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Abstract

In the characterization of the space debris environment, the computation of the orbit of the
debris objects is usually conducted by considering the association of short sequences of
observations called tracklets. In case the orbits can be already determined with sufficient
accuracy from single tracklets, it is necessary to define a criterion to decide if two calculated
orbits correspond to the same object. One possibility is to introduce a definition of distance
between orbits and to consider a threshold below which the two orbits are considered to be
originating from the same object. The concept of distance is quite general and leaves room
to different definitions. There are different ways to describe and to parameterize the space of
the possible orbits. In this article, new metrics are proposed which extend distance definitions
suggested in previous works. In these metrics in addition to orbital plane and orbital shape,
also the position of the object along the orbit is taken into account. The obtained distances
are scaled according to the orbit covariance. This has the advantage that the distance between
orbits with different accuracy can be evaluated. The proposed metrics are then compared
with existing common metrics to assess their applicability.

Keywords Metric space - Space of orbits - Space debris - Tracklet correlation

1 Introduction

To characterize the near-Earth space environment, the frequent observation of space debris is
of primary importance. From the observations acquired by optical or radar sensors, orbits are
computed and assigned to objects in a catalogue. Due to the reduced number of observations
and their sparse distribution, it is required in most of the cases to associate short-arc sequences
of observations of the same object, also called tracklets, to compute an orbit with enough
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accuracy. In Milani et al. (2012), Zittersteijn et al. (2016), and Reihs et al. (2020), examples
of orbit determination methods are given based on the association, also called correlation or
linking, of the observed tracklets. In some methods, a six-parameters orbit is calculated from
one tracklet and propagated to the epoch of a second tracklet considered for the association.
The propagated orbit is then compared with the orbit calculated at the second epoch to decide
whether the two orbits originate from the same object. The comparison can be done in the
“measurements” space, between pseudo-observations generated from the propagated orbit
and real observations. In this case, the difference in the measurements is then evaluated w.r.t.
to a predefined threshold (see e.g. Friith and Schildknecht 2012). Alternatively, the comparison
can be performed in the state/orbital elements space, e.g. with a covariance-based threshold
(Hill et al. 2012). The latter association approach allows for a more refined comparison
considering a more complete orbit description and also its uncertainty. In this approach, it is
possible to define a distance between orbits which, together with a given threshold, is applied
to evaluate their similarity, i.e. how well the two orbits match. The association is accepted
if the distance is smaller than the defined threshold. A straight way to introduce a distance
between two orbits exploits the correspondence between orbital elements and state vector. If
the two orbits are represented by their state vectors, the Euclidean distance in the R® ambient
space is one possible metric. Since the computed orbits might differ in the accuracy, it is
useful to introduce a normalized distance, which is independent from the accuracy of the
observations and of the derived orbits. This is also necessary if the applied threshold should
remain consistent despite orbits characterized by different uncertainty. Assuming that the
orbit uncertainty is described by a multivariate “normal” distribution, then the normalization
can be formulated in terms of Mahalanobis distance (De Maesschalck et al. 2000). In the
latter, the Euclidean metric is scaled along the principal component axes of the distribution
according to their variance. Thus, in case of unit variance along these axes, the Mahalanobis
distance is reduced to the standard Euclidean distance.

Usually, the orbit uncertainty is described w.r.t. the given parameters of the reference frame.
If the orbit is given by a state vector, the uncertainty distribution refers to the Cartesian com-
ponents of position and velocity in the Euclidean R® space. Alternatively, the distribution can
refer to orbital elements or to any other orbit parameterization. The choice of the latter often
depends on details of the method considered for orbit determination. For example, in a least
squares approach, the choice of the parameters is made within the algorithm implementation,
in the design matrix. Obviously, the obtained uncertainty distribution can be transformed to
another reference frame, but this is usually done through a linear transformation, which could
cause an incorrect representation of the uncertainty in the new frame, if the size of the initial
distribution exceeds the linear range of the transformation. As in the least squares procedure,
typically a normal distribution for the uncertainty is assumed. However, this can turn out to be
an inappropriate model depending on the size of the initial distribution and especially if the
expected transformation is highly nonlinear. The problem of an appropriate representation
of the uncertainty is treated, e.g. in Sabol et al. (2013).

The main question here is whether there is a parameterization and a related metric that
best represent the similarity between orbits. The parameterization regards the description
of the orbit, e.g. whether we want to consider a state vector, or orbital elements, or any
other set of parameters that uniquely defines an orbit. Within the space spanned by these
parameters, a metric can be defined, which provides a distance value for two elements of the
space. There are different examples of improvements made in both aspects. In Vallado and
Alfano (2014) and Hill et al. (2012), the authors rely on state vectors but define a distance in
a curvilinear frame with a position and a velocity component along the curved trajectory of
one of the orbits and other components perpendicular to it. The adopted formulation tries to
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compensate for the wrong representation of the uncertainty in along-track direction caused
by the assumption of a normal distribution. In fact it is known that, due to the faster increase
in the along-track uncertainty as a function of time, the error ellipsoid will tend to elongate
into a “banana” shape along the orbit trajectory.

Different definitions of distance criteria based on a parameterization via orbital elements
were proposed. Some of them are not strictly distance functions in a mathematical sense,
because they do not fulfil the metric axioms. For example, refer to Kholshevnikov (2008) and
Kholshevnikov et al. (2016) for an overview of these criteria. In the latter paper, also a category
of metrics is treated that the authors called “natural”, since they are defined by quantities with
a physical meaning: the orbital angular momentum and the Laplace—-Runge—Lenz vector (see
Sect. 2 for the explicit formulation of these two quantities). In particular in this category, one
proposed metric is defined by the Euclidean distance in R, in which the space spanned by
these natural parameters is embedded. The spanned space is a five-dimensional surface in
RR® and alternative metrics on this surface or on topologically equivalent spaces are possible.
Moser (1970) first proved that the space of bounded Keplerian orbits with constant energy
is topologically equivalent to the Cartesian product of two spheres. In Maruskin (2010) an
equivalent topology with a similar parameterization is proposed and a Riemannian metric is
introduced. A closed formula for the geodesic distance between two points in the Riemannian
manifold is obtained.

In the metrics suggested by Kholshevnikov et al. (2016) and Maruskin (2010), the orbit is
identified with five orbital elements. The sixth parameter, indicating the position of the object
along the orbit, is usually not considered for applications in the Solar system astronomy, e.g.
where the common origin of celestial bodies is investigated. However, for space debris and
artificial satellites in the frame of initial orbit determination and tracklet correlation, this
additional information can be relevant. For this reason, it can be interesting to evaluate the
above metrics taking into account also, e.g. the orbital anomaly.

In this article, first the distance definitions treated in Maruskin (2010) and Kholshevnikov
et al. (2016) are described. After considering the extension of both distances with the orbital
anomaly, the two metrics are normalized according to the definition of Mahalanobis dis-
tance. Finally, the newly formulated metrics are assessed and compared each other and with
distances between state vectors.

2 Geodesic distance in natural Riemannian metric
2.1 Metric definition

In Maruskin (2010), a geodesic distance in the space of bounded Keplerian orbits is proposed.
The author examines a topology equivalent to the one found by Moser (1970). In the latter,
it was shown that the space V(E) of closed orbits with fixed energy E can be parameterized
through the Laplace—Runge—Lenz vector e = s ZH - \:7 and a normalized angular momentum
vector

ey

given the position of the orbiting object r(¢), the angular momentum H = r x F, the semimajor
axis a, and the gravitational parameter x. The norm of e is the eccentricity e of the orbit. The
two vectors are perpendicular to each other and it was proven that the spanned space has a
topology equivalent to §2 x §2, the Cartesian product of two unit spheres. We indicate this
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topological equivalence with V(E) = §2 x $2. A linear combination of these two vectors,

n=e+h, 2

g=e—h 3

was further discussed in Maruskin and Scheeres (2009). The vectors 5 and & satisfy the
conditions:

n-n=1, 4

E-E=1 &)

These properties further emphasize the above topological equivalence. The advantage of
this parameterization is that both the vectors have unit length and equally represent the two
S? subspaces. Maruskin (2010) then extends this topology to the cone K(S? x §?), where
K(X) is defined for a subset X of the vector space V as

K(X)={veV:v=ax,a >0,x € X}

where a is the semimajor axis. The defined topology H = K(S? x S?) extends the space
V(E) of fixed energy E to a space considering all bounded orbits through their semimajor
axis. On the manifold H c R the geodesic distance between two points identified with g,
M, aj and §,, My, az is calculated as

d = \/2(a? + a3 — 2a1azc089), ©

where

1
Y= \/E (arccos?(ny - my) + arccos?(§; - &,)). 7

Note that the terms within  are angle differences between the vectors §’s, respectively
n’s. In the cited article it is indicated that a geodesic distance on K(S' x S') can be generalized
and applied to a manifold with n spheres K(S! x --- x §!) ¢ R?". In this case, the general
expression contains n angle differences 6;’s (i = 1, ..., n) for any additional sphere:

[
V= ;Zizlei . ®)

2.2 Orbital anomaly

We would like to extend the distance in Eq. (6) to all six orbital parameters, i.e. including
also one parameter that describes the position of the object along its orbit. There are different
possible parameters for this purpose. Here, we examine the commonly used true, eccentric,
and mean anomalies. While the mean anomaly has a linear increase over the time of an orbit
revolution, the true and eccentric anomaly do not increase linearly in the case of eccentric
orbits. As known for example, the angular velocity close to the periapsis increases, and so
does the change rate in the true or eccentric anomaly. This means that two objects on different
positions along the same orbit will always have the same difference in mean anomaly over
time. However, the same does not apply for the difference in true or eccentric anomaly. For
the definition of distance, it is then preferable to choose the mean anomaly in order to have
a constant value over time.
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To add this parameter in the above formulation, we exploit the property expressed in
Eq. (8) which easily allows us to extend the distance to a topology with more spheres. Let
us consider the space H = K(S% x §? x S') c RC. It is easy to show that the set of the
anomaly values can be represented with an additional separate space and that there is a
homeomorphism between this set and the unit sphere S! (see “Appendix”, Theorem 1). For
consistency with the previous definition, the additional sphere is extended to the cone K(S')
giving a new topology K(52 x §2) x K(S1) = K(52 x §2 x $). Eq. (7) is extended with
the mean anomaly M to

1
Y= \/3 (arccos?(n - ,) +arccos?(§; - §,) + (Mo — My)?). )

3 Euclidean distance with natural parameterization
3.1 Metric definition

In the work of Kholshevnikov et al. (2016), one of the analysed natural metrics consid-
ers the Euclidean distance in the space R®. The angular momentum vector H and the
Laplace—Runge-Lenz vector e are scaled to the vectors u and v such that

ul=p |vl=ep (10

where p is the semilatus rectum. The distance between two points identified with uy, vi and
Uy, V2 in the ambient space R® is then expressed as

1
d:\/z(ml —w)? + (v — v2)?), (11)

where L is an arbitrary factor which can be set to L = 1.

As stated in Kholshevnikov et al. (2016) and explicitly shown in the “Appendix” in The-
orem 2, this metric is topologically equivalent to the one in Eq. (6) and applicable to the
same parameter space. However, from the proof in Theorem 2, we note that the two metrics
are not Lipschitz equivalent and they behave differently. While in the metric (11) the natural
parameters u and v are first evaluated in distinct R3 subspaces, in the metric (6) the angu-
lar information in the subspaces S C R? is combined together in v before introducing a
“scaling” with a; and a;.

3.2 Orbital anomaly

As for the metric defined by Maruskin also in this case, we want to extend the distance defini-
tion to a space taking into account the mean anomaly M. The unit sphere S!, homeomorphic
to the mean anomaly set (“Appendix”, Theorem 1), can be embedded in R?. The original
space R® can be naturally extended with a separate space R? to R® = R® x R2,

Similarly as for u and v, we define a new vector w so that:

<Uwi, W2) = [My — Mz, w1l ={p1, w2l ={p2.

This vector can be expressed as

w:ﬁ(COSM) (12)

sinM
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In the choice of w, relevant is the angle between two such vectors, which indicates the
difference in mean anomaly. The length ,/p of the vector is chosen to be consistent with
the construction of u and v, where ,/p is a common scaling factor similar to the scaling
semimajor axis a in (6). The distance extended with the mean anomaly is

d =y —w) + (v = v2)? + (W — wo)?. (13)

This metric and the one extended in Eq. (9) are still topologically equivalent, as shown in
the “Appendix” in Corollary 1.

4 Mahalanobis distance

4.1 Definition

The Mahalanobis distance in RN describes a distance between a point x and a normal distri-
bution with mean W and covariance matrix S (De Maesschalck et al. 2000). This definition

can be easily extended to the distance between two points x and y with respect to the same
distribution:

(%, ) =/ (x — TS (x — ). (14)

For our purpose we want to use the Mahalanobis distance as a measure of the similarity
of two orbits. If we consider two points X and y in the orbit space and their uncertainty given
by their covariances, the Mahalanobis distance is a way to scale the actual distance between
x and y according to the covariances Sy and Sy and can be written as (Hill et al. 2012):

dv(X,y) :\/(x—y)TS—l(x—y), where S = Sx +Sy. (15)

4.2 Metric axioms

According to the mathematical definition of metric, a distance function must satisfy the
following axioms:

1. d(x1,x2) > 01. while d(x1, x) = 0 if and only if x| = x»
2. d(x1,x2) = d(X2,X1) (16)
3. d(x1,x3) <d(x1,X) +d(X2, X3) (triangle axiom)

It can be shown that all three metric axioms are satisfied in the original definition of
Mahalanobis distance in Eq. (14). While the first and second axioms can be easily verified, for
the triangle axiom we see that the covariance matrix S is positive-semidefinite and symmetric
and it can be expressed as S = T~!DT, where TT = T~ is an orthogonal and D a diagonal
matrix. While the orthogonal matrix does not change the resulting distance, the diagonal
elements in D are responsible for a scaling of the Euclidean distance, the latter being the case
with a unit matrix D, and as such do not affect the triangle inequality.

However, in our application of the Mahalanobis distance in Eq. (15) every x and y is
related to a different distribution. Thus, the covariance matrices are actually variables of a
distance function dy(X, y, Sx, Sy) between two points (x, Sx) and (y, Sy) in the geometric
space extended with the covariances. If we consider this extension, the first axiom is clearly
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not fulfilled. In fact, we can have different combinations (x, Sx) and (y, Sy) with x =y
and Sx # Sy so that dy (x, Y, Sx, Sy) = 0. It is easy to show that even the triangle axiom
is not satisfied. The reason for not being compliant with two of the axioms is that in this
case we try to define a distance between distributions and not a conventional metric. There
are known statistical distances which give a measure of how probability distributions differ
from each other, e.g. like the Kullback—Leibler divergence (Kullback and Leibler 1951), or
the Bhattacharyya distance (Choi and Lee 2003). Despite the fact that sometimes the name
“distance” is used, they are not real metrics and do not respect all axioms. However, unlike
in statistical distances we are not interested in the shape difference of the distributions but
only in the distance between their means, scaled according to their covariances. Thus, the
statistical aspect introduced with the matrix S in Eq. (15) can be formally separated by the
actual distance between the distribution means in the underlying space. Note that if S is not
considered Eq. (15) reduces to the standard Euclidean distance. Since S is symmetric and
positive-semidefinite, it can be expressed as product of two matrices as S = BTB. Then,

du(x,y) = dg (x/, y/), where dg is the Euclidean distance and X = Bx, y/ = By. This

indicates that the spatial distance between the statistical characterized points X and y/ is
correctly evaluated in a compliant metric space.

5 Mahalanobis distance of state vectors
5.1 Euclidean space
In the Euclidean space, the state vectors are given in Cartesian coordinates. For the state

r r . . . .
vectors X = ( * ) andy = < Y ) with Cartesian covariances Cx and Cy the Mahalanobis
Vy Vy

distance is according to (15):

du(x,y, Cx, Cy) = \/(x —-y»TC'(x —y), where C=Cy+Cy.

The choice of Cartesian coordinates makes it difficult to well describe the uncertainty
related to the state vectors. In fact, the latter is expected to be somehow curved along the
existing orbit, which cannot be expressed using the linear covariance formalism in Cartesian
coordinates.

5.2 Curvilinear coordinates

An improvement is brought with the idea of curvilinear coordinates, which in this context
refer to a method published in Hill et al. (2012) and Vallado and Alfano (2014). In the
following, we explain the underlying principle of the method (for the actual formulation
refer to the latter articles). A scenario with two flying objects is assumed and the position
of the second object w.r.t. to the first one (or in its coordinate system) is sought. If we
choose a reference system at the first object based on its curved orbit trajectory, we define
new curved (or curvilinear) coordinates. The idea is illustrated in Fig. 1 and is simplified
considering coplanar orbits. Object 1 has positionP; and orbitCy, while object 2 is inP, with
orbitC;. At pointP areference system based on the normal, tangential, and cross-track orbital
component (denoted as NTW system) is defined (see e.g.n; normal component). PositionP,
has a difference « in the true anomaly w.r.t. the reference orbit. At pointS», a second NTW»
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Fig. 1 Scheme describing
curvilinear coordinates

system is defined and the positionP; is expressed in this new reference system. The position
and velocity atP in the curvilinear coordinates system with origin inP; is given by the
difference of normal and cross-track components in NTW; and NTW, and by the position
differenceS along the tangential component. For the latter, the length of the arc betweenP
andS$» has to be calculated numerically. We define the two state vectors Xx; as

. i N Vi N
X; = ( ') , where r; = | ;1 and v = | v, 1 for i =1,2.
Vi )
NTWi Ti,W / NTw, Vi,w /' NTw;

The notation NTW; indicates that the vector is expressed in the NTW; system. Since
NTW; has the origin inP;, we have r; = 0 and according to the idea described above we
replace rp T with S. Then, the Mahalanobis distance is as follows:

dm(x1, x2, Ci NTw, » C2NTW,) =\/(X1 —x)TC 1 (x) — x0),

where C =Cj ntw, + CoNTW, .

6 Mahalanobis distance following Maruskin’s metric

If we consider in the two-dimensional case R? the Maruskin’s metric described in Eq. (6) we
see that the defined distance is simply, up to a proportional factor, the length d of one edge
of a triangle with two other edges of length a; and a> and an angle ¥ between them (see
Fig. 2). The length d can be calculated with the law of cosines.

If the angle ¥ is small, d can be approximated, e.g. by

d~ @y - ar? + @) a7)

. . . 2
To conserve the symmetry (2. metric axiom) in @, we may use cosyy ~ 1 — ‘//7 and we

obtain

d? = a% +a§ — 2ajaxcosyr = (ap — a1)2 +a1a2w2
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Fig. 2 Triangle showing the
relation between ay, ap,, and d
in R2

a,

For the generalization in RS, Eq. (9) for the angle ¥ has to be used instead. The sum
of squares appearing in Eqs. (8) and (17) suggests the possibility to scale the summands
according to their uncertainty as in the Mahalanobis distance. We can define in R* the

vector zT = (az —ay, Vaj/‘%zel, Vai/ugzez, Vil/%uz(Mz — Ml)) where 6] = arccos(n; - 1)

and 6, = arccos(§; - §,), and we can write the distance as d ~ +/zTz. Since the Mahalanobis
distance is normalized, we can scale z with a proportional factor and rewrite zas

:ﬁ%%;(az —ap)

7= o . (18)
02
My — M,

Now we need to transform the covariance matrix according to the new coordinates and
calculate the partial derivatives w.r.t. to the standard orbital elements semimajor axis a,
eccentricity e, inclination i, right ascension of ascending node €2, argument of perigee w,
and mean anomaly M:

8 .
Tij = i
oaj
where o € {ay, ..., My, az, ..., M>}. The first row of T can be calculated as

(le) _ <_~/§az(a1+az) 0 V3ai(ai1+ar) 0 )

Waa)? T 2 @)’

For the second row, we have

022 _@@_%8&_’_%8&
daj 30 da; Iy da; Oy A

19)
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We denote with M, (R) the space of n x m matrices over R. The Jacobian % IS
M «3(R) is calculated as
d0; 1 20)
—_— = .
a 2
b 1—(n;-m)

on;
daj
explicit representations of e and h. We can express the unit vectors P and W parallel to e and
h, respectively,as:

The calculation for % is analogous. The partial derivatives can be found using the

COS w cOS £2 — sin w cos i sin2

P= | coswsinQ —sinwcosicos |,
sin i sin
sin i sin 2
W= —sini cosQ
CoS i

Then, the partial derivatives are as follows:

an an P A

— =0 L —e— 441 —e2——

9a ‘e’ %

an e an P

Ad_p___° w on _ ot

de V1 —e2 ow eaco

an P oW an

M _ B 12 A 21
s ‘o T i M @

Note that in the above calculation «; contains two set of orbital parameters. Hence,
am;
Ba_’,-
only a change of sign is needed at terms with two addends as well as a replacement of y by
€. The last row of T is quite simple and yields

€ M3412(R) is only nonzero in half of its entries. The third row of T is very similar,

(T4j)=(0...-10...1).

Combining the results we find

Ty, 0
T, 0

0 0...0-100...01

~Y .00 L0...00
0
0

where T, and T, are abbreviations for the 1 x 4 matrices given by the considerations
21):

T. — 00) My 96, My 96, My 96, M,
=\ om, Ber M, B oM, 392 9N, 9oy )

Ty, — ( 200281 0y 98, o0y 08y oy 08,
6 = \ g, e o, Air oF, 501 o, Jor )

1

In order to calculate the components of these matrices, one makes use of (20) and (21).
Ty, and T, are analogous and one replaces n; by 1, and §; by §,. Since T contains two
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sets of orbital parameters, the covariance matrix needs to incorporate information about two
orbits:

Ci 0
Ci,= M R).
1,2 (0 Cz) € M2« 12(R)

C; and C, are the covariance matrices of the two orbits expressed in orbital elements.
Then, we can transform the covariance matrix as

C, = TC2T" € Myua(R)

and the Mahalanobis distance dy; becomes

dv =+ 27C; 'z

7 Mahalanobis distance following Kholshevnikov’s metric

For the definition of Mahalanobis distance, we combine the vectors in Egs. (10) and (12) into
a single vector

z=|v (22)

and write Eq. (13) as d = +/z"z. To transform the covariance matrix according to these
coordinates, we need to determine the partial derivatives of u, v, and w w.r.t. the orbital
parameters «;. We have:

d 1 0 oW
Lo
doy  2,/p 0o dat;
A
30[,‘ a
ow 1 9p (cosM d (cosM
doy  2,/p 0o <sinM> ﬁaai (sinM) @3)

. . cosM \ .
Recall that p is only a function of ¢ and a, the term %( - ) is only nonzero when
i\ sin

o; = M, and P and W only depend on i, 2, w. Then, we find T € Mgy(R) as

; fw W P poe 0 0
2 _ .
ro | S (V- )P evn i evpif eVl 0
2\FcosM WcosM 0 0 0 —/psinM
Zﬁ 2 sinM ’T”;sinM 0 0 0 J/pcosM

and hence
C, = TC,T" € Migys(R),
where C, is the covariance of the orbital elements, while C, is the covariance of the

components in z.
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In this case, we define the Mahalanobis distance to be

dm(z1,22) = \/(Zl -2)'C, L, (21 — ),

where Cz,_z, = Cz, +Cy,.

8 Comparison of metrics
8.1 Criterion for metric evaluation

A possible criterion to evaluate and compare the metrics can be based on the statistical
distribution of the distance values. The values of the squared Mahalanobis distance follow
a chi-squared distribution X;? with k degrees of freedom. This can be used for statistical
gating with the integral of the distribution. It is possible to define a threshold for the distance
between orbits below which two orbits are considered equal with a certain probability. The
associated level of confidence is given by the cumulative function of X;? at the threshold
value. For example, for k = 4 a threshold of 9.5 gives about 95% confidence level.

The degrees of freedom usually correspond to the dimension of the space in which we
calculate the Mahalanobis distance. This can be seen from the definition of the distance
function. From (15) we know that x — y is normal distributed with a covariance S = Sx +Sy.
If we consider normal distributed random variables X, Y and we denote with ~ a distribution
equivalence, we can write

dy~X-YV)TS !X -Y)~XTs;!X.

We have seen above the decomposition S;! = T~!DT and we know that by definition
the diagonal elements in D scale the components in order to be standard normal distributed.
Then, we can define a diagonal matrix D7 so that D = D/D7 where X’ = D'TX is standard
normal distributed. Thus, we have:

/T s
dg ~XTSIIX ~ X X ~ XP+ X3+ -+ X5 ~ xi.

For example in the case of distances between state vectors in R®, we clearly have 6 degrees
of freedom. This is consistent with the description of an orbit with six orbital parameters.
However, in the Maruskin’s metric, the vectors have four components as defined in (18). In
fact, the parameters i, 2, e, @ span the two spheres S2 but in the metric they characterize
only two angular distances. Therefore, we expect in this case four degrees of freedom.

In the Kholshevnikov’s metric, we have defined in (22) a vector with eight components.
On the other hand, we know that by definition u and v are always perpendicular and satisfy
the condition u - v = 0. Also, the direction of w only depends on the mean anomaly M.
This means that we have two degrees of freedom less and we expect for this metric a total
of six. Note that the above considerations about the sz distribution are valid only in the
linear approximation. We assume in fact that the covariance matrix perfectly normalizes the
Mahalanobis distance and that the components of the vectors X, Y are normal distributed.
In the truth the transformations necessary to represent the orbit w.r.t a specific coordinate
system are often nonlinear. For example, in the conversion between orbital elements and
state vector a linear transformation of the covariance matrix introduces a certain inaccuracy
in the model, while the transformed orbits X, Y are not normal distributed any longer. A
consequence of this limitation is that the real distribution of the distance function can differ
from the expected sz values.
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As seen above, the knowledge of the distribution function is relevant to evaluate the
confidence level for a given threshold. In this sense, it is beneficial to use a metric which
best fits the theoretical distribution, or best represents the real conditions under the linearized
model.

A common method to assess how good a distribution is matched by observations is the
Pearson’s XZ test. According to this method, we can calculate the test statistic X(% as

X3 = i (ni — @pi)z
i=1 npi
where m describes the number of classes/bins, n; the number of observations in class i from
a total amount of n observations. The expected amount of observations for every bin is given
by np; with p; being the probability according to the model distribution, in our case X,g. For
our evaluation, we use a number of bins m = 100 so that X 5 follows a X929 distribution, with
m — 1 degrees of freedom. Pearson’s 2 test states that a hypothesis should be rejected if
X12_ @99 <X % at a significance level «. With ¢ = 0.05, this would imply rejection for X% >
123. In the simulations, we will interpret values in this indicative order of magnitude as good
fitted distributions.

8.2 Simulation of orbit distance

In order to compare the different proposed distance functions, we want to consider several
representative orbits introducing a synthetic noise in the orbit elements. There are two sce-
narios in which the orbit distance can be applied. In one case, the previously calculated orbit
of an unknown object has to be correlated or identified using the orbit distance with an object
of an existing orbit catalogue. Here, we assume a refined orbit with low position and velocity
uncertainty. In another scenario, the distance is used in an initial orbit determination proce-
dure. A first orbit determined from observations at a given epoch is propagated in time to be
compared with an orbit of the supposed same object from observations at a later epoch. In
this situation, the first orbit determination provides an orbit with a high uncertainty and the
propagation will even increase this especially in along-track direction into a curved shape.
We want to consider both scenarios with orbits ranging from relatively low to high covariance
values. For the second scenario, the propagation of the covariance, since it considers only
linear terms, is not able to reproduce the real curved uncertainty. Therefore, to simulate this,
we take a normal distributed sample of orbits around a nominal one and propagate every
single sample orbit. In this way, we obtain a propagated uncertainty distribution without any
linear approximation. Figure 3 left shows an example of a propagated position uncertainty
after two revolutions. For illustration purposes, we consider a geostationary orbit with a large
initial uncertainty of 10 km in position and 10 m/s in velocity w.r.t. radial, along-track and
cross-track components. We can clearly recognize the expected “banana” shaped distribu-
tion of the red points indicating the propagated positions. It is interesting to note that after
a fraction of the orbital revolution, the curved distribution is not aligned with the original
orbit, but it is slightly rotated, as shown in Fig. 3 right. In fact, the uncertainty in along-track
velocity leads to slightly eccentric orbits with perigee at the initial position and apogee on
the opposite part after half revolution. While the perigee is in common for these orbits, the
different apogee distance results in positions not along the nominal orbit. This shows that a
propagation model purely based on the curved trajectory of the nominal orbit might be not
accurate enough.
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Fig. 3 Propagation uncertainty after two revolutions (left) and after one and half revolution (right)

For the simulations, we generate a random sample of 10,000 data points, normal distributed
around a given set of mean parameters. The number of data points is chosen according to the
Pearson’s x2 test to have enough statistical relevance (np; > 1) also in the low probability
bins (p; &~ 0.01). In a first evaluation, a basic set with a = 42,000 km, ¢ = 0.1, = 1
rad, Q = Il rad, ® = 1 rad, and M = 1 rad is chosen. According to the two different
orbit determination approaches presented in Olmedo et al. (2008), we can assume errors in
position and velocity ranging from 10 km and 1 m/s up to 1000 km and 10 m/s. Thus, for
the covariance of the normal distribution used for sampling, we can take the initial values
10 km and 1 m/s in radial, along-track, cross-track direction. We only consider the diagonal
elements of the covariance matrix neglecting correlations between the parameters. The effect
of the correlation part is expected to be less and less significant w.r.t. the main components
of the matrix after a propagation in time. In fact, in the propagation the initial uncertainty
spreads especially in the along-track component, in which after few hours a position error in
the order of 100 km and after one revolution of more than 1000 km is possible. For further
analysis, we select those cases where the along-track error is 10 km, 100 km (after around 6 h
propagation), and 1000 km (after around 1.5 days propagation). In the radial and cross-track
component, the error remains around 10 km and for the velocity components around 1 m/s. In
addition, we consider one case with 10 km and 10 m/s errors. The choice is motivated by the
fact that we expect to see a degradation of the theoretical distribution with the increase in the
uncertainty in the position, especially along-track, as a consequence of the nonlinear error
propagation along the orbit (see Fig. 3). Note that the propagation procedure is based on the
formulation in Beutler (2005) and implies a propagated covariance w.r.t. orbital elements.
Additional transformations from state vector to orbital elements and vice versa are necessary
and can introduce further inaccuracies in the linear approximation.

The distance between the propagated random data points is pairwise evaluated and its
probability density is plotted for visual comparison with the expected theoretical x kz function.
In a second step the stability of the distance function is evaluated by changing one single
orbital element at a time while keeping the other ones unchanged. Errors of 10 km in position
and 10 m/s in velocity and the same basic set of orbital parameters as above are considered
except a larger e = 0.4 to emphasize differences between the metrics. Due to a larger number
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Table 1 Summary of results shown in the following subsections

Metric Subsection Simulation Errors Figure
State vectors 8.3 Constant orbit 10 km, 1 m/s; Figure 4
10 km, 10 m/s;
100 km, 1 m/s; Figure 5
1000 km, 1 m/s
State vectors, curvilinear 8.3 Constant orbit 10 km, 1 m/s; Figure 6
coordinates 10 km, 10 m/s;
100 km, 1 m/s; Figure 7
1000 km, 1 m/s
Maruskin metric 8.4 Constant orbit 10 km, 1 m/s; Figure 8
10 km, 10 m/s;
100 km, 1 m/s; Figure 9
1000 km, 1 m/s
5000 km, 1 m/s Figure 10
Variable orbit, X2 test 10 km, 10 m/s Figure 11
Kholshevnikov metric 8.5 Constant orbit 10 km, 1 m/s; Figure 12
10 km, 10 m/s;
100 km, 1 m/s; Figure 13
1000 km, 1 m/s
Variable orbit, X2 test 10 km, 10 m/s Figure 14

of simulations in this second step, the comparison will be based on the outputs of the Pearson’s
X 2 test.
Table 1 summarizes the different results shown in the next subsections.

8.3 Simulations with distance of state vectors

We first evaluate the distance between state vectors in the Euclidean space and with curvilinear
coordinates. Here and in the subsequent simulations for comparison, we always consider
the four cases discussed above with the following uncertainties in along-track position and
velocity: 10 km, 1 m/s; 10 km, 10 m/s; 100 km, 1 m/s; 1000 km, 1 m/s. As specified above, the
100 km and 1000 km errors correspond to propagation intervals of around 6 h and 1.5 days,
respectively. Figures 4 and 5 display the distribution obtained with the simulations of the
distance in the Euclidean space in the four different cases. In red, the theoretical distribution
is indicated. With a relatively small position error of 10 km, even with 10 m/s velocity
uncertainty, the simulated distribution reflects well the ideal function. However, increasing
the error to 100 km and 1000 km causes a deviation of the histogram from the x? trend and
results in a more and more flattened shape including higher distance values. The situation
is better for the distance in curvilinear coordinates illustrated in Figs. 6 and 7. Even in the
case with 1000 km the histogram does not show any flattening tendency. However, already
at small error values the peak of the distribution is shifted to shorter distances. This might
be due to the slight rotation of the sample distribution w.r.t. the orbital trajectory explained
above and indicated in Fig. 3 (right). For the latter case, no Pearson’s x 2 test with different
orbital parameters is shown, since the test statistics X(z) always exceeds the rejection value.
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8.4 Simulations with Maruskin’s metric

Simulations for the same cases above have been performed using the Mahalanobis distance
following the Maruskin’s metric (Figs. 8 and 9). The distribution shape remains stable up
to errors of 1000 km. No flattening or shift of the peak of the function is evident. Only the
case with an error of 5000 km (obtained with 4.5 days propagation) in Fig. 10 exhibits the
beginning of a degradation of the distribution. It seems that this distance definition is less
sensitive to a higher positional uncertainty than the one between state vectors. The natural
parameterization better describes the curved uncertainty and is not directly related to the
curved orbital trajectory as for the distance in curvilinear coordinates. Nevertheless, let us
remind that the formulation bases on the approximation with small angles in Eq. (17) and as
such with higher uncertainty, and therefore larger angles, should also start to diverge from
the optimal behaviour.

In Fig. 11, the output X(z) of the Pearson’s x?2 test with different orbital parameters is
shown. We see that the function matching remains relatively stable varying the parameters «,
2, w, and M. The value of X (2) is below 300, in the order of magnitude of the upper bound for
the 95% confidence level. The X(z) output becomes slightly higher with smaller semimajor
axis values. This can be explained with the approximation in Eq. (17) which becomes more
critical with a smaller orbital curvature radius. The test fails clearly for orbital inclinations
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i close to 0 and 7. For angles below 0.05 rad and above 3.1 rad, X% shows a very steep
increase, visible in Fig. 11 on the right. The same happens with the eccentricity e which
starts to rapidly increase with values below 0.1 and above 0.9 (Fig. 11 on the left). This
behaviour is due to the characteristic of the used set of orbital parameters which is known to
have singularities for i = 0,i = 7, and e = 0, while if e ~ 1 the singularity appears in the
partial derivatives, e.g. visible in Egs. (21) with a term 1 — ¢? in the denominator.

8.5 Simulations with Kholshevnikov’s metric

Also for the Mahalanobis distance following the Kholshevnikov’s metric (Figs. 12 and 13),
we considered the same uncertainty as above. In this case, the shape of the distribution starts
to become flat already with an error of 1000 km. This distance function is still better than the
one using the standard Euclidean distance between state vectors. However, if compared with
the simulation in curvilinear coordinates with 1000 km error, it does not look better. While in
one case the peak is shifted to the left (Fig. 7, right), in the other its height is reduced (Fig. 13,
right). It seems that, although the natural metric should better fit the real model, there is a
degradation at higher errors. Recall that in this metric, we compute the Euclidean distance
in the natural parameterization. We see here the advantages of this parameterization, but still
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Fig. 12 Distribution of Mahalanobis distance following Kholshevnikov’s metric with 10 km, 1 m/s (left) and
10 km, 10 m/s (right) uncertainty
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Fig. 14 Test statistic X(z) indicating the matching of the expected distance distribution following Khol-
shevnikov’s metric for different values of a, e (left), and i, 2, w, M (right). The aye values are indicated

according to are] = ﬁ with ampin= 8000 km and amax= 50,000 km

over a certain level of position uncertainty, the drawback of using the Euclidean distance
becomes noticeable. The same problems, but alleviated, seen in the Euclidean distance of
state vectors arise, where the region described by the covariance used in the Mahalanobis
distance does not follow the curved trajectory (see also 5.1).

The results with different orbital parameters according to the Pearson’s x 2 test are illus-
trated in Fig. 14. Considerations similar to the ones for the Maruskin’s distance can be done
in this case, with singularities for e equals to O or 1, and i equals to 0 or 7.

8.6 Summary of results

We evaluated four different Mahalanobis distances. They differ in the parameterization of
the problem and in the metric used. It turned out that the combination of these two points
characterize the fitting quality of the distance function to the theoretical model and so its
applicability. The limiting problem lies in the description of the uncertainty using a linear
model and not following the curved orbit trajectory. We have the following cases:

e Euclidean distance of state vectors. The parameterization is based on state vectors and the
distance is calculated in the standard Euclidean metric. This combination does not consider
the curved trajectory. Results are good only up to 10 km error.

e Distance of state vectors in curvilinear coordinates. The parameterization is based on
state vectors but a modified “metric” through curvilinear coordinates is used. The overall
stability is improved with no degradation even at higher errors above 1000 km. However, the
simulated distribution appears slightly shifted even at low errors. Curvilinear coordinates
take nonlinear effects into account only to a certain extent.

e Distance following Kholshevnikov’s metric. The natural parameterization is based on angu-
lar momentum and Laplace-Runge-Lenz vector, while the distance is computed in the
Euclidean metric. The parameters do not directly describe position and velocity, therefore
not directly related to the orbital trajectory. Nevertheless, the distance between vectors is
evaluated in the Euclidean metric and does not consider the spherical symmetry of the
space spanned by angular momentum and Laplace—Runge-Lenz vectors. The simulations
fit very well the model and degradation starts only at an error of 1000 km.

@ Springer



Metrics on space of closed orbits for near-Earth objects identification Page 210f27 51

e Distance following Maruskin’s metric. This distance is based on natural parameters in a
Riemannian metric and it is only concerned by the linearization in Eq. (17). The match
with the expected model is very good beyond the 1000 km case and it starts to diverge
with errors above 5000 km.

Beside the dependency from the orbit uncertainty, the x 2 tests show that both Maruskin’s
and Kholshevnikov’s metrics rapidly degrade close to singularities in eccentricity and incli-
nation. This clearly limits the applicability of these metrics for nearly circular (in our case
with e < 0.1), equatorial (i < 0.05 rad and i > 3.1 rad), and highly eccentric (e > 0.9)
orbits. This limitation is relevant in a general context of space surveillance, since a large
amount of active satellites in Low Earth Orbits (LEO) have eccentricities below 0.001 and
many geostationary satellites, for example, have inclinations smaller than 0.01 rad. However,
if we look at the definition of the metrics in Eqgs. (6) and (11), we see that these functions
do not implicitly exhibit any singularities. The latter are introduced with the choice of the
orbital parameter set. Using non-singular orbital elements would be a possibility to extend
the applicability of the proposed approach. In Vananti and Schildknecht (2019), the authors
were using the argument of latitude instead of the mean anomaly, but the benefits of this
choice were not further investigated in relation to possible singularities.

9 Conclusions

In different applications of celestial mechanics, it is useful to define the concept of dis-
tance between orbits. In this work, we consider two metrics proposed by Maruskin and
Kholshevnikov. Both follow a natural parameterization based on angular momentum and
Laplace—Runge-Lenz vectors. While the former computes the distance in a Riemannian
space, the latter operates in the standard Euclidean metric. We extended the formulation of
the two distances to consider the mean anomaly as a sixth parameter in the description of the
orbits. In addition, the two definitions were expressed in normalized form adopting the con-
cept of Mahalanobis distance. The latter implicitly assumes a linear model in the description
of the statistical uncertainty. However, this is an approximation and does not reflect the reality,
e.g. where it is known that the orbital position uncertainty tends to follow a curved trajectory
along the orbit. While the theoretical distribution of Mahalanobis distances follows a known
statistics ( X;? function), the above formulated distances slightly diverge from the ideal distri-
bution due to this approximation. The extent of the divergence is a measure of the quality and
applicability of the defined distance functions. In fact, if the modified distribution is closer
to the theoretical one, it is possible to better evaluate the confidence level of related quanti-
ties, e.g. for statistical gating. Simulations with the two above distances and, as reference, the
commonly used distances between state vectors in standard and curvilinear coordinates, were
performed. For the simulations, a random sample of data points, normal distributed around
given sets of orbital parameters, was generated and propagated in time to obtain represen-
tative uncertainty distributions of hypothetical space objects in position and velocity. The
Mahalanobis distance between the propagated random data points was pairwise evaluated
and its probability density was compared with the expected sz function. The simulations
show that the choice of the parameterization and the metric used significantly influences the
matching of the theoretical distribution. This can be explained by the fact that certain param-
eterizations or metrics are more or less prone to the effects of the above mentioned linear
approximation. The parameterization based on state vectors is directly related to the orbital
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trajectory and can only take it into account to a limited extent introducing in best case curvi-
linear coordinates. Instead, the distances following Maruskin and Kholshevnikov are based
on angular momentum and Laplace—Runge-Lenz vectors and therefore not directly related
to the orbital trajectory. This condition improves both formulations regarding the expected
distribution. However, the Riemannian metric proposed by Maruskin better considers the
spherical symmetry of the space spanned by the latter vectors, and the simulations show a
higher degree of matching with the expected model up to an uncertainty of about 5000 km in
along-track direction. Although the results obtained with the latter definition of distance are
promising, further research is necessary to better assess other possible metrics based on the
natural parameterization, e.g. evaluating different weights assigned to the parameter space.
The metric normalization formulated as a Mahalanobis distance poses further difficulties and
in the present work this problem was solved introducing an approximation. However, other
normalization approaches, e.g. based on other statistical distances, should be investigated
in the future. Furthermore, the formulation of the two metrics in terms of standard orbital
elements is very sensitive to the singularities occurring with this parameter set in the case of
near-circular and equatorial orbits. To extend the applicability of the proposed approach to all
orbits, further research is necessary, e.g. in the formulation of the problem using non-singular
orbit elements.
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Appendix
Theorem 1 Let X be the set of mean anomaly angles and let ~ be an equivalence relation

that defines a partition of X with 27 angle periodicity. Then, the space X/ ~ contains the
mean anomaly values up to equivalence and there is a homeomorphism f : X/ ~— S

Proof The mean anomaly at an arbitrary time ¢ is defined as
M) =n(t —1)

where 7 is the time of pericenter passage and n = 2% is the mean angular motion. The mean

anomaly describes an angle and for our purpose the values can be restricted to the interval
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X = [0, 2] where 0 and 27 are equivalent. Let us consider the equivalence relation
/
X=X
x~x', iflx=0x"=2x
x=2m,x'=0
We can define a continuous function
f:X— s as f(x) =exp(ix)
such that
Vx,x' e X,x ~x' = f(x) = f(x/).
By virtue of the property of quotient spaces, the map
F:X/~— S

is also continuous because f is continuous. From the fact that f is surjective it follows
that f is a bijection. Since X/ ~ is compact and S! is Hausdorff the mapping f is a
homeomorphism.

Theorem 2 Let X be the space of bounded Keplerian orbits and let w and v be the scaled
angular momentum and Laplace-Runge-Lenz vectors with [u| = ,/p and |v| = e,/p
(eccentricity e, semilatus rectum p). Let d; be the distance in X between two points (uy, vi)
and (uy, vp) defined as:

di = —w)? + (vi — v2)? 24)
Furthermore, let n = e+ h and § = e — h be unit vectors with scaled angular momentum
h = \/% and Laplace—Runge-Lenz vector e. Let us define another distance d; in X between
the points (aj, &}, M) and (a2, §,, n,) as:
dr = \/af + a% — 2ajazcosy (25)
with
1
Y= \/5 (arccos?(ny - my) + arccos?(§; - &,)) (26)

Then, d; and d> are topological equivalent.

Proof We want to show that for any x € X and radius r there exist ' and r” so that
B,/(x,d>) € By(x,dp) and B,»(x,d;) € B,(x,d), where B, is the open ball B,(x,d) =
(pe X:dx,p) <r}.

Letx € X andletx, = a,n, andx¢ = a,§, be the components of xin the K(S?) subspaces
spanned by (a, 1) and (a, £), respectively. In K(52) c R3, arccos(nl . n2) is simply the angle
between two vectors X, and y, and applying the law of cosines we see that d (X“, yn) can
be reduced to the Euclidean distance (with the standard scalar product) in R3:

d(Xn’ yn) = ’Xn _Yn’ =/ (Xq — yn)z'

The same applies for the vectors x¢ and ys.
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a

We define
= L ( ) = = (&1 -8
arccos . an arccos . .
¥ 5 Ny M) and Y NG 1782

and assume || < |Y2|. Then, we have:
29} < yi+yd <2y <2(yi+ ).
Hence,
V2Iyil < 19| < V20l < V21y)
and from

2

it follows:

dar(Xy, yy) < da(x,y) < da(xg, yg).
On the other hand, from

ay + a% - 2a1azcosﬁwl < alz + a% — 2ayazcosyr < a12 +a§ — 2a1azcos\f2w2

a% +a2 2alagcosfw2 < al +a2 2a1a2cosfw < f(al +a2 2a1a2costp)

we obtain:
d(xg. yg) < V2d2(x,y).
In the general case, we have

dr(x,y)? < max(da (%, ¥u). da(xg. ¥g))© < 2da(x, y)?,

min(d2(xy. ¥n). da(Xg. ¥p))” < dao(x, y)°,
and
max (da (Xy, ¥v), d2(Xe. yg))2 +min(d(Xy. ¥y ), da(xg, yg))zz (Xy — ¥n)? + (x¢
Setting D?= (Xy — y,,)2 +(xg — yg)z, we can write:
dr(x,y)* < D%
Summing Eq. (27) and Eq. (28), we obtain:
D? <3dy(x,y)>.
Substituting Xy ¢ = ax(ex + hy) and yy ¢ = ay(ey = hy) in D gives:
D? = (ax(ex + hy) — ay(ey +hy))” + (ax(ex — hy) — ay(ey — hy))’
= a2(ex + hy)> + a2 (ey + hy)® — 2axay(ex +hy) (ey + hy)
+a2(ex — hy) +a2(ey — hy)” — 2axay(ex — hy)(ey — hy).
The scalar products simplify to:
(ex +hy)(ey + hy) + (ex — hy)(ey — hy) = 2eey + 2hshy.
Since e - h = 0, we can write:

2 2 22 2R2
ay(ex +hy)” = agey +azhy.
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Then, it follows:

D? = Z(aﬁei + a§ 5 — 2ayayexey + aih,z( + a§h§ — Zaxayhxhy)
2
= 2((avex — ayey)? + (axhx — ayhy)*). (31)

Let us remind that

[v| =e/p = e\/a(l —e?) = \/a(l —e?)le]

lul = /p = /a(l —e?) = Valh|. (32)

Since f(a) = +/a and g(e) = /(1 — e?) are continuous bijective functions on R* and
[0, 1] respectively, the metrics ‘axhX — ayhy‘ and ’aXeX — ayey‘ are equivalent to the metrics
|ux — uy|, respectively |vx - vy|.

Then for |axhy — ayhy| < & and |axex —ayey| < &3, there exist kj(axhy, &) and
ko (axex, €7) so that:

(axhy — ayhy)? + (axex — ayey)* < k2 (uy —uy)” + k3 (vy — vy) . (33)
Combining Egs. (29), (31), (33) with k = max(ky, k»), we obtain:
dr(x,y) < V2kdi(x,y)
and thus

3 = ﬁ . By/(X, dy) € By(x,dy).

Similarly, there exist c¢; and ¢; so that
Ay —uy)’ + 3 (vy — vx)” < (axhy — ayhy)” + (ayex — ayey)>. (34)
Combining Eqs. (30), (31), (32) with ¢ = min(cy, c¢;), we obtain:
cdy(x,y) < V6da(x, y)
and thus

c
dr = %I’ : Br” (x,d) € By (x,dp).
Corollary 1 Let d; and d» be the distance functions extending Eqgs. (24) and (25) with the
mean anomaly parameter in K(S2 x 82 x § 1) and RS, respectively. Then, d; and d, are
topological equivalent.

Proof The extended distances are d; = \/(ul — u2)2 + (v — v2)2 + (W) — w2)2 und dp =

\/al2 +a3 — 2ayaxcosy withyy? = (arccos?(n; - ;) + arccos? (& - §,) +arccos? (&, - &,))/3,

where w = /pg, ¢ = (Cf)sjl\‘;) and M is the mean anomaly. Taking x; = ax¢y, we modify
sin

Egs. (27) and (28) to:

dr(x,y)? < max(da (xy, Yu), do(x¢, ¥2), do (%, ¥¢))” < 3da(x,y)?, (35)

min(d2 (xn, yn), dz(Xaé, yg), dz(x;, y);))2 < d)(x, y)2. (36)

@ Springer
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In analogy to the steps in Theorem 2, considering that there is a third term between the
maximal and the minimal values in (35) and (36) we can set D*= Xy — ¥y )2+ (xg — ¥ 2+
(x¢ — y;)2 and write:

dy(x,y)* < D?, 37)
D? < 7dy(x, y)>. (38)
As in Eq. (31), we have then:
2 2 2 1 2
D* =2{ (axex — ayey)” + (axhx — ayhy)” + E(axgx — aygy) . 39)

Given w = /pt = /a(l — )¢ and since f(a) = /a and g(e) = /(1 — €?) are

continuous bijective functions on R* and [0, 1] respectively, the metrics |aX§X - ay§y| and
Wy — wy| are equivalent. Hence, the equivalence can be proved combining (39) with the
inequalities (37), (38) and proceeding in a similar way as in Theorem 2.
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