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Abstract
We investigate the use of spinors to describe the secular evolution of quasi-Keplerian systems.
Evaluating their Poisson brackets, we show that the components of a properly chosen spinor
are canonical variables. We illustrate this formalism using the classical problems of the
orbital motion about an oblate planet and the Kozai–Lidov mechanism. Although the present
formalism breaks down for circular or radial orbits, it may be of some practical utility in
numerical recipes.
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1 Introduction

The three-body problem is one of the oldest open problems in astronomy (Valtonen and Kart-
tunen 2006). Although it can be applied as a good model to many astrophysical phenomena
ranging from the dynamics of minor planets (Kozai 1962) and satellites (Lidov 1962) to that
of supermassive black holes (Naoz et al. 2019; Alexander 2017), it cannot be generically
solved.1 It is non-integrable, i.e. chaotic (Masoliver and Ros 2011).

There exist a couple of approaches to predict the future of triple systems: (i) one directly
integrates the equations of motion numerically (Heggie and Hut 2003); (ii) one derives the
probability distributions of the orbital elements as a result of the chaotic three-body evo-
lution (e.g. Stone and Leigh 2019); (iii) one uses approximations (Valtonen and Karttunen
2006). A frequently used approximation is the restricted three-body problem in which one
of the three bodies has zero mass (Szebehely 1967). Another possibility is the hierarchical
problem in which a tight binary is perturbed by a more massive object (Naoz 2016). The hier-
archical three-body problem puts the focus on the system’s evolution on secular timescales,

1 There exists a solution in the form of an infinite series (Sundman 1912), but it is of no practical use due to
its slow convergence (Diacu 1997).
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i.e. timescales much longer than the orbital period. It is achieved by averaging the system’s
Hamiltonian, for example, using the von Zeipel transformation (Ito and Ohtsuka 2019). The
secular evolution equations for the orbit can then be obtained from the averaged Hamiltonian
in different ways.

A common method is Lagrange’s (non-canonical) planetary equations of motion which
use the standard orbital elements (e.g. Murray and Dermott 1999). However, the associated
equations suffer from vanishing denominators if the eccentricity is either zero or unity, or if
the inclination is zero (Valtonen and Karttunen 2006).

In order to cure the aforementioned problems, one can introduce another set of equations,
named after Milankovitch (Milankovitch 1939). More precisely, one defines L as the angular
momentum vector and K (the pericenter vector) as the vector which points to the orbit’s
pericenter and whose magnitude is equal to the angular momentum. The (non-canonical)
evolution equations then read

L̇a = {La,H} = {La, Lb} ∂H
∂Lb

+ {La, Kb} ∂H
∂Kb

, (1a)

K̇a = {Ka,H} = {Ka, Lb} ∂H
∂Lb

+ {Ka, Kb} ∂H
∂Kb

, (1b)

where Einstein summation is implied for the Latin indices, which run from 1 to 3. Here, H
is the system’s Hamiltonian and {·, ·} is the Poisson bracket

{ f (q, p), g(q, p)} = ∂ f

∂q

∂g

∂ p
− ∂ f

∂ p

∂g

∂q
, (2)

with f and g arbitrary functions of (q, p), the canonical coordinates andmomenta (Goldstein
et al. 2002). These equations are not limited to the three-body problem, i.e. H is arbitrary.
The standardversionofMilankovitch equations uses theRunge–Lenz–Laplace or eccentricity
vector instead of our pericenter vector (e.g. Tremaine et al. 2009; Rosengren and Scheeres
2014). Some other works (e.g. Fouvry et al. 2022) use the Klein variables (Klein 1924). Via
the use of Pfaffian forms, Reference Musen (1964) found a canonical set of vectors which
reformulates the Milankovitch equations as Hamilton’s equations of motion. The reason for
our present choice is clarified in Sect. 2.

For a bound orbit, the Poisson brackets of these vectors are

{La, Lb} = εabcLc, (3a)

{Ka, Lb} = εabcKc, (3b)

{Ka, Kb} = −εabcLc, (3c)

with εabc the Levi–Civita antisymmetric tensor. We check these in “Appendix A” using the
canonical Delaunay variables. Inserting these expressions into Eqs. (1) yields

L̇a = εabcLc
∂H
∂Lb

− εabcKb
∂H
∂Kc

, (4a)

K̇a = εabcKc
∂H
∂Lb

+ εabcLb
∂H
∂Kc

. (4b)

Hereafter we restrict ourselves to secular evolution. An essential feature of it is that the semi-
major axis is constant due to the orbit-averaging over the (fast) mean anomaly (Morbidelli
2002). For a time-independent averaged Hamiltonian, i.e. when the total energy is constant as
well, we have two conserved quantities. These are manifested in the first integrals of motion
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of Eqs. (4)

‖L‖ − ‖K‖ = const., (5a)

L · K = const., (5b)

with “·” the usual scalar product. The associated constants are set to zero because L and
K have the same magnitudes and are perpendicular to each other, by definition. These two
constraints reduce the number of degrees of freedom from6 to 4.Given the geometricmeaning
of the vectors involved, it is understood that Eqs. (5) hold in the non-averaged case, too.

Contrary to the standard vector algebra just presented, Hestenes (1983, H83 hereafter)
suggested an alternative formulation for celestial mechanics, namely geometric algebra. In
doing so, H83 derives the equations ofmotion for a spinor instead of a pair of vectors.We now
revisit this result and rewrite the associated equations of motion using the Poisson brackets
of spinors. The letter is structured as follows. Section2 introduces spinors and expresses the
equations of motion with them. Section3 applies the spinorial equations to the pedagogical
case of the secular dynamics around an oblate planet. Section5 summarises the benefits and
disadvantages of the spinorial formalism.

2 The spinorial Milankovitch equations

First, let us take three orthonormal unit vectors σ a ∈ R
3 with a = 1, 2, 3. Let us then define

the geometric product between two of them as

σ aσ b = σ a · σ b + σ a ∧ σ b, (6)

where “·” is again the usual (symmetric) dot product giving a scalar, while “∧” is an
antisymmetric product giving a bivector. From this, it follows that

σ aσ b = −σ bσ a (7)

for a �= b and

σ 1σ 1 = σ 2σ 2 = σ 3σ 3 = 1, (8)

where 1 is a scalar and the geometric product is not denoted explicitly.2 Using the associativity
of the geometric product, one can easily show that

(σ 1σ 2σ 3)
2 = (σ 1σ 2σ 3)(σ 1σ 2σ 3) = −1, (9)

which motivates a notation similar to that of the complex unit, namely σ 1σ 2σ 3 = I, a
trivector. Now we can define a spinor and its conjugate via

s = x0 + Ixaσ a, (10a)

s† = x0 − Ixaσ a, (10b)

where x0≤μ≤3 are real. As illustrated in “Appendix B,” spinors can be efficiently used to
describe rotations.3 Along the same line, “Appendix C” investigates the use of bivectors in
the context of Milankovitch equations.

2 The notation σ a is motivated by the fact that the Pauli matrices, which satisfy exactly the same algebra, are
usually denoted in this way too.
3 For a detailed introduction into the application of geometric algebra in physics, see Hestenes (1971, 2002).
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Let us now demand that (i) the norm of the spinor, s, is related to the angular momentum
via

s†s = 4 ‖L‖ = 4 ‖K‖, (11)

and that (ii) it rotates the basis vectors σ 1 and σ 3 to the direction of K and L, respectively
(we follow H83 for that convention), i.e.

L = s†σ 3 s, (12a)

K = s†σ 1 s. (12b)

These equations can be recast as

4Laσ a = (x0 − Ixbσ b) σ 3 (x0 + Ixcσ c) , (13a)

4Kaσ a = (x0 − Ixbσ b) σ 1 (x0 + Ixcσ c) . (13b)

Matching the prefactors of the {σ i } on both sides finally yields

L1 = 1
2

(
x0x2 + x1x3

)
, (14a)

L2 = 1
2

(
x2x3 − x0x1

)
, (14b)

L3 = 1
4

(
x20 − x21 − x22 + x23

)
, (14c)

K1 = 1
4

(
x20 + x21 − x22 − x23

)
, (14d)

K2 = 1
2

(
x0x3 + x1x2

)
, (14e)

K3 = 1
2

(
x1x3 − x0x2

)
. (14f)

The action of the spinor on the basis vectors is to rotate and multiply both vectors by
4‖L‖. Such an operation cannot provide us with two vectors of different magnitudes, hence
our choice in Sect. 1 of using the pericenter vector rather than the eccentricity one.

We now express the Hamiltonian with the spinorH(s) = H(x0, x1, x2, x3). Analogously
to the vectorial case in Eqs. (1), we have

ẋμ = {xμ, xν}∂xνH, (15)

where Greek indices run from 0 to 3. The task is to calculate the Poisson brackets of the {xμ},
just like for (L,K) in Eqs. (3). Substituting Eqs. (14) into the Poisson brackets from Eqs. (3)
gives us

{x1, x2} = {x3, x0} = 1, (16a)

{x2, x3} = {x0, x1} = 0, (16b)

{x0, x2} = {x3, x1} = 0. (16c)

Putting these brackets back into Eq. (15) finally yields the equations of motion

ẋ0 = −∂x3H, (17a)

ẋ1 = ∂x2H, (17b)

ẋ2 = −∂x1H, (17c)

ẋ3 = ∂x0H. (17d)

These are the spinorial analogues ofMilankovitch Eq. (4).Wemake two remarks about them.
First, the transformations in Eqs. (14) have the same structure as the Kustaanheimo–Stiefel
(KS) transformation in the regularisation of the 3-dimensional Kepler problem (Stiefel and
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Kustaanheimo 1965;Waldvogel 2006). Here, they are applied to both the angular momentum
and pericenter vectors. Second, the set {xμ} is symplectic, i.e. it obeys the canonical Poisson
relations. Phrased differently, Eqs. (17) are simply Hamilton’s canonical equations with
(x1, x3) being coordinates and (x2, x0) their respective conjugate momenta.4

3 Motion around an oblate planet

As a simple demonstration, we follow H83 and apply the spinorial formalism to the secu-
lar dynamics of a satellite around an oblate planet.5 The averaged perturbing Hamiltonian
is Beletsky (2001)

H = (C/L3)
[
1 − 3 (L‖/L)2

]
, (18)

with C a constant. Here, L is the satellite’s angular momentum and L‖ its projection on the
planet’s axis of rotation. When expressed with the spinor components from Eqs. (14), they
read

L = 1
4

(
x20 + x21 + x22 + x23

)
, (19a)

L‖ = 1
2n1(x0x2 + x1x3) + 1

2n2(x2x3 − x0x1) + 1
4n3(x

2
0 − x21 − x22 + x23 ), (19b)

with n = [n1, n2, n3] the unit vector along the planet’s rotational axis.6 After inject-
ing the Hamiltonian from Eq. (18), Eqs. (17) have an exact solution in closed form (see
“Appendix D”). Assuming n = [0, 0, 1], it reads

x0 = A+ sin(ω+t + δ+), (20a)

x1 = A− sin(ω−t + δ−), (20b)

x2 = A− cos(ω−t + δ−), (20c)

x3 = A+ cos(ω+t + δ+), (20d)

with δ± some given phases, the amplitudes A± satisfying the constraints

A2+ + A2− = 4L, (21a)

A2+ − A2− = 4L‖, (21b)

and the constant frequencies

ω± = 3C
2

(
± L2−5L2‖

L6 + 2L‖
L5

)
. (22)

When substituting into Eqs. (14), we recover that both L and K precess with constant mag-
nitudes (Beletsky 2001). The critical inclination (Lubowe 1969) follows from the resonance
condition ω+ = ω−.

4 The matching between {xμ} and the canonical variables can be reordered simply by using a different choice
of basis vectors in Eqs. (12).
5 See Ref. Rosengren (2014) for another interesting solution based on the use of second-order tensors (dyads).
6 Note that the angular momentum in Eq. (19a) is a quadratic function of the spinor, i.e. spinors are the “square
roots” of vectors (Coddens 2017).
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Fig. 1 Numerical solution of Eqs. (17) for the Hamiltonian from Eq. (23). The perturber’s (fixed) orbital
parameters are mper = 1M�, aper = 5 au, eper = 0 and gper = 0, with g the argument of pericenter, see
“Appendix A.” The inner test particle orbits around an object of mass M = 0.001M�, with semi-major axis
ain = 0.1 au. At the initial time, the inner orbit’s parameters are set to ein = 0.1, gin = 0, Iin = 50◦ and
hin = 0, with I and h the inclination and argument of node, respectively. The integration of the spinorial
equations of motion was performed using the classical fourth-order Runge–Kutta scheme (see, e.g. Hairer
et al. 2008) with timestep δt = 0.1 yr, giving a final relative error in the total energy of order 10−13. The time
evolution is compared with the use of the independent code from Naoz et al. (2013)

4 Kozai–Lidov oscillations

To test our formalism against a numerical example, we now investigate the secular dynamics
of a tight binary with a test particle, perturbed by a distant third object. Truncating the
Hamiltonian at third order in the semi-major axes ratio, the dynamics of the inner binary
follows from the Hamiltonian [see Eqs. (2) and (3) in Katz et al. 2011]

H = C
(Hq + εoHo

)
, (23)

where Hq (resp. Ho) is the quadrupolar (resp. octupolar) contribution. They read

Hq = 3
4

(
1
2 L

2
z + D2 − 5

2D
2
z − 1

6

)
, (24a)

Ho = 75
64

(
Dx

( 1
5 − 8

5D
2 + 7D2

z − L2
z

) − 2DzLx Lz
)
, (24b)

where L is the inner binary’s specific angular momentum and D = √
1 − L2K/L its

eccentricity vector (see Eq. (9.133) of Goldstein et al. 2002). The constants are

C = Gmpera2in

a3per
(
1 − e2per

)3/2 , (25a)

εo = ain
aper

eper
1 − e2per

, (25b)

where G is the gravitational constant, mper, aper and eper are, respectively, the mass, semi-
major axis and eccentricity of the distant perturber, and ain the semi-major axis of the tight
binary.

Using the Hamiltonian from Eq. (23), we integrated Eqs. (17) numerically. The solution
is shown in Fig. 1. It exhibits the well-known Kozai–Lidov oscillations and perfectly agrees
with the solution obtained from an independent integration using the code from Naoz et al.
(2013).
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5 Discussion and summary

We followed H83 in using spinors to describe quasi-Keplerian systems on secular timescales.
In that case, an orbit-averaged Keplerian orbit is represented by a single spinor rather than
two vectors. The Poisson brackets of these spinor components turn out to be remarkably
simple: they are canonically conjugate variables. As such, the spinorial counterpart of the
vectorial Milankovitch equations is thus a set of standard canonical Hamiltonian equations.

The spinorial formalism has difficulties if the orbit is either circular or radial, which limits
its applicability. In the circular case, it has an extra degree of freedom associated with the
orientation of the pericenter vector, which is unphysical at circular orbits. In the radial case,
the spinor is identically zero (see Eq. 19a), and one loses the information about the orbit’s
orientation.

Future work will be devoted to testing alternative normalisations other than Eq. (11)
that could help at extreme eccentricities, as well as using the bivector formulation from
“Appendix C.” We will also explore if the formalism above could be used efficiently in
numerical integrations (see, e.g. McLachlan et al. 2014).
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Appendix A: The canonical basis of Delaunay variables

Following the notation from Murray and Dermott (1999), the angular momentum and
pericenter vectors can be expressed on the canonical basis of Delaunay variables via

L1 =
√
G2 − H2 sin h, (A1a)

L2 = −
√
G2 − H2 cos h, (A1b)

L3 = H = G cos i, (A1c)

K1 = G cos g cos h − H sin g sin h, (A1d)

K2 = G cos g sin h + H sin g cos h, (A1e)

K3 =
√
G2 − H2 sin g, (A1f)

with g the argument of pericenter,G themagnitude of the angularmomentum, h the argument
of node, H the third component of the angular momentum vector, and i the inclination.7 The
Poisson brackets of the Delaunay variables are

{g,G} = {h, H} = 1, (A2)

while all the others are zero.
Delaunay variables are also suitable for expressing the spinor components defined in

Eqs. (14), via

x0 = 2
√
L

[
cos(g/2) cos(i/2) cos(h/2) − sin(g/2) cos(i/2) sin(h/2)

]
, (A3)

7 These expressions follow from Eqs. (2.119–120) in Murray and Dermott (1999).

123



47 Page 8 of 11 B. Deme, J.-B. Fouvry

x1 = 2
√
L

[
cos(g/2) sin(i/2) cos(h/2) + sin(g/2) sin(i/2) sin(h/2)

]
, (A4)

x2 = 2
√
L

[
cos(g/2) sin(i/2) sin(h/2) − sin(g/2) sin(i/2) cos(h/2)

]
, (A5)

x3 = 2
√
L

[
cos(g/2) cos(i/2) sin(h/2) + sin(g/2) cos(i/2) cos(h/2)

]
. (A6)

Appendix B: Spinors and rotations

Spinors are powerful tools to treat rotations. Any rotation of a vector v can be executed as
(see Eq. 2.1 in H83)

v 
→ s†vs. (B7)

In order to illustrate it, let us consider the unit vector σ 1. The spinor that rotates it by π/2
around σ 3 is

s = 1√
2

+ 1√
2
Iσ 3. (B8)

Indeed, some easy algebra using Eqs. (7)–(8) leads to
(

1√
2

− 1√
2
Iσ 3

)
σ 1

(
1√
2

+ 1√
2
Iσ 3

)
= σ 2. (B9)

This matches with the geometric intuition since the {σ a} are orthogonal to one another. A
general rotation by an angle ‖θ‖ around an axis θ is given by (see Eq. 2.3 in H83)

s =
∞∑

n

( 1
2 Iθ

)n

n! = e
I
2 θ , (B10)

where H83 normalises the spinor to unity in Eq. (2.2) therein.
H83 derives an evolution equation for the spinor (see Eqs. 3.1–3.3 therein), namely

ṡ = 1
2 Isω, (B11)

with ω the angular velocity of the rotation (see Eq. 3.7 in H83). It has the simple formal
solution

s = e
I
2ωt ; (B12)

i.e. a general rotation as in Eq. (B10).
We finally point out that the spinors of 3D rotations are formally identical to Hamil-

ton quaternions (Hestenes 1983). Indeed, −Iσ 1, −Iσ 2 and −Iσ 3 obey the same algebra as
Hamilton’s {i, j, k}, respectively (Hamilton 1844).

Appendix C: Milankovitch equations with bivectors

InSect. 2,we introduced the basic concepts of geometric algebra.Wenowapply it to bivectors.
Similarly to vectors, we consider two arbitrary bivectors u and v, and we define the dot and
wedge product between them as the symmetric and antisymmetric part of the geometric
product, namely

u · v = 1
2

(
uv + vu

)
, (C13a)

u ∧ v = 1
2

(
uv − vu

)
. (C13b)
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Let us now consider four orthonormal unit vectors σ a ∈ R
4 with a = 1, 2, 3, 4. We can

construct a total of 6 unit bivectors out of them.8 The key point is to note that their respective
wedge products follow a structure similar to the one of the Poisson brackets of the angular
momentum and eccentricity vectors (L,D). For example, one has

{L1, L2} = L3 ⇐⇒ σ 2σ 3 ∧ σ 1σ 3 = σ 1σ 2. (C14)

This motivates then the correspondences

L1 
→ σ 2σ 3, D1 
→ σ 1σ 4, (C15a)

L2 
→ σ 1σ 3, D2 
→ σ 4σ 2, (C15b)

L3 
→ σ 1σ 2, D3 
→ σ 3σ 4, (C15c)

Similarly, we are led to defining the bivector

v = L1σ 2σ 3 + L2σ 1σ 3 + L3σ 1σ 2 + D1σ 1σ 4 + D2σ 4σ 2 + D3σ 3σ 4, (C16)

along with a ∇v operator following the same pattern

∇v = ∂L1σ 2σ 3 + ∂L2σ 1σ 3 + ∂L3σ 1σ 2 + ∂D1σ 1σ 4 + ∂D2σ 4σ 2 + ∂D3σ 3σ 4. (C17)

Milankovitch Eqs. (4) then become9

v̇ = ∇vH ∧ v, (C18)

i.e. a “rotation in bivector space.”This equation has a first integral, d(v · v)/dt = 0, associated
with the conserved quantity

(
L2 + D2) + (

L1D1 + L2D2 + L3D3
)
σ 1σ 2σ 3σ 4 = const. (C19)

The two terms in this equation are conserved independently, in agreement with, e.g. Eq. (17)
of Tremaine et al. (2009).

Appendix D: Solution of the spinorial equations

Substituting Eq. (18) into the spinorial equations of motion (17) yields

ẋ0 = − 3C
2

[
− L2−5L2‖

L6 x3 − 2L‖
L5 (n1x1 + n2x2 + n3x3)

]
, (D20a)

ẋ1 = 3C
2

[
− L2−5L2‖

L6 x2 − 2L‖
L5 (n1x0 + n2x3 − n3x2)

]
, (D20b)

ẋ2 = − 3C
2

[
− L2−5L2‖

L6 x1 − 2L‖
L5 (n1x3 − n2x0 − n3x1)

]
, (D20c)

ẋ3 = 3C
2

[
− L2−5L2‖

L6 x0 − 2L‖
L5 (n1x2 − n2x1 + n3x0)

]
. (D20d)

Applying Eqs. (D20) to Eqs. (19), one gets

L̇ = 0, (D21a)

8 For another perspective of the connection between the Kepler problem and four-dimensional geometry,
see Oliver (2004) and Ikemori et al. (2023).
9 Contrary to Eqs. (4), here we use the eccentricity vector, D, rather than the pericenter one, K.
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L̇‖ = 0, (D21b)

i.e. both the total angular momentum and its projection on the rotation axis are conserved.
Using this, Eqs. (D20) become a set of linear differential equations with an antisymmetric
matrix. It results in purely imaginary eigenvalues, i.e. the solution is oscillatory. After picking
up a particular reference frame like in Sect. 3, the equations of motion simplify to

ẋ0 = ω+ x3, (D22a)

ẋ1 = ω− x2, (D22b)

ẋ2 = −ω− x1, (D22c)

ẋ3 = −ω+ x0, (D22d)

using the abbreviations from Eq. (22). These equations can be immediately integrated to give
Eqs. (20).
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