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Abstract
Triple collision orbits of the three-body problem with nonzero initial velocities have been
systematically surveyed. For this purpose, we have formulated the sufficient conditions of
the velocities of three bodies so that the total angular momentum of the triple system is
zero. The velocity conditions are parameterized by two parameters α2 and β1 in the initial
condition plane. We introduce the characteristic as the curve in the initial condition plane of
the non-free-fall triple collision points (TCPs) parameterized by one parameter, say, α2/β1.
The velocity conditions with full parameters suggest that non-free-fall TCPs (nonff-TCPs)
occupy two-dimensional areas in the initial condition plane. We plotted five characteristics
passing through eight ff-TCPs, one of which forms a closed circuit. Two ff-TCPs on a
characteristics are called a twin. This gives us a criterion of classification of TCPs in addition
to the one obtained in Tanikawa and Mikkola (Cel Mech Dyn Astron 133:52, 2001) which
connects the directions of the initial and final triangles formed by three bodies. We find
that the twin ff-TCP TSM-1 and TSM-2 are connected by all the characteristics, which pass
through one of them. A neighborhood of ff-TCP TSM-2 has been confirmed to be occupied
by nonff-TCPs. We expect that the same is true with a neighborhood of any ff-TCP. Further,
we expect that this is true with a neighborhood of any nonff-TCP. We do not continue the
characteristics until its end because the continuation seems endless.

Keywords The three-body problem · Triple collision orbits · Symbol sequences · Shape
space

1 Introduction

1.1 Preceding works

The three-body problem has been initiated by Isaac Newton in his celebrated book ’Principia’
Newton (1687). Since then many astronomers, physicists, and mathematicians have been
involved in this problem including the restricted case and have added their own important
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contributions. As for the triple collision, there have been also a lot of investigations. Euler
(1767) and Lagrange (1772), respectively, found collinear and equilateral periodic solutions
with appropriate rotations. It is clear that these symmetrical configurations give triple collision
orbits if there are no rotations. So Euler and Lagrange found triple collision orbits. Since
then, no analytical solutions of the triple collision orbits are found.

After Poincaré (1890) proved that three-body problem is analytically unsolvable, Siegel
(1941) tried to find the true reason of the unsolvability and found that the triple collision is
the essential singularity in the complex analysis. Before that, Sundman (1913) proved that
zero angular momentum is the necessary condition for a triple collision.

As for the regularization of the problem, the regularization both of Levi-Civita (1920) and
Kustaanheimo and Stiefel (1965) cannot be applicable to the triple collision.McGehee (1974)
devised a transformation including the time change of dt ∝ r3/2dτ where t and τ are the
original and new time variables and has been successful in regularizing the one-dimensional
three-body system. His regularizing variables are now called the McGehee variables and are
widely used. Devaney (1980) extended these variables to the isosceles problem. Waldvogel
(1982) using the sum of the three edges of the triangle regularized the three-body problem
with the same time change dt ∝ r3/2dτ . In theMcGehee variables, triple collision singularity
becomes an invariant manifold, i.e., the triple collision manifold. It takes an infinite time for
the solutions to approach or recede from it.

After the introduction of the triple collisionmanifold, the analyses of the solutions passing
close to this manifold and the global behaviors of solutions, which become close to the
manifold, have been intensively done by authors such as Moeckel (1983), Moeckel (1989),
Waldvogel (1976) and Simó and Martínez (1987). In particular, Moeckel intensively studied
the orbits connecting the neighborhoods of different triple collisions.

Numerical investigation have been extensively done byK. Tanikawa and his collaborators.
The start was Tanikawa et al. (1995) aiming at the search for collision orbits working on the
Anosova region, which is a part of the shape sphere. The numerical results for the collinear
or rectilinear triple collisions of the three-body problem are given in Tanikawa and Mikkola
(2000a, b), Saito and Tanikawa (2007), those for the isosceles problem are given by Tanikawa
and Umehara (1998) and Tanikawa and Mikkola (2015). Finally, in the general planar case,
Tanikawa et al. (2019) gave eleven triple collision orbits starting at general initial triangles
with zero initial velocities. Tanikawa and Mikkola (2021) confirmed numerically that these
orbits are actually triple collision orbits. Li et al. (2021) discovered 1646 new triple collision
orbits in response to Tanikawa et al. (2019).

1.2 Motivation of this work

We have obtained eleven free-fall, i.e., with zero initial velocities, triple collision orbits in
Tanikawa et al. (2019). Though the number is small, our procedure allows us to find any
number of triple collision orbits gradually and systematically by integrating more deeply the
initial condition plane. The next target is to obtain triple collision orbits of the three-body
problem with nonzero initial velocities. This is a natural continuation of our work. In fact,
the cosmic events of high energy should be related to the gravitational interaction of compact
bodies, which may be in a close encounter. In a neighborhood of a close triple encounter of
three bodies, there should be a triple collision orbit. In this situation, initial velocities of the
three bodies are expected to be nonzero.

A search for the triple collision orbits in the three-body problem with nonzero initial
velocities but with zero angular momentum is suitable for our method. This is because
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the procedure consists of forming symbol sequences. The symbol sequences are uniquely
determined even in the case with nonzero initial velocities. Starting at free-fall triple collision
orbits with a certain symbol sequence, we look for triple collision orbits with initial small
velocities of the same symbol sequence in a neighborhood of the free-fall orbits. This is the
basic procedure. The precise procedure will be described in Sect. 5.

1.3 Numerical method

The method started developing long ago (Mikkola and Tanikawa 1999) where the principle
was explained. Later more were published (Mikkola and Tanikawa 2013a, b). These methods
basically use the logarithmic Hamiltonian method, with the simple leapfrog algorithm, to get
substeps for a Bulirsch–Stoer integrator. The logarithmic Hamiltonian is

Λ = log (T − E) − logU , (1)

where T is the kinetic energy, E is the total energy, andU is the absolute value of the potential
energy. This leads to a situation in which the leapfrog algorithm gives correct results for two-
body orbits (except for time) and so it is regular even in point-mass collisions. The accuracy
stay high when the code checks that δE/U ≤ ε, in which ε is the required accuracy (δE is
the energy error). For the ε, we usually used the value 10−13 and that gives normally very
high precision.

1.4 Conjectures

Now, we summarize the numerical results as a sequence of conjectures. We cannot formulate
either assertions or theorems, since our method is purely numerical. However, the results are
instinctively correct based on the mathematically correct procedure. They are simply lack of
proofs.

Let us explain terminology. For the shape space or shape sphere, see Moeckel (1988),
Kuwabara and Tanikawa (2010) or Montgomery (2015). A TCP is the abbreviation of a triple
collision point on the shape space as the initial positions of a triple collision orbit (TCO).
A ff-TCP or nonff-TCP is the abbreviation of a free-fall TCP, i.e., a TCP with zero initial
velocities, or a non-free-fall TCP, i.e., a TCP with nonzero initial velocities.

Conjecture 1 One parameter family of nonff-TCPs on the shape space forms a smooth curve
called a characteristics.

Conjecture 2 Some of the characteristics are the embedded closed curves. The other charac-
teristics are generally the immersed curves.

Conjecture 3 Twin ff-TCPs are connected by all the characteristics, which pass through one
of them.

Conjecture 4 In a neighborhood of an ff-TCP, the correspondence of the points and nonff-
TCPs are one-to-one. In other words, the neighborhood is occupied by nonff-TCPs of the
same symbol length as that of the ff-TCP.

Conjecture 5 Nonff-TCPs of any length of symbols occupy a finite nonzero area of the shape
space.

Conjecture 6 Some points of the shape space are nonff-TCPs for infinitely many initial
velocities.
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1.5 The structure of the paper

In the present paper, we look for nonff-TCPs. In Sect. 2.1, we formulate the sufficient condi-
tions of initial velocities of the three bodies to have zero angularmomentum. These conditions
have two parameters. In Sect. 2.2, we introduce the geometry of the problem. In Sect. 3, we
define the symbol sequences as sequences of syzygy crossings of orbits starting at the shape
space. We introduce cylinders, words, and BCCs (binary collision curves) as boundaries of
cylinders. In Sect. 4, we review our results in Tanikawa et al. (2019). In Sect. 5, we define the
characteristics as a one-parameter curve on the shape space of the nonff-TCPs. In Sect. 5.1,
we express the characteristics using parameters α2 and/or β1. In Sect. 5.2, we explain the
continuation method of characteristics. In Sects. 5.3 and 5.4, we describe the particular
characteristics passing through the representative ff-TCPs. In Sect. 5.5, we describe some
properties of general characteristics. In Sect. 6, we take up the collection of characteristics.
In Sect. 7, we state concluding remarks.

2 Initial velocities

2.1 Formulation

We take the planar three-body problem. Letmi be the mass of the i-th body. Let t be the time
and Ri and Vi be the positions and velocities of body mi in an inertial barycentric reference
system. The equations of motion for the three-body problem are:

dRi

dt
= Vi ,

dVi

dt
= −

∑

j �=i

m j (Ri − R j )

|Ri − R j |3 , i = 1, 2, 3 (2)

We consider the three-body problem with equal masses m1 = m2 = m3 = 1 and zero
angular momentum. Let us formulate the sufficient conditions of initial velocities so that the
total angular momentum of the three bodies be zero.

Since the three bodies are in the reference system where the barycenter stands still, we
have

∑

i

Ri = 0 (3)

∑

i

Vi = 0 (4)

The condition of the zero angular momentum is
∑

i

Ri × Vi = 0 (5)

Equations (3) and (4) are rewritten as

R3 = −R1 − R2 (6)

and

V3 = −V1 − V2. (7)

Substitution of these expressions into Eq. (4) gives us:

R1 × V1 + R2 × V2 + (R1 + R2) × (V1 + V2) = 0 (8)
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We assume that Vi is dependent on the linear combinations of Ri with coefficients
α1, α2, β1, β2. More precisely,

V1 = α1R1 + β1R2 (9)

and

V2 = α2R1 + β2R2 (10)

Substituting these to zero angular momentum equation (8) we obtain

(2β1 − 2α2 + β2 − α1)R1 × R2 = 0 (11)

This is useful as long as the system is not one-dimensional. In this case, the factor in front
of R1 × R2 must be 0. Solving for α1 we get

α1 = 2β1 + β2 − 2α2 (12)

where α2, β1, β2 are arbitrary and give all possibilities in terms of these three free parameters.
In other words, the number of independent parameters reduces to three.

In order to further reduce the number of parameters, we introduce sufficient conditions.
Equation (8) is re-arranged to

R1 × (2V1 + V2) + R2 × (V1 + 2V2) = 0. (13)

The above equality is satisfied if

(2V1 + V2) ∝ R1, (14)

and

(V1 + 2V2) ∝ R2. (15)

Let us substitute Eqs. (9) and (10) into the above proportionality. From

2V1 + V2 = 2(α1R1 + β1R2) + α2R1 + β2R2

= (2α1 + α2)R1 + (2β1 + β2)R2

V1 + 2V2 = α1R1 + β1R2 + 2(α2R1 + β2R2)

= (α1 + 2α2)R1 + (β1 + 2β2)R2,

we get

2β1 + β2 = 0, (16)

α1 + 2α2 = 0, (17)

and

2V1 + V2 = (2α1 + α2)R1 = −3α2R1, (18)

V1 + 2V2 = (β1 + 2β2)R2 = −3β1R2. (19)

The above conditions can be solved for V1 and V2 giving

V1 = −2α2R1 + β1R2, (20)

V2 = α2R1 − 2β1R2, (21)

V3 = −V1 − V2, (22)

with arbitrary α2 and β1. Now the number of arbitrary parameters reduces to two. These
expressions (20), (21), and (22) give the initial velocities of the three bodies in the present
paper.
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Fig. 1 Geometry of the setting of
the free-fall problem. Points other
than P are A(−0.5, 0), B(0.5, 0),
C(0,

√
3/2), and E(0, 0). Γ1 and

Γ2 are the segments connecting E
to B and E to C. Γ3 is the circular
arc connecting C to B

2.2 Initial settings of positions and velocities

As in the previous works (Agekyan & Anosova 1967; Anosova 1986; Tanikawa et al. 1995,
2019), we adopt the setting of the free-fall three-body problem with equal masses m1 =
m2 = m3 = 1 and zero angular momentum. We put m2 and m3 at (−0.5, 0) and (0.5, 0) of
the (x, y) plane. We put m1 at P = (x, y) in

D = {(x, y) | x ≥ 0, y ≥ 0, (x + 0.5)2 + y2 ≤ 1} (21)

(see Fig. 1).
In Fig. 1, Γ1 denotes collinear configurations, and Γ2 and Γ3 denote isosceles configura-

tions. On these segments, the shape of triangles is symmetrical. We already know and easily
get free-fall triple collision orbits in these cases (see Sec. 1.1 for some references).

We give the coordinates (x, y) of m1 and integrate orbits of the three bodies in an inertial
barycentric reference system (see Sect. 1 for the integration method and its accuracy). Let
Xk = (xk, yk), k = 1, 2, 3 be the positions of the three bodies in the initial condition space.
We have

Rk = Xk − G with G = (X1 + X2 + X3)/3 (22)

Substituting

x2 = −0.5, y2 = 0.0, x3 = 0.5, y3 = 0.0

we get

R1 = 2

3
(x1, y1),R2 = −1

3
(x1, y1) − (0.5, 0),R3 = −1

3
(x1, y1) + (0.5, 0). (23)

3 Symbol sequences

We use symbol sequences to express the solution of the three-body problem (Tanikawa and
Mikkola 2008; Tanikawa et al. 2019; Montgomery 1998, 2007). Let us briefly review the
construction of symbol sequences. The solution of the three-body problem is a curve in the
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phase space. We call this a trajectory. The three curves of the motions of the three bodies in
the configuration space will be called together an orbit. Sometimes by abuse of terminology,
a curve of one body will be called an orbit. Suppose the three bodies experience some event
along the trajectory. We assign a symbol each time when the three bodies experience this
event. The motion of the three bodies continues indefinitely to the future unless the three
bodies collide at some point and the trajectory is not continued any more. Here, binary
collisions are analytically continued (Levi-Civita 1920; Kustaanheimo and Stiefel 1965)1

So the number of symbols along the trajectory is infinite if the event be repeated in a finite
interval of time (Montgomery 2007). Then, an infinite number of symbols will be given to a
trajectory of the three bodies. We call this sequence of symbols a ‘symbol sequence’.

We adopt the collinear situation (syzygy crossing) as the event. This event is assured to
repeat in a finite interval of time except for the Lagrange free-fall orbit (Montgomery 2007).
We assign the symbol ‘1’ if m1 is in between m2 and m3, symbol ‘2’ if m2 is in between,
and symbol ‘3’ if m3 is in between at the syzygy situation.

Each point (x, y) of the initial condition plane (Fig. 1) is a starting point of the orbit of the
three bodies sitting at (x, y), (−0.5, 0), and (0.5, 0). We represent this triangle by the point
(x, y). We attach the (possibly infinite) symbol sequence of the solution of the equations of
motion to this point. Thus, each point (x, y) has its own symbol sequence.

Let us introduce terminology. Take the first k digits of a symbol sequence: s1s2 . . . sk where
si (i = 1, 2, . . . , k) equals to either 1, 2, or 3. In general, a symbol sequence of finite length
is called a word. We denote the word of length k by a k-word. The set of symbol sequences
containing a particular k-word σk = s1s2 · · · sk in their initial digits with remaining arbitrary
infinite digits will be called a k-cylinder ‘σk’. The set of k-cylinders ‘σk’ with all possible
‘σk’ will be called the set of k-cylinders. For convenience of description, we call k-cylinder
‘σk’ the set of points in the initial condition plane, which is the starting points of k-cylinder
‘σk’. Then, the set of k-cylinders for each k divides the initial condition plane into k-cylinders
‘σk’ with all possible ‘σk’. We show the examples of the set of 3-cylinders in Fig. 2. In this
figure, two numbers ‘132’ and ‘131’ show that there are two 3-cylinders ‘131’ and ‘132’. The
initial condition plane is divided into these two 3-cylinders. The first two digits are both ‘13’,
so the initial condition plane is not divided into multiple regions by the set of 2-cylinders.
We have only one component in the set of 2-cylinders.

As for the boundary curves between cylinders, we discussed in the preceding works
(Tanikawa et al. 2019;Tanikawa andMikkola 2021). These are binary collision curves (BCCs)
which are the set of points whose orbits experience a binary collision at some time. More
precisely, the orbit on a BCC experiences a binary collision at the last digit of the symbol
sequence when the BCC appears in the initial condition plane. We continue the solution
beyond binary collision, so the orbit behaves similarly to the ordinary non-collision orbits
after the first binary collision.

Our initial condition plane is a part of the shape plane. The structure of the shape plane
divided by the set of 3-cylinders is shown in the figure of Appendix A. This division will be
deformed when the velocities are incorporated. We do not show the deformed division.

1 In the planar case, the regularization of Levi-Civita works. Suppose a binary collision takes place. Let
x = x1 + i x2 be the relative coordinates of the two bodies expressed in the complex plane. Here, x = 0
corresponds to the binary collision. We next introduce the complex coordinates u = u1 + iu2 satisfying
|x| = |u|2. In the complex u-plane, the angle centered at u = 0 is half that of the complex x-plane. The orbit
in the x-plane traces back its past at x = 0 in the case of a binary collision, i.e., the orbit rotates 2π at x = 0. In
the u-plane, the rotation angle is half, i.e., π . This means the orbit passes through x = 0 straight. Combining
the time transformation dt = rdτ with t and τ as old and new time variables, the orbit passes through the
singularity within a finite time in the new time variable like a harmonic oscillator.
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Fig. 2 Division of the initial
condition plane by 3-cylinders in
the free-fall case

Table 1 Triple collision points
(TCPs) with the length of
symbols less than or equal to 14.
The number codes, initial
coordinates (x, y), the time of
collision, digits of symbol
sequences, and the side of the
triangle at triple collision. GT-15
has been obtained in Li et al.
(2021)

No x y t Digits

TSM-1 0.22202750 0.30096440 1.30831 7

TSM-2 0.19208270 0.30936018 1.35458 7

TSM-3 0.10677930 0.52012268 1.83657 7

GT-15 0.23685018 0.28923882 1.49387 9

TSM-4 0.15567083 0.33309483 1.67790 9

TSM-5 0.08875296 0.45639865 1.99380 9

TSM-6 0.15882908 0.64735217 2.90464 10

TSM-7 0.08212247 0.41682453 2.16131 11

TSM-8 0.19095011 0.58286178 3.08930 12

TSM-9 0.27949737 0.57593177 3.04707 12

TSM-10 0.10106723 0.37459122 2.28158 13

TSM-11 0.09012264 0.38213664 2.30804 13

4 Our previous results

We have obtained eleven free-fall triple collision points (ff-TCPs) and confirmed numerically
the reliability of their existence in the preceding works (Tanikawa et al. 2019; Tanikawa and
Mikkola 2021). After our work, Li et al. (2021) found more than 1658 ff-TCPs with symbol
lengths from 3 to 120. Their list contains both TCPs which we found and which escaped
our search. Among others, their GT-15 attracts our interest. Including this ff-TCP, we listed
twelve ff-TCPs in Table 1. The first column of Table 1 shows the name of ff-TCPs which we
use in this paper. TSM denotes our ff-TCPs discovered in Tanikawa et al. (2019). The second
and third columns represent the positions (x, y) of ff-TCPs in the initial condition plane. The
fourth column gives the triple collision time of the orbit, and the fifth column the length of
symbol sequences. For later convenience, we plot the positions of these ff-TCPs in Fig. 3.

We here give important remark on the length of symbol sequences of TCOs. In the former
work (Tanikawa et al. 2019), the shortest length of symbol sequences until triple collision
was seven. We said in Tanikawa et al. (2019) that this number is ‘eight’. This statement is
misleading. In fact, a TCP is obtained as a crosspoint of three BCCs (binary collision curves)
of symbol sequences with length eight. Each point of the BCCs experiences the eighth
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Fig. 3 Free-fall triple collision
points (ff-TCPs). Crosses show
the ff-TCPs (Tanikawa et al.
2019; Tanikawa and Mikkola
2021). The solid curve, which
divides the initial condition
plane, indicates the binary
collision curve starting at an
ff-TCP on the circular boundary

syzygy crossing at a binary collision. The TCO starting at the crosspoint of three BCCs does
not experience this final syzygy crossing and instead ends up with triple collision. So the
corresponding TCP has a symbol sequence of length seven. In other words, if three BCCs of
symbol length k meet at a point, this point is a TCP of symbol length k − 1.

5 Search for triple collision orbits with nonzero initial velocities:
characteristics

5.1 Particular sets of initial velocities

We take the positions (x, y) in the initial condition plane. Initial velocities are parametrized
by two parameters α2 and β1 as in Sect. 2.1. In order to see the distribution of TCPs with
nonzero initial velocities (nonff-TCPs) in the initial condition plane, we restrict the initial
velocities based on just one parameter, not two. We fix the ratio γ := 2α2/β1 when β1 �= 0.
Then, Eqs. (21), (21), and (22) become

V1 = β1(−γR1 + R2)

V2 = β1
2 (γR1 − 4R2)

V3 = β1
2 (γR1 + 2R2)

(24)

If β1 = 0, we have

V1 = −2α2R1,

V2 = α2R1,

V3 = α2R1

(25)

The other extreme is the case α2 = 0. In this case, we have

V1 = β1R2,

V2 = −2β1R2,

V3 = β1R2

(26)

For a fixed ratio γ , velocities (V1,V2,V3) form a one-parameter family parametrized by
β1 in Eq. (22). Correspondingly, we expect that nonff-TCPs (non-free-fall TCPs) may form
a curve which is parametrized by β1 in the case of Eqs. (22) and (24), and by α2 in the case
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Fig. 4 Initial velocities. a α2 > 0 and β1 = 0. b α2 < 0 and β1 = 0

of Eq. (23). This curve passes through an ff-TCP at parameter β1 = 0 or α2 = 0. Let us call
the characteristics a curve of nonff-TCPs parametrized by one parameter.

5.2 Procedure to search for TCOs with nonzero initial velocities

Weknow the positions in the initial condition plane of twelve ff-TCPswhose orbits satisfy the
zero-velocity conditions α2 = β1 = 0 (see Table 1 and Fig. 3). Let us explain the procedure
to obtain the characteristics. In the present paper, we mainly use the velocities of the three
bodies in Eq. (23). In this case, the velocities are dependent only on parameter α2.

Let us explain the relations of the triangle and velocity vectors of the three bodies for the
case of Eq. (23). All the three vectors V1,V2, and V3 look toward the direction of R1 where
R1 is the vector extending from the barycenter to body 1. Therefore, the initial velocityV1 of
body 1 looks to the barycenter if α > 0, while V1 looks away from the barycenter if α < 0.
The velocity vectors V2 and V3 are anti-parallel to V1 and are of half size. The sizes of the
velocity vectors are controlled by |α2|. These relations are depicted in Fig. 4.

Now, we describe the details of the numerical calculation. We take TSM-2 at
(0.19208270, 0.30936018) as an example of the ff-TCPs and look for nonff-TCPs with the
same symbol length as TSM-2. We draw a square 0.191 < x < 0.193, 0.308 < y < 0.310
with center nearly at TSM-2 in the initial condition plane. We divide the above square of
size 0.02 × 0.02 by one hundred in both the x- and y-directions. Then, we obtain a mesh of
0.0002 × 0.0002. We put α2 = 0.005 and β1 = 0. The corresponding velocity vectors are
shown in Fig. 4a. The length |V1| is equal to |R1|/100. We integrate 10000 orbits starting at
all the grid point of the mesh. Each point of the mesh has its symbol sequence. We plot three
8-cylinders ’13213212’ ’13213211’ and ’13213212’ in the above square. Then, as we have
shown in Tanikawa et al. (2019), TSM-2 is obtained as a cross point of the three cylinders
since TSM-2 has symbol sequence of length 7 (Table 1). The numerical results are shown
in Fig. 5a. In this figure, + indicates the position of TSM-2 which is for α2 = 0. The cross
point for α2 = 0.005 is found at the upper-right of TSM-2.

We plot a small square 0.19238 < x < 0.19248, 0.30968 < y < 0.30978 around the cross
point. In order to obtain more accurate coordinates of the cross point, we again divide this
square by one hundred in both the x- and y-directions. Then,we obtain amesh of 10−6×10−6.
We integrate 10000 orbits starting at all the grid points of the mesh. The numerical results are
shown in Fig. 5b. The cross point is found nearly at the center. At this stage, the coordinates
of the cross point have at most six digits. We want to have the coordinates of seven digits.
For this, we need one or two repetitions of drawing a small square and integrating orbits with
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Fig. 5 An example of the procedure to find a nonff-TCP for α2 = 0.005, β1 = 0. a Ten thousand orbits are
integrated starting at the grid point of the mesh size 0.01 × 0.01 in the square 0.191 < x < 0.193, 0.308 <

y < 0.310. The ff-TCP (TSM-2) is denoted by +. Our nonff-TCP is obtained as the cross point of the three
8-cylinders ‘13213211’, ‘13213212’, and ‘13213213’. We plotted a small square 0.19238 < x < 0.19248,
0.30968 < y < 0.30978 around the cross point. b Ten thousand orbits are integrated starting at the grid point
of the mesh size 0.0001× 0.0001 in the small square inscribed in Fig. 4a. The cross point is in a small square
near the center of the figure. The integration of the orbits is repeated in a smaller square until the necessary
accuracy of the cross point is attained

a smaller mesh. Finally, we obtain the coordinates as (x, y) = (0.1924317, 0.3097294) for
α2 = 0.005, β1 = 0.

So far we described the procedure to find a nonff-TCP with α2 = 0.005, β1 = 0.0 near
TSM-2, the ff-TCP with α2 = β1 = 0.0. We continue to find other nonff-TCPs changing the
value of α2 near TSM-2.We expect that a continuous curve may be obtained by continuously
changing the value of α2 to positive or negative direction. This curve is the characteristics
passing through TSM-2. Actually, we change discretely the value α2 and connect the discrete
points. We have done these procedures to obtain characteristics for the eight ff-TCPs.

We have thus obtained five characteristics passing through the eight ff-TCPs. This means
that three characteristics have two ff-TCPs on them. We do not know if this is an excep-
tional phenomenon or not. Figure6 shows the overall features of the characteristics passing
through six ff-TCPs TSM-1, TSM-2, TSM-3 and GT-15, TSM-4, TSM-5. One sees only
four characteristics in the initial condition plane except the loop characteristics. We note that
the characteristics passing through TSM-1 pass through TSM-2. Similarly, the character-
istics passing through GT-15 pass through TSM-4. This indicates that TSM-1 and TSM-2
are dynamically related and GT-15 and TSM-4 are also dynamically related though for the
moment we do not know what kind of dynamical relations. We denote these two ff-TCPs by
a ’twin’.

Another feature of the characteristics is the intersection of different characteristics and
the self-intersections. The intersection of different characteristics with different values of α2

means that the orbit starting at this intersection point is a nonff-TCP of one symbol length
and a nonff-TCP of another symbol length. The orbit starting at the self-intersection point is
a nonff-TCP for one α2 and a nonff-TCP of another α2 of the same symbol sequence. Finally,
we have no good interpretation of the loop characteristics.
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Fig. 6 All the characteristics obtained in this paper. The curve running from the top to the right boundary is
the circular boundary of the initial condition plane. The curve starting at a point on this curve to the bottom
boundary is the BCC between 3-cylinders ‘132’ and ‘131’. The remaining curves are all characteristics. Two
solid curves are the characteristics passing through TSM-1, TSM-2 and TSM-3. Two dashed curves are the
characteristics passing through GT-15, TSM-4 and TSM-5. A dashed elliptical characteristic passes through
TSM-10 and TSM-11. The property of the characteristics passing through TSM-1 and TSM-2 will be analyzed
in Sect. 5.5

5.3 Characteristics passing through TSM-1, TSM-2 and TSM-3 of symbol length 7

In this and next subsection, we describe more precisely the characteristics with α2 �= 0, β1 =
0 shown in Fig. 6. Changing continuously the value of α2 starting at α2 = 0, we obtain the
characteristics passing through TSM-2 at (0.19208270, 0.30936018). The result of the search
is given in Fig. 7. The numbers in the figure near the+ symbols along the curve are the values
of α2. One of the remarkable aspects is that the characteristics pass also TSM-1. TSM-1 and
TSM-2 are a twin. We more deeply discuss this relation in Sect. 5.5.

Let us see amore precise behavior of the characteristics as functions of parameterα2. Look
at Fig. 7a. If we start at TSM-1 to the lower-left, the values of α2 decrease until α2 = −6.35.
The curve can be extended to the right. However, we do not know the final destiny of the
curve. The integrations are time-consuming. If we tend to the upper-right starting at TSM-1,
the value of α increases to 0.46, the curve attains a maximum height, turns down, and to
the left and α2 starts to decrease. The value decreases to zero at TSM-2. Then, the value
decreases along the curve until α = −6.225. The curve can be extended further. It has a
self-intersection at around (x, y) � (0.14, 0.10).

The behavior of the values of α2 along this characteristic is rather simple. The largest
value of α2 is around 0.46 along the arc connecting TSM-1 and TSM-2. Below TSM-1 and
TSM-2, α2 monotonically decreases. It seems that the two branches of the characteristics
tend to the lower-right corner of the initial condition plane.

The characteristics passing through TSM-3 have also a simple behavior. See Fig. 7b. The
branch of the positive α2 seems to tend to the lower-right corner of the initial condition plane.
The negative branch seems to tend to the y-axis. However, this is not clear because there can
be a different structure close to the y-axis. A solid curve running from the upper-right to the
middle-right is a part of the circular boundary of the initial condition plane.
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Fig. 7 a Characteristics
containing TSM-1 and TSM-2
with symbol length 7. b
Characteristics containing
TSM-3 with symbol length 7

We give in Tables 2 and 3 of Appendix B of the electronic supplement the position data
of TCPs of Fig. 7.

5.4 Characteristics passing through GT-15, TSM-4 and TSM-5 of symbol length 9

The behavior of the characteristics passing through TSM-4 is complicated. See Fig. 8a. It
passes through GT-15, which was discovered by Li et al. (2021) and named GT-15 by them.
This characteristic has a self-intersection as in the case of the characteristics passing through
TSM-1 and TSM-2 (Fig. 7a). Correspondingly, the behavior of the values of α2 along this
characteristic is not simple. In the positive branch, α2 increases up to 2.51, then decreases
to zero at GT-15, and further decreases to −6.37. We expect that this branch tends to the
lower-right corner of the initial condition plane. In the negative branch, α2 decreases to
−2, 45; then, it increases to −2.185 and decreases to −7.0. This branch seems to tend to
(x, y) = (0.0, 0.0).

The characteristics passing through TSM-5 have a simple behavior similar to that passing
through TSM-3. Correspondingly, the behavior of α2 is simple. The value of α2 increases
monotonically from the left to the right (see Fig. 8b).
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Fig. 8 a Characteristics
containing GT-5 and TSM-4 with
symbol length 9. b
Characteristics containing
TSM-5 with symbol length 9

We give in Tables 4 and 5 of Appendix B of Electronic Supplement the position data of
nonff-TCPs of Fig. 8.

5.5 Characteristics for other combinations of˛2 andˇ1

In order to get other kinds of characteristics, let us change both α2 and β1. We fix the ratio
γ = α2/β1 and change β1, which is now the unique parameter and determines the absolute
values of the initial velocities of the three bodies (see Eq. (22)). This gives us a family of
characteristics for different γ .

For γ = 0, i.e., α2 = 0, β1 �= 0, three initial velocity vectors are shown in Figs. 9a and
b. The velocity of body 2 is along the direction connecting body 2 and the center of gravity
where the velocity looks toward right for β1 > 0, while toward left for β1 < 0. For γ �= 0,
we show the three velocity vectors in Figs. 9c and d. One sees that the velocity vectors are not
symmetrically directed. We will soon explain the reason why we select the values α2/β1 = 3
and −3.

As we mentioned in Sect. 5.3, TSM-1 and TSM-2 look like a twin because these two are
on the same characteristics. In other words, TSM-2 metamorphoses into TSM-1 when we
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Fig. 9 Initial velocities. a α2 = 0
and β1 > 0. b α2 = 0 and
β1 < 0. c α2/β1 = 3. d
α2/β1 = −3

Fig. 10 Four characteristics with
different ratios of α2/β1
connecting TSM-1 and TSM-2.
Empty circles stand for TSM-1
(0.2220275, 0.3009644) and
TSM-2 (0.1920827, 0.3093602).
Curve (1) is the characteristics
with α �= 0, β = 0; Curve (2) is
the one with α = 0, β �= 0;
Curve (3) is the one with
α2/β1 = 3; and Curve (4) is the
one with α2/β1 = −3

walk along the characteristics by changing the values of α2 with β1 = 0. We are interested
in the behavior of other characteristics, which pass through TSM-2. Then, we confirm that
the characteristics with α = 0, β �= 0 also passes through TSM-1. Further, we trace the
characteristics with α/β = 3 and −3. Then, we find that these two characteristics also pass
through both TSM-2 and TSM-1.

We plot the results in Fig. 10. In this figure, the empty circles are TSM-1 and TSM-2. The
solid curve (1) represents the characteristics for α �= 0, β = 0. The dotted curve (2) is the
one for α = 0, β �= 0. The dashed curve (3) is the one for α2/β1 = 3, and the dotted dash
curve (4) is the one for α2/β1 = −3. We select the values 3 and −3 so that the directions of
the characteristics starting at TSM-2 are separated reasonably. From this result, we expect
that all the characteristics passing through TSM-2 may also pass through TSM-1.

There is a possibility that all the ff-TCPs of the same symbol length might be on an unique
characteristics. We can say this is not the case. We show the counter example in Fig. 6. In this
figure, there is a loop characteristics which contains TSM-10 and TSM-11 of symbol length
13. Li et al. (2021) found seven ff-TCPs of symbol length 13: GT-37 through GT-43 among
which GT-37 and GT-38 correspond to TSM-10 and TSM-11 of ours. So GT-39, GT-40,...,
GT-43 belong to other characteristics.
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6 Collection of characteristics

6.1 Distribution of nonff-TCPs around a ff-TCP

Until now we consider the characteristics passing through ff-TCPs. Let us consider the
characteristics not passing through ff-TCPs. In Eq. (22) of section 5.1, we put β1 �= 0. Then,
velocities never become zero. For definiteness, we are going to obtain the characteristics
encircling TSM-2. We go back to Eqs. (20), (21), and (22) and write these as:

V1 = t(−2α2R1) + sβ1R2

V2 = t(α2R1) + s(−2β1)R2

V3 = −V1 − V2

We calculate the velocities of the three bodies for fixed α2 and β1 changing parameters t
and s. t = s = 0 gives us the initial velocities of TSM-2. We first put 0 ≤ t ≤ 1, s = 1 − t ,
which gives us the segment in the first quadrant of the top panel of Fig. 11. Then sequentially,
−1 ≤ t ≤ 0, s = −t , −1 ≤ t ≤ 0, s = −1 − t , and 0 ≤ t ≤ 1, s = −t give the segments
in the second, third, and fourth quadrants, all of which form a closed square circuit in the
parameter space (t, s). Corresponding to this circuit, we have a curved square circuit around
TSM-2. We choose three sets of parameters α2 and β1 in order to have three circuits in the
initial condition plane: (α2, β1) = (0.05, 0.015), (0.10, 0.030), and (0.15, 0.045).

Now, we have three curved square circuits in the lower panel of Fig. 11. We added radial
characteristics emanating fromTSM-2. This figure suggests that the correspondence of points
of the (α2, β1) plane and the initial condition plane in the neighborhood of TSM-2 is one-to-
one.

7 Concluding remarks

1. We have formulated sufficient conditions for the velocities of the three bodies so that the
total angular momentum of the three-body system is zero.

2. The velocity conditions are parametrized by two parameters α2 and β1 in the initial
condition plane.

3. We introduced the characteristic as the curve in the initial condition plane of the non-free-
fall TCPs parametrized by one parameter, say, α2/β1. Issue (2) suggests that nonff-TCPs
occupy two-dimensional areas in the initial condition plane (see Fig. 11).

4. We plot five characteristics passing through the eight ff-TCPs, one of which forms a
closed circuit. Two ff-TCPs on a characteristic are called a twin. This gives us a criterion
for the classification of TCPs or TCOs in addition to the one obtained in Tanikawa and
Mikkola (2021), which connects the directions of the initial and final triangles formed
by three bodies.

5. We find that the twin TSM-1 and TSM-2 are connected by all the characteristics that pass
through them.

6. A neighborhood of TSM-2 has been confirmed to be occupied by nonff-TCPs.We expect
that the same is true with a neighborhood of any ff-TCP. Further, we expect that this is
true with a neighborhood of any nonff-TCP.

7. We do not continue the characteristics until its end. The next target of our search should
be to find the limiting behavior of these characteristics.
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Fig. 11 Characteristics in the
neighborhood of TSM-2 at
(0.1920827, 0.3093602). The
solid curves are those emanating
from TSM-2. One of them is a
part of the characteristics
exhibited in Fig. 7a. The three
dashed square frames are also the
characteristics circulating
TSM-2. See Table 8 of Appendix
E of the Electronic Supplement
for the coordinates data

We have obtained numerically interesting properties of the distribution of TCPs as men-
tioned above. In Sec. 3, we have presented these numerical results in the form of conjectures
to be rigorously proven.
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Appendix A. Division of the shape space in the free-fall case

Our initial condition space (Fig. 1 of Sect. 2.2) is not enough when the initial velocities are
incorporated into the motion of the three bodies. It is only a part of the shape sphere (see,
e.g., Fig. 1 of Tanikawa et al. 2019). Here for reference, we show in Fig. 12 the division of
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the shape space by the 3-cylinders for the free-fall case. The division will be deformed if the
initial velocities are incorporated.

Fig. 12 Division by 3-cylinders.
(α2, β1) = (0, 0)
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