximum, Trojan modes are impossible

Finally, in the case of σ > μ̄2, we set

ek,min =
√
1 − (1 − σ)2

μ̄2
k

, ek,max = 1, k = 1, 2.

Ifwe interpret ek and�� as polar coordinates, then the given formulae allowus to establish
the topology of the sets Mk(σ ) of their possible values for a given σ . If σ ≤ μ̄1, then both
sets M1(σ ) and M2(σ ) are discs. In the case of μ̄1 < σ ≤ μ̄2, the set M1(σ ) is a disc, while
the set M2(σ ) is an annulus. For σ > μ̄2, both sets are annuli.

3.4 Properties of the fast subsystem

Wisdom’s approach involves the averaging of the right-hand sides of the equations for slow
variables (15) along the solutions

ϕ(τ̃ , ξ,��, e1, e2), �̃(τ̃ , ξ,��, e1, e2)

of the equations for fast variables

dϕ

d τ̃
= 3�̃,

d�̃

d τ̃
= −∂W̃

∂ϕ
(18)

in the limit of ε̃ = 0. So let us now take a closer look at this limiting case.
For ε̃ = 0, we are actually dealing with a Hamiltonian systemwith one degree of freedom.

Since in this case the slowvariables do not change their values, they play the role of parameters
in the Hamiltonian. The properties of the solutions of (18) are determined by the behaviour
of W̃ as a function of the resonant phase ϕ. Examples of its possible behaviour are shown
in Fig. 1. The vertical asymptotes in the given graphs at ϕ = ϕ1,2(��, e1, e2) correspond to
the values of the resonant phase, at which, in the limit of ε = 0, a collision of planets occurs.

If a certain level  = ξ is fixed, then using the given graphs one can establish the number
of possible co-orbital motions and draw conclusions about their properties. It should be noted
that such analysis was carried out many times within the framework of the restricted three-
body problem and a certain terminology has been developed to characterise the possible
co-orbital modes in this case: this motion has been termed as a motion in a ”quasi-satellite”
orbit, or as amotion in a “horseshoe” orbit, or as amotion in one of the two possible “tadpole”
orbits, e.g. Namouni et al. (1999), Sidorenko et al. (2014), Sidorenko (2018). Employment of
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25 Page 10 of 29 V. Sidorenko

Fig. 2 Different modes of co-orbital motion: QS–quasi-satellite mode, Tk–Trojan mode with planet Pk in the
lead, HS–horseshoe mode. The modes are shown in a reference frame rotating with an angular velocity equal
to the averaged value of the planets’ mean motions

the same terminology within the framework of a general problem leads to analogies that are
not entirely correct. Therefore, we additionally describe some properties of these motions.

Oscillations of the resonant phase around a value close to zero correspond to a mode
that, within the restricted problem, is called “quasi-satellite” (Sidorenko et al. 2014). In the
general problem, also, we shall call this mode quasi-satellite, and shall denote it with QS.
However, for planets of equal mass it is difficult to say which one is a quasi-satellite of the
other. Therefore, we may characterise this case as the motion in the mode of a “double” (or
“quasi-double”) planet.

“Tadpole” orbits give rise to situations where one of the planets in orbital motion is con-
stantly ahead of the other planet by a certain angle whose value generally evolves with time.
Below we shall call such modes “Trojan”, and shall denote them with T1 or T2, depending
on which planet is the “leader”.

Our description of the co-orbital modes is closed with the horseshoe mode, denoted as
HS. In a reference frame rotating with an angular velocity equal to the average of the mean
motions of the planets, the relative positions of the planets in the HS mode oscillate relative
to the position in which they are approximately on opposite sides of the star. The name is
due to the fact that the orbit of a less massive planet can actually resemble a horseshoe in the
mentioned rotating reference frame. In particular, this always is the case when the values of
σ are sufficiently small. By distinction, for sufficiently large values of σ , there is no basis for
such an association: planets in the HS mode can perform small relative motions.

Figure 2 depicts schematically the listed modes of co-orbital motion.

3.5 Auxiliary functions

Studying the secular evolution of co-orbital motion in the next sections, we fix the value of
the Hamiltonian:  = ξ . Consequently, the existence of a certain mode of co-orbital motion
is determined by how ξ relates to the local and global minima of W̃ as a function of ϕ. To
explore the resulting situations, we introduce several auxiliary functions, similarly to what
was done by Neishtadt and Sidorenko (2004), Sidorenko (2018).

The value of the function H∗(��, e1, e2) is equal to the minimum value of the func-
tion W̃ (ϕ,��, e1, e2) for ϕ ∈ (ϕ1(��, e1, e2), ϕ2(��, e1, e2)). The value of the function
H∗(��, e1, e2) is equal to the value of the function W̃ (ϕ,��, e1, e2) in the local maxi-
mum (if it exists). If the function W̃ (ϕ,��, e1, e2) has two local minima in the interval
(ϕ1(��, e1, e2), ϕ2(��, e1, e2)), then one minimum is equal to H∗(��, e1, e2), while the
value in the other minimum defines the function H∗∗(��, e1, e2).
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As an example, graphs of the auxiliary functions are presented in Fig. 3 for a system
with planets of equal mass, in the case of σ = 0.2. Since, for a fixed σ , the value of the
eccentricity of one planet uniquely sets the value of the eccentricity of the other planet, we
actually plotted the graphs of the functions H∗(��, e1, e2(e1, σ )), H∗(��, e1, e2(e1, σ )),
H∗∗(��, e1, e2(e1, σ )). Obviously, in the case of equal masses of the planets, these graphs
are identical to the graphs of the functions H∗(��, e1(e2, σ ), e2), H∗(��, e1(e2, σ ), e2),
H∗∗(��, e1(e2, σ ), e2).

The inequalities H∗(��, e1, e2(e1, σ )) < ξ and H∗(��, e1(e2, σ ), e2) < ξ define,
within the sets M1(σ ) and M2(σ ) respectively, the forbidden zones onto which the phase
trajectories of the intermediate system lying at the level  = ξ cannot be projected.

Level lines H∗(��, e1, e2(e1, σ )) = ξ and H∗(��, e1(e2, σ ), e2) = ξ set in M1(σ ) and
M2(σ ) so-called uncertainty curves �k(ξ, σ ) (Wisdom 1985; Neishtadt 1987). If (e1,��) ∈
�1(ξ, σ ) or, the same, if (e2,��) ∈ �2(ξ, σ ), then a nontrivial solution of the fast subsystem
on the level  = ξ in the limiting case ε̃ = 0 is aperiodic. It complicates the use of the
averaging method for analysing the secular evolution of co-orbital motions.

Finally, the level lines H∗∗(��, e1, e2(e1, σ )) = ξ and H∗∗(��, e1(e2, σ ), e2) = ξ

define in M1(σ ) and M2(σ ) the boundaries of regions that differ in the number of possible
Trojan modes.

From the example depicted in Fig. 1b, it follows that the functions H∗(��, e1, e2)
and H∗∗(��, e1, e2) are not defined for all ��, e1, e2. In other words, W̃ as a func-
tion of ϕ does not always have a local maximum and two local minima in the interval
(ϕ1(��, e1, e2), ϕ2(��, e1, e2)). A numerical study has revealed that for planets of equal
mass at σ ≥ σ∗ ≈ 0.202 there are subsets ��, ek in Mk(σ ) in which there are no coexisting
Trojan modes for any ξ (Fig. 4). When σ only slightly exceeds σ∗ (Fig. 4a), these subsets are
small and located in the vicinities of �� ≈ 41◦ and �� ≈ 319◦, ek = e∗, where

e∗ =
√
1 − (1 − σ)2 (19)

As σ increases, the said subsets increase in size (Fig. 4b and c).
The absence of coexisting Trojanmodesmeans that for corresponding values of e1, e2,��

only one planet can lead in co-orbital motion with small or moderate amplitude of variation
of the resonant phase (in the case when the amplitude of the variation of ϕ is large enough, the
situations ϕ(τ̃ ) > πand ϕ(τ̃ ) < π will alternate). If the planets are identical, then it would
seem that we can replace them in this motion. However, this means replacing e1 → e2,
e2 → e1,�� → 2π −��, ϕ → 2π −ϕwhich will give us another solution to the equations
of motion.

Remark. Using methods significantly different from ours, Leleu et al. (2018) studied how
transformations of the set of critical points of the averaged perturbing function at σ = σ∗
affect the properties of co-orbital motion of planets with equal masses.

When exploring the properties of QSmotions, it turns out to be convenient to use the func-
tion HQS(��, e1, e2) whose value is equal to the minimum value of W̃ (ϕ,��, e1, e2) for
ϕ ∈ (ϕ2(��, e1, e2), ϕ1(��, e1, e2)+2π). In Fig. 5, as an example, a graph of the function
HQS is plotted for μ̄1 = μ̄2 = 0.5, σ = 0.2. The level lines HQS(��, e1, e2(e1, σ )) = ξ

and HQS(��, e1(e2, σ ), e2) = ξ set in M1(σ ) and M2(σ ), respectively, the boundaries of
the regions of existence of the QS modes residing on the level  = ξ .

If
ϕ = �� = ψ, e1 = e2 = e, (20)
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Fig. 3 Graphs of auxiliary
functions (μ̄1 = μ̄2 = 0.5,
σ = 0.2, e1,2max = 0.8): a
H∗(��, e1, e2(e1, σ )), b
H∗(��, e1, e2(e1, σ )), c
H∗∗(��, e1, e2(e1, σ ))
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Fig. 4 Subsets ofMk (σ ) inwhich a coexistence ofTrojanmodes is impossible (drawn in deepblue):a σ = 0.21
(e1,2max ≈ 0.8146), b σ = 0.29 (e1,2max ≈ 0.9075), c σ = 0.56 (e1,2min ≈ 0.475, e1,2max = 1). The
planets have equal mass (μ̄1 = μ̄2 = 0.5)

Fig. 5 Graph of the function HQS(��, e1, e2(e1, σ )) for μ̄1 = μ̄2 = 0.5, σ = 0.2 (e1,2max = 0.8)

then the value of the function W̃ can be found analytically:

W̃ = 1

2 sin ψ
2

− cosψ.

Condition (20) is satisfied in the Lagrangian motions in which the star and planet form an
equilateral triangle:

ϕ ≡ π

3
, �� ≡ π

3
, e1,2 ≡ e,

and

ϕ ≡ 5π

3
, �� ≡ 5π

3
, e1,2 ≡ e.

In this case,

W̃
(π

3
,
π

3
, e, e

)
= W̃

(
5π

3
,
5π

3
, e, e

)
= 1

2
.

Condition (20) is also satisfied by the Euler solutions, in which the star and the planets
are staying permanently on the same straight line:

ϕ ≡ π, �� ≡ π, e1,2 ≡ e.
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This implies that

W̃ (π, π, e, e) = 3

2
.

The results of the study of the qualitative behaviour of the functions H∗ and H∗ allow us
to conclude that

H∗
(

π ± 2π

3
, e, e

)
= W

(
π ± 2π

3
, π ± 2π

3
, e, e

)
= 1

2

and

H∗ (π, e, e) = W (π, π, e, e) = 3

2
.

3.6 Evolutionary equations

Now we can perform the last step and write down the evolutionary equations describing the
secular effects in the dynamics of the system. To derive these equations, the right-hand sides
of the Eq. (15) forming the slow subsystem of the intermediate systemmust be averaged over
the period of oscillation/rotation of the resonant phase ϕ in the limiting case ε̃ = 0:

de1
d τ̃

= −ε̃

√
1 − e21
μ̄1e1

〈
∂W̃

d��

〉
,

de2
d τ̃

= ε̃

√
1 − e22
μ̄2e2

〈
∂W̃

d��

〉
, (21)

d��

d τ̃
= ε̃

⎛
⎝
√
1 − e21
μ̄1e1

〈
∂W̃

∂e1

〉
−
√
1 − e22
μ̄2e2

〈
∂W̃

∂e2

〉⎞
⎠ .

Here〈
∂W̃

∂ζ

〉
= 1

T (ξ,��, e1, e2)

∫ T (ξ,��,e1,e2)

0

∂W̃

∂ζ
(ϕ(τ̃ , ξ,��, e1, e2),��, e1, e2)d τ̃ ,

ζ = ��, e1, e2.

Equations (21) have twofirst integrals. One of them,σ(e1, e2) = const, is given by relation
(16), which follows from the conservation of the angular momentum of orbital motions by
the planetary system. The second integral will be the value of the “action” variable of the fast
subsystem (an adiabatic invariant of the non-averaged problem, which was found byWisdom
(1985)):

J (ξ,��, e1, e2) = 3π

2

∫ T (ξ,��,e1,e2)

0
�̃2(τ̃ , ξ,��, e1, e2)d τ̃ .

We also note that system (21) “inherits” from the intermediate system the property of
reversibility of solutions mentioned in Sect. 3.2. If

��(τ̃ ), e1(τ̃ ), e2(τ̃ )

is a solution of (1), then

2π − ��(−τ̃ ), e1(−τ̃ ), e2(−τ̃ )

is a solution of (21).
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It is worth noting that if in the process of secular evolution a transition occurs between
resonant modes, then it should be taken into account when constructing averaged equations
(i.e. averaging should be carried out along the solutions of the subsystem (18), corresponding
to these modes). A change in the solution along which averaging is performed occurs when
the projection of the phase point (e1(τ̃ ), e2(τ̃ ),��(τ̃ )) on Mk(σ ) reaches the uncertainty
curve �k . The correctness of the averaging along the solutions that change their qualitative
behaviour during evolution is justified in (Neishtadt 1987, 2017).

4 Secular evolution of co-orbital motion in a systemwith two planets of
equal mass

4.1 Preliminary remarks

Evolutionary Eq. (21) are now to be used to study secular effects in the co-orbital motion of
the planets. We shall fix different values of the angular momentum deficit σ and different
levels  = ξ of the Hamiltonian of the intermediate system. A rather complete picture
of the behaviour of solutions on a two-dimensional integral manifold σ(e1, e2) = const is
given by projections of phase trajectories onto M1(σ ) and M2(σ ). Similarly to our previous
investigations ofMMR (Sidorenko et al. 2014; Sidorenko 2018, 2020), we shall pay a special
attention to the position of forbidden zones and uncertainty curves �k on the evolutionary
diagrams. We shall analyse in great detail the case of equal masses of planets (μ̄1 = μ̄2 =
1/2). In this case, it is reasonable to expect the most significant difference in the properties
of motion from what occurs within the framework of the restricted three-body problem.

4.2 Co-orbital motions at small eccentricities (� � 1)

We open our discussion of the secular effects by considering the QS mode. Without close
encounters of the planets (i.e. without their encounters at a distance less than the radius of
their Hill spheres), this mode of co-orbital motion cannot be transformed into another mode
— nor can it arise as a result of transformation of another mode. Examples of diagrams
illustrating the evolution of planetary orbits in the QS mode are shown in Fig. 6. As one
can see, in the case of equal masses the diagrams for planet 1 and planet 2 differ only in
the direction of the arrows. 1 Therefore, further in this Section we shall present evolutionary
diagrams only for one of the two planets.

The evolutionary diagram for quasi-satellite mode is relatively simple: the difference
in longitudes of periastrons oscillates around either 0 or π . The only stationary solution
corresponds to the anti-apsidal alignment of planetary orbits, with the values of orbital
eccentricities in this solution coinciding:

�� = π, e1.2 = e∗. (22)

The value of e∗ in (22) is provided by formula (19). In particular, if σ = 0.01, then e∗ ≈
0.14107.

For σ = 0.01 the motion of planets in the QS mode becomes possible at ξ ≥ ξQS ≈
1.4706 (an approximate expression for ξQS in the case of σ � 1 is given in Appendix A).

1 That is to say, if ��(τ̃ ), e1(τ̃ ), e2(τ̃ ) is a solution of (21) in the case of μ̄1 = μ̄2, then 2π −
��(τ̃ ), e2(τ̃ ), e2(τ̃ ) will also be a solution.
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Fig. 6 Evolution of co-orbital motion in the QS mode when the planets have equal masses, σ = 0.01 and
emax ≈ 0.199: aξ = 1.6, b ξ = 6.5

The “forbidden” zone (drawn in dark grey) decreases when ξ increases. For large enough ξ ,
the forbidden zone in Mk(σ ) is located in a small vicinity of ek = e∗, �� = 0 (k = 1, 2).

Figure7 demonstrates the evolution of other modes of co-orbital motion at σ = 0.01.
The provided examples show the transformation of the structure of evolutionary diagrams
with changes in ξ . Green and red tracks correspond to T1 and T2 modes. The corresponding
evolutionary scenarios differ only in which planet is leading in the orbital motion. The blue
tracks correspond to the HS mode, in which the planets are periodically located on the
opposite sides of the star.

At σ = 0.01, the Trojan modes become possible in case ξ ≥ H∗( π
3 , e∗, e∗) = 1

2 (Fig. 7a).
If ξ = 1

2 , then the set of possible values of ��, e1, e2 consists of only two elements
corresponding to the Lagrange solutions of the three-body problem: �� = π

3 , e1,2 = e∗ and
�� = 5π

3 , e1,2 = e∗ It is curious that for other σ , and even for other planetary mass ratios,
1
2 remains the minimum value of ξ at which Trojan modes are possible.

With a further increase in ξ , the areas of Trojanmodes increase, and for some values of��,
e1, e2 an advanced motion of both the first and second planets becomes possible (Fig. 7b).
When the area of coexistence of the Trojan modes increases so much that it includes the
motion in which the eccentricity of one of the planets is equal to zero, the evolutionary
diagrams assume the form shown in Fig. 7c.

Increasing ξ further, we will observe a decrease of the areas where only one Trojan
mode is possible (Fig. 7d) and, finally, a complete disappearance of these areas (Fig. 7e). The
disappearance occurs at ξ ↑ ξAL ≈ 0.62413 (where the notation “↑” indicates the limit
“from the left”). At ξ = ξAL , the “pink” area in the upper part of the evolutionary diagram
shrinks into the point �� ≈ 114.92704◦, e1,2 = e∗, while the “green” area in the lower
part of the diagram shrinks into the point �� ≈ 245.07296◦, e1,2 = e∗. The critical value
ξAL corresponds to the maximum of the function H∗∗(��, e1, e2(e1, σ )). According to the
definition of the function H∗∗(��, e1, e2), there exists a value ϕAL of the resonant phase ϕ
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Fig. 7 Evolution of co-orbital motion when the planets have equal masses, σ = 0.01 and emax ≈ 0.199: a
ξ = 0.51, b ξ = 0.55, c ξ = 0.58, d ξ = 0.61, e ξ = 1.10, f ξ = 1.47, g ξ = 1.49, hMMR ξ = 1.70. Areas
in which the only mode of motion is ”Trojan” with the leading position of the first planet are drawn in pink.
Areas where the only mode is also ”Trojan”, but the second planet is in the lead, are drawn in green. Areas in
which planets move in HS mode are drawn in blue

such that

ξAL = W̃ (ϕAL ,� AL
� , e∗, e∗),

∂W̃

∂ϕ

∣∣∣∣∣
ϕ=ϕAL ,��=� AL

� ,e1,2=e∗

= 0. (23)

The second of relations (23) means that the intermediate system has a stationary solution

ϕ ≡ ϕAL , �̃ ≡ 0, �� ≡ � AL
� , e1,2 ≡ e∗. (24)

The stationary solution (24) can be related to a periodic solution of the non-averaged equations
of motion, in which the orbits of the planets precess with an approximately constant values
of the following quantities: the resonant phase, the angle between the lines of the apses, and
the eccentricities of the orbits. If σ � 1, then in this solution the triangle, whose vertices are
the star and the planets, is close to equilateral at any time. The existence of such co-orbital
motions was first established by Giuppone et al. (2010). They resemble classical Lagrangian
solutions, inwhich the star and planets forman exact equilateral triangle. Therefore, thismode
of motion was called “anti-Lagrangian”. More details about “anti-Lagrangian” motions will
be provided in Sect. 6.
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Fig. 8 Evolution of co-orbitalmotion inQSmodewhen the planets have equalmasses and σ = 0.2 (e1,2max =
0.8): a ξ = 1.6, b ξ = 6.5

At ξ = ξHS ≈ 1.4664, a bifurcation occurs, as a result of which the area of HS motions
appears on the evolution diagram (this area is drawn in blue in Fig. 7f). As ξ increases, the
area of HS motions increases also (Fig. 7g). At ξ ↑ H∗(π, e∗, e∗) = 3

2 , the area of Trojan
modes shrinks to a point.With ξ > 3

2 , only HSmotions are possible (Fig. 7h). It is interesting
that for ξ > 3

2 , similarly to the case of QS motions for sufficiently large ξ , the difference in
the longitudes of periastrons �� oscillates around 0 or π .

Remark. When ξ ∼ ε̃−2 � 1, the variable ϕ in the solutions of the subsystem (18)
actually becomes fast: dϕ/d τ̃ ∼ ε̃−1. Analysis of the situation when the assumed hierarchy
of processes disappears is beyond the scope of our study. The reader canfindmore information
about this in the paper by Robutel and Pousse (2013), where they consider the very extended
horseshoe orbits demonstrating the fast variation of ϕ.

4.3 Co-orbital motions withmoderate eccentricities

As a rather representative situation, we consider the case of σ = 0.2, where the upper border
of possible values of the planets’ eccentricities is equal to emax = 0.8.

As in Sect. 4.1, we begin our discussion with QS motions. Examples of such motions
at σ = 0.2 are shown in Fig. 8. As in the case of small σ , the region of QS motions arises
in the vicinity of the anti-apsidal resonance e1,2 = e∗ = 0.6, �� = � (ξQS ≈ 0.045 for
σ = 0.2). As ξ increases, the region of possible values of the elements of planetary orbits
monotonically increases, while the forbidden zone shrinks to the point e1,2 = e∗, �� = 0.

Examples of the evolution of other modes of co-orbital motion are shown in Fig. 9. Trojan
modes appear at ξ = 1

2 (Fig. 9a). If ξ ≥ ξC ≈ 1.078, then for some values of ��, e1, e2 the
coexistence of Trojan modes becomes possible (Fig. 9b).

The HS mode becomes possible when ξ > ξHS ≈ 1.1452. The appearance of an area
where the HS mode takes place occurs before the disappearance of the pink and green areas
in which only one Trojan mode is possible (Fig. 9c). This is different from the case of small
σ , when this area appeared after the disappearance of areas with only one Trojan mode. In
addition, in the case of σ = 0.2, the stationary solution �� ≡ 0, e1,2 ≡ e∗ for co-orbital
motions in HS mode is unstable.

With a further increase in ξ , wewill observe the disappearance of forbidden zones (Fig. 9d).
Transition from the situation shown in Fig. 9e to the situation depicted in Fig. 9f consists

of a shrinking and subsequent disappearance of the areas where there is only one Trojan
mode. At the bifurcation value ξAL ≈ 1.2568 of the parameter ξ , the intermediate system
admits a stationary solution, which corresponds to an anti-Lagrangian periodic solution of
non-averaged equations of motion.
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Fig. 9 Evolution of co-orbital motion when the planets have equal masses and σ = 0.2 (emax = 0.8): a
ξ = 0.6, b ξ = 1.1, c ξ = 1.15, d ξ = 1.2, e ξ = 1.25, f ξ = 1.3, g ξ = 1.5

Fig. 10 Evolution of co-orbital motion of planets with equal masses at σ = 0.56 (emin ≈ 0.475, emax = 1).
Panes a and b depict QS modes of motion at ξ = 0.2 and ξ = 0.5, respectively. Pane c depicts an HS mode
at ξ = 0.7

At ξ ≥ 3
2 , Trojan modes are impossible (Fig. 9g).

4.4 Co-orbital motions with large eccentricities

Figure 10 shows diagrams describing the secular evolution of co-orbital motion at σ = 0.56.
From the formulae given in Sect. refsec3.3, it follows that in this case e1,2 ∈ [0.475, 1]. The
QS mode becomes possible when ξ ≥ ξQS ≈ 0.1451, see Fig. 10a and b. When ξ = 3

2 , HS

modes appear, with �� = π
3 , e1,2 = e∗ and �� = 5π

3 , e1,2 = e∗, where e∗ ≈ 0.898.
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Fig. 11 Evolution of QS modes of co-orbital motion in the case m2 = 2m1, σ = 0.1 (e1max ≈ 0.714,
e2max ≈ 0.527). Diagram a, b, and c correspond to the values ξ = 0.1, ξ = 0.3, and ξ = 1.5, respectively

5 Secular evolution of co-orbital motion in the casem2 = 2m1

We limit our consideration of the co-orbital motion of planets with different masses to the
case when the mass of one of the planets is half the mass of the other planet and σ = 0.1.
With these values of the problem parameters, the greatest possible value of the eccentricity
of the first planet is e1max ≈ 0.714, and the greatest possible value of the eccentricity of the
second planet is e2max ≈ 0.527.

Figure 11 shows examples of the evolution of quasi-satellite motions at different levels of
the Hamiltonian of the intermediate system . The QS mode is possible in the case when
ξ ≥ ξQS ≈ 0.073. In particular, there is only one QS solution at the level  = ξQS . This is
a stationary solution of the intermediate system (15), in which

ϕ ≡ 0, �̃ ≡ 0, �� ≡ π, e1 ≈ 0.54, e2 ≈ 0.37. (25)

Solution (25) corresponds to anti-apsidal alignment of planetary orbits. If ξ slightly
exceeds ξQS , then in the QS mode at the level  = ξ oscillations of �� around π are
observed (Fig. 11a).

Motions with circulation of �� appear at ξ > ξC ≈ 0.21 (Fig. 11b). Finally, at ξ ≥ ξR ≈
0.43537, QS motions with oscillations of �� around 0 (apsidal alignment) become possible
(Fig. 11c).

Examples of the evolution of Trojan modes and HS modes are shown in Fig. 12. As in
the case of equal masses of planets, Trojan regimes appear at ξ = 1

2 . The value e∗ of the
eccentricity of planetary orbits in the modes Tk at ξ = 1

2 can be calculated using formula
(19): if σ = 0.1, then e∗ ≈ 0.4359.

Figure 12a presents an example of evolution in a situation where ξ slightly exceeds 1
2

(which is the minimal value of ξ that allows the existence of Trojan modes). As ξ increases,
the areas of existence ofTrojan regimes increase too.When ξ = ξT ≈ 0.8202, the coexistence
of Trojan modes T1 and T2 becomes possible. In evolutionary diagrams, this corresponds to
the appearance of an intersection point at the boundaries of the pink and green areas. The
intersection point has coordinates e1 ≈ 0.34994, �� = 0 on the diagram describing the
evolution of the motion of the first planet, and coordinates e2 ≈ 0.47197, �� = 0 on the
diagram characterising the evolution of the motion of the second planet. Phase portraits for
ξ slightly exceeding ξT are shown in Fig. 12b.
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Fig. 12 Evolution of co-orbital motion in the case m2 = 2m1, σ = 0.1 (e1max ≈ 0.714, e2max ≈ 0.527): a
ξ = 0.6, b ξ = 1.0, c ξ = 1.1, d ξ = 1.2, e ξ = 1.25, f ξ = 1.3, g ξ = 1.4, h ξ = 1.5

When ξ = ξF ≈ 1.091, forbidden zones disappear in the evolutionary diagrams. At
ξ ↑ ξAL ≈ 1.16887, the areas, in which only one Trojan mode can exist, shrink to the points
e1 ≈ 0.60262, �� ± 100.62747◦ on the evolutionary diagram of a planet with a smaller
mass, and to the points e2 ≈ 0.30223, �� ± 100.62747◦ on the evolutionary diagram for a
planet with a larger mass. When ξ = ξHS ≈ 1.23416, areas of HS motion appear. Examples
of evolution diagrams for ξ ∈ (ξF , ξAL), ξ ∈ (ξAL , ξHS), and for ξ slightly exceeding ξHS

are provided in Fig. 12c–e, respectively.
Figure 12f and g illustrates the decrease in the area of Trojanmodes with a further increase

in ξ . When ξ ↑ ξD = 3
2 , this area on evolutionary diagrams shrinks to the point e1,2 = e∗,

�� = π . Co-orbital motions at ξ ≥ ξD are characterised either by circulation �� or its
oscillations around 0 or π (Fig. 12h).
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Fig. 13 Characteristics of anti-Lagrangian co-orbital motions at different values of the problem parameters

6 Anti-Lagrangian and anti-Eulerian solutions

The intermediate system introduced in Sect. 3.2 admits two families of stationary solutions.
For one of these, the limit σ → 0 implies

�� ≡ � AL
� → 2π

3
, ϕ ≡ ϕAL → 5π

3
. (26)

The second family is a symmetrical image of the first one. For those solutions, the limit
σ → 0 implies

�� ≡ 2π − � AL
� → 4π

3
, ϕ ≡ 2π − ϕAL → π

3
. (27)

Solutions (26) and (27) correspond to families of periodic solutions of the non-averaged
three-body problem, in which at σ � 1 the star and planets form a rotating triangle close
to equilateral (its deviation from equilateral increasing with the increase of σ ). From the
Lagrangian solutions making an exact equilateral triangle, these solutions also differ in the
angle between the lines of apses of the orbits along which the planets move – this can be
understood from relations (26) and (27).

The existence of such solutions was first established probably by Giuppone et al. (2010)
who were using the averaged Hamiltonian of the three-body problem. They called these
solutions anti-Lagrangian. Hadjidemetriou and Voyatzis (2011) obtained anti-Lagrangian
solutions numerically for non-averaged motion equations of the three-body problem.

Since our parameterisation of co-orbital motions differs from the parameterisation used
in (Giuppone et al. 2010), we had to recalculate some important characteristics of the anti-
Lagrangian solutions. Figure13 shows graphs illustrating the dependence of the properties
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of solution (26) on the value of the parameter σ and the planetary mass ratio. Similar graphs
for solution (27) can be obtained by obvious symmetry transformations.

The approximate expression for the averaged disturbing function W̃ (ϕ,��, e1, e2),
given in Appendix B, allows us to find the values of the planetary eccentricities in the
anti-Lagrangian solutions with σ � 1:

e1 ≈
√
2σ

(
μ̄2

μ̄1

)
, e2 ≈

√
2σ

(
μ̄1

μ̄2

)
. (28)

From formulae (28), follows the relation written in (Giuppone et al. 2010) as empirical:

e1
e2

≈ μ̄2

μ̄1
.

The intermediate system has also a stationary solution

ϕ ≡ π, �� ≡ π, ek ≡ e(σ ) (k = 1, 2) (29)

corresponding to the classical periodic solution of the three-body problem found by Euler
(Marchal 1990). In (Leleu et al. 2018), it is noted that solution (29) has an antagonist – an
“anti-Eulerian” solution with �� ≡ 0 and ϕ ≡ π . Using the approximate expression for
W̃ (ϕ,��, e1, e2) from Appendix B, we establish that for σ � 1 the values of eccentricities
in the anti-Eulerian solutions also satisfy relations (28).

7 Quasi-probabilistic processes in the vicinity of the uncertainty curve

In the process of constructing evolutionary diagrams, the trajectories of averaged Eq. (23)
approaching the uncertainty curve �k and leaving its vicinity were formally “glued”. But
a problem arises: on the one side of this curve, we have one solution, while on the other
side we have two. Because of this, in some cases we cannot definitely say which mode of
motion is realised when the projection of the phase point of the system onto Mk(σ ) leaves the
neighbourhood �k . In phase space, the initial conditions corresponding to different modes
of motion after passing �k are strongly mixed. Therefore, the behaviour of the system on the
uncertainty curve becomes quasi-probabilistic.

As an example, Fig. 14 shows the results of numerical integration of non-averaged equa-
tions, demonstrating how a slight difference in the initial conditions leads to the system’s
transition to different modes of motion after passing �k .

Under the scope of a planar restricted three-body problem, quasi-probabilistic transitions
between different modes of co-orbital motion were discussed in detail by Sidorenko (2018).
In particular, the probabilities of such transitions were calculated. Formulae for calculating
the probabilities of transitions between coexisting resonant modes are given in (Artemyev
et al. 2013). Similar calculations can be done for the general three-body problem.

8 Applicability of the obtained results to realistic exoplanetary systems

The possibility of co-orbital motions in actual exoplanetary systems has been discussed in the
literature heretofore (Laughlin andChambers 2002; Beaugé et al. 2007; Cresswell andNelson
2009). Despite intensive efforts to improve themethods for detecting co-orbital motions (see,
for example, Giuppone et al. 2012; Leleu et al. 2015), no reliable examples of such motions
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Fig. 14 An example of different behaviour of solutions with close initial data after passing through the
neighbourhood of the uncertainty curve. Calculations were carried out for a system with parameters μ̄1 = μ̄2,
σ = 0.2, ξ = 1.25, μ = 2 · 10−6. Panel a shows the behaviour of slow variables in two solutions of non-
averaged equations with initial data that differ in the value of the variable�� by 10−5 (black curves). Initially,
in both solutions the motion can be described as a Trojan mode with the first planet in the lead. When passing
through the neighbourhood of the uncertainty curve, in one solution the Trojan regime is preserved, but the
second planet becomes leading. In another solution, the transition to HS mode is taking place. Panels b and c
show the change in the behaviour of the resonant phase ϕ in these solutions (b change of the leading planet, c
motion in HS mode)

have been found so far. Nevertheless, the hope that such examples will sooner or later appear
is supported by the recent discovery of the formation of dust clumps at one of the triangular
libration points of the exoplanet PDS 70b (Balsalobre-Ruza et al. 2023).

As it turned out, good agreement between calculations of secular evolution using Eq. (15)
and the results of numerical integration of non-averaged equations of motion is usually
achieved at values of the parameter μ ∼ 10−6. Thus, if the mass of the star is comparable to
the mass of the Sun, then the presented theory of co-orbital motions will be valid for planets
with the mass ∼ 10−6m⊙. Such planets are classified as “rocky” or “terrestrial”.

9 Concluding remarks

Using the perturbation theory, we have investigated secular effects in the dynamics of a
system consisting of a star and two planets in co-orbital motion. For different values of
systemparameters, evolutionary diagramshave beenpresented, illustrating changes inmotion
characteristics over long time intervals.

The analysis was carried out under the scope of a planar three-body problem. Following
(Giuppone and Leiva 2016; Robutel and Pousse 2013), it would be interesting to apply our
approach to the study of spatial co-orbital motions. It should also be noted that the three-body
problem represents a significant simplification of actual dynamics in exoplanetary systems.
An important question is, for example, to what extent the results of our analysis of co-orbital
motions are applicable to planetary systems having more than two planets (e.g. Couturier
et al. 2022; Veras et al. 2016).

Of a particular interest would be taking into account the influence of non-gravitational
perturbations on the motion of planets. Non-gravitational perturbations are typically much
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weaker than the perturbations caused by the gravitational attraction between the planets. Still,
over long time intervals, non-gravitational disturbances can significantly change the motion
parameters, which are quasi-integrals for conservative models (for example, the values of
semi-major axes).

Non-conservative perturbations of co-orbital motion arise when planets interact with a
protoplanetary cloud (Beaugé et al. 2007; Cresswell and Nelson 2009). Another important
non-conservative phenomenon is tidal effects (Rodriguez et al. 2013; Couturier et al. 2022).
Dobrovolskis and Lissauer (2022) note that tidal friction can lead to destruction of the co-
orbital mode of motion.

The adiabatic approximation that we apply to study MMR essentially uses the sym-
plecticity of the phase flow of the three-body problem. However, even in the case when
non-conservative perturbations are present, there are no technical obstacles to write down
evolutionary equations based on double averaging: over orbital motion and over resonant
phase variations.

Appendix A: Approximate formula for calculating the values of the
averaged disturbing function inQSmode of co-orbital motion at � � 1

Using the known series for the coordinates of a celestial body in elliptical motion, we can
write down the following approximate formula for the distance between exoplanets in co-
orbitalmotion, valid for small values of the resonant phaseϕ and small values of eccentricities
e1 and e2:

|r1 − r2|2 ≈ ϕ2 + 5

2
�(��, e1, e2) + 4ϕ�1/2(��, e1, e2) sin(λ1 + ϕ̂(��, e1, e2))

−3

2
�(��, e1, e2) cos 2(λ1 + ϕ̂(��, e1, e2)), (A.1)

where

�(��, e1, e2) = e21 + e22 − 2e1e2 cos��,

ϕ̂(��, e1, e2) = − arccos

(
e1 cos�� − e2

�1/2

)
· sign(sin��).

Fromformula (A.1) it follows that in the caseσ � 1 a collision in co-orbitalmotion is possible
under the condition ϕ = ±ϕ∗ mod 2π , ϕ∗ = 2�1/2(��, e1, e2). So when exoplanets move
in the QS mode, the resonant phase ϕ ∈ (−ϕ∗, ϕ∗).

Having formula (A.1), it is easy to obtain an approximate expression for the disturbing
function averaged over the orbital motion at 1:1 MMR:

W̃ (ϕ,��, e1, e2) = 1

σ 1/2 V

(
ϕ

σ 1/2 ,

(
�(��, e1, e2)

σ

)1/2)
+ O(1), (A.2)

where

V (ϕ̄, κ) = 1

2π

∫ 2π

0

dζ√
ϕ̄ + 4ϕ̄κ sin ζ − 3

2κ
2 cos 2ζ + 5

2κ
2
.
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Fig. 15 Curves on which the
projections of phase trajectories
lie in the set Mk (σ ) in the case of
QS motion of exoplanets of equal
mass. The greatest possible value
of eccentricity emax = 2

√
σ

The integral on the right side of the last formula can be reduced to an elliptic one (Byrd and
Friedman (1954), formulae (259.00) and (284.00)):

V (ϕ̄, κ) =

⎧⎪⎨
⎪⎩

2
π
√

4κ2−ϕ̄
K
(√

3κ2−ϕ̄2

4κ2−ϕ̄2

)
, |ϕ̄| ≤ √

3κ;
2

πκ
K

(√
ϕ̄2−3κ2

κ

)
,

√
3κ < |ϕ̄| < 2κ.

Here K (·) denotes an elliptic integral of the first kind.
From the structure of the expression for the averaged disturbing function (A.2) it follows

that the invariance of the value of AI during the secular evolution of co-orbital motion in
the QS mode is equivalent to a constant value of the quantity �(��, e1, e2). Using the
relation μ̄1e21 + μ̄2e22 ≈ 2σ , which is a consequence of (16) at σ � 1, from the condition
�(��, e1, e2) = const it is easy to obtain approximate expressions for the projections of
phase trajectories on the set M1(σ )

(μ̄2 − μ̄1)e
2
1 − 2e1μ̄

1/2
2

√
2σ − μ̄1e21 cos�� = const (A.3)

and on the set M2(σ )

(μ̄1 − μ̄2)e
2
2 − 2e2μ̄

1/2
1

√
2σ − μ̄2e22 cos�� = const. (A.4)

In the case of equal masses of exoplanets, the expressions for the projections of phase
trajectories on the sets Mk(σ ) coincide (Fig. 15):

e
√
4σ − e2 cos�� = const, e = e1, e2. (A.5)

It is obvious that the curves specified by relations (A.3) and (A.4) also define the boundaries
of the regions of possible motion of exoplanets in QS mode at a given ξ (cf. Figs. 6 and 15).

Appendix B: Approximate formula for the adiabatic invariant

More specifically, our goal is to derive an approximate formula for calculating the AI values
in the HS mode of co-orbital motion at σ � 1. If σ is small enough, then HS motions are
possible in the case of

ξ > H∗(��, e1, e2).
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To calculate the value of the AI for these motions, we employ an approximate formula for
the averaged disturbing function:

W̃ (ϕ,��, e1, e2) ≈ W̃0(ϕ) + W̃1(ϕ,��, e1, e2). (B.1)

Here

W̃0(ϕ) = 1√
2(1 − cosϕ)

− cosϕ,

W̃1(ϕ,��, e1, e2) = (e21 + e22)g1(ϕ) + e1e2(cos�� · g2(ϕ) − sin�� · g3(ϕ)),

g1(ϕ) = cosϕ

2
+ 9 − 5 cos2 ϕ − 4 cosϕ

4(2 − 2 cosϕ)5/2
,

g2(ϕ) = 1 − 2 cos2 ϕ + cos3 ϕ + 8 cos2 ϕ − 5 cosϕ − 4

2(2 − 2 cosϕ)5/2
,

g3(ϕ) = 2 cosϕ sin ϕ + sin ϕ(9 − cos2 ϕ − 8 cosϕ)

2(2 − 2 cosϕ)5/2
.

Formula (B.1) is a slightly modified version of similar formulae presented by Morais (2001)
and Sidorenko (2018).

The AI of the considered HS motions is given by

J (ξ,��, e1, e2) ≈ 1

2

∫ ϕmax(ξ)+ϕ̂max(ξ,��,e1,e2)

ϕmin(ξ)+ϕ̂min(ξ,��,e1,e2)

√
2

3

[
ξ−W̃0(ϕ)−W̃1(ϕ,��, e1, e2)

]
dϕ.

(B.2)

Here ϕmin(ξ) and ϕmax(ξ) denote the left and right boundaries of the interval over which
the relation W̃0(ϕ) ≤ ξ is valid. Also, ϕ̂min(ξ,��, e1, e2) and ϕ̂max(ξ,��, e1, e2) are some
small quantities characterising the change in the boundaries of this interval when considering
the relation W̃0(ϕ) + W̃1(ϕ,��, e1, e2) ≤ ξ .

Formula (B.2) can be easily reduce to the form

J (ξ,��, e1, e2) ≈ J0(ξ) − d1(ξ)(e21 + e22) − d2(ξ)e1e2 cos��,

where

J0(ξ) = 1

2

∫ ϕmax(ξ)

ϕmin(ξ)

√
2

3

[
ξ − W̃0(ϕ)

]
dϕ, d1,2(ξ) = 1

π
√
6

∫ ϕmax(ξ)

ϕmin(ξ)

g1,2(ϕ)dϕ√
ξ − W̃0(ϕ)

.

From the conservation of AI, it follows that, in the course of secular evolution,

d1(ξ)(e21 + e22) + d2(ξ)e1e2 cos�� ≈ const . (B.3)

If the masses of the planets are equal then, at σ � 1, the values of their eccentricities are
connected by the relation

e21 + e22 ≈ 4σ. (B.4)

From formulae (B.3) and (B.4), we conclude that, during the secular evolution of planets of
equal mass,

e
√
4σ − e2 cos�� ≈ const. (B.5)

Interestingly, expression (B.5) coincides with the previously obtained expression (A.5),
which describes secular effects in the QS co-orbital motion.
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