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Abstract
What would the universe be like if we would give up the principle of equivalence and as a
consequence incorporate gravity on a more traditional interaction basis within the theory of
special relativity? The current work proposes such a gravitational model where a new law of
gravitation is expressed in a Lorentz invariant form and is simultaneously in great agreement
with many observations (including general relativity). We find the following predictions so
far to be consistent with observations: (1) precession formulas explaining, for example, the
Mercury apsidal precession, (2) gravitational bending of light near the limb of a massive
object, (3) gravitational redshift, (4) escape velocity near a black hole, (5) several relativistic
orbit details are derived in the strong field regime and found to be consistent with GR and
also the observed shadow of the M87 black hole. Curved space effects such as gravitational
time dilation or Shapiro delay cannot be explained within the realms of special relativity
(Sect. 3.11).

Keywords Relativistic celestial mechanics · Gravitation · Special relativity

1 Introduction

Today’s consensus is that the topology of the universe is flat, at least on cosmological
scales. For example, the large-scale curvature of spacetime was measured by the Wilkinson
Microwave Anisotropy Probe (WMAP) to be flat within 0.4% error (Wilkinson Microwave
Anisotropy Probe 2020). The locally curved spacetime seems to be well indicated by Ein-
stein’s theory of general relativity (GR). However, the traditional GR geometrical approach
is not the only way to describe general relativity. It is known that GR can also be cast from
the point of view of the classical limit of a massless spin-2 approach within quantum field
theory (i.e., in flat space). Weinberg described this well in his book, and the purpose was to
try to narrow the gap between quantum theories in particle physics and general relativity, see,
e.g., preface in Weinberg (1972) and Weinberg (1964a, b). The same spirit can also be seen
in Feynman’s book (Feynman 1995) and many others, e.g., Kraichnan (1955), Deser (1970)
and Bronstein (2012), where attempts were made to construct a consistent theory of quantum
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gravity which in the classical limit would approach general relativity. As put by Weinberg:
“the passage of time has shown us that a quantum field theory of gravity which is renormal-
izable and without divergences is unlikely to succeed” (Weinberg 1972). Freeman Dyson has
even argued that gravitation might be a purely classical field without any correspondence to
quantum field theory (Dyson 2020).

Dealing with gravity within classical physics, from the point of view of special relativity,
was abandonedmany years ago by the bulk of scientists in related fields such asmathematical
physics, astrophysics, astronomy and cosmology. There are several reasons for this. One is
that Einstein himself thought that in any scalar theory there are unavoidable violations with
regard to (1) universality of free fall and (2) energy conservation. However, both of these
objectionswere refuted in considerable detail byGiulini (2008)who reviewed these historical
details from a modern perspective. He discussed the intricate problems that arise (and those
that do not) and came to the conclusion that the real problem with various proposed scalar
theories is poor agreement with experiment. The incompatibility between special relativity
and gravitation is not strictly proven according to Vankov (2008). Also in Sattinger (2015),
the objections to a linear Lorentz invariant field theory of gravity are refuted. One of the
early promising models in flat spacetime was due to Birkhoff where several observational
facts were correctly reproduced (Birkhoff 1943). However, the model met difficulties when
it turned out that photons did not follow the postulated classical solution and also attempts
to quantize the theory failed, see, e.g., Feynman p. 81 (Feynman 1995). Yet another well-
known issue is that Newton’s law of gravitation is not invariant under Lorentz transformation
(violation of the principle of relativity). Of course, the same problem exists for Coulomb’s
lawwhich therefore also is invalid (except in a static problemwhere the Lorentz force reduces
to Coulomb’s law). One of the earliest, but unsuccessful, attempts to study the required form
of a relativistic gravitational force was due to Poincaré in 1905, see paragraph 9 in Poincare
(1905). Multiple authors have also attempted to create a theory of gravitation analogous
to electromagnetism, see, e.g., Gravitoelectromagnetism (2022) (also see references within).
Unfortunately, thesemodels are not invariant under Lorentz transformations.Also in common
with previous studies, these models do not pass the three classical tests in the solar system
that a competing gravitational model must do (bending of light, Mercury apsidal precession
and gravitational redshift). Another study dealt with a gravitational force in special relativity
where the proper mass was proposed to depend on the gravitational field strength (Vankov
2008). There are also other models of including gravity in flat space, but it would seem that
they all are in a continuous developing process of proposals/modifications in order to adjust
to various observational facts (Friedman 2016; Biswas 1994). The difficulty of creating a
consistent flat space theory/model that is in accord with observations has been well known
for a long time (Giulini 2008). For example, if one naively just plug in Newton’s law of
gravitation into special relativity, one would find that theMercury precession of its perihelion
only becomes 1/6 or 1/3 of the measured value (Lemmon and Mondragon 2016) (depending
on whether rest mass or relativistic mass were used in Newton’s law of gravitation). In the
case of the bending of light around the Sun, only 1/2 can be attributed to the observed one
(the same as in Newtonian mechanics).

The theory of general relativity has so far been very successful in explaining almost all
gravity-related phenomena. However, until recent black hole observations (Akiyama et al.
2019; Pounds 2018; Bower and van Langevelde 2022, https://www.mpifr-bonn.mpg.de/
pressreleases/2019/1) the investigations have mostly dealt with the weak-field regime of
this theory. Despite the common belief that the general theory is correct at also the larger
scales (i.e., the ultra-weak regime), there are still unsolved issues. For example, mismatch of
rotation curves of galaxies or galaxy clusters that presumably is related to dark matter and/or
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MOND (Milgrom 1983), peculiar MOND behavior of wide star binaries (Hernandez et al.
2012a, b), conflicting expansion rates of the universe (Nielsen et al. 2016; Oguri 2019). Other
problematic properties also exist like non-removable singularities (Vishwakarma 2016), an
expected asymmetry of black hole images, but observed to be symmetrical and also much
smaller than predicted (Issaoun 2019, https://www.mpifr-bonn.mpg.de/pressreleases/2019/
1) no time-reversal symmetry of a black hole (information paradox), the source of the grav-
itational field (the stress-energy tensor) is continuous but mass comes in discrete elements
(particles), troublesome relations to quantum field theory, etc. A well-known disadvantage
with the nonlinear tensorial theory of general relativity is that it is always mathematically
tedious to apply, even for the simplest physical problem. Cosmological perturbation theory,
linearizations in the weak-field limit, post-Newtonian expansions (Will 2014), numerical
relativity, approximate metrics, problematic N-body treatments etc. are common practice.
A great deal of constructive criticism is summarized in the relatively recent and excellent
review by Vishwakarma (2016).

Because of this complexity in GR, we believe it may still be of interest to consider an
alternative gravitational model if it is mathematically straightforward (Occam’s razor) and
has sufficiently good prediction properties. In the current work we will make an attempt
to identify such a model, namely addressing relativistic celestial mechanics from a special
relativistic point of view, and at the same time derive corrections so the principle of relativity
is respected. The purpose of such a model is not to replace GR, but to rather identify a linear
theory in flat Minkowski space that a) can serve as an approximation to GR to conveniently
deal with relativistic celestial mechanics and b), provide a possible way to enable a transition
in to a theory of quantum gravity. We shall see that this model does not only reproduce some
standard tests in the weak-field regime, but unexpectedly also reproduce several tests in the
strong field regime.

We shall begin by outlining the proposed theory, we will then consider a series of
mathematical/numerical experiments and compare those findings with established general
relativistic results and also observations. We also provide an “Appendix” with various addi-
tional supportive material. Although it is very common in the mathematical community to
use the integral of least action and the Lagrange equations of motion, the theory presented
here will instead be cast in the equivalent language of special relativistic force and its law
of motion. Given today’s developments in computer technology, it is not only very simple,
but also convenient to plug in N-body equations and accurately solve them by applying
numerical analysis. The model to be presented here, is also especially convenient, because
it respects the principle of superposition (N-body problems then become computationally
efficient and easy). In order to further simplify, we shall usually work and derive results from
the perspective of a single inertial frame. Relativistic mechanics can then be performed in
three-space plus coordinate time, see, e.g., Equation 7–89 and the subsequent discussion by,
e.g., Goldstein (1980), or the end of pp. 26–13 in Feynman’s lectures (Feynman 1963). Also,
in order to express the mathematics more compactly, we will frequently use relativistic mass
m instead of rest mass (i.e., the old notation). With the above simplifications, we feel that
the focus is emphasized on the physics and less so on formal mathematical details. This, we
hope, will be a straightforward display for the broader astrophysics audience.
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2 Inclusion of gravitation into special relativity

In the present work, it will be convenient to call the application of the presented methodology
for “Relativistic Gravitational Force” (RGF). Throughout, we will use the notation of rel-

ativistic mass m = m0
(
1 − u2/c2

)− 1
2 , as the equations presented here often become more

compact. In the presentation, the term “mass” will be used without prefix to mean relativistic
mass unless otherwise stated. Also, we will only consider pure forces (i.e., the rest mass m0

is constant). The magnitude of various terms in the derivations is more easily seen by not
using units where the speed of light c = 1 or the gravitational constant G = 1. We shall
work mostly in Euclidean 3-space and treat time as in Newtonian mechanics. Unlike GR,
where gravity is assumed to be equivalent to an accelerated local frame, we cannot apply
such a principle here as it is known that it would lead to an inconsistency with special rela-
tivity (Schild 1960). Today, there are several complicated formulations: weak, strong and the
Einstein principle of equivalence and also critical discussions regarding these (Chae 2020).
A possible way to remain within the realms of special relativity, is to replace the principle of
equivalence by the postulates 2 and 3 below. They are very easily stated and also supported
by experimental facts.

The theory outlined in the present work is based on the following three postulates:

1. The mechanics and assumptions within special relativity are assumed to be correct. It is
thus assumed that the speed of light in vacuum (c) is a universal constant.

2. Initial acceleration a0 of horizontal light bending in a locally homogeneous gravitational
field g (i.e., when the velocity u ⊥ g) is not given by a0 = g, but instead by a0 = 2g.
Light has been observed to have this peculiar behavior in many experiments ((Bruns
2018) is a recent and excellent example) as light deflects near the limb of a massive
object.

3. RGF weak equivalence principle1: The relativistic inertial mass m in the relativistic law
of motion (e.g., Equation (12)) equals the corresponding gravitational mass m in the
gravitational force f . The relativistic force f including propagation delay is listed in Eq.
(29). It is there assumed that the distance r is small relative to the cosmological scale (cf.
Appendix 4.3).

Let us now proceed by noting that in special relativity the definition of a relativistic 3-force
is given by the law of motion fSR = ṗ, where the linear momentum is given by p = mu.
After differentiation, the force can be expressed as:

fSR = m

c2 − u2
(u · a) u + ma (1)

where u is the particle velocity, a is the particle acceleration and c is the speed of light in
vacuum. Equation (1) may also be rewritten to read

fSR = 1

c2
(u · fSR) u + ma (2)

The main problem, as mentioned in the Introduction, is that Newton’s law of gravitation is
not consistent with observations, nor with the requirement of Lorentz invariance in special
relativity. Here, we are curious to study if there is a consistent adjustment to the relativistic

1 There is some complexity related to the inertial character of a fieldmasswhich is described in theAppendices
4.7−4.9. This effect is completely negligible for ordinary objects and is therefore removed from the main
sections of this work.
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equation of motion (fSR = ṗ) that we could do to improve the situation. Let us therefore
consider the ansatz

f = α (u)m (u · a) u + β (u)ma, (3)

where α (u) and β (u) are novel scalar functions in u. Consider the law of the power (cf.
Equation (1))

P ≡ Ṫ = Ė = dm

dt
c2 = c2

c2 − u2
m (u · a) = fSR · u (4)

so we can find a condition for α (u) and β (u) in order for the law of power to survive,

f · u = α (u) u2m (u · a) + β (u)m (u · a) = (
α (u) u2 + β (u)

)
m (u · a) . (5)

By comparing with Eq. (4), we must require that

α (u) u2 + β (u) = c2

c2 − u2
(6)

We note that α (u) = 1/
(
c2 − u2

)
and β (u) = 1 in Eq. (1) is consistent with Eq. (6).

We also note that in order to approach f = ma as u → 0, we must have that β (u) → 1
simultaneously. The dimension of α (u) in Eq. (6) also reveals that α (u) � c−2 as u → 0.
Out of curiosity, it is interesting to consider the relativistic force in 1-D:

f = α (u)mau2 + β (u)ma = (
α (u) u2 + β (u)

)
ma = c2

c2 − u2
ma (7)

This result is already well known in special relativity so the dynamics in 1-D will not change
by the ansatz 3. Let us also check the law of the work

W ≡
2∫

1

f · dr =
2∫

1

f · u dt =
2∫

1

(
α (u) u2 + β (u)

)
m (u · a) dt

=
2∫

1

c2

c2 − u2
m (u · a) dt =

2∫

1

c2

c2 − u2
mu

du

dt
dt =

2∫

1

mu

1 − u2/c2
du.

The last integral is justm (u2) c2−m (u1) c2 = T2−T1. It is thus quite clear that the physical
laws in relativity are compatible with the ansatz Eq. (3) as long as Eq. (6) is respected. Now
consider the dot product in Eq. (5)

u · a = 1

m
(
α (u) u2 + β (u)

) f · u = c2 − u2

mc2
f · u

The analog to Eq. (2) can then be written

f = τ (u) (u · f) u + β (u)ma, (8)

where τ (u) = α (u)
(
c2 − u2

)
/c2.

We shall now identify the scalar functions τ (u) and β (u) by performing a simple light
deflection experiment. Consider a uniform gravitational field, i.e., f = −mgez and initial
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conditions u (0) = cex , r (0) = 0, i.e., we want to follow how light bends (in the lab frame).
By applying Eq. (8), velocity u = uxex + uzez and the third postulate, one obtains

⎧
⎪⎨

⎪⎩

ax = τ
β
guzux

ay = 0

az = τ
β
gu2z − g

β

(9)

Through integration, the velocity components of a photon are explicitly given by
⎧
⎪⎪⎨

⎪⎪⎩

ux = ce− τ
β
g|z|

uy = 0

uz = −c

√
1 − e−2 τ

β
g|z|

(10)

In general relativity, a well-known first-order result is that z = − (1/2) 2gt2 = − (
g/c2

)
x2,

i.e., for small t or x (Ferraro 2003). It is seen that the initial acceleration is given by az = −2g.
This acceleration (−2g) is split between one part due to the equivalence principle and the
other part as a curved space contribution (Ferraro 2003). The questionwhether measurements
are really performed within a flat space or a curved space is not as important as the actual
experimental result itself which for light would be az = −2g (cf. deflection near the limb of
the Sun).We thus apply the second postulate that an experiment of horizontal light bending in
a homogeneous gravitational field would result in exactly the initial acceleration az = −2g.
In our setup uz = 0 initially, so this then implies that β = 1/2, see Eq. (9). After sufficiently
long time, the light ray travels vertically, i.e., ax = ux = 0 and az = 0, uz = −c. Equation
(9) then gives that

0 = τ

β
gc2 − 2g,

so τ/β = 2/c2. This ratio is taken to be an universal constant, i.e., τ (u) /β (u) = 2/c2 is
true for any particle speed u (more details in Appendix 4.1). By using τ/β = 2/c2, Eq. (6)
and τ = α

(
c2 − u2

)
/c2, one can then identify the general scalar functions as (also shown

in Appendix 4.1)

τ (u) = 2

c2 + u2
, β (u) = c2

c2 + u2
(11)

Thus, a new relativistic equation of motion is proposed:

f = 2

c2 + u2
(u · f) u + c2

c2 + u2
ma (12)

Further, in terms of acceleration Eq. (12) can be expressed as

f = 2mc2
(
c2 − u2

) (
c2 + u2

) (u · a)u + c2

c2 + u2
ma (13)

The easiest way to show that the two above expressions are equivalent is to take the dot
product of Eq. (13) with the velocity u. For completeness, with regard to the above photon
experiment, we provide an analogous expression of how a point mass falls in a homogeneous
gravitational field, see Appendix 4.2. The initial condition is u (0) = u0ex , r (0) = 0. In
Appendix 4.2 we have used Eq. (12), but we also find it convenient to identify a constant of
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motion resulting in

u2z = c2
(
1 − e

− 2g
c2

|z|
)

+ u20e
− 2g

c2
|z|
(
1 − e

− 2g
c2

|z|
)

.

A Taylor expansion reveals that

u2z ≈ 2g|z|
(

1 + u20
c2

)

which can be compared with the Newtonian result u2z = 2 g|z|. The initial acceleration
(z = 0) is given by

az = −g

(

1 + u20
c2

)

so for a point mass the initial acceleration is nearly−g (or exactly −g if u0 = 0) as expected
from Newtonian mechanics. Later on, az will eventually decline as the speed becomes rela-
tivistic, see last equations in “Appendix 4.2”.

2.1 The superposition principle

With regard to the validity of the superposition principle in RGF, it can be noted that Eq. (12)
is linear in f and a, so this principle is perfectly legitimate in the case of a N-body problem.
This is easily seen by considering two forces f1 and f2 acting on a single particle moving
with the velocity u at a certain time t :

f1 = 2

c2 + u2
(u · f1) u + c2

c2 + u2
ma1

f2 = 2

c2 + u2
(u · f2) u + c2

c2 + u2
ma2

The sum of the above equations yields:

f1 + f2 = 2

c2 + u2
(u · f1 + u · f2)u + c2

c2 + u2
m (a1 + a2)

This of course is just Eq. (12) again with f = f1 + f2 and a = a1 +a2 is the total acceleration
of the particle. It is well known that the superposition principle is not a valid principle in the
nonlinear GR theory. This is the reason why it is so cumbersome to apply GR in dealing with
N-body problems.

2.2 Relativistic gravitational force

In Eqs. (12, 13), it may appear that we have sacrificed the original definition of relativistic
force, i.e., f=ṗ. However, it is really just a matter of interpretation. What we have here is
actually f=ṗ + q, where q is a correction that has been introduced. One could just as well
say that a new special relativistic gravitational force f − q=ṗ ≡ fSR has been discovered and
that special relativity is left unchanged. The correction q is explicitly given by

q = 1

c2
{
(u · f) u − u2f

} = 1

c2
u × (u × f) (14)
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It is obvious that q = 0 in 1-D problems (i.e., in perfect agreement with Eq. (7)). Also, the
vectors u and q are always orthogonal ( u · q = 0) so there is no work performed by this
correction force q (i.e., q itself cannot change the kinetic energy of the particle). This is in
analogy with the magnetic Lorentz force which also is always perpendicular to the velocity.
By considering u× f and either of Eqs. (12–13), it is immediately clear that the acceleration
form of q is given by

q = m
(
c2 + u2

)u × (u × a) (15)

We can note that as the particle speed u becomes nonrelativistic, q will be negligible and the
Newtonian f=ṗ is restored. According to our third postulate, the gravitational mass within
Newton’s gravitational law (f) is the same as the relativistic inertial mass m, see Eq. (12).
The implication is that the mass m becomes irrelevant and plays no role in the dynamical
solution (i.e., for a purely gravitational problem).

The above relativistic gravitational force f − q may be inappropriate for very large scales
since it is still today not clear if Newtonian gravity of type 1/r2 is correct at very large
scales, or if MOND behavior is more appropriate (Milgrom 1983). For the Sun we derive in
Appendix 4.3 that at a distance of about 7000 AU it is possible that the MOND effect could
become relevant. As all our examples in the present work are concerned with distances much
less than 7000 AU, one can safely neglect the MOND effect.

2.3 Field formulation

In terms of fields, the relativistic equation of motion of a test particlem in a two-body problem
can be expressed as (cf. Equation (12))

⎧
⎪⎨

⎪⎩

F = g + u × h = 1
c2

(u · F) u + a

g = −GM
r2

er
h = 1

c2
g × u

(16)

Note that the relativistic gravitational force is actually mF = fSR but Eq. (2) clearly shows
that the relativistic mass m plays no role in determining the motion and can thus be dropped.
In order to keep this simple it is assumed that the second bodyM is essentially at rest (e.g., the
Sun;M ≈ M0 � m) so the effect on the g-field from retarded time due to a finite propagation
speed of gravity is unimportant (see Sect. 2.7 for amore general g). Equation (16) is still exact
if one understands that the computation of the g-field may be nontrivial and not simply given
by g = −GM/r2er . Even though there is no explicit dependence on m in Eq. (16), there
is an exception in the case of an non-inertial frame. For example, if the origin is placed on
the central body M (heliocentric system), the above expression needs a minor modification
since such a frame is subject to a weak acceleration. As we here consider the case that M
is moving slowly, i.e., classically, one can then simply apply Coriolis’s theorem, i.e., one
subtracts the acceleration of the origin a�, where a� = Gm/r2er (see the Appendix 4.4 for
a simple analysis). A sufficiently accurate expression in the solar system for the acceleration
of a planet m would then be

a ≈ g + u × h − 1

c2
(u · g)u − Gm

r2
er . (17)
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In Sect. 2.4, we will see that the form of Eq. (16) is convenient in order to prove that it
respects Lorentz invariance. Although Eq. (16) is mathematically equivalent to Eq. (12), it is
often more straightforward to apply the latter in the various examples to be presented below.

Also, one may get the impression that Eq. (16) would imply some kind of similarity to the
Lorentz force in electrodynamics. In Appendix 4.5, we provide details showing that there is
almost no resemblance, i.e., RGF is not at all some kind of gravitomagnetic theory.

2.4 The principle of relativity

According to the principle of relativity, any proposed law (such as Eq. (16)) must display
the same form in an arbitrary Lorentz frame. One way of looking at this is to consider the
4-acceleration A defined by

A = γ 2
u

(u · a
c

γ 2
u ,

u · a
c2

γ 2
u u + a

)
,

see 2.5.2 in Steane (2012). In the rest frame u = 0, so then we have

A = (0, a0)

where a0 = −GM
r2

er . The Lorentz scalar Aμ
Aμ = a20 should be conserved in all Lorentz

frames in 4-space. According to Eq. (16), the 3-acceleration is given by

a = F − 1

c2
(u · F)u (18)

so

u · a = u · F
γ 2
u

. (19)

Thus, the 4-acceleration can be written

A = γ 2
u

(
u · F
c

,
(u · F)

c2
u + a

)

It is sufficient to show that this general formula fulfills Aμ
Aμ = a20 ,

A
μ
Aμ = γ 4

u

(
− 1

c2
(u · F)2 + u2

c4
(u · F)2 + 2

c2
(u · F) (u · a) + a · a

)

This expression can be reduced further by using Eq. (18)

a · a =
(
F − 1

c2
(u · F)u

)
·
(
F − 1

c2
(u · F)u

)

= F · F − 2

c2
(u · F)2 + 1

c4
(u · F)2 u2

By also inserting Eq. (19), the 4-acceleration scalar becomes

A
μ
Aμ = γ 4

u

⎛

⎜⎜⎜⎜
⎝

(u · F)2
{
− 1

c2
+ u2

c4
+ 2

c2γ 2
u

− 2

c2
+ u2

c4

}

︸ ︷︷ ︸
−1/c2

+F · F

⎞

⎟⎟⎟⎟
⎠
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According to Eq. (16),

F · F = 1

c2
(u · F)2 + F · a.

Thus, we found the following simplification:

A
μ
Aμ = γ 4

u (F · a)
Through Eq. (19), the relation (18) can be rewritten as

F = γ 2
u

c2
(u · a)u + a

so

F · a = γ 2
u

c2
(u · a)2 + a2

which finally gives that the Lorentz scalar becomes

A
μ
Aμ = γ 4

u (F · a) = γ 6
u

c2
(u · a)2 + γ 4

u a
2.

A standard result in special relativity is that

a20 = γ 6
u

c2
(u · a)2 + γ 4

u a
2, (20)

see Eq. 2.61 in Steane (2012), so it has been established that in fact it is true in general that

A
μ
Aμ = a20 .

The law of motion as given by Eq. (16) is thus consistent with the principle of relativity.
In order to complete the proof, it is convenient to study the mathematical structure of the
three-vector F = g+u×h in 4-space to see if this 4-vector can be derived from amanifestly
covariant tensor. The mathematics then becomes much more compact, and the principle of
relativity can be demonstrated in just a few lines, see “Appendix 4.6”.

2.5 Conservation of mechanical energy in RGF

In the derivation just below Eq. (7)), it was proved that the work in RGF is still given by the
law of the kinetic energy in special relativity, i.e.,

W12 = T2 − T1 = m (u2) c
2 − m (u1) c

2. (21)

We would now like to consider the law of gravitation with the modification that the masses
are relativistic, i.e., in agreement with our postulate 3 in Sect. 2. As shown in Sect. 2.2, the
special relativistic gravitational force is f − q but q makes no contribution to the work so it
is sufficient to deal with f . Also, we here consider the simplified case where the central body
M is at rest, but the test particlem may move at relativistic speeds. The effect of propagation
delays are then absent (Sect. 2.7 and also Eq. (29) can be discarded). The gravitational force
is then essentially Newton’s law of gravitation but withm being the relativistic mass.We thus
keep it very simple here. An interested reader can consult a more general discussion of the
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two-particle problem in Appendix 4.11. The work is for the current situation simply given
by

W12 =
2∫

1

f · dr =
∫ r2

r1
−GMm

r2
dr = −GM

∫ r2

r1

m

r2
dr

and in this case m is viewed as varying as a function of r (instead of u) as it changes from r1
to r2. This dependence will be studied later in Sect. 3.6 (see Eq. (53)). We then have that

c2 ln
m

m1
= −GM

(
−1

r
+ 1

r1

)
= φ1 − φ,

where φ is the classical gravitational potential. We thus find that

m (r) = m (r1) e
(φ1−φ)/c2 = A1e

−φ/c2 ,

where the constant A1 is determined by the initial condition. The work is therefore given by

W12 = −GMA1

∫ r2

r1

e−φ/c2

r2
dr .

This integral is solved by the variable substitution t = 1/r . One then finds that

W12 = c2A1e
−φ2/c2 − c2A1e

−φ1/c2 , (22)

and Eq. (21) shows that

T2 − T1 = c2A1e
−φ2/c2 − c2A1e

−φ1/c2 .

Thus, the following conservation law has been identified

T − c2A1e
−φ/c2 = const .

Now, it would be nice if this relativistic expression would coincide with the Newtonian
mechanical energy as c → ∞. Through Taylor expansions, it turns out that the appropriate
relativistic mechanical energy then can be written

E = T + m1c
2
(
1 − e(φ1−φ)/c2

)
+ m1φ1, (23)

where T = mc2 −m0c2 (m0 being the rest mass). In Appendix 4.11, we provide a treatment
of the general two-particle problem.

2.6 Lagrangian formulation

In Eq. (16), it was shown that the special relativistic gravitational force acting on m due to
body M at rest is given by f − q = mg + mu × h. If a corresponding generalized potential
U can be identified, the relativistic Lagrangian can be written as follows:

L = −m0c
2
√
1 − u2/c2 −U .

The Lagrange equations of motion are then still valid and given by

d

dt

∂L

∂ux
= ∂L

∂x
.
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It is easy to derive that

∂L

∂ux
= px − ∂U

∂ux
,

∂L

∂x
= −∂U

∂x

so clearly

−∂U

∂x
= ∂L

∂x
= d

dt

∂L

∂ux
= ṗx − d

dt

∂U

∂ux
,

and one must therefore require that

Fx ≡ ṗx = −∂U

∂x
+ d

dt

∂U

∂ux
.

Thus, for the Lagrange equations to be valid for the gravitational force we need to prove that

mgx + m (u × h)x = −∂U

∂x
+ d

dt

∂U

∂ux
. (24)

This exercise is thus to identify an appropriate generalized potentialU . We suggest that such
an appropriate candidate is given by

U = U0 +U1 +U2 = U0 − A1c
2e−φ/c2 − mi · u (25)

and we will show that Eq. (24) is indeed fulfilled for this choice. Here, A1 is a constant
and φ is the classical gravitational potential, see these details in Sect. 2.5. Since M is at rest
the g-field is stationary so a treatment related to propagation delays can be discarded. The
relativistic mass m is usually expressed as being speed-dependent, but Sect. 3.6 will show
that it can be viewed as being distance-dependent, i.e.,

m (r) = A1e
−φ/c2 ,

where φ = φ (x, y, z). The vector potential i = i (x, y, z, t) is defined by mh = ∇ × mi.
This relation can be written in this way because

∇ · mh = m

c2
u · (∇ × g)

︸ ︷︷ ︸
static central f ield ⇒ 0

− 1

c2
g · (∇ × mu)
︸ ︷︷ ︸

∇×mu= m
c2
g×u⇒ 0

= 0,

where we used for example ∂m/∂x = mgx/c2.
Let us now investigate the derivatives of the generalized potential. First, we define U0 by

requiring that

−∂U0

∂x
= m

∂ix
∂t

.

This term will be canceled by another term below. Further, we have that

−∂U1

∂x
= −m

∂φ

∂x
= mgx

−∂U2

∂x
= ∂m

∂x
i · u + m

∂i
∂x

· u,

and we also have that
∂U

∂ux
= ∂U2

∂ux
= −mix ≡ f (x, y, z, t)

d

dt

∂U

∂ux
= d f

dt
= ∂ f

∂t
+ ∇ f · u = ∂ f

∂t
+ ∂ f

∂x
ux + ∂ f

∂ y
uy + ∂ f

∂z
uz
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where

∂ f

∂t
= −m

∂ix
∂t

which is canceled by theU0 contribution as mentioned before. Further, we have, for example,
that

∂ f

∂x
= −∂ (mix )

∂x
= −∂m

∂x
ix − m

∂ix
∂x

.

One finds that

−∂U0

∂x
− ∂U2

∂x
+ d

dt

∂U

∂ux
= ∂m

∂x
iyuy + ∂m

∂x
izuz + m

∂iy
∂x

uy + m
∂iz
∂x

uz

−∂m

∂ y
ixuy − ∂m

∂z
ixuz − m

∂ix
∂ y

uy − m
∂ix
∂z

uz .

This expression is exactly equal to

(u × (∇ × mi))x = (u × mh)x = m (u × h)x .

We have thus successfully proved that

−∂U

∂x
+ d

dt

∂U

∂ux
= mgx + m (u × h)x

and U in Eq. (25) is therefore an appropriate generalized potential for which the Lagrange
equations are fulfilled.

2.7 Interaction due to retarded time

The effect on the g-field from retarded time due to the finite propagation speed of gravity may
become difficult to neglect in the case of a highly relativistic N-body system. Provided that
the speed of gravity is the same as the speed of light, one can make an analogous treatment
as that in relativistic electrodynamics (Section 8.2.4 in Steane (2012)) which then leads to
the generalization of the g-field in Eq. (16) for a point mass m,

g = − GM

r3γ 3η
(
γ 2 cos2 θ + sin2 θ

)3/2

[
r + γ 2

c2
(R · a) r − γ 2

c2
(R · r) a

]
(26)

where M = M0γ , r = rm (t) − rM (t), γ = (
1 − u2M/c2

)−1/2
, η = 1 + u2M/c2,

cos2 θ = (r · uM )2 / (ruM )2, R = r + uM R/c, a is the acceleration of the retarded position
rM (t − r/c) and R ≈ r/ (1 − r · uM/cr). With this updated g-field, one may compute the
acceleration of the point mass m according to the law given by Eq. (16), i.e.,

am = g + um × h − 1

c2
(um · g)um .

At a sufficiently large distance r , only the radiation part of Eq. (26) is significant (as long as
a �= 0)

grad = − GM0

r3ηc2
(
γ 2 cos2 θ + sin2 θ

)3/2R × (r × a) (27)

This is the expression that provides a prediction for gravitational waves in RGF. The above
retardation effects could become significant but for most examples to be presented in the
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present work it turns out that the retardation effect is very small as the usual speed in orbital
problems is largely nonrelativistic. Also, in the case of a static g-field, i.e., uM = 0, the
retardation effect is obviously absent (e.g., the black hole problem in Sect. 3.7). We apply the
full equations provided here in Sect. 2.8 related to linear momentum and also in Sect. 3.9–
3.10. In Sect. 3.8 we study the case m << M of periastron precession and found that the
retardation effect is indeed negligible since uM ≈ 0. The propagation effect for a pulsar
and its companion can be studied where a slow orbital decay is occurring due to radiation.
This orbital decay is due to the recoil acceleration of, for example, a point mass m due to its
emission of gravitational radiation (Appendix 4.10)

arad = 2

3

u2m
c2

Gm0

c3
ȧm .

This small acceleration was derived for the relevant case of nonrelativistic speeds and should
be added to am (see the above expression) after ȧm has been determined. This is a simple
matter in a numerical computer solution.

2.8 Linear momentum in RGF

It is worthwhile to retrieve some information about momentum laws in RGF. We shall here
consider systems where also effects due to propagation delays are taken into account (see
Sect. 2.7). Let us start with the simplest case, i.e., the situation for a single particle. The linear
momentum given by p = mu is clearly conserved if f=q since f−q = ṗ (Sect. 2.2). Equation
(14) gives thatq = − (

u2/c2
)
q, sinceu·q = 0, andEq. (12) gives thatq = c2ma/

(
c2 + u2

)
.

This can only hold if q = 0 so f = 0 and also a = 0. Notice that f = 0 directly leads to
a = 0 and q = 0, see Eqs. (12, 14). Thus, it can be concluded that the linear momentum for
a single particle is conserved if f = 0, i.e., it is behaving in the usual way.

Now let us consider the much more interesting case of a two-body problem where the
masses are given bym and M . According to Eq. (14), the gravitational forces and relativistic
corrections acting on body m and body M are given by

Fm = fm − qm = fm − 1

c2
um × (um × fm) = ṗm

FM = fM − qM = fM − 1

c2
uM × (uM × fM ) = ṗM (28)

The gravitational force is fm = −GMm/r2er if propagation is assumed to occur instantly
(i.e., c → ∞ or if M is static). Newton’s third law would then be correct, i.e., fM = −fm .
However, let us consider Sect. 2.7 and study this assumption. Then we have that

fm = − GMm

r3γ 3
MηM

(
γ 2
M cos2 θM + sin2 θM

)3/2

[

r + γ 2
M

c2
(RM · aM ) r − γ 2

M

c2
(RM · r) aM

]

fM = GMm

r3γ 3
mηm

(
γ 2
m cos2 θm + sin2 θm

)3/2

[
r + γ 2

m

c2
(Rm · am) r − γ 2

m

c2
(Rm · r) am

]
(29)

Although one can certainly see that fM = −fm for various symmetrical situations, it is not
true in general for relativistically moving particles. One way to realize this is to consider the
radiation terms

γ 2

c2
(R · a) r − γ 2

c2
(R · r) a = γ 2

c2
R × (r × a) ≈ 0.
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For a gravitational two-particle problem, it is nearly true that r ‖ a. The smallness of this
cross-product is further lessened by the factor γ 2/c2. By neglecting the radiation terms, we
are left with the factors:

γ 3
mηm

(
γ 2
m cos2 θm + sin2 θm

)3/2

γ 3
MηM

(
γ 2
M cos2 θM + sin2 θM

)3/2

One can see that these are not necessarily equal. Thus, Newton’s third law cannot hold
exactly in general. From symmetry, however, one can see that if um = ±uM then it is true
that fM = −fm . Such a situation is also compatible with

Fm + FM = d

dt
(pm + pM ) = − 1

c2
um × (um × fm) + 1

c2
um × (um × fm) = 0

so symmetry dictates that the totalmechanical momentum Pmech = pm +pM would then be
conserved. These features are analogous to what is found in electrodynamics for the Lorentz
force, see 8.2 in Griffiths (1999). Given that the mechanical momentum is not conserved in
general, we may adopt the very general principle in physics that the total momentum P must
be conserved. The situation can be rectified by introducing the concept of field momentum
(compare with, e.g., Chapt. 27 in Feynman (1963)). Its rate would then be given by

ṗ f ield = −Fm − FM ,

in which case the desired result becomes

d

dt

(
pm + pM + p f ield

) = dP
dt

= 0.

So in this way the total momentum P of the system is always conserved. We note that
the symmetry principle um = ±uM makes ṗ f ield = 0 in which case p f ield = const .
(the total mechanical momentum Pmech = pm + pM is also conserved). Let us exemplify
with um = −uM . In order for this to be maintained at all times, the masses must be equal
m = M . By comparing with Eq. (26) and the exact expressions for fm and fM above, we
see that γm = γM , θm = θM , Rm = −RM . This means that (RM · aM ) r = (Rm · am) r
and (RM · r) aM = (Rm · r) am so as expected it is then exactly true that fm = −fM . Thus,
when there is symmetry in the problem, both the mechanical momentum pm + pM and
p f ield are exactly conserved (separately). In all other situations, Newton’s third law is only
approximately true and only the total momentum P is conserved.

2.9 Coordinates in flat versus curved space

In the following sections, the GR results are frequently expressed in
Schwarzschild coordinates, whereas the RGF results are derived and presented in the simpler
Euclidean coordinates. There are difficulties in comparing flat spacetime results with those
obtained in a curved spacetime. Are experiments really conducted in a curved space or
a flat space is a key question. Results derived in an Euclidean frame are obviously not
meaningful to compare with ditto Schwarzschild results (unless the radial coordinate is
large). In order to better facilitate comparisons between RGF and GR, we shall here follow
Feynman’s suggestion to use isotropic coordinates that are those that conformally are most
similar to spatial Euclidean coordinates, see p. 157 in Feynman (1995). The usage of isotropic
coordinatesmakes the coordinate speed of light the same in all directions at a certain location.

123



25 Page 16 of 56 S. Edvardsson

A good description is provided in Vincent (2015). The isotropic metric is given by

ds2 =
(
1 − rs

4r ′
)2

(
1 + rs

4r ′
)2 c

2dt2 −
(
1 + rs

4r ′
)4 (

dx ′2 + dy′2 + dz′2
)
.

In RGF, wewill denote Euclidean final results related to the radial distance as r ′. The notation
for a GR result will be expressed as r , i.e., the Schwarzschild radial coordinate. The trans-
formation between r ′ (RGF) and r (GR) is then approximately given by (p. 157 in Feynman
(1995))

r ′ = 1

2

(
r − rs

2

)
+
√
r

4
(r − rs) (30)

where the constant rs is the Schwarzschild radius. It is seen that the RGF and GR radial
coordinates become, as expected, very close if r � rs (r ′ ∼ r − rs

2 ). However, as r and r ′
get closer to rs , the above formula is appropriate to apply. The inverse of Eq.30,

r = r ′ (1 + rs
4r ′

)2
, (31)

provides a mean to translate a RGF (r ′) result into the GR Schwarzschild coordinate (r ). In
RGF, one typically gets results expressed as

RGF = e− rs
2r ′ ∼ 1 − rs

2r ′

in the various results, whereas in GR one instead find terms like

GR =
√
1 − rs

r
∼ 1 − rs

2r
.

Since r ′ = r for large radial coordinates, it is immediately clear that these functions then
are essentially the same. However, a remarkable fact is that when r ′ is translated into the
Schwarzschild picture by using Eq. (30) one finds that the equality

e− rs
2r ′ =

√
1 − rs

r
(32)

is almost perfectly true over the whole range r ∈ [rs,∞]. This is the type of comparison
that will occur frequently in the following sections and we will know that the agreement
between GR and RGF is in fact very close. A large r and r ′ is not required as the below
Taylor expansion suggests. There is therefore an expected agreement even into the strong

field regime. In Fig. 1 we plot
√
1 − rs

r /e− rs
2r ′ and

√
1 − rs

r /e− rs
2r . Ideally both ratios should

be one. Note the dramatic improvement occurring for the first ratio when it is consistently
expressed in the “same coordinate system” (i.e., the first ratio with r ′ replaced according to
Eq. (30)), see Fig. 1. To further understand this, it is convenient to take the square of the ratio.
A Taylor expansion then reveals that

1 − rs
r

= 1 − x + x2/2 − 3/16x3 + O (
x4
)

e− rs
r ′ = 1 − x + x2/2 − 3/18x3 + O (

x4
)

where x = rs/r ′. The above similarity explains why the ratio is close to one over such a wide
range (as also shown in Fig. 1).
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Fig. 1 The strong field regime.
Comparisons between the ratio
GR/RGF in the “same coordinate
system” (top graph). The bottom
graph shows the case where GR
is derived in one set of
coordinates (Schwarzschild) and
RGF in another set (Euclidean),
i.e., not a meaningful comparison
unless r is large
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3 Tests and examples of RGF

In the subsections below, wewill present a series of examples showing that the RGF approach
reproduces many observational facts. The results are often very close to the predictions
of general relativity. Although there are deviations from GR in the strong field regime,
those seem to a high degree be related to remaining difficulties in the different coordinate
representations (i.e., Schwarzschild coordinates versus Euclidean coordinates). RGF is valid
for all field strengths and speeds under the assumptions of the three postulates. We shall see
that RGF has the great advantage that it can solve many difficult relativistic problems quickly
and in a much less mathematically intensive way than GR. Given that the theory is linear and
has been cast in the form of relativistic gravitational forces it is straightforward to apply in
N-body calculations.

3.1 Two identical point charges

We shall first consider a simple introductory example to see how gravity transforms between
frames. Consider the two point charges in Fig. 2 that sense forces from both electromagnetic
and gravitational interactions. Such a situation has previously not been possible to reconcile
within the framework of special relativity. We will show here that in RGF the simultaneous
treatment is straightforward and provides consistent results.

The Lorentz forces acting on the top charge are in S (dynamics) and S′ (rest) given,
respectively, by

Fem = q (E + u × B)

F′
em = qE′.

The equations of motion are according to Eq. (2) given by

Fem = 1

c2
(u · Fem)u + maem = maem

F′
em = m0a′

em (33)
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aem

S (rest)

aem

Sag

Fig. 2 At t = 0 two identical point charges are moving to the right at speed u in the S-system. In the S′-
system, the charges are at rest and therefore interacting according to the laws of gravity (Newton’s law) and
electrostatics (Coulomb’s law). In S′ the physical system is setup such that the accelerations a′

em = a′
g which

is fulfilled for Gm2
0 = q2/4πε0. As the point charges are initially at rest, they will remain in rest in S′.

The task at hand is to investigate in detail the same physical system but now relative to S where dynamics is
occurring

since in S we have that u ·Fem = 0 and in S′, u′ = 0. Themagnetic field in S is (c.f. Appendix
4.5)

B = − 1

c2
E × u = − 1

c2
Eey × uex = 1

c2
Euez

so then

u × B = uex × 1

c2
Euez = −u2

c2
Eey .

Thus the Lorentz force becomes

Fem = q (E + u × B) = q

(
Eey − u2

c2
Eey

)
= qEey

(
1 − u2

c2

)

and the acceleration of the top charge in the y-direction is

aem = q

m
E

(
1 − u2

c2

)
.

In S′ the acceleration is instead given by

a′
em = q

m0
E ′.

From Eq. 2.61 in Steane (2012), a general rule is given that connect accelerations between
different frames. This rule is also listed here, see Eq. (20). In our example here u · aem = 0
so then

a′
em = γ 2

u aem (34)

which gives that

q

m0
E ′ = q

m
E = q

m0
E

√

1 − u2

c2
.
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We have thus found that

E = E ′
√
1 − u2

c2

,

where Coulomb’s law states that E ′ = q/4πε0r ′2. This agrees with the general law for
transformation of fields in electrodynamics (here the y-direction)

Ey = E ′
y + vB ′

z√
1 − v2

c2

.

In our example v = u, so the charges are stationary in S′ and this is the reason why B ′
z = 0.

Furthermore, it is seen that the electric field strength E would become very large as u → c.
However, this does not have any dramatic effect on the acceleration because

aem = q

m
E

(
1 − u2

c2

)
= q

m0

√

1 − u2

c2
E ′

√
1 − u2

c2

(
1 − u2

c2

)

= qE ′

m0

(
1 − u2

c2

)
→ 0.

With regard to gravity, we have according to Eq. (16) and the fact that u ·g = 0 the following
relation for the acceleration

ag = g + u × h.

Through an analogous calculation as above, one then finds that

ag = −gey − u2

c2
gey = −gey

(
1 + u2

c2

)
.

Thus, for the upper charge we have in S and S′, respectively, that

ag = −g

(
1 + u2

c2

)

a′
g = −g′ (35)

If we assume that the point charges initially are at rest in S′ and that |a′
em | = |a′

g| then they
will remain at rest in S′. The balancing condition for this in S′ is given by

Gm2
0 = q2

4πε0
.

The total acceleration is a′ = 0, and because of Eq. (34), i.e., a′ = γ 2
u a, it is clear that

also a = 0 (the superposition principle for 3-accelerations is valid in special relativity, see
Sect. 2.1). Thus the charges will not move relative to each other in either system. Now given
the field g′ = Gm0/r ′2 what relation should we have between g′ and g? According to Eq.
(34), a = a′ (1 − u2/c2

)
. Also we found above that ag = −g

(
1 + u2/c2

)
and a′

g = −g′ so

−g
(
1 + u2/c2

) = −g′ (1 − u2/c2
) ⇐⇒

g = g′ 1 − u2/c2

1 + u2/c2
(36)
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Again, it is interesting to see if something dramatic happens as u → c. In contrast to the
very high field strength in the electric field E as we saw above, we note that here g → 0 as
u → c. The acceleration behaves according to

ag = −g

(
1 + u2

c2

)
→ 0

since g → 0. Thus, for an extreme relativistic system (relative to S) both aem and ag would
just approach zero and the charges would continue in a rectilinear motion (as before). This
is consistent with the total acceleration a′ = γ 2

u a. If a
′
em + a′

g = 0 then also aem + ag = 0,
i.e.,

aem + ag = qE ′

m0

(
1 − u2/c2

)− g′ (1 − u2/c2
) = 0

which is valid for any speed u (including u → c). In S′ we recognize the condition for
balance

a′
em + a′

g = qE ′

m0
− g′ = 0.

Furthermore, there is a simple transformation formula for the three-force between S and S′,
see Section 4.1.1 in Steane (2012)

fy = f ′
y

√
1 − u2/c2 (37)

This is of course fulfilled for the Lorentz force, so let us instead check that it is fulfilled also
for the case of gravity. The forces in the y-direction are given by (see Eqs. (33, 35))

fy = mag = −mg

(
1 + u2

c2

)

f ′
y = m0a

′
g = −m0g

′.

The connection between g and g′ was derived in Eq. (36) so

fy = −mg

(
1 + u2

c2

)
= −mg′

(
1 − u2

c2

)

= − m0g′
√
1 − u2/c2

(
1 − u2

c2

)
= f ′

y

√
1 − u2/c2,

which indeed is consistent with Eq. (37).

3.2 Light deflection near amassive object

Let us continuewith yet another introductory example. In this case, wewill show that bending
of light in RGF is consistent with experiment and also GR. With the origin at the center of a
massive body M which is assumed to be unaffected by a light particle such as a photon, its
acceleration is according to Eq. (12)

a = c2 + u2

mc2
f − 2

mc2
(u · f) u; f = −GMm

r2
er (38)
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Table 1 Light deflection angle in milli-arcsec; r is the Schwarzschild radial coordinate

Object M Mean r (AU) RGF GR (4GM/rc2)

Sun (M�) 2.9591397·10−4 4.650467·10−3 1751.209 1751.201a

Mercury 4.9125098·10−11 1.6306382·10−5 0.0829 0.0829

Venus 7.2434956·10−10 4.0453784·10−5 0.493 0.493

Earth 8.9970652·10−10 4.2587561·10−5 0.581 0.581

Mars 9.5496058·10−11 2.2657408·10−5 0.116 0.116

Jupiter 2.8247779·10−7 4.6732617·10−4 16.635 16.635

Saturn 8.4576657·10−8 3.8925688·10−4 5.980 5.980

Uranus 1.2918994·10−8 1.6953450·10−4 2.097 2.097

Neptune 1.5240481·10−8 1.6458790·10−4 2.548 2.548

In the case of the Sun, a recent 2018 exp. reported 1751.2 mas (with 3% error) Bruns (2018)
a1751.208, Eq. (34)

Take the dot product u · a on the above acceleration and let u → c

c · a = 2

m
(c · f) − 2

m
(c · f) = 0,

so either a = 0 or a and c are orthogonal. As expected, there cannot be any acceleration
along the propagation, i.e., the speed of light is kept constant. However, in the orthogonal
direction an acceleration is allowed, so the velocity c is allowed to change (i.e., its direction).
The deflection could be studied mathematically of course and has been studied many times
before in the literature. However, only approximate results can usually be derived, e.g.,
expansions valid in the weak-field regime, etc. In order to circumvent this, one can make a
short cut and instead apply a N-body computer method that immediately can solve for u (t)
and r (t) once given an expression for the acceleration, i.e., Eq. (38). The results are then
exact to numerical accuracy. What we need, to start a N-body calculation, is to place the
central object M at the origin and the initial conditions of the photon: r (0) = (0, r) and
u (0) = (c, 0), where r is the radius of the massive body M . This radius is usually given
in the Schwarzschild coordinate r in the GR results. In order to facilitate comparisons, we
need to use Eq. (30) in RGF, i.e., apply the appropriate r (0) = (

0, r ′) as initial condition
corresponding to (0, r) in the Schwarzschild picture. Then, N-body computations are carried
out until |r (t)| > L (far away) where we record the velocity components. Then, the total
deflection angle in the usual meaning becomes

δφRGF = 2 arctan

(
uy

ux

)
.

Some relevant results in the solar system are given in Table 1. The physical data in Table 1
were obtained from Physical planet data (2021). Also see the footnote2 for the applied units.
It is seen that there are no essential differences between RGF and GR in the case of weak
fields, which is the case in the solar system.

It is therefore interesting to also study the behavior of light when the fields are much
stronger than in the solar system. One then needs a much more accurate formula for the GR

2 Units used: c=173.144632684657 AU/day, nominal Solar radius=695,700km (IAU), 1 AU
=149597870.700km (IAU), G=1.
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Table 2 Light deflection near a
object of mass M� in arcsec; r is
the Schwarzschild radial
coordinate

r/rs RGF (exact) GR (exact) GR (4GM�/rc2)

300,000 1.375104 1.375104 1.375099

30,000 13.75148 13.75143 13.75099

3000 137.5590 137.5545 137.5099

300 1380.026 1379.573 1375.099

30 14,261.58 14,213.80 13,750.99

3 219,107.0 209,333.1 137,509.9

Column 1 shows the closest distance to M�, column 2 gives exact
results from RGF N-body computations, column 3 shows exact GR
Schwarzschild results and column 4 lists approximate GR results

deflection than was applied in Table 1. The references (Gerard and Pireaux 1999; Misner
et al. 1973) provide an exact Schwarzschild treatment with regard to the light bending near
a massive object. The computation recipe goes as follows

rs = 2GM

c2

q =
√
(
1 − rs

r

)(
1 + 3rs

r

)
r; k =

√
q − r + 3rs

2q

σ0 = arcsin

{√
q − r + rs
q − r + 3rs

}

F (σ, k) =
∫ σ

0

dy
√
1 − k2 sin2 y

δφGR = 4
√
r

q

{
F
(π

2
, k
)

− F (σ0, k)
}

− π (39)

where r is the closest distance of approach to the object M . The result of this is shown in
Table 2 where several examples are provided for RGF and GR in the strong field regime. It
is seen that the GR approximation in column 4 soon breaks down. RGF and the exact GR
treatment are in excellent agreement. Tiny differences may be observed in the most extreme
situations where the distances approach the Schwarzschild radius rs . It is interesting to note
that gravitational bending of light in Table 2 is slightly stronger in RGF compared with GR as
given by Eq. (39). However, this could simply be related to remaining coordinate difficulties
as described in Sect. 2.9.

3.3 Light in a region of a uniform field

In this section, we will make further comparisons between RGF and GR. We emphasize the
difficulty that it is not feasible to make exact comparisons between a flat 4-space theory and
results derived from coordinates in curved 4-space. In general relativity, the definition of
flatness is that the Riemann tensor Ri jkl = 0. From this, it is understood that an arbitrary
coordinate transformation leaves theRiemann tensor invariant inflat space, so it is not possible
to transform from flat space to a curved space (where Ri jkl �= 0). It is well known that in
a curved space one can choose coordinates such that near a local point x , gμν (x) = ημν .
However, in the following example we are interested in the behavior in a wider range by
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applying both methods. Ultimately, the question is what exactly is measured experimentally,
and that really depends on whether the experimenter’s measurements really take place in a
flat space or in a curved space.

A well-known first-order GR solution for a horizontal light ray in a weak uniform gravi-
tational field is given by Ferraro (2003),

z (x) = − g

c2
x2. (40)

We are interested in generalizing this prediction since it facilitates comparisons between
present work, GR and experiment into a regime of stronger fields and large x , where Eq. (40)
no longer is accurate. Let us therefore derive a more accurate general relativistic prediction
for the problem of an uniform gravitational field. We will use the same notation (t, x, y, z)
as earlier, see Eq. (10), so in the case of significant curvature, comparisons between the
RGF method and GR may not be entirely meaningful. However, the comparison that really
should be made is between a theoretical model and experiment. Thus, we show both results
expressed in the same coordinate notation.

We shall now proceed from the following static metric (� � c2) for the problem at hand

ds2 = (
1 + 2�(r) c−2) c2dt2 − 1

1 + 2�(r) c−2

(
dx2 + dy2 + dz2

)
(41)

The behavior of a light ray is described by a null geodesic which can be obtained from:

gμν pμ pν = 0, pμ = gμδ

dxδ

dλ
, (42)

where λ is the length of the trajectory (affine parameter) and p is the momentum. Initially,
the ray is at x = y = z = 0 and dz/dλ = 0. For an uniform gravitational potential given by
� = gz we have that p2y = 0 and p20 = p2x for all z. From Eq. (42), one then finds that

(
1 + 2�c−2)−1

p2x − (
1 + 2�c−2) p2x − (

1 + 2�c−2)−1
(
dz

dλ

)2

= 0

Further, Eq. (42) gives that

dx

dλ
= gxx px = − (

1 + 2�c−2) px ⇒
(
dz

dλ

)2

=
(
dz

dx

)2 (
1 + 2�c−2)2 p2x

so

(
1 + 2�c−2)−1 − (

1 + 2�c−2)− (
1 + 2�c−2)

(
dz

dx

)2

= 0

which can be written
(
dz

dx

)2

= (1 − α|z|)−2 − 1 (43)

where α = 2g/c2. By dropping α2|z|2 terms, one finds
(
dz

dx

)2

≈ 2α|z|
1 − 2α|z| (44)

Similarly, we find from Eq. (10) and after expansion that
(
dz

dx

)2

=
(
uz
ux

)2

= 1 − e−2α|z|

e−2α|z| ≈ 2α|z|
1 − 2α|z| (45)
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Thus, under the assumption of a nearly flat space and a small α|z| we have that both methods
must yield nearly the same result.

3.4 Gravitational redshift

A photon is emitted in the radial direction from within a spherically symmetric gravitational
field. How will this affect its energy? According to the Planck energy relation for a photon,
its energy is given by E = hν. The change in the work dW can by definition then be written
as

dW = Pdt = dE

dt
dt = h

dν

dt
dt = hdν,

where P is the power. We have also from the definition of work that

dW = (f − q) · dr = f · dr = − f dr = −GMm

r2
dr = −GMmu

ur2
dr

since −q · dr = −q · udt = 0, see Eq. (14). In RGF, m is the relativistic mass and the linear
momentum is defined by p = mu (in 1-D). For a photon, the linear momentum is replaced
by p = h/λ = hν/c and its speed is constant u = c. We then have that

dW = −GMp

cr2
dr = −GMhν

c2r2
dr

What we have found is thus

hdν = −GMhν

c2r2
dr (46)

Given the usage of a single inertial frame, the frequency ν of the photon is interpreted as
continuously changing as it moves through the gravitational field. The cumulative effect is
accounted for by integrating

∫ ν2

ν1

1

ν
dν = −GM

c2

∫ r2

r1

1

r2
dr

so

ln
ν2

ν1
= −GM

c2

(
− 1

r2
+ 1

r1

)
(47)

By letting r2 → ∞ and by renaming the variables: ν1 → νe, ν2 → ν∞ and r1 → r ′
e we find

that the frequency far away (ν∞) declines from the emitting source (νe) located at r ′
e as

ν∞ = νe e
− GM

c2r ′e (48)

An analogous calculation for the wavelength leads to

λ∞ = λe e
GM
c2r ′e (49)

so clearly c∞ = ν∞λ∞ = νeλe = ce, i.e., the speed of light is the same everywhere in
RGF (as it must be within special relativity). Further, Eq. (48) can be compared with the GR
(Schwarzschild metric) prediction (Gravitational redshift 2021)

ν∞ = νe

√

1 − 2GM

c2re
(50)

123



Relativistic gravitational force Page 25 of 56 25

Although these expressions look different, they are the same (Sect. 2.9). For example, at the
surface of the Sun ν∞ (GR) /ν∞ (RGF) = 1. Further, the white dwarf Sirius B is expected
to have about the same mass as the Sun (M ≈ M�) but a radius of only 0.0084r�, so
ν∞ (GR) /ν∞ (RGF) = 0.999999999998. Even then, the difference between the two exact
expressions would most probably be undetectable. The closest approach of the star S2 to
the black hole SgrA* (M = 4.3 · 106M� (Gillessen 2009)) at about r = 120 AU was
studied in 2018 w.r.t. redshift (Do 2019). Also in this case the difference is insignificant:
ν∞ (GR) /ν∞ (RGF) = 0.999999999996. It can be concluded that the RGF prediction is
so close to GR, even in quite extreme situations, so it is probably not even meaningful to try
to separate the methods observationally.

3.5 Accelerated frame and the equivalence principle

In RGF, it is interesting to check what the results of a photon experiment would be in an
accelerated frame S. The behavior of such a thought experiment is in the literature sometimes
seen to be derived from the perspective of an external inertial frame. However, if the light
experiment is conducted entirely within an accelerated frame, it is in this lab frame that all
measurements are taken and should be related to. Formally, in special relativity, an accelerated
frame can be dealt with by using a Fermi–Walker tetrad that is extended to a local frame S of
the accelerated observer, see p. 172 (Misner et al. 1973). The metric for a uniformly properly
accelerated frame S (Rindler metric) is then given by

ds2 = −
(
1 + a′

c2
z

)2

c2dt2 + dz2,

where a′ is the proper acceleration relative to a rest frame S’ coinciding with S momentarily
and z is the position of the emitted photon within the accelerated frame S. Note that a′ is
a constant in the Rindler metric. In the accelerated frame, the observer is assumed to be at
z = 0 so the emitter is at z = −h. Next, we assume that the proper acceleration at z = 0 is
given by the constant

a′
O = GM

r2e
.

This is the correct proper acceleration at the observer position O . From the Rindler metric,
one can see that

dτ

dt
= 1 + a′

O

c2
z.

This results in the well-known fact that different points have different proper accelerations

a′
e = a′

O(
1 + a′

O
c2
z
) = a′

O(
1 − a′

O
c2
h
) .

A simple relation for the Doppler shift in an uniformly accelerated frame was derived in
Cochran (1989)

νO

νe
= a′

O

a′
e
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One thus finds that

νO = νe

(
1 − a′

O

c2
h

)
= νe

(
1 − GMh

c2r2e

)
(51)

which also is in agreement with (Formiga and Romero 2007). A simple re-derivation for the
case of an uniform field g = −GM/r2e ez in Sect. 3.4 yields similarly

νO = νee
− GMh

c2r2e ∼ νe

(
1 − GMh

c2r2e

)

which is close to Eq. (51) if h is small. However, due to the exponential dependence the
results are not really similar for a somewhat larger h. The Rindler metric itself is not without
limitations. As can be seen at p. 172 (Misner et al. 1973), it is not possible to generalize
the results to an extended region since the validity of the accelerated coordinates eventually
breaks down for |h| ≥ c2/a′

O . For such a h Eq. (51) predicts that νO = 0, whereas RGF
predicts that νO = νee−1. It is clear that even for a substantially smaller h, significant
differences would still occur. Because of this, there is no general equivalence between an
uniform field in RGF and the uniformly accelerated frame within special relativity. In fact, it
is known that the equivalence principle is simply inconsistent with special relativity (Schild
1960).

Perhaps, a physically more attractive derivation of Eq. (51) goes along the following lines.
By considering the accelerated metric above, one can derive the coordinate speed of light
within the accelerated frame S. For a photon ds2 = 0, so

c (z) = c

(
1 + a′

O

c2
z

)
.

The law in special relativity that the speed of light c is constant is not a requirement relative
to an accelerated frame. At the emitter we thus have that

ce = c (−h) = c

(
1 − a′

O

c2
h

)

relative to the observer at z = 0. The propagation of light becomes retarded. Viewed from
an external inertial frame, however, this would instead look like the photon speed is c but
the propagated distance is longer since the observer is accelerating upwards. The observer
should also see a redshift due to the Doppler effect. Locally near the emitter (z = −h) in the
accelerated frame an experimenter would say that the speed of light is c, while the observer
at z = 0 disagrees, and instead claims that the speed is ce. Time is slowed down and so is the
antenna/emitting process according to the observer. The relation

ce
c

= νO

νe

then leads to exactly the same frequency shift as derived in Eq. (51), namely

νO = νe

(
1 − a′

O

c2
h

)
.

It is interesting that redshifts are predicted in both an accelerated frame and in a gravitational
field by RGF. However, the physical explanations in the two cases are different (energy loss
versus retarded speed/time dilation). Not only are the physical explanations different, but as
we showed above, the actual redshifts differ substantially unless h is small. Thus, within the
RGF framework, the two situations are not equivalent.
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3.6 Escape velocity from amassive object

Here, we report the escape velocity of a test particlem in a gravitational field. In GR, using the
Schwarzschild metric, one can derive a radial escape velocity from amassive object (Vasiliev
and Fedorov 2015)

ve =
√
2GM

r
(52)

This is the escape velocity relative to a local observer fromwhere the test particlewas sent out.
However, from another observer’s perspective, far away, measuring the distance and speed
from this point of view, one would find a different result. According to the Schwarzschild
solution, the energy of the particle can be written as (Misner et al. 1973)

E = m0c
2

(

1 − v2

c2
(
1 − 2GM/rc2

)k

)− 1
2 (

1 − 2GM

rc2

) 1
2

where k = 2 is for a radial escape, and k = 1 for a tangential escape. The condition for the
escape velocity can be stated as that the energy must be the same as for an object at rest at
infinity, i.e., E = m0c2. In the radial case, one then finds

ve =
√
2GM

r
− 2

c2

(
2GM

r

)2

+ 1

c4

(
2GM

r

)3

and the tangential case leads to

ve =
√
2GM

r
− 1

c2

(
2GM

r

)2

Near the Schwarzschild radius, r = rs = 2GM/c2, the speed is given by ve = 0 (in both
cases) from the distant observer’s point of view. This peculiar behavior is due to the enormous
time dilation �t∞ occurring near rs , see Eq. (68). From a local frame, however, ve = c (see
Eq. (52) and Fig. 3).

In RGF, we consider a central mass M at rest and a test particle m << M . Then, the
change in work dW is by definition given by

dW = Pdt = dE

dt
dt = c2

dm

dt
dt = c2dm,

where P is the power and E = mc2. We have also from the definition of work that

dW = (f − q) · dr = f · dr = − f dr = −GMm

r2
dr

since −q · dr = −q · udt = 0, see Eq. (14). We thus have that

c2dm = −GMm

r2
dr

Integration leads to

c2 ln
m2

m1
= −GM

(
− 1

r2
+ 1

r1

)
(53)
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Fig. 3 Comparisons between RGF and GR. An object for which rs = 2GM/c2 = 1 is considered. The GR
solutions are given in the Schwarzschild radial coordinate r . The RGF(r ′) solution is displayed as a function
of the Euclidean distance r ′. Expressed in the Schwarzschild coordinate r , the RGF(r ) solution coincides with
the “GR local” solution in the figure (except at r ∼ rs but difficult to detect by eye)

As r2 → ∞ we have that m2 → m0, i.e., the rest mass. By renaming r1 → r ′, we get that
the radial or tangential escape velocity becomes

ve = c
√
1 − e−2GM/c2r ′

. (54)

Interestingly, when the RGF escape velocity is instead expressed in the Schwarzschild radial
coordinate r we find that

ve = c
√
1 − e−2GM/c2r ′ ≈

√
2GM

r

which is essentially valid over the whole range r ∈ [rs,∞], see Sect. 2.9. The result is indeed
consistent with Eq. (32). The RGF escape velocity expressed in the Schwarzschild coordinate
r thus to a large extent yields the same result as GR for a local observer, cf. Equation (52).

Let us now return to the simpler Euclidean coordinate r ′. In the case that r ′ = rs , a radial
escape is indeed possible at ve = 0.8c according to the RGF expression in Eq. (54), see Fig. 3.
Despite this, the Schwarzschild radius is still quite special in RGF. For example, a tangential
escape is not possible, even for ve → c. This is because only light can briefly display a
circular orbit around M at r ′ = rs , see the next section. As will be demonstrated there, a test
particle will experience an inward spiral toward the singularity (Fig. 4). The particle speed
near this singularity will approach u → c so in principle it could then escape according to
Eq.(54), were it not for the very presence of the singularity. As will be shown in Sect. 3.7 the
test particle will aim for a collision with the singularity.

3.7 The RGF photon ring and last orbit of matter

Section 3.6 shows that a test particle can, although with considerable difficulty, still radially
escape at r ′ = rs (Fig. 3). Apparently, r ′ = rs is not a special distance in RGF (an Euclidean
inertial frame) so redshifted light such as radio emissions would still be expected from this
region. However, we shall see below that r ′ = rs is still a quite special distance related to the
RGF photon ring. With regard to the Schwarzschild radial coordinate at r = rs , RGF still
predicts basically the same escape velocity (ve = 0.99c) as GR in the local frame (ve = c).
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We shall in the following use Euclidean coordinates (r ′) in the RGF derivations and then
translate derived results to the Schwarzschild picture (r ) to facilitate comparisons with GR
Schwarzschild results. From the context, it should be clearwhat type of coordinates is applied.

Consider a test particle in circular orbit around a heavy object M at rest. The motion can,
for example, be solved by applying Eq. (12), i.e.,

f = 2

c2 + u2
(u · f) u + c2

c2 + u2
ma.

For the test object in circular motion, we have that a = − (
u2/r ′) er ′ ; f = −er ′GMm/r ′2

and u · f = 0 which gives that

r ′ = GM
c2 + u2

c2u2
. (55)

We thus get for a photon, u = c, that there is one unique circular orbit with r ′ = 2GM/c2,
i.e., the Schwarzschild radius rs . Equation31,

r = r ′ (1 + rs
4r ′

)2
,

provides a mean to translate a RGF (r ′) result into the GR Schwarzschild coordinate (r ). We
thus find that the RGF circular radius r ′ = rs above translates into r = 25rs/16 ≈ 1.56rs
which is very close to the actual GR photon ring radius given by r = 1.5rs (Photon sphere
2021).

As in GR, the RGF photon ring is unstable. A small perturbation in the circular orbit leads
to either a inward spiral toward the singularity or an outward spiral escaping the gravitational
well altogether. We shall now show that the circular solution will be destroyed by any small
perturbation. By rearranging Eq. (12), given above, for a photon in a gravitational field we
get

a = −2GM

r ′2 er ′ + 2GM

c2r ′2 (c · er ′) c

Let us check the acceleration in the direction of er ′

ar ′ ≡ a · er ′ = −2GM

r ′2 + 2GM

c2r ′2 c
2
r ′

In polar coordinates ar ′ = r̈ ′ − c2ϕ/r ′ = r̈ ′ − (
c2 − c2r ′

)
/r ′ so

r̈ ′ = −2GM

r ′2 + 2GM

c2r ′2 c
2
r ′ + (

c2 − c2r ′
)
/r ′

The unique circular orbit of a photon can only be maintained if r̈ ′ = 0, r ′ = rs and conse-
quently cr ′ = 0. Any small perturbation could potentially destroy the circular motion. By
Taylor expansion, one can study r̈ ′ near r ′ = rs and cr ′ = 0. Alternatively, one may study a
small perturbation r ′ = cr ′�t + rs , where �t is a small timestep and vary cr ′ within [−a, a],
where a is a small constant. A plot in MATLAB is sufficient. One then finds the following
linear relationship:

r̈ ′ = λ
(
r ′ − rs

)
(56)

where λ = c2/r2s . The solution to this type of hyperbolic differential equation can be written

r ′ (t) = rs + A

2

(
e
√

λt − e−√
λt
)
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Fig. 4 N-body computation in
Euclidean coordinates.
Attempted tangential escape for a
test particle with initial velocity
ux = −0.9999998 c at the
Schwarzschild radius y/rs = 1.
Comparisons between RGF and
classical mechanics (Newton). A
central object for which
rs = 2GM/c2 = 1 is considered

where r ′ (0) = rs and ṙ ′ (0) = A
√

λ. It is seen that depending on the sign of A (i.e., sign of
cr ′ ) an inward or outward spiraling solution will initially occur when the circular photon orbit
is perturbed. It can therefore be concluded that the photon ring in RGF is indeed unstable.

Analogous spiraling behavior can also occur for test particles. In Fig. 4, we illustrate the
behavior of a test particle in a configuration very close to the RGF photon ring solution. The
orbit becomes unstable and spirals inward toward the singularity. All solutions with u < c
ends up facing a close encounter with the singularity. A relation between the speeds and
distances is easily derived from the work integral (Eq.53) and is given by

c2 − u2s
c2 − u22

= e−(1−rs/r ′
2).

Thus, as one approaches the singularity (r ′
2 → 0), the particle speed u2 → c. According

to the escape velocity given by Eq. (54), the test particle could then in principle be shot out
from the singularity to infinity (if the initial speed fulfills us ≥ c

√
1 − e−1). However, by

rearranging Eq. (12) as u2 → c we find that

a2 = 2

m
f − 2

mc2
(c · f) c (57)

By taking the dot product c · a2 on the above acceleration, we get

c · a2 = 2

m
(c · f) − 2

m
(c · f) = 0,

so either a2 = 0 or a2 and c are orthogonal. However, a2 has a component in the c-direction
(Eq. (57)), so a2 and c cannot be orthogonal unless c · f = 0. Although this is the case for a
photon at r = rs in the above example, it cannot be true for the test particle spiraling inwards.
Also the test particle approaches the speed of light in the vicinity of the singularity and then
its orbit is far from circular so the only option left is that a2 = 0 near the encounter and by
inspecting Eq. (57) we then have

2

m
f = 2

mc2
(c · f) c,

so c ‖ f . Thus the test particle will collide straight into the singularity. A photon sent out
horizontally at r ′ < rs would also show a similar spiral inwards and with an analogous fate.
On the other hand, theNewtonian solution (Fig. 4)would escape forus = c (ve = √

2GM/rs)
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but as in this case of matter, us < c, the classical test particle would eventually return and
forever remain in a periodic orbit.

The work integral shows that the following property α is conserved (Eq. (53))

α = −GM

r ′ + c2 lnm, where

lnm = lnm0 − 1

2
ln

(
1 − u2

c2

)

Since lnm0 is a constant, we can just as well drop it and study the constant of motion β

instead

β = −GM

r ′ − c2

2
ln

(
1 − u2

c2

)

In the application of an effective potential of an orbit, one can separate the kinetic energy
contributions in polar coordinates, i.e., T = Tr ′ + Tϕ . The mechanical energy is then written
as E = Tr ′ + Tϕ + V

(
r ′) = Tr ′ + Vef f

(
r ′). It thus becomes an exercise in expressing

Tϕ = Tϕ

(
r ′). Alternatively, one can insert the condition for pure circular solutions into E ,

because then Vef f
(
r ′) = Ecircular (since Tr ′ = 0). Then one can deal with the general

problem E = Tr ′ + Vef f
(
r ′) (with this effective potential). According to Eq. (55), the speed

u can be rewritten in terms of r ′ and rs for circular solutions. One finds that

1 − u2

c2
= r ′ − rs

r ′ − rs
2

. (58)

so then we identify the following effective potential

βe f f = −GM

r ′ − c2

2

{
ln
(
r ′ − rs

)− ln
(
r ′ − rs

2

)}

By analyzing dβe f f /dr ′ = 0, one then finds that

r ′ = rs + 1 ± √
5

2
rs (59)

Further analysis of the second derivative leads to the conclusion that only the positive sign
in Eq. (59) corresponds to a minimum and the negative sign is an unstable orbit. Thus the
innermost stable circular orbit of matter lies at the golden ratio away from the Schwarzschild

radius, i.e., r ′ = rs +
(
1 + √

5
)

/2 rs ≈ 2.618rs . By translating into the Schwarzschild

picture using Eq. (31), one gets r = 3.14rs which is close to the GR result r = 3rs (Misner
et al. 1973). An image of the super massive black hole (M = 6.5 · 109M�) in the elliptical
galaxy M87 was recorded by the Event Horizon Telescope in 2019 (Akiyama et al. 2019).
This image displays a circular core shadow with a radius∼ 2.6rs . Although it is nontrivial to
compute what would be observed at Earth’s position (relativistic ray-tracing etc. (Akiyama
et al. 2019)), it is an interesting prediction by RGF that the innermost stable circular orbit of
matter coincides with this observed shadow. A detailed or full image analysis is not warranted
here in the context of presenting the new RGF model. According to Eq. (58) the speed of
an unperturbed orbit in this region is given by u ≈ 0.486c. Recently, the line-of-sight speed
of highly ionized matter close to a black hole was observed at v ∼ 0.3c (Pounds 2018).
These inflow velocity measurements are lower limits, due to the assumption that the inflow
is aligned with the line-of-sight. The orbital configuration of this matter is also very difficult
to determine. For in-falling matter from far away, this speed would correspond to a region at
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Fig. 5 Euclidean coordinates.
Example of photons sent from
x = 10rs with c = −cex for
various y-values. The photons are
bent by the strong gravitational
field and in many cases collide
with the singularity. For
y ≥ 2.545rs , the light is enabled
to escape. The circular orbit seen
is for y = ±2.545rs . The photon
orbits the singularity
approximately at r = rs and then
escapes. In this particular case,
both photons are reflected back
with nearly exchanged orbits. A
central object for which
rs = 2GM/c2 = 1 has been
considered

r ′ ≈ 10rs , see Fig. 3. In a circular orbit, one would instead expect r ′ ≈ 6rs according to Eq.
(58). The actual orbit configuration could be more complex as indicated in Pounds (2018)
where several proposals are made that could be consistent with the measurements.

In Fig. 5, we present a numerical experiment of light emitted toward the singularity. The
photons are bent by the strong gravitational field and collide with the singularity unless
y′ ≥ 2.545rs . In this particular example, light is able to be reflected for y′ = ±2.545rs .
More details are given in the figure text. In order to translate this y′ = 2.545rs into the
GR Schwarzschild coordinate, one can first note that r ′ = √

102 + 2.5452 ≈ 10.318rs and
x ′ = 10rs (see Fig. 5). These are then translated by using Eq. (31) into: r = 10.824rs and
x = 10.506rs which then yields y ≈ √

r2 − x2 ≈ 2.6rs . This result agrees well with GR
since the corresponding result in GR is the critical impact parameter which is given by
y = √

27rs/2 ≈ 2.6rs (Luminet 1979).
It is quite remarkable that RGF is able to provide quantitative agreement with GR even

in the strong fields near a black hole. There are really only tiny differences between RGF
and GR, and to some extent probably just related to remaining coordinate difficulties in the
comparisons and/or that the derived results in GR usually are approximate due to the intrinsic
nonlinearity within GR (expansions to various orders or other approximations).

3.8 Relativistic precession rates of the planets

According to Edvardsson et al. (2002), the orbital precession rate φ̇ can be calculated from the
longitude of the ascending node �, the argument of perihelion ω and the orbital inclination
i

φ̇ = dω

dt
+ cos (i)

d�

dt

Rates of orbital parameters in arcseconds per century was extracted from The Astronomical
Almanac (Explanatory (1992)). However, they list ω = ω + Ω and dω/dt which modifies
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the above formula into

φ̇ = dω

dt
+ d�

dt
(cos (i) − 1) ,

which is the expression that is applied to get the observational apsidal precession rate of a
planet, see the last column of Table 3. The pure GR effect (i.e., of a two-body problem) was
obtained from Will (1993)

φ̇ = 6πG (M� + m)

a
(
1 − e2

)
c2Pb

Pb = 2π

√
a3

G (M� + m)
(60)

where the masses M� and m are listed in Table 1, a is the semimajor axis, e is the eccen-
tricity and Pb is the sidereal period of the orbit. The above predictions are expected to be
accurate even for the casem ∼ M�. The orbital parameters were extracted from JPLHorizon
ephemerides at MJD 51600.5 (Horizon ephemerides 2021). The GR result is listed in the
third column of Table 3. The corresponding RGF results (second column) were derived by
performing a quick N-body computation and compute the Runge–Lenz vector A as in ref.
(Edvardsson et al. 2002; Goldstein 1980),

A = p × L − GM�mμ

r
r (61)

where μ is the reduced mass, and p = μv and L = μr × v are the linear and angular
momentum, i.e., A is computed relative to the position of M�. This definition of the Runge–
Lenz vector is valid in general, i.e., it also applies to the case m ∼ M�. In the fourth
column, we also list the N-body results due to post-Newtonian expansion at the level 1PN
(i.e., Equation (62)). To ensure good estimates for RGF and 1PN in columns 2 and 4, an
integer number of orbital periods were studied for each planet.

Orbital elements and secular elements can easily be computed either from the barycenter
point or relative to the more massive point mass M (Danby 1964). To determine the orbital
parameter evolution, positions and velocities relative to any of those points can be computed
in an N-body run either with a central mass M3/ (m + M)2 orm+M , respectively. Here, we
have applied the (m + M)-convention. For orbital precession rates dω/dt , it does not matter
which orbital convention is applied.

The N-body method was then applied for the whole solar system (i.e., the Sun and all
planets) and computed from MJD 51600.5 and 100 yr into the future. N-body contributions
to the precession then gets automatically accounted for. Results are listed for both a pure
classical and RGF computation in columns 5–6. The Runge–Lenz precession angle φ versus
t naturally shows features from the N-body effects so in order to identify the trend a least
squares fit was applied to determine φ̇. Equivalently, one can study the argument of perihelion
ω and determine dω/dt . A comparison between columns 5–6 and observations in column 7
shows that the best agreement is seen between 6 and 7. The data in the Astronomical Almanac
(1992) are somewhat dated and may therefore not be entirely accurate. We are therefore also
listing a recent value derived from MESSENGER ranging data in column 7 (Park 2017).

General relativistic effects on the Mercury orbital elements (a, e, ω) were calculated in
ref. (Balogh and Giampieri 2002). Alternatively, one can use the Post Newtonian expansion
technique and run anN-body computation. PostNewtonian expansion is awell knownmethod
that provides an approximation to general relativity (PPN expansion 2021; Quinn et al. 1991;
Will 1993). The expected applicability is assumed to be for systems inwhichmotions are slow
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Table 3 Orbital precession rates in arcsec/cyr

Planet RGF GR 1PN Newton RGF Almanac

Mercury 42.983 42.9825 42.983 532.3 575.3 576.9, 575.31 Park (2017)

Venus 8.623 8.625 8.625 – – –

Earth-Moon 3.839 3.839 3.839 1172.6 1176.4 1198

Mars 1.351 1.351 1.351 1600.3 1601.7 1561

Jupiter 0.0633 0.0622 0.0624 – – –

Saturn 0.0136 0.0135 0.0135 – – –

Uranus 0.0024 0.0024 0.0023 – – –

Neptune 0.0008 0.0008 0.0008 – – –

The dashes (-) means no precession trend (oscillatory) in the period 1 cyr. Columns 2–4 are two-body results
and 5–6 are N-body computations made in the current work. Column 7 lists observations

compared to the speed of light and where the gravitational fields are weak (characterized by
the small parameter ε ∼ v2/c2 ∼ GM/c2r ), see the refs. (Will 1993, 2014). In astrophysics
such corrections to Newtonian dynamics were, for example, derived by Newhall et al. in
the DE102 ephemeris paper (Newhall 1983). Perhaps the easiest presentations of the post-
Newtonian expansion at the 1PN-level are provided by refs. (Hahl 2018; Blanchet 2001;
Damour and Deruelle 1985).

In terms of a two-body problem one can then write the 1PN-acceleration for particle m
as

am = −GM

r2
er

{

1 − 5
Gm

c2r
− 4

GM

c2r
− 3

2c2r
(r · uM )2 + u2m

c2
− 4

c2
um · uM + 2

u2M
c2

}

+GM

c2r3
{4r · um − 3r · uM } (um − uM ) (62)

where r = rm − rM , er = r/r and in 1PN m and M are rest masses. The corresponding
equation for aM is obtained by exchanging m ←→ M in Eq. (62). In the solar system where
m << M and uM << um , one can safely neglect several terms and by changing the notation
u = um and a = am we get

a = −GM

r2
er

{
1 − 4

GM

c2r
+ u2

c2

}
+ GM

c2r3
4 (r · u)u

We use this acceleration (and the one for point mass M) in our N-body code to compute the
GR results displayed in Fig. 6. We also present the same orbital parameters due to RGF by
applying our N-body code. In the case of the semimajor axis a and eccentricity e, it is seen
that the effect is more pronounced in GR (but there are no long-term trends). The change
in the argument of perihelion (i.e., dω/dt) is the same as φ̇ (i.e., Equation (60)) in a pure
two-body problem. In Fig. 6, we also note that ω has the same long-term trend in GR as in
RGFwhich explains the similar precession rates of the planets seen in Table 3 (columns 2–3).
Accurate observations could thus potentially discriminate between these model predictions.
However, these fine features have still not been observed which was also noted in the GR
derivations in ref. (Balogh and Giampieri 2002). This lack of data may be rectified in late
2025 with the planned arrival of the satellite BepiColombo assuming orbit around Mercury.
One of its mission objects is to measure orbit details for very precise determination of the
PPN parameters of the Mercury orbit.
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Fig. 6 Relativistic effects on
Mercury orbital parameters.
Comparisons between RGF
(present work) and GR (1PN). �
refers to the chosen zero (MJD
51600.5), e.g.,
�a = a (t) − a (0). The
displayed differences could
possibly be detected by the
Mercury Planetary Orbiter with
an arrival at Mercury in 2025
(BepiColombo)

3.9 Reduction in the general two-particle problem

It is interesting to mathematically analyze the general two-particle problem where a satellite
mass m << M is not assumed. We must then include the effect of propagation time (see
Sect. 2.7) as this effect cannot be neglected for similar sized bodies orbiting each other.
Neglecting this effect is only justified for the case m << M as the point mass m then
finds itself in an essentially static field. Note that the two bodies here are modeled as point
masses which may be inaccurate depending on which type of binary system is considered.
For example, for a star binary further effects can contribute to the orbital precession rate such
as the internal properties of a star, its gravitational quadrupole moment and also tidal effects
(Claret and Gimenez 2010). In Appendix 4.7−4.10 we provide some ideas about extreme
effects that would only be relevant for a system such as a neutron star binary.

Relative to an inertial frame the acceleration of point mass m is given by Eq. (16)

a2 = g2 + u2 × h2 − 1

c2
(u2 · g2) u2 = g2

(

1 + u22
c2

)

− 2

c2
(u2 · g2)u2

2 ←→ 1

By investigating the retarded g2-field in Eq. (26), we find in normal celestial situations that
the radiation term can be neglected, i.e., the expression then reduces to

g2 = − GM0γu1

r3γ 3
u1ηu1

(
γ 2
u1 cos

2 θ1 + sin2 θ1
)3/2 r,

where r = r2 (t) − r1 (t) and cos2 θ1 = (r · u1)2 / (ru1)2. After Taylor expansions and by
dropping terms of order 1/c4 and higher, one get

g2 ≈ −GM0

r2
er + 2GM0

r2
u21
c2

er + 3

2

GM0

r4c2
(r · u1)2 er

g1 ≈ Gm0

r2
er − 2Gm0

r2
u22
c2

er − 3

2

Gm0

r4c2
(r · u2)2 er

Let us also work in a barycentric reference system so

rG = (M0r1 + m0r2) / (M0 + m0)

uG = (M0u1 + m0u2) / (M0 + m0) .
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Initial transformations of the particle coordinates are made so that rG = uG = 0. For slow
movements the origin will remain at rest for any time t , whereas for a highly relativistic
system this may only be approximately true. The level of this approximation can easily be
checked by integrating the two top equations independently by anN-body computation. Now,
since uG = 0 we have that u1 = − (m0/M0)u2. The acceleration of particle 2 relative to
particle 1 can therefore after simplification be written

arel = a2 − a1 = −G

r2
(M0 + m0) er − Gu22

c2r2
er

m0

M0

(

−2m0 + m2
0

M0
− 2M0 + M2

0

m0

)

+ 2G

c2r3
M3

0 + m3
0

M2
0

(u2 · r)u2 + 3G

2r4c2
m0

M0
(M0 + m0) (u2 · r)2 er

Finally by using u2 = urel M0/ (M0 + m0) one gets

arel ≈ −G

r2
(M0 + m0) er − Gu2rel

c2r2
er

m0M0

(M0 + m0)
2

(

−2m0 + m2
0

M0
− 2M0 + M2

0

m0

)

+ 2G

c2r3
M3

0 + m3
0

(M0 + m0)
2 (urel · r)urel + 3G

2r4c2
m0M0

M0 + m0
(urel · r)2 er (63)

This expression with the relative velocity urel = u2 − u1 should in principle include rela-
tivistic corrections (i.e., in analogy to “relativistic addition of velocities”), i.e.,

urel = 1

1 − u1 · u2/c2
[

1

γu1
u2 −

(
1 − u1 · u2

c2
γu1

1 + γu1

)
u1

]
.

However, such an inclusion would only add corrections of order 1/c4 which is neglected
here. We tested the accuracy of Eq. (63) by performing a full N-body computation and found
that there is no significant deviation even for the case m=M.

3.10 Periastron precession formula

Our N-body computer code computes the Runge–Lenz vector in order to find out the exact
precession rate of an orbit, see Eq. (61). However, it might be of interest to identify an
approximate mathematical formula for the precession rate. In order to complete this task, it
is convenient to use the Hamilton vector h given by Hamilton (1967) (not to be confused
with the h-field in Eq. (16))

h = urel − α

L
eϕ, h = αe

L

where urel is the velocity ofm relative toM ,α = GMm,L = μr×urel ,μ = Mm/ (M + m)

is the reduced mass and e is the orbital eccentricity. The relation to the Runge–Lenz vector
A in Eq. (61) is given by

A
μ

= h × L

For a classical two-body problem, all the above vectors are conserved. In RGF, however, the
Hamilton vector h will precess. Simple vector analysis shows that the precession rate is

dφ

dt
= |h × ḣ|

h2
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where

ḣ = arel + α

L2 |L̇|eϕ + α

L
ϕ̇er

and arel is listed in Eq. (63). The angular momentum rate is determined by

L̇ = μṙ × urel + μr × u̇rel = μr × arel

= μσ

r3c2
(urel · r) r × urel = μσ

c2
ṙ ϕ̇ez

where σ is according to Eq. (63) given by

σ = 2G
M3

0 + m3
0

(M0 + m0)
2

Since L = μr2ϕ̇, one finds that

α

L2 |L̇| = α

μσ

c2
ṙ ϕ̇

μ2r4ϕ̇2 = ασ ṙ

c2r2L
α

L
ϕ̇ = α

μr2
= β

r2

where β = G (M0 + m0). Thus, we have that

ḣ = arel + ασ ṙ

c2r2L
eϕ + β

r2
er

and arel can be written according to Eq. (63) as

arel = − β

r2
er − γ

u2rel
c2r2

er + σ

c2r3
(urel · r)urel + δ

r4c2
(urel · r)2 er

where

γ = G
m0M0

(M0 + m0)
2

(

−2m0 + m2
0

M0
− 2M0 + M2

0

m0

)

δ = 3G

2

m0M0

M0 + m0
.

The final expression becomes

ḣ = −γ
u2rel
c2r2

er + σ

c2r3
(urel · r)urel + δ

r4c2
(urel · r)2 er + ασ ṙ

c2r2L
eϕ.

It is straightforward to show that

(
h × ḣ

)
z = γ u2ϕ̇

rc2
+ 2ασ ṙ2

c2r2L
− αγ u2

Lr2c2
+ δṙ2

r2c2

(α

L
− r ϕ̇

)
.

Now by inserting ṙ2 = u2−(L/rμ)2 and divide by h2 = (
α2e2

)
/L2, one gets an expression

for
(
h × ḣ

)
z /h2. After this stage, one inserts the Keplerian instantaneous speed

u2 = 2β

r
− β

a

where a is the semimajor axis. One then obtains the expression,

dφ

dt
=
(
h × ḣ

)
z

h2
= L2

α2e2

{
k1
r5

+ k2
r4

+ k3
r3

+ k4
r2

}
= L2

α2e2
g (r) ,
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where

k1 = δL3

μ3c2

k2 = 2 (γ − δ) βL

c2μ
− 2α (σ + δ/2) L

c2μ2

k3 = − (γ − δ) βL

aμc2
− 2αβγ

Lc2
+ 4α (σ + δ/2) β

Lc2

k4 = −2α (σ + δ/2) β

c2La
+ αβγ

c2La
.

We are now able to express the angle �φ as

�φ =
∫ T

0

dφ

dt
dt = L2

α2e2

∫ T

0
g (r) dt

= L2

α2e2

∫ 2π

0

g (r)

ϕ̇
dϕ = Lμ

α2e2

∫ 2π

0

k1
r3

+ k2
r2

+ k3
r

+ k4dϕ

where we have used L = μr2ϕ̇. One can now insert the Keplerian solution r =
p/ (1 + e cosϕ) and integrate to obtain

�φ = Lμ2π

α2e2 p2

(
k1
p

+ k1
p

3

2
e2 + k2 + e2

2
k2 + k3 p + k4 p

2
)

By using the relations L2 = pμα and p = a
(
1 − e2

)
, we find several simplifications finally

leading to

�φ = 2π

a
(
1 − e2

)
c2

(γ + σ) (64)

The mean precession rate is given by

dφ

dt
= �φ

Pb
, Pb = 2π

√
a3

G (M0 + m0)

where Pb is the classical orbital period of the two-body problem. The mass parameter can be
simplified to

(γ + σ)RGF = 3G
(M0 − m0)

2

M0 + m0
+ G

m0M0

M0 + m0
.

For the case that m0 � M0, we find that

(γ + σ)RGF ≈ 3GM0,

which coincides with the general relativistic result, namely Will (1993)

(γ + σ)GR = 3G (M0 + m0) ≈ 3GM0.

This explains why RGF and GR are in perfect agreement within the solar system.
Given a binary system of similarly sized masses, RGF would normally predict a much

smaller apsidal precession thanGR.An interesting example of a similarly sized binary system
is the star systemDi Herculis where its observed precession rate is given by only 1.08”/cycle.
The theoretically expected classical effect is 2.0”/cycle and the general relativistic contri-
bution is 2.43”/cycle, thus resulting in a total of 4.43”/cycle which is much larger than the
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observed 1.08”/cycle. In 2009, Albrecht et al. suggested that a misalignment between the
spins and the normal to the orbital plane could bring experiment and theory in to better
agreement Albrecht et al. (2009). This misalignment would reduce the classical effect. How-
ever, shortly thereafter this proposal was challenged by Zimmerman et al. (2010). Tilted
axes are expected to affect orbital inclination but no such effect was observed. There should
also be small periodic oscillations in the eclipse timings but evidence of a light travel time
anomaly has not been observed Zimmerman et al. (2010). In any case, the RGFmodel would
predict 0.21”/cycle3 which could be compatible with the observation of 1.08”/cycle if one
would add a positive classical contribution of 0.87”/cycle to the pure RGF result. The clas-
sical contribution to the precession rate is due to a star’s internal properties, its gravitational
quadrupole moment and tidal effects as described in Claret and Gimenez (2010). Although
this result lends some support to the RGF model, this would need to be further studied in a
separate and more detailed study.

3.11 Gravitational time dilation

Consider Eq. (48). The result was derived in a single frame of reference, i.e., a unique time
coordinate t is associated with that frame. Despite this, the expression predicts that photons
emitted from the emitter oscillates at a faster rate within the gravitational well than what is
observed later at the far distance (see Fig. 7). Does this mean that time moves at a different
rate near the emitter compared with far away? No. The fundamental reason of the different
frequencies in RGF is due to the conservation law in Eq. (47), i.e.,

ln ν − GM

c2r
= const . (65)

This leads to the following photon energy detected at the distance r = z + re

E = Eee
− GM

c2

(
r−re
rre

)

(66)

One can imagine events emitting photon pulses Ee = hνe separated by time intervals �t by
the emitter. At the receiver photons with energy E = hν are detected, also at intervals �t
(see Fig. 7). There is no time difference in RGF and the difference in photon energy is instead
due to the required work for a photon to climb the gravitational well. It is not unthinkable
that the distant observer might make the interpretation that the experiment behaves like the
time of the electromagnetic process (oscillator) is running at a slower pace near the emitter.
However, the separation of the pulses with �t in Fig. 7 reveals that this is only an illusion.
On the other hand in the case of a continuous emission (without pulses), one could say that it
behaves like time is running slow from a distant experimenter’s perspective. If one replaces
ν∞ with 1/�t∞ and νe with 1/�te in Eq. (48), one gets for such an interpretation the RGF
analogy to gravitational time dilation

�te = �t∞e
− GM

c2r ′ (67)

In RGF, this is purely an observational effect which is more correctly described by the
lost photon energy than gravitational time dilation. However, with regard to what actually is
observed in such an experiment, both RGF and GR come precisely to the same conclusion.

3 M = 5.15M�, m = 4.52M�, Pb = 10.55 days, e = 0.489,a = 0.201 AU.
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Fig. 7 Three point-like photons
are sent out vertically at time
intervals �t from the emitter at
z = 0. The photon frequency at
the emitter is fixed at νe . They are
then climbing vertically in the
gravitational field
g = −GM/ (re + z)2 ez . At
z = h the photons are
successively detected at the very
same interval �t but now with a
lower frequency ν < νe

The GR prediction is namely given by Gravitational time dilation (2021)

�te = �t∞
√

1 − 2GM

c2r
. (68)

As pointed out in Sect. 2.9, there is no detectable difference between the above expressions.
Also, note that the GR result in Eq. (68) is equivalent to the GR redshift in Eq. (50) so the
underlying redshift explanation inGR is entirely due to gravitational time dilation. Therefore,
in contrast to the RGF physics, as soon as the photon has left the emitter, GR tells us there
is no further change in its frequency as it is climbing toward the observer. However, imagine
two equivalent photons emitted. Photon 1 is onlymeasured at the far distance whereas photon
2 is detected at say half the distance. It would then be found that photon 2 is redshifted and
therefore photon 1 is also redshifted since they are equivalent. This argument indicates that
photon 1 is indeed behaving according to the philosophy of RGF, i.e., gradually shifting its
frequency as it climbs toward the observer. We conclude that within the RGF model, true
gravitational time dilation does not exist. However, we will provide a brief discussion about
this lack in the last section of the Conclusions and a possible direction for a future work.

Conclusions

It has been demonstrated that special relativistic gravitation can be cast in a form which
agrees well with several observations. RGF does not only reproduce some standard tests in
the weak field regime, but also several tests in the strong field regime—light bending in the
strong regime in Sect. 3.2, escape velocity (strong and weak regime) in Sect. 3.6 (Fig. 3: top
curve is a perfect match between RGF and GR) and particularly Sect. 3.7 where even several
highly relativistic orbital details close to a black hole was verified. This is unexpected, and to
our knowledge is RGF unique to be able to provide almost quantitatively exact GR answers
in both the weak and the strong field regime. RGF in itself is in principle valid for any field
strength or speed, i.e., its starting point is not GRwith some successive approximations (weak
regime and moderate speeds). There are of course always small differences between RGF
and GR, but sufficiently small that direct observations in celestial mechanics cannot easily
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separate these model predictions. Even though GR is a more complete model, RGF is by far,
an improvement to Newtonian classical mechanics (and nearly as simple). An advantage of
RGF is that it is very practical to deal with N-body calculations whereas it is difficult in the
nonlinear tensorial GR theory.

Since RGF is a linear model expressed in flat Minkowski space, it is incredibly simple
to apply in many relativistic celestial mechanics setups. For the same reason, it could be
straightforward to quantize the theory. A theory of quantum gravity could reveal phenomena
that may, or may not already be well known by today’s experiments/observations. As is well
known, a consistent theory of quantum gravity does not yet exist. It has proved extremely
difficult to derive this by using GR (and its curved Riemann space) as the starting point. A
successful translation of RGF into the quantum regime could therefore be very interesting.
Perhaps, a revival of the ideas by Bronstein, who suggested a change of the quantization rules
for the special case of gravity, would be a reasonable starting point (Bronstein 2012)?

Finally, we are well aware of that although gravitational redshift is predicted well, a grav-
itational time dilation is not. In a future work it would therefore be interesting to investigate
if gravitational time dilation perhaps could be modeled by a consistent VSL theory (vari-
able speed of light depending on gravitational potential) instead of curved space as in GR.
In a quantum theory of gravity, it could turn out that photons can interact with gravitons
and effectively display a VSL behavior, i.e., in a similar way as in quantum optics/quantum
electrodynamics, where photons interact with electrons in matter (oscillator strengths) which
is the true origin of the refraction index n, where the effective speed of light then varies
according to c = c0/n. Such an effect could therefore possibly slow down the frequency of
an atomic clock (ν = c/λ) or explain various phenomena such as the Shapiro delay.

4 Appendix

4.1 Generality of the constant �/ˇ

In the photon experiment performed in a homogeneous gravitational field (see Sect. 2 and
Eqs. (9, 10), our findings suggested that τ (u) /β (u) = 2/c2. Let us check if this constant
ratio can be valid for a more general setup, i.e., for an inhomogeneous field g. According to
Eq. (8), the general expression is given by

f = τ (u) (u · f) u + β (u)ma (69)

Let us make the dot product with the velocity u on both sides of the above equation so

τ (u)

β (u)
u2 = 1

β (u)
− m

u · a
u · f .

Sect. 2 shows that we must require that

u · a = c2 − u2

mc2
u · f,

so we can identify the simplification

τ (u)

β (u)
u2 = 1

β (u)
− c2 − u2

c2
(70)
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The dimension of τ (u) /β (u) is clearly speed−2 so the simplest appropriate ansatz is

τ (u)

β (u)
= a

c2
,

where a is a constant. As u → 0 we require that β (u) → 1 in order for the above general
force law (Eq. (69)) to approach Newton’s second law. It can be seen that the constant ansatz
is compatible with Eq. (70) for this case. As u → c we must invoke the second postulate
in Sect. 2. The initial acceleration a0 refers to any situation when u ⊥ g, and f = mg so
according to Eq. (69) then f = β (c)ma0. Thus, we have that

β (c) a0 = g,

and the second postulate tells us that a0 = 2g so β (c) = 1/2. Equation (70) then reads for
this case

a

c2
c2 = 2,

so a = 2. We have thus seen that a constant ansatz, τ/β = 2/c2, is consistent with the
general formula Eq. (70) which is valid for any speed u and field g. One may now use Eq.
(70) to solve for β (u)

2

c2
u2 = 1

β (u)
− c2 − u2

c2
⇔

1

β (u)
= c2 − u2 + 2u2

c2
= c2 + u2

c2

τ (u)

β (u)
= 2

c2
⇔ τ (u) = 2

c2
c2

c2 + u2
= 2

c2 + u2
.

4.2 Point mass in a homogeneous gravitational field

The change in work dW is by definition given by

dW = Pdt = dE

dt
dt = c2

dm

dt
dt = c2dm,

where P is the power and E = mc2. We have also from the definition of work that

dW = f · dr = −mgdz

In other words

−gdz = c2
1

m
dm

After integration, it is found that

c2 lnm + gz = const

which can be expressed as

2g

c2
z − ln

(
1 − u2

c2

)
= const = A
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and then one finds the speed

u2 = u2x + u2z = c2
(
1 − e

− 2g
c2

|z|
e−A

)

For a point mass falling along the z-axis, ux = 0, and given an initial condition that uz = 0
at z = 0 one get that e−A = 1, so

u2z = c2
(
1 − e

− 2g
c2

|z|
)

and the acceleration is given by

az = uz
duz
dz

= −ge
− 2g

c2
|z|

so for a point mass the acceleration is initially −g as expected from Newtonian mechanics,
but later on it will eventually decline as the speed becomes relativistic.

On the other hand, if the point mass initially has a horizontal component ux = u0 at z = 0
(and uz = 0 as before), the initial condition becomes

e−A = 1 − u20
c2

so in this case

u2x + u2z = c2 − (
c2 − u20

)
e
− 2g

c2
|z| (71)

By applying Eq. (12) in the x-direction, one finds that

ux = u0e
− 2g

c2
|z|

.

One then inserts this result in Eq. (71)

u2z = c2
(
1 − e

− 2g
c2

|z|
)

+ u20e
− 2g

c2
|z|
(
1 − e

− 2g
c2

|z|
)

.

A Taylor expansion reveals that

u2z ≈ 2g|z|
(

1 + u20
c2

)

which can be compared with the Newtonian result u2z = 2 g|z|. The acceleration is given by

az = uz
duz
dz

= −ge
− 2g

c2
|z| − g

u20
c2

e
− 2g

c2
|z|
(
2e− 2g

c2
|z| − 1

)

so the initial acceleration becomes (z = 0)

az = −g

(

1 + u20
c2

)

.
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4.3 The gravitational force f at large scales

Under normal circumstances, it is assumed that the law of gravitation for a bodym interacting
with a central body M is given by (c.f. Equation (12))

f = −GMm

r2
er .

This law is experimentally known to be accurate in almost all cases (if M is static there is no
retardation effect, see Sect. 2.7). A possible exception iswithin the regimewhere the distances
between interacting bodies are very large. In problems dealing with galactic rotation curves
or globular clusters, one will then have to include dark matter in the model or alternatively
model modified dynamics through MOND (Milgrom 1983). In MOND, this is interpreted as
the regime of very small accelerations (a � a0). The critical acceleration a0 was estimated
as 1.2 · 10−10 m/s2 by MOND (2021). Verlinde applies a0 = cH0 ≈ 7 · 10−10 m/s2 in his
estimate of the weak regime (Verlinde 2017). MOND was developed to provide an ad hoc
explanation to the observed flat rotational curves of spiral galaxies and it also predicts the
empirical Tully–Fisher relation (Tully and Fisher 1977). On top of that, a study of relative
velocities in wide star binaries displays MOND type of behavior in the a � a0 regime
(Hernandez et al. 2012a, b). Recent studies of galaxy/star clusters lend further support to
MOND (Chae 2020; Kroupa 2022). A comprehensive review of the subject is provided
in Famaey and McGaugh (2012). MOND (or rather a relativistic version of it) is seen by
some scientists as an alternative to the dark matter hypothesis. Some kind of MOND model
may not be unreasonable because dark matter has still not directly been observed. However,
a problem with the standard MOND formulation is that it is a classical model so well-
established relativistic effects are ignored. Another problem is that there is no clear physical
mechanism behind MOND. In the case of the standard MOND formulation, we have that

f = − GMm

μ
(

a
a0

)
r2

er , μ

(
a

a0

)
=
(
1 +

(a0
a

)2)−1/2

(72)

Here, we have listed the standard interpolating function μ (a/a0). Thus, in the solar system
we get that

f = −GMm

r2

(
1 +

(a0
a

)2)1/2

er ≈ −GMm

r2

(
1 + 1

2

(a0
a

)2)
er

The acceleration is approximately given by a = GM/r2 in the Solar system because a � a0.
We tested quickly if this force correction (besides relativity) could affect the Mercury orbital
precession in any meaningful way (cf. Section3.8). The answer is absolutely not. The ratio
a0/a is by far too tiny to be observedwithin the solar system.Only at distances r ∼ √

GM/a0
can this term become significant. Normally this would be at the galactic scale for a galaxy,
but for the Sun, it corresponds to a distance of about 7000 AU. This can be compared with
the Kuiper belt which is located at 30–50 AU. As we go further out into the MOND weak
regime, i.e., a � a0, the above force transforms into

f = −GMm

r2

(
1 +

(a0
a

)2)1/2

er ≈ −GMm

r2
a0
a
er

For example, this approximation is good already for a0/a = 10 (i.e., nearly 70,000 AU from
the Sun or 1 light year away). In the case of a circular orbit, one immediately finds a flat
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rotation curve solution (speed no longer depends on the distance r ) at such a large distance

u4 = GMa0

The present work provides a possible relativistic version of MOND (by applying Eq.(72) and
Eq. (12)). Thus, both flat rotational curves and the Tully–Fisher relation are automatically
described well.

4.4 Accelerated heliocentric origin

Consider an inertial frame where the gravitational problem of two bodies 1 (M) and 2 (m) is
written

f21 = − GMm

|r2 − r1|3 (r2 − r1)

f12 = GMm

|r2 − r1|3 (r2 − r1)

According to Eq. (12), we then have

f21 = 2

c2 + u22
(u2 · f21)u2 + c2

c2 + u22
ma2

f12 = 2

c2 + u21
(u1 · f12)u1 + c2

c2 + u21
Ma1

Let us now change the notation: f = f21 and f = −f12 so

f = 2

c2 + u22
(u2 · f) u2 + c2

c2 + u22
ma2 (73)

f = 2

c2 + u21
(u1 · f) u1 − c2

c2 + u21
Ma1 ≈ −Ma1, (74)

where we assumed that particle M moves slowly (u1 << c). The relative acceleration

arel = a2 − a1 ≈ a2 + f
M

From above, we have

f21
M

= f
M

= − Gm

|r2 − r1|3 (r2 − r1) = −Gm

r2
er

with the notation r = r2 − r1. We thus have

r̈ = a2 + f
M

= a2 − Gm

r2
er

The last term is denoted a� = Gm/r2er in Eq. (17).

4.5 Similarity to Electrodynamics?

There is a resemblance with the Lorentz force in electrodynamics. Consider therefore the
Lorentz force acting on a point charge q2 due to the fields from another moving point charge
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q1 (i.e., an analogous two-particle problem as in Sect. 2.3)

F2 = q2 (E1 + u2 × B1) = ṗ2 (75)

The magnetic field from the moving point charge q1 can be written (see p. 440 in Griffiths
(1999))

B1 = − 1

c2
E1 × u1

If the situation is reversed one instead would have

F1 = q1 (E2 + u1 × B2) = ṗ1

B2 = − 1

c2
E2 × u2

The magnetic Lorentz force qiui × B j is in either case explicitly dependent on both u1 and
u2. This is not the case for the u × h-term in Eq. (16) where the corresponding velocities
depends on the particle’s eigenvelocity u only. Let us write a force “F2” in RGF to be explicit
about this and directly compare with Eq. (75)

F2 = m2 (g1 + u2 × h12) = ṗ2

h12 = 1

c2
g1 × u2

Note the difference between B1 and h12 where B1 depends only on what particle “1” is
doing (inducing a magnetic field that acts on particle “2”). The h12-term tells a completely
different story. There is only a g1-field from particle “1” and the strength depends on how fast
particle “2” is passing through this field. The h12-term thus depends on both the particles.
Therefore, the h12-term is not analogous to a “gravitomagnetic field” due to particle “1” (M),
see (Gravitoelectromagnetism 2021). The effect is present even for an entirely static body
M . The u× h-term in Eq. (16) represents a relativistic correction for which its origin is only
a consequence of the postulates stated in top of Sect. 2.

4.6 The principle of relativity

Consider the expression given by Eq. (16)

F = g + u × h

We are interested to see if the 3-vector F can be used to form a proper 4-vector. Consider the
following candidate 4-vector

F = γu

(
F · u
c

,F
)

and also the standard 4-velocity (Steane 2012)

U = γu (c,u) .

It is obvious that F · u = g · u so

F = γu

(g · u
c

, g + u × h
)
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If the vector F can be expressed in terms of a covariant tensor and the 4-velocity U, then it
is clear that F itself is a proper 4-vector. The following antisymmetric tensor is given in the
metric convention η = (−1, 1, 1, 1)

F =

⎡

⎢
⎢
⎣

0 gx/c gy/c gz/c
−gx/c 0 hz −hy

−gy/c −hz 0 hx
−gz/c hy −hx 0

⎤

⎥
⎥
⎦

and it turns out that F indeed can be expressed as

F = FU.

The definition of a covariant tensor in special relativity is a object that transforms according
to

(Fμν

)′ = Λα
μΛβ

νFαβ

where � is a general Lorentz matrix. This shows that the vector F is a legitimate 4-vector
which has the same form in all Lorentz transformed frames.

4.7 Field mass of a compact object

The dense structure of a compact object such as a neutron star or a white dwarf is so extreme
that the energy of the gravitational field itself needs to be taken into account. This effect results
in an additional mass component—the field mass. Here, we shall outline a simple calculation
inspired by the analogy of interaction delays in electrodynamics, see, e.g., Sections 8, 28 in
Feynman (1963) and Eq. 17.30 in Jackson (1962). In Sect. 2.5 we showed that the classical
potential energy of type U = −GmM/r is incorrect in a relativistic world. However, it is
still a good approximation for slowly moving particles. A classical derivation of the field
mass effect can thus be made as follows. The total potential energy U of a mass distribution
is given by

U = −1

2
G
∫ ∫

ρ (x1) ρ (x2)
r12

dV1dV2

A discretized particle version reads

U = −
∑

i< j

Gmim j/ri j .

Ifmim j > 0 it is clear thatU is a negative energy and clearly if Einstein’s relation, E = mc2,
is taken to be correct for any form of energy, one must conclude that the system mass
component due to the gravitational potential energyU must be negative as well. For example,
the system mass M then becomes

M =
∑

i

mi − 1

c2
∑

i< j

Gmim j/ri j .

Further, for the continuous problem one can write

U = 1

2

∫
ρ (x1) φ (x1) dV1
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where the gravitational potential is given by

φ (x1) = −G
∫

ρ (x2)
r12

dV2.

The gravitational field g is given by

g = −∇φ

and the mass density ρ can due to Gauss’s law and the superposition principle be expressed
as

ρ = − 1

4πG
∇ · g = 1

4πG
∇2φ.

The potential energy can therefore be written as

U = 1

8πG

∫
φ∇2φdV

= 1

8πG

∫
∇ · (φ∇φ) dV − 1

8πG

∫
∇φ · ∇φdV

= − 1

8πG

∫
g · g dV .

The first integral integrated over all space is zero due to Gauss’s theorem:

1

8πG

∫
∇ · (φ∇φ) dV = 1

8πG

∫
(φ∇φ) · dA

∼ 1

8πG
(φ∇φ) 4πR2 ∼ 1

R

1

R2 R
2 → 0.

Thus, classically the potential energy of the system can be calculated according to

U = − 1

8πG

∫
g · g dV

In RGF, the gravitational energy density is written

ρU = − 1

8πG

(
g · g + c2h · h)

where h is a relativistic component from Eq. (16). We have that

c2h · h = 1

c2
(g × u) · (g × u) = 1

c2
(
g2u2 − (g · u)2

)
.

This relativistic energy density can safely be neglected in most cases. The total energy
integrated over all space then becomes the same as in the classical picture

U = − 1

8πG

∫
g · g dV .

Now consider a spherical body whose radius is R. The application of Gauss’s law

M0 (r) = − 1

4πG

∫
g · dA = 1

4πG
g (r) 4πr2
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gives that the field strength g (r) = GM0 (r) /r2. If the mass density is homogeneous then
M0 (r) = M0r3/R3. Then, the field strength at an arbitrary radius r is given by

g (r) = GM0

R3 r , i f r ≤ R

g (r) = GM0

r2
, i f r > R

and the potential energy due to the internal field becomes

Uint = − 1

2G

∫ R

0
g · g r2dr = − 1

10

GM2
0

R
.

The external field energy is given by

Uext = − 1

2G

∫ ∞

R
g · g r2dr = −1

2

GM2
0

R

The total field energy thus corresponds to the field mass

M f ield = Uint +Uext

c2
= −3

5

GM2
0

Rc2
= −α

GM2
0

Rc2
, (76)

where M0 is the rest mass and 3/5 is replaced by α for a general mass distribution. In
the case of a neutron star, α > 3/5. The fact that the field mass is negative is simply a
consequence from Einstein’s energy mass equivalence and that the gravitational interaction
energy is negative. This is also in agreement with (Sebens 2022). The effective mass is given
by Mef f = M0 + M f ield and we argue in Appendix 4.8 that Mef f only affects the inertial
mass (M0 → Mef f ), while the gravitational mass remains intact (fixed at M0). In RGF, one
could say that the field mass is inertial in its character. Thus, M f ield in RGF is not a source
of any additional gravitational fields (as it would be in general relativity).

Further, the aboveMef f = M0+M f ield is of course appropriate for a nonrelativistic speed
only. The general expression should be given by: Mef f = (

M0 + M f ield
)
/
√
1 − u2/c2.

Also since M f ield < 0, one can but wonder if there is some exotic physics involved here.
However, the mass M0 + M f ield > 0 for any reasonable object. The radius would need to
become smaller than the Schwarzschild radius for a negative mass object (R < αGM0/c2).
Although the field mass effect is usually expected to be negligible it cannot be neglected
when the object size R is small and simultaneously the mass M0 is large. One such object is
the case of a neutron star (or quark star) where R ∼ 10 km and its mass is exceeding that
of the Sun. The structural parameter α depends on the assumed inner mass/energy density
structure of the spherically symmetric object. The constant α could therefore become larger
than for the above homogeneous case (α = 3/5) if the core density is much higher than the
surrounding material. Indeed, a recent study suggests that heavy neutron stars (∼ 2 M�) may
have a quark matter core which is over 40 times more dense than the surrounding hadronic
matter (Annala 2020).

4.8 Interactions with the field itself?

Here, we ask the question how the field mass is relevant for the inertial mass versus the
gravitational mass. We will show that in RGF the field mass effect is connected only to the
inertial mass. We start by assuming that there is an interaction with the gravitational field
itself and show that such an assumption in RGF would contradict experiment.
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Thus, consider the gravitational interaction acting on a test particle at a distance r due to
a central object with rest mass M0. One now need to deal with the situation that r may not
be at a infinitely large distance. This has an interesting effect on M f ield . For a nearly static
external field g from the central object, the energy density of its field is given by

ρU = − 1

8πG
g · g

and the corresponding mass density of the external field according to Einstein’s relation,
E = mc2, then becomes

ρext = − 1

8πGc2
g · g.

Gauss law for a spherical symmetrical mass density tells us that these external mass densities
from the central body build up a field mass Mext (r) that depends on the distance r to the test
particle. At this point, the external part of the g-field itself makes an additional contribution
forming the total field

gtot = g + gext = −G

r2
(M + Mext (r)) er

where M = M0 + Mint , i.e., the rest mass plus the internal field mass which was described
in the previous section. The external field mass is given by

Mext (r) = − 1

8πGc2

∫ r

R
g24πr2dr = −1

2

GM2

Rc2
+ 1

2

GM2

rc2

where R is the radius of the central object. An iterative procedure for computing Mext (r)
should now in principle be performed since the field has been updated into gtot but it is quite
clear that this effect is sufficiently small to neglect. The mass for use in a calculation then
becomes

M + Mext (r) = M0 + Mint + Mext (r)

= M0 + M f ield + 1

2

GM2

rc2
= Mef f + 1

2

GM2

rc2

The effective mass Mef f is just a constant (independent of r) so it would just be absorbed
in what we normally would call rest mass of the central object (fitting orbits, etc.). What has
been changed here is a small relativistic additional r -dependent term that can effect the fine
features of an orbit (e.g., orbital precession). A good approximation in the solar system is
that Mef f ≈ M ≈ M0 so

gtot = −G

r2
(M + Mext (r)) er

≈ −G

r2

(

M0 + 1

2

GM2
0

rc2

)

er = −GM0

r2
er − 1

2

G2M2
0

r3c2
er

and the force acting on the test particle is f = mgtot , where m is the relativistic mass. To
order 1/c2, this leads to an additional acceleration term

a f ield = −1

2

G2M2
0

r3c2
er

which in the case ofMercury would contribute an additional 3.58 arcsec/cyr to its orbital pre-
cession. However, RGF without this field effect already perfectly predicts 42.983 arcsec/cyr
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as can be seen in Table 3 of Sect. 3.8. One has to conclude that in RGF the test particle m
only interacts directly with the central object and not its gravitational field mass components.
A consistent interpretation is that the inertial mass of the central object is indeed affected
(M0 → M0 + M f ield ) while its gravitational mass is not (i.e., it remains fixed to M0). There
are no gravitational interactions between the field mass components of the central object M0

and the point mass m. Of course for the Sun, the M f ield contribution to its inertial mass is
negligible anyway but for a object such as a neutron star this effect could potentially play a
significant role for its inertial mass which would affect the dynamical evolution of a binary
system.

4.9 Self-force on a compact object

Due to gravitational propagation delays within the structure of a compact object (e.g., a
neutron star, white dwarf, etc.), one can speculate that self-forces not only could occur, but
could even be important. In analogy with relativistic electrodynamics, as a body M0 with
radius R is accelerated, a self-force due to propagation delays arise, see p. 588 in Jackson
(1962):

fsel f = −M f ielda = α
GM2

0

Rc2
a (77)

4.10 Radiation damping

Here, we consider a point mass m0 moving at nonrelativistic speeds in order to simplify
calculations. Even for a neutron star pair in close orbit it is expected that both their speeds
fulfill u << c. As the object m = m0 accelerates, positive gravitational energy waves are
emitted in various directions. The flux S, i.e., the total amount of gravitational radiation
energy that passes per unit area and unit time is easy to derive and is given by

S = c

4πG
< g2rad > .

The radiation field grad is listed in Sect. 2.7. The symbol <> denotes a time average in the
case of oscillatory motion. We here assume that Feynman’s proposed general expression for
the total radiated power is correct (see p. 124 (Feynman 1995)). An appropriate expression
for the total gravitational power emitted in circular orbit then becomes

Prad = 2

3

u2

c2
Gm2

c3
a · a − 2

3

u2

c2
Gm2

c3
d

dt
(u · a) = −2

3

u2

c2
Gm2

c3
u · ȧ

where from now on m is the rest mass. For an oscillatory motion, the second term will be
negligible since the average

〈 d
dt (u · a)〉 = 0. For a simple circular motion, the term vanishes

completely because u · a = 0. Thus, only the a · a-term is important for oscillatory motion
which agrees with the classical result in electrodynamics (Larmor formula). However, by
using Feynman’s general expression (the term with the jerk ȧ), the below derivation becomes
unusually straightforward. One can then also see that radiation is not predicted for a body
under constant acceleration a.

As positive radiative power Prad is emitted, a corresponding negative work W will be
performed on the object itself. This work of the object can therefore be written

W = 2

3

Gm2

c3

∫
u2

c2
u · ȧdt ≡

∫
frad · udt
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or
∫ (

frad − 2

3

u2

c2
Gm2

c3
ȧ
)

· udt = 0.

In order for this integral to be zero for general motion, we must require that

frad = 2

3

u2

c2
Gm2

c3
ȧ.

We thus arrive at the classical result that the component acceleration due to the emission of
gravitational radiation is approximately given by

arad = 2

3

u2

c2
Gm

c3
ȧ.

Computationally (i.e., numerical solution), this may be solved by keeping track of a (t) and
a (t − �t)due to thegravitational forces only.Then estimate ȧ (t) ≈ (a (t) − a (t − �t)) /�t ,
compute arad (t) and finally adding it to a (t). For the simple case of a circular orbit, it can
easily be derived that

ȧ = −u2

r2
u.

Thus, a test particle m initially in circular orbit about a central object M , will lose energy
which becomes manifested as an inward spiral toward the object M . This energy loss is of
course balanced by a simultaneous emission of positive gravitational radiation energy per
unit time

Prad =
∫

Sd A.

4.11 The general two-particle problem

It is of interest to see what happens if both particles m1 and m2 are allowed to move. In
Sect. 2.5, we found that if m1 (there denoted M) is held fixed, then the other mass m2 (there
denoted m) is given by

m2 = m2 (0) eGm1(−1/r(0)+1/r)/c2 ,

where at t = 0 the distance r = r (0) and the mass m2 = m2 (0). As m1 was kept fixed in
Sect. 2.5, m1 is a rest mass and m2 is a relativistic mass in the above expression. However, if
both point masses are allowed to move we will show below that then

m1 = m1 (0) eaGm2(−1/r(0)+1/r)/c2

m2 = m2 (0) ebGm1(−1/r(0)+1/r)/c2 (78)

where the constants are given by a = m2 (0) / (m1 (0) + m2 (0)) and b = m1 (0) /(m1 (0)
+ m2 (0)). In this case, both the masses m1 and m2 are relativistic masses.

According to the superposition principle, the change in the work can be written as

dW = P1dt + P2dt = c2dm1 + c2dm2,

where P is the power (cf. Section3.6). We also can write

dW = f1 · dr1 + f2 · dr2.
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As we here are neglecting propagation effects (Sect. 2.7 and 2.8), we have that f1 = −f2.
Thus, we approximately have that

dW = f1 · (dr1 − dr2) .

Now since

r (t) = r2 (t) − r1 (t) = r2 (t − dt) + dr2 − r1 (t − dt) − dr1
= r (t − dt) + dr2 − dr1.

Thus,

dr = r (t) − r (t − dt) = dr2 − dr1

so the work becomes

dW = −f1 · dr = −Gm1m2

r2
dr .

We thus have the following equation from the infinitesimal work

c2

m1m2
dm1 + c2

m1m2
dm2 = −G

r2
dr

and integration leads to

c2

m2

∫ m1

m1(0)

1

m1
dm1 + c2

m1

∫ m2

m2(0)

1

m2
dm2 = −G

∫ r

r(0)

1

r2
dr

which results in

c2

m2
ln

m1

m1 (0)
+ c2

m1
ln

m2

m2 (0)
= −G

(
−1

r
+ 1

r (0)

)
(79)

By inserting the masses from Eq. (78), we indeed see that this is a solution to Eq. (79). Also,
Eq. (79) shows that if m1 is kept fixed we get

c2

m1
ln

m2

m2 (0)
= G

(
− 1

r (0)
+ 1

r

)

which is equivalent to

m2 = m2 (0) eGm1(−1/r(0)+1/r)/c2 .

This, of course, is just the first equation given in this appendix which was derived differently
in Sect. 2.5.

Let us now multiply Eq. (79) with m1m2 so we get

m1c
2 ln

m1

m1 (0)
+ m2c

2 ln
m2

m2 (0)
= G

m1m2

r
− G

m1m2

r (0)
(80)

If one considers low velocities, a Taylor expansion reveals that for example

m1c
2 ln

m1

m1 (0)
≈ 1

2
m1u

2
1 − 1

2
m1u1 (0)2 = T1 − T1 (0) ,

where here T1 has the classical form of kinetic energy for the point mass m1. If we now also
let the relativistic masses approach their rest masses, Eq. (80) becomes

T1 − T1 (0) + T2 − T2 (0) = −U +U (0)
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This thus leads to the energy conservation law of classical mechanics

T1 + T2 +U = T1 (0) + T2 (0) +U (0) .

Although the relativistic Eq. (80) cannot be separated in the same way and form an analogous
relativistic energy, one can from Eq. (79) get

c2

m2
ln

m1

m1 (0)
+ c2

m1
ln

m2

m2 (0)
− G

r
= − G

r (0)
= const .

so given the initial conditions this equation provides information of the future dynamics in a
similar way as the conservation of energy.
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