
Celestial Mechanics and Dynamical Astronomy (2023) 135:19
https://doi.org/10.1007/s10569-023-10137-4

ORIG INAL ART ICLE

Three-body problem in modified dynamics

Hossein Shenavar1

Received: 14 May 2022 / Revised: 9 March 2023 / Accepted: 23 March 2023 /
Published online: 10 April 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
General properties of the three-body problem in a model of modified dynamics are investi-
gated. It is shown that the three-body problem in this model shares some characters with the
similar problem in Newtonian dynamics. Moreover, the planar restricted three-body problem
is solved analytically for this type of extended gravity and it is proved that under certain
conditions, which generally happen at galactic and extragalactic scales, the orbits around L4

and L5 Lagrange points are stable. Furthermore, a code is provided to compare the behavior
of orbits in the restricted three-body problem under Newtonian andmodified dynamics. Orbit
integrations based on this code show contrasting orbital behavior under the two dynamics
and specially exhibit in a qualitative way that the rate of ejections is smaller in the mod-
ified dynamics compared to Newtonian gravity. These results could help us to search for
observational signatures of extended gravities.

Keywords Three-body problem · Modified dynamics · Lagrange points · Stability
conditions

1 Introduction

The three-body problem, which is written based on Newton’s second law and Newton’s
law of universal gravitation for three particles, is arguably the oldest problem of physics
without a general analytic solution. (However, see the proposal of Sundman (1913) and
also Barrow-Green (2010).) Although some special solutions have been found under rather
specific assumptions and approximations, a general solution is still under investigation. This is
while three-body systems could be found in various scales such as the solar system (satellites,
comets, planets, etc.), binary stars, binary black holes, galaxies, etc. Valtonen and Karttunen
(2006). Even the appearance of stellar tidal tails—which for instance has been reported around
the Large and the Small Magellanic Clouds in the Gaia data (Belokurov et al. 2017)—is
interpreted as a consequence of the three-body interactions (Barrabés et al. 2017).

Admittedly, the case of galactic three-body problem, hereafter GTBP, is somehow par-
ticular among the examples of the three-body problem because the usual size of galaxies
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is quite comparable to their distance in their group. If the size of the central galaxy and its
distance to its companion are shown by l and L , respectively, the tidal force due to the com-
panion on the central object is proportional to l/L which is much larger in galaxy–galaxy
interactions compared to other systems, e.g., star–star and star–planet systems. In addition,
the mass discrepancy problem (Famaey and McGaugh 2012; Sanders 2014) shows itself
vividly at galactic scales which makes the galaxy–galaxy interactions even more interesting.
Historically, GTBP has been the source of many astrophysical challenges and controversies,
apart from the mathematical and numerical problem involved (Toomre and Toomre 1972).
Debates on whether a companion galaxy could excite the spiral wave in a disk, on the forma-
tion of galactic tails and bridges or on the question of whether the merger of galaxies is the
origin of all ellipticals, still continues. See Combes et al. (2002), chapter 7, for an excellent
review. The existence of the dark matter halo around galaxies could complicate the matter
even more.

The interaction between galaxies is usually investigated within the context of the standard
model of cosmology, also named ΛCDM model. This model aims to explain the physics of
the cosmos by including observable ingredients such as baryons and radiation, as well as two
components which are yet to be explained, i.e., cold dark matter CDM and the cosmological
constantΛ. Besides numerous successes of this model in explaining the cosmos at large scale
(Turner 2022), the search for the detection of various dark matter candidates is still ongoing
(Feng 2010; Marrodán Undagoitia and Rauch 2016), while there are some astrophysical
challenges at smaller scales. For example, one may name the missing satellite problem, the
too-big-to-fail problem, a too empty local void and the core-cusp problem (Bullock and
Boylan-Kolchin 2017). On the other hand, there are some evidence that a modification of
gravity or dynamics could solve the missing mass problem, though many issues need to be
addressed yet (Clifton et al. 2012; Famaey and McGaugh 2012).

Themain aimof thiswork is to provide a frameworkbywhichwecould compare the special
modified dynamics under consideration here with Newtonian gravity, and other extended
gravities, through careful examination of three-body systems. Particularly, we are searching
for generic differences between different gravity models as well as scales of time and size
for which one would expect to see observable effects. To do so, we will investigate the
three-body problem in a modified dynamical model. The basic idea behind the model that
we use here is to explore the possibility that the expansion of the universe might affect the
local physics. If the frame of reference is determined relative to the very distant stars, i.e.,
the average distribution of matter at cosmic scales, then one might expect that the cosmic
evolution of matter influence the local dynamics. To build such model, Shenavar (2016a);
Shenavar and Javidan (2019) impose Neumann boundary condition, instead of Dirichlet
boundary condition, on cosmological perturbation equations and derive the consequences.
We will review the properties of this model in the next section. There, we also show that the
three-body problem in thismodified dynamics (MOD) shares someof the basic characteristics
of the three-body formulation in Newtonian dynamics. Then, in Sect. 3, we will solve the
restricted three-body problem (RTBP) in MOD and derive the modified stability criterion for
L4 and L5 Lagrange points. Furthermore, we will present a simple MATHEMATICA code
to compare restricted three-body systems in Newtonian and MOD dynamics (Sect. 4). Some
general remarks and thoughts on the problem are provided in Sect. 5. The MATHEMATICA
codes related to orbit integration in this work are available on GitHub.1

1 https://github.com/Shenavar/ThreeBodyinMOD.
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2 General properties of themodel

According to the current view toward the theory of gravity, i.e., Einstein’s general relativity,
the interaction of two local point masses is independent of the cosmic matter at large scales.
However, Einstein’s theory could also contain a type of top-down causation (Ellis 2013)
throughboundary conditions. Einsteinfield equations contain ten nonlinear partial differential
equations with four constraints; thus, in fact they consist of six degrees of freedom. This set
of partial differential equations includes large classes of solutions; though, most of these
solutions are unphysical. In order to find the unique physical solution which is in accordance
with the nature of the problem, one must also prescribe a suitable boundary condition. In fact,
in case one observes contradictions between astrophysical phenomena and Einstein’s field
equations, onemight suspect the field equations as well as the prescribed boundary condition.
Wheeler (1964) had interpreted the implementation of boundary conditions on Einstein field
equations as Mach’s principle; though, there are other—sometimes conflicting—statements
of Mach’s principle too (Barbour and Pfister 1995; Bondi and Samuel 1997).

In the present work, our model presumes a connection between global and local physics
which is derived by imposing Neumann boundary condition on cosmological perturbation
equations, i.e., Taylor expansion of Einstein field equations presuming a flat Friedmann–
Lemaitre–Robertson–Walker (FLRW) spacetime disturbed by the perturbation of the local
universe (Shenavar 2016a; Shenavar and Javidan 2019). Thus, thismodelmight be considered
as a Machian model. As a result of imposing Neumann boundary condition on i, j �= i
components of the cosmological perturbation equations, i.e., ∂i∂ j (Φ − Ψ ) = 0 while Φ is
the gravitational potential andΨ is the 3-curvature perturbation, the scalar fields would differ
by a time-dependent constant: Φ − Ψ = c1(t). Here, the boundary is defined by the particle
horizon and it encompasses all the objects which are already in causal contact with the central
object under consideration, i.e., source of the local gravitational field. By implementing this
new boundary condition, a new term proportional to 2c1cH(t), c being the speed of light and
H(t) being the Hubble parameter, appears in the equation of motion of photons (Shenavar
and Javidan 2019). Since the measurement process in general relativity is defined based on
photons and freely falling particles, i.e., the method of geometrodynamic clocks introduced
by Marzke and Wheeler (1964), a modification in the equation of motion of photons would
essentially change the equation of motion of massive particles. This new term is strictly a
dynamical term, i.e., it appears on the dynamical side of the Newton’s second law. However,
since using the formalism of potential theory is more convenient, one could transfer this new
term to the gravity side of the equation of motion and derive the modified force as (Shenavar
2016b)

m
d2�r
dt2

= �F(�r)

�F(�r) = Gm
N∑

i=1

mi
�ri − �r

| �ri − �r |3 + 2c1a0m

M

N∑

i=1

mi
�ri − �r

| �ri − �r | (1)

for a system of particles. Here, �F(�r) is the force exerted on a particle with mass m which
is located at �r , due to a system of particles each with mass mi and located at �ri . Also,
M = ∑N

i=1 mi is the total mass of the system of particles, N is their total number and
a0 ≡ cH0 = 6.59 × 10−10ms−2 is the fundamental acceleration of the model. In what
follows, we use c1 = 0.065 in our calculations and codes. According to previous results, this
value seems to be an upper bound of the parameter c1 (Shenavar 2016a, b).
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In showing a dependency to a fundamental acceleration a0, the present model is similar to
MOdified Newtonian Dynamics (MOND) proposed by Milgrom which presumes a modifi-
cation in Newton’s second law at small accelerations (Milgrom 1983a,b, c). For example, the
local stability of galactic disks in both models depends on the ratio of surface density of the
disk to a critical surface density defined asΣ† = a0/G = 9.9 kgm−2 = 4.7×109 M�kpc−2

(Shenavar andGhafourian 2018). In addition, bothmodels expect baryonic Tully–Fisher rela-
tion as a galactic scaling rule; however, MOD predicts that there is another scaling relation
too (Shenavar 2021). However, the two models are distinct in their mathematical operation
because MOD is linear while MOND is nonlinear. The linearity of MOD makes analyti-
cal calculation much simpler as we will see in this work. To see this point, compare the
present results with the MONDian three-body problem, for example, in predictions for LISA
Pathfinder (Bevis et al. 2010). See also Zhao et al. (2010). It is interesting that there has
been some attempts from the beginning of MOND paradigm (Milgrom 1983a), and later on
(Milgrom 1999), to interpret MOND as a Machian model.

A particular difficulty in dealing with theories of extended gravities—all classes of modi-
fied gravities + modified dynamics (Roshan et al. 2021)—is the issue of testing these theories
and then excluding them based on precise experiments. Unfortunately, due to large error bars
in astrophysical data at large scales, it might be argued that these data are unable to def-
initely exclude a large class of extended gravities, at least at present time. Thus, we need
careful, controllable experiments (as the best option) or probes of solar system (as the next
best option) to distinguish between various extended gravities. For the former approach, see
Gundlach et al. (2007); Feng (2010); Das and Patitsas (2013) and for the latter see Iorio
(2011); Pitjeva and Pitjev (2013); Pitjev and Pitjeva (2013). Also, Penner (2020) has recently
proposed that the net gravitational fields in Sun–Jupiter and Sun–Neptune saddle regions are
smaller than 10−10ms−2, making these points suitable candidates to test extended gravities
which work below a fundamental acceleration, e.g., MOND and MOD. See also Galianni
et al. (2012).

Equation1 is the starting point of our following formulation. In the rest of this section, we
summarize some of the basic properties of the two-body and three-body problem governed
by Eq. (1). We mention that the results of the current formalism could be simply reduced
to Newtonian gravity by putting c1 = 0. Also, one could easily check the significance of
MOD’s effects in a systemby estimating the ratio of theMOD’s fifth force toNewtonian force:
2c1a0/(GM/R2), in whichM is the total mass of the system and R is its characteristic radius.
For example, one could see that in a typical globular cluster (TGC) with mass 2×105M� and
half-mass radius 3 pc, this ratio approaches ∼ 0.05 which is small but not negligible. These
estimations for a typical globular cluster are derived from Binney and Tremaine (2008), page
31. In addition, the same ratio for TGC at the tidal radius is about ∼ 3.7 which shows that
the fifth force must be included here (This effect is supposedly important in the physics of
globular clusters and specially with regard to the question: Why don’t the globular clusters
collapse?). Moreover, for a typical open cluster (TOC) with mass 300M� and half-mass
radius 2 pc the ratio reads ∼ 16 while at the tidal radius of TOC we have a ratio of ∼ 205.
These estimations show that the fifth force effects need to be carefully evaluated at these
scales. In larger scales, i.e., galactic and extragalactic scales, it is straightforward to draw
the same conclusion. In the case of three-body problem too, we define a parameter ε below
which estimates the expected effects of MOD’s fifth force. See Tables 1 and 2.

Since the additional term of MOD is a constant acceleration, i.e., a long-range interaction
term, an important question is: “towhat distance one should include the action of themasses?”
As mentioned above, the present model assumes the particle horizon Rp as the boundary of
the systems. Thus, all the objects within the particle horizon act on the central object because
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they have already been in causal contact with this mass. We split the mass distribution
within the particle horizon into two categories: the homogeneous and isotropic background
mass and the local mass distribution which is inhomogeneous and anisotropic. The MOD
effect due to the homogeneous and isotropic background mass is mostly negligible since
it is proportional to r/Rp in which r is the distance to the central mass. See “Appendix”
in Shenavar (2016b) for a proof of this statement. (Problems dealing with large structure
formation are exceptions because this factor is not negligible for them.) Regarding the local
objects, some systems are in deep Newtonian regime; thus, the MOD force is quite small
compared to the Newtonian force. A good example of this type of physics is the solar system.
In such systems, we treat the MOD force due to nearby objects, i. e. the Sun and the planets,
as a perturbative force with varying direction while the MOD force due to far away objects
(such as the Galaxy and Andromeda) would be considered as a force with fixed direction
(since the force due to these galaxies only varies very slowly with cosmic time). Therefore,
one needs to solve the problems perturbatively starting from the Newtonian solution as the
zeroth-order solution. On the other hand, in systems for which the typical acceleration is
comparable to the fundamental acceleration of a0 (such as some star clusters, galaxies and
galaxy clusters), we need to estimate or calculate the MOD force (depending on the time
interval of the problem).

The fact that ellipses in MOD precess (Shenavar 2016b), in contrast to the Newtonian
ones, is probably our best hope to test the model with the most accurate data available now.
(Indeed, these tests could put an upper bound on c1.) However, candidate objects to testMOD
needs to be carefully chosen because, until now, the model has been derived under the special
assumptions that the systems are spherical, they satisfy weak field regime and the background
metric is expanding. Although, some systems (for example some binary systems) break these
conditions fully or partially. We will review the above conditions below to realize suitable
candidates to test MOD.

For example, consider a binary star with total mass m = m1 + m2, the semimajor axis a
and the eccentricity of e. Since the system is losing energy, the two objects will move toward
each other, i.e., the size of their orbit decreases, and they eventually collapse. To compare
the effect of the cosmological expansion with the effect of emitting gravitational waves in
binary systems, one could define the dimensionless rate of change in a

H = 1

a

da

dt
= −64ηc

5a

(
Gm

ac2

)3 1 + 73
24e

2 + 37
96e

4

(
1 − e2

)7/2

as the contraction rate of the system. Here, η = m1m2/m2. See Eq. (12.84) of Poisson
and Will (2014) (page 649). In the case of Hulse–Taylor binary, this rate could be estimated
as H ≈ −5.8 × 10−17 /s. Data are derived from Weisberg and Huang (2016) for this
binary. The absolute value of this contraction rate is larger than the Hubble constant H0 ≈
70 km/s/Mpc = 2.3 × 10−18/s; however, they are quite comparable in magnitude. If the
contraction rate is found to be much larger than the Hubble constant; then, one could neglect
the expanding universe and impose the Neumann boundary condition within a new particle
horizon defined for the geometry of the binary system. This could happen in the last stages
of the inspiral of the two objects. It should be mentioned that in this case, a new Neumann
constant should be devised and the fifth forth of the system could be repulsive (depending
on the sign of the new Neumann constant).

On the other hand, in the case of wide binaries, i.e., binary stars which are hundreds or
thousands of AU apart, the magnitude of the contraction rate would be much smaller than
the Hubble constant; thus, MOD presumptions would be in the safe zone and we would be
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able to test the model. However, then the isolation of the system ( considering the long-range
behavior of the MOD’s fifth force) needs to be carefully examined. Although, the effect of
the other objects could be modeled by an external force for problems dealing with short range
of time. See Banik and Zhao (2018, 2019); Banik (2019) for tests of gravitational law using
wide binaries.

Thus, there are two regimes which need to be treated separately. Curiously, binary systems
such as Hulse–Taylor binary sit between these two regimes. Thus, they provide another inter-
esting challenge in testing models of extended gravity based on the fundamental acceleration
a0.

When the system is contracting and no longer spherical, we could still (in principle)
impose a Neumann boundary condition on the geometry of a binary system. However, then
the second theoretical challenge arises as the problem of timing (measuring time based on
geometrodynamic clocks). This is also a huge challenge which is beyond the present work.
But the essence of the problem is that we should have estimations of each term in the light’s
geodesic equation to read the time and finally find a new equation of motion for massive
particles.

However, the fact is that even in its present form, the free parameter of the model c1 could
be confined—with enough accuracy—using the post-Newtonian approximation and solar
system data. Indeed, to the second order of approximation (2PN), post-Newtonian formalism
suggests the following formula:

Δφ=2π+6π

(
GM

c2a(1 − e2)

)
+ 3π

2
(18 + e2)

(
GM

c2a(1 − e2)

)2

+ ... + 8c1a0Ca2

GM
(1 − e2)

for the azimuthal angle increase in the course of a complete radial cycle. Here, a is the
semimajor axis of the ellipse, e is the eccentricity of the orbit, M is the mass of sun and C
is the integral in Eq. (12) of Shenavar (2016b) which is dependent to e. The first three terms
could be found, for example, in Eq. (5.198) of Poisson and Will (2014) (page 275) and the
last term is reported by Shenavar (2016b). By an order-of-magnitude analysis of terms in the
above equation, the reader could easily see that the third and the last term on the right-hand
side would be quite close in the case of inner planets; thus, they provide the possibility to
confine c1. However, it should be mentioned that including the gravitational effects due to
other objects of the solar system is also necessary for a complete analysis. This matter is
beyond the scope of the present work.

2.1 Two-body orbits in MOD

Imagine a test particlem which rotates around a very heavier object with mass M at distance
r . Since the modified term in the equation of motion, i.e., the term proportional to a0, is also
a central force, the angular momentum �L of the test particle about any axis through the mass
M is constant. Knowing this, one could readily derive the modified equation of motion for
this two-body problem as

mr̈ − mr θ̇2 = −GMm

r2
− 2c1a0

m

M + m
mr θ̈ + 2mṙ θ̇ = 0 (2)
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in polar coordinates r and θ . By multiplying the second equation by r , it could be shown that
this is equivalent to the equation of conservation of angular momentum

dL

dt
= d

dt
(mr2θ̇ ) = 0. (3)

Now, we can find the angular velocity as θ̇ = L/mr2 and then put it into the first equation
of motion:

mr̈ = L2

mr3
− GMm

r2
− 2c1a0

Mm

M + m
(4)

which is equivalent to solving the equation of motion with the next effective potential energy

ψ = L2

2mr2
− GMm

r
+ 2c1a0

Mm

M + m
r (5)

See the plot of ψ in Fig. 1 of Shenavar (2016b). One of the most important consequences of
this modified term is that, under this new equation of motion the Laplace–Runge–Lens (LRL)
vector is not a constant anymore. This means that the line of apsides changes direction now
which is a crucial point in our analysis of the three-body problem. See Fig. 4. The averaged
precession rate due to the new term is derived in Shenavar (2016b). There, it has also been
reasoned that due to Bertrand’s theorem, there is no other constant of the motion in MOD
beside energy and the three elements of angular momentum vector, i.e., one constant less
than the Kepler problem.

In different regimes, this equation of motion could be solved numerically. To see this, we
suppose a test particle with negligible mass and following units (which are specially suitable
for galactic systems)

T = 1.2 × 106 years ⇒ Time unit

D = 0.5 kpc ⇒ Distance unit

M = 2 × 1010 M� ⇒ Mass unit

V = 406 km/s ⇒ Velocity unit

G = 1. D3/MT 2

a0 = 0.061 D/T 2 (6)

We solve the equations of motion numerically, presuming θ(t = 0) = 0, ṙ(t = 0) = 0.5 V
and the motion starts at a point where the total energy is half the total energy at r = 1.0D. In
this way, both Newtonian and MOD models provide two solutions with positive r . We show
only one of the Newtonian orbits, while the plots related to MOD are displayed by MOD1
andMOD2 in Fig. 1. In addition, we presume that the central object has a mass of 0.5M and
that the angular momentum per unit mass is equal to L/m = 0.4DV . Putting these together,
the derived solutions for both models are presented in Fig. 1 which shows a closed ellipse
for the Newtonian model and precessing elliptical orbits for MOD. Also, MOD orbits sweep
smaller regions compared to Newtonian orbits. See the top panel in Fig. 1. It is also worth
noting that MOD1 and MOD2 orbits are similar paths with opposite phases.

It should bementioned that if a two-body system is accelerated by other sources of gravity,
then onewould have the acceleratedKepler problemwhich shows an interesting phenomenol-
ogy Namouni and Guzzo (2007). This is especially relevant in the case of modified Kepler
problem in MOD because the fifth force of MOD is a long-range force. However, this issue
is beyond the scope of the present work.
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19 Page 8 of 53 H. Shenavar

Fig. 1 Aperiodic bounded orbits according to Newtonian and MOD models. Upper panels: The distance of
the test particle (in units of D) from the central mass is plotted as a function of time (in units of T ) within
Newtonian model as well as MOD1 and MOD2. Bottom: The corresponding orbits are shown here (The
coordinates x and y are in units of D)

2.2 General form of the equation of motion in three-body problem and their
symmetries

One of the routes to solve the three-body problem, and probably the most fruitful path yet
found, is to try to reduce the problem to the two-body problem. Here, we will show how this
is also possible in MOD model. In fact, as we see below, the method could be generalized
to any potential of the form ∝ m1m2rn , which is proportional to the two masses, but not
to potentials like Λr2. (However, see Emel’yanov et al. (2016) who solve the three-body
problem in ΛCDM model by presuming equal masses for the three galaxies.)

For a system of three objects, one can find the equations of motion as follows:

�̈r1 = −G

(
m2

�r12
r312

+ m3
�r13
r313

)
− 2c1a0

M

(
m2

�r12
r12

+ m3
�r13
r13

)

�̈r2 = −G

(
m3

�r23
r323

+ m1
�r21
r321

)
− 2c1a0

M

(
m3

�r23
r23

+ m1
�r21
r21

)

�̈r3 = −G

(
m1

�r31
r331

+ m2
�r32
r332

)
− 2c1a0

M

(
m1

�r31
r31

+ m2
�r32
r32

)
(7)
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Fig. 2 The time evolution (200 T ) of three equal mass galaxies (all three with massM) in two dimensions and
according to Newtonian andMODmodels with exactly the same initial conditions derived fromChenciner and
Montgomery (2000). The plots show that the fate of galaxies in a group could entirely change under modified
dynamics. The coordinates x and y are in units of D

in which �ri j ≡ �ri − �r j is the relative distance between particles i and j . The set of Eq. 7
consists of 18 degrees of freedom (dof); however, since the coordinates are related through
the next equation

m1 �̈r1 + m2 �̈r2 + m3 �̈r3 = 0

the dof reduces to 15. This constraint also shows that the center of mass of the system moves
with constant velocity.

In addition, one could simply show that the energy and angular momentum are conserved;
thus, the dof still reduces to 11. Furthermore, if we presume that the center of mass defines
the coordinate’s origin, dof would be 8. Moreover, when the orbits lie within a fixed plane,
dof becomes 6.

The problem would still be very difficult to solve; though, it could be tackled numerically.
For example, using the units of Eq. 6, we have solved the set of Eq. 7 for three equal masses
(= unit mass M) and an evolution time of 200 T . See Fig. 2. The initial conditions are
derived from Chenciner and Montgomery (2000) and they are the same for Newtonian and
MOD models. However, the particles under MOD and Newtonian dynamics show different
trajectories. In addition, we mention that Newtonian solution obeys scaling, i.e., three-body
solutions show the same behaviors at different scales which is due to a symmetry in their
equation of motion (see below). However, MOD three-body solutions are manifestly scale
dependent.

Another problem that we have solved numerically is the Pythagorean three-body problem
for which three particles with masses m1 = 3, m2 = 4, m3 = 5 are initially placed, with
zero velocity, at positions (1, 3), (−2, − 1) and (1, − 1) in xy plane, respectively, i.e., a
right angle triangle (Szebehely and Peters 1967). You may see the time evolution ( 100 T ) of
this problem in Fig. 3. As these two plots show, the particlem1 in the Newtonian model ejects
from the system while the other two particles form a couple. On the other hand, the three-
body system in MOD model lasts longer and there is no ejection within the time evolution
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19 Page 10 of 53 H. Shenavar

Fig. 3 The time evolution (100 T ) of Pythagorean three-body problem (Szebehely and Peters 1967) according
to Newtonian and MOD models. The coordinates x and y are in units of D

of 100 T , though the ejection occurs at about 100T . This is most probably due to the strong
attractive force of MOD (see the discussions below).

2.3 Equilateral triangle solution

This solution has been first introduced by Broucke and Lass (1973). The symmetries of the
problem would be most apparent in relative coordinates,

�s1 = �r3 − �r2
�s2 = �r1 − �r3
�s3 = �r2 − �r1 (8)

inwhich the three �si coordinates are related through �s1+�s2+�s3 = 0. This is also known as the
Lagrangian formulation of the equations of motion. Using these coordinates, the equations
of motion could readily be derived as follows:

�̈s1 = −G

(
m1 �W + M

�s1
s31

)
− 2c1a0

M

(
m1 �V + M

�s1
s1

)

�̈s2 = −G

(
m2 �W + M

�s2
s32

)
− 2c1a0

M

(
m2 �V + M

�s2
s2

)

�̈s3 = −G

(
m3 �W + M

�s3
s33

)
− 2c1a0

M

(
m3 �V + M

�s3
s3

)
(9)

in which

�W = �r12
r312

+ �r23
r323

+ �r31
r331

= −
(

�s1
s31

+ �s2
s32

+ �s3
s33

)

�V = �r12
r12

+ �r23
r23

+ �r31
r31

= −
( �s1
s1

+ �s2
s2

+ �s3
s3

)
(10)
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Fig. 4 The time evolution (300 T ) of the equilateral triangle solution for three equal mass galaxies (all three
galaxies with mass M) in two dimensions and according to Newtonian and MOD models with exactly the
same initial conditions, i.e., initial positions and velocity. The coordinates x and y are in units of D. Please
note that due to the overlap of the Newtonian orbits on the right-hand side, the trajectories of m1 and m2 are
almost indistinguishable

Nowwe could see that when �W = 0 and �V = 0, then the system of equations for �si decouples
into a set of three similar two-body equations, i.e., three modified Kepler equations of the
form introduced above. This condition happens when s1 = s2 = s3 since �s1 + �s2 + �s3 = 0.
In other words, in this solution the three particles remain at the vertices of an equilateral
triangle, however, the size and orientation of the triangle in the plane will, in general, change
in time as the particles move.

To explain the difference betweenNewtonian andMODmodels in the three-body problem,
we have built a closed, equilateral triangle solution inNewtonian dynamics and its counterpart
in Fig. 4.Again,wehave the sameunitmassesM and similar initial conditions (time evolution
= 300 T ). In this case, the Newtonian orbits are fixed while the precession of the MOD
orbits (due to LRL nonzero rate) makes the distinction between the two dynamics very clear.
Although, as it is clear from Fig.4, all three masses still stay at the vertices of an equilateral
triangle.

The equilateral triangle solution is a rather general solution of the three-body problem
because, as it might be easily seen now, any new potential energy of the general form of
∝ m1m2rn will produce a term proportional to �s1/sn−2

1 +�s2/sn−2
2 +�s3/sn−2

3 in the equations
of motion which still vanishes providing s1 = s2 = s3. In fact, here the proportionality of the
potential energy to m1m2 plays the crucial role in decoupling of the equations. See Moore
(1993) for a general discussion on these potentials. For example, we could now realize that
for a force due to the cosmological constant Λ the situation is different and the equilateral
triangle solution could not appear anymore.

2.4 Third body orbiting a binary

In some cases, the three-body problem results in the formation of a brief or permanent
binary. See Fig. 2 or the Newtonian case in Fig. 3. In this subsection, we want to investigate
a simplified version of a binary in three-body systems. Imagine that particles m1 and m2
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form a binary while the particle m3 is orbiting them at a relatively large distance, e.g., a
planet orbiting a binary star. In this situation, we use the binary’s center of mass �rb =
(m1�r1 + m2�r2) / (m1 + m2) as a reference point, and thenmeasure the position ofm3 relative
to �rb, i.e., �R = �r3 − �rb. This vector, in addition to the relative position vector of the binary,
i.e., �� = �r21, form the Jacobi system of coordinates for which we can derive

�̈� = −G

(
(m1 + m2)

��
�3 + m3

[
�r31
r331

− �r32
r332

])
− 2c1a0

M

(
(m1 + m2)

��
�

+m3

[ �r31
r31

− �r32
r32

])

�̈R = −GM

(
m1

m1 + m2

�r31
r331

+ m2

m1 + m2

�r32
r332

)
− 2c1a0

(
m1

m1 + m2

�r31
r31

+ m2

m1 + m2

�r32
r32

)

(11)

Assuming that the third body is indeed at a large distance compared to the relative distance of
the binary, i.e., if | �R| ≈ |�r13| ≈ |�r23| and | �ρ| 
 | �R|, we arrive at the next separated two-body
equations

�̈� = −G(m1 + m2)
��
�3 − 2c1a0

(m1 + m2)

M

��
�

�̈R = −GM
�R3

R3
3

− 2c1a0
�R3

R3
(12)

for which we observe that due to MOD term, the line of apsides in the orbit of the binary
changes direction. Also, the same happens for the motion of the third body with respect to
binary’s center of mass.

We have built three models consisting of a binary, each particle in the binary having a
mass of 0.1 M, and a third object with mass 0.01 M in Fig. 5. The masses are chosen
smaller compared to the previous plots because we wanted the effect of MOD term to be
more obvious, i.e., less Newtonian attraction. In plots related to MOD, the particles m1 and
m2 in the binary start their motion from the initial positions of (d, 0) and (−d, 0) and initial
velocities of (0, dω) and (0, − dω), respectively, where the angular frequency ω is equal
to

ω =
(
G(m1 + m2)

8d3
+ 2c1a0

2d

)1/2

.

The third particle, however, is located initially at (0, d3) and has an initial velocity of
(d3ω3, 0) in which

ω3 =
(
G(m1 + m2)

d33
+ 2c1a0

d3

)1/2

.

The angular frequencies in Newtonian model are derived in the same way and by putting
c1 = 0. Using this set of initial conditions, the three-body system is “almost” in dynamical
equilibrium.

To see the effect of the modified dynamics, we have derived the time evolution of the
three-body systems for different values of d3 while keeping d = 0.5 D fixed. For the upper
panels in Fig. 5, we have d3 = 4.5 D, i.e., m3 is relatively far from the binary. As a result,
the motions are ordered in this plot, at least within the time evolution of 300 T . Then, we
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Fig. 5 Upper panels: The time evolution (300 T ) of a binary system, each with mass 0.1M, and a third object
with mass 0.01 M. The initial distance of the third particle is 4.5 D on the y axis. The middle panels: The
initial distance of the third particle is decreased to 1.5 D on the y axis. Lower panels: The initial distance of
the third particle is reduced to 1.0D. The irregularity of the orbits increases from top to bottom; however, the
lower MOD panel is still bounded while Newtonian evolution shows an ejection. The coordinates x and y are
in units of D

reduce the distance of the third particle to d3 = 1.5 D and the motions within the binary
in both Newtonian and MOD becomes less regular while the motion of m3 is still relatively
ordered (150 T ). See the middle panels in Fig. 5. Surely, in this case the orbit of m3 is more
regular in MOD than Newtonian model. Finally, when we decrease the initial distance of m3

to d3 = 1.0 D, the irregularity of the orbits in MOD increases even more while we observe
an ejection within Newtonian dynamics. See the lower panels in Fig. 5. We will argue in
Sect. 4 that the increased regularity in MOD orbits, compared to Newtonian ones, is due to
the long-range nature of MOD’s fifth force.
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2.5 Different regimes of scaling

Within the Newtonian gravity, the solutions of the three-body problem (and also the N-body
problem) could be scaled freely. In fact, if r1, r2 and r3 are the solutions of the three-body
problem, then it could be proved that q2r1, q2r2 and q2r3 are also the solutions of the same
problem if the time scale is redefined as t ⇒ q3t . Here, q is a real number.

However, as Eq. (7) show, an important feature of the MOD model is that it breaks this
scaling of the Newtonian model. This happens mainly because the new terms in the equations
of motion transform differently than the Newtonian force. Also, the term due to modified
dynamics is proportional to the Hubble parameter which is itself time-dependent. Although,
in the case that the modified term dominates the equation of motion, and where the motion
is short enough that the Hubble parameter could be considered a constant, then we would
have a new regime of scaling. (This case probably rarely happens because the modified term
dominates the extragalactic scales inwhich the change inHubble parameter is not negligible.)
In this case, if r1, r2 and r3 are the solutions of the three-body problem dominated by a linear
potential, then it could be proved that qr1, qr2 and qr3 are also the solutions of the same
equations if the time scale is redefined as t ⇒ q1/2t .

The main point here is the breaking of the three-body scaling at galactic scales due to
MOD term. In other words, although all the plots on the right-hand side of Figs. 2, 3, 4, and
5 could be rescaled freely, i.e., they could happen at any scale, the same is not true for the
plots on the left (MOD plots). The MOD plots are solely true for the galactic mass, time and
size units specified above. However, when the MOD terms become negligible compared to
the Newtonian terms, the scaling is recovered again.

For systems with more particles, the scaling is still valid in Newtonian dynamics (unless
some non-gravitational forces are introduced into the problem). This might be considered as
a puzzle for Newtonian dynamics. The reason is that in Newtonian dynamics, any solution to
an N-body problem could be scaled up (or down) to build another solution at arbitrary larger
(or smaller) scales. However, we know that gravitational systems, e.g., planetary systems,
star clusters, different types of galaxies and galaxy clusters, form and behave distinctly, i.e.,
they are physically different. Thus, in Newtonian dynamics, one is left with different initial
geometries, mass distribution, various populations and non-gravitational forces within the
systems to derive the desired physics at different scales. In modified dynamics, on the other
hand, the scaling of the N-body problem is inherently broken. Therefore, systems at various
acceleration scales (or similarly, at different surface densities) are expected to act distinctly.
The exact form of the behavior, however, depends on the equation of motion of the extended
gravity under consideration and needs to be studied through careful numerical experiments.

In the following, we will solve the most practical case of the three-body problem, i.e., the
planar restricted three-body problem, in MOD.

3 Planar restricted three-body problem

Here, we consider planar RTBP and we will use the method of Desloge (1982), Chapter 62,
because Desloge’s method is general enough to be extended to the modified dynamics under
investigation here. We consider the two more massive objects in planar RTBP as m1 and m2

and the test particle as m. See Fig. 6. The two massive systems might be extended objects
such as galaxies; however, for the sake of simplicity, we consider them as point masses in
this research. In addition, we assume that the force between the objects is given by Eq. (1).
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Fig. 6 A test particle m is in the
field of two massive objects m1
and m2. In our analysis, we
employ the rotating coordinates
(x, y) instead of the fixed
coordinates (Ξ, Υ )

Ξ

Υ

x

m1

d1

m2

d2

m

y

ρ1

ρ2

Also, m1 and m2 are in circular motion around their (at rest) center of mass. Moreover, the
particle m is moving in the same plane as the other two particles. If the effect of the test
particle on m1 and m2 is neglected, as we assume here, then one could simply derive that:

Gm1m2

(d1 + d2)2
+ 2c1a0

m1m2

M
= m1d1ω

2 = m2d2ω
2 (13)

in which d1 and d2 are the distance of the massesm1 andm2 to the center, respectively, while
ω is the angular speed of the system. Furthermore, in this sectionwe haveM = m1+m2 since
we neglect the mass of m = m3. From the above equation, one could derive the following
results

m1d1 = m2d2
m2

M
= d1

d1 + d2
m1

M
= d2

d1 + d2

ω2 = G(m1 + m2)

(d1 + d2)3
+ 2c1a0

d1 + d2
(14)

which are the same as the Newtonian counterparts, except for the last equation.
As we will see in following, if we use the rotating coordinates (x, y) instead of the fixed

ones (Ξ, Υ ), then, the resulting equations of motions would be more convenient to solve. In
the rotating frame, the distances between the test particle m and the masses m1 and m2 are
given by

ρ2
1 = (x + d1)

2 + y2

ρ2
2 = (x − d2)

2 + y2 (15)

as Fig. 6 shows. Using these new coordinates, it is possible to rewrite the kinetic energy as

T = 1

2
m

(
Ξ̇2 + Υ̇ 2) = 1

2
m

(
ẋ2 + ẏ2 − 2ωẋ y + 2ωx ẏ + ω2 [

x2 + y2
])

(16)
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while the potential energy could be found as (Shenavar 2016b)

φ = −Gmm1

ρ1
− Gmm2

ρ1
+ 2c1a0

m

M
(m1ρ1 + m2ρ2) . (17)

Now it is straightforward to derive the equations ofmotion fromLagrange equation.However,
it is even more convenient to define an effective potential U instead of the potential energy
φ as follows:

U ≡ φ

m
− 1

2
ω2 (

x2 + y2 + d1d2
)

= −Gm1

ρ1
− Gm2

ρ2
+ 2c1a0

M
(m1ρ1 + m2ρ2)

− 1

2(d1 + d2)

(
GM

(d1 + d2)2
+ 2c1a0

) (
d1ρ2

2 + d2ρ2
1

d1 + d2

)
(18)

The benefit of definingU is that this potential includes all terms dependent to the coordinates
(x, y), or (ρ1, ρ2), while the terms dependent to ẋ and ẏ are separated now. Then, one could
derive the equation of motion of the test particle as follows:

ẍ − 2ω ẏ = −∂U

∂x

ÿ + 2ωẋ = −∂U

∂ y
(19)

Equations19 define a dynamical system and to understand the behavior of this set of
equations,weneed to study thepotentialU . (The situationhere is somewhatmore complicated
than the problem of a single particle in a potentialU since here we have a coupled system of
equations with the additional terms 2ωẋ and 2ω ẏ also playing roles.) The derivatives of U
with respect to the coordinates ρ1 and ρ2 could be derived as

∂U

∂ρ1
= Gm1

ρ2
1

(
1 − ρ3

1

(d1 + d2)3

)
+ 2c1a0

m1

M

(
1 − ρ1

d1 + d2

)

∂U

∂ρ2
= Gm2

ρ2
2

(
1 − ρ3

2

(d1 + d2)3

)
+ 2c1a0

m2

M

(
1 − ρ2

d1 + d2

)
(20)

fromwhichonemayobtain thefirst and secondderivatives ofU with respect to the coordinates
(x, y):

Ux = Gm1 (x + d1)

ρ3
1

+ Gm2 (x − d2)

ρ3
2

+ 2c1a0
M

(
m1

x + d1
ρ1

+ m2
x − d2

ρ2

)
− ω2x

Uy = Gm1y

ρ3
1

+ Gm2y

ρ3
2

+ 2c1a0
M

(
m1

ρ1
+ m2

ρ2

)
y − ω2y

Uxx = Gm1

(
1

ρ3
1

− 3
(x + d1)2

ρ5
1

)
+ Gm2

(
1

ρ3
2

− 3
(x − d2)2

ρ5
2

)

+ 2c1a0m1

Mρ1

(
1 − (x + d1)2

ρ2
1

)
+ 2c1a0m2

Mρ2

(
1 − (x − d2)2

ρ2
2

)

︸ ︷︷ ︸
−ω2
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Uyy = Gm1

(
1

ρ3
1

− 3
y2

ρ5
1

)
+ Gm2

(
1

ρ3
2

− 3
y2

ρ5
2

)

+2c1a0m1

Mρ1

(
1 − y2

ρ2
1

)
+ 2c1a0m2

Mρ2

(
1 − y2

ρ2
2

)
− ω2

Uxy = −3
Gm1 (x + d1) y

ρ5
1

− 3
Gm2 (x − d2) y

ρ5
2

− 2c1a0
M

(
m1

x + d1
ρ3
1

+ m2
x − d2

ρ3
2

)
y

(21)

From now on, we will show derivatives with respect to ρ1 and ρ2 using ∂/∂ρi while we will
use indices to show derivation with respect to x and y; thus, Uxy = ∂2U/∂x∂ y etc,.

3.1 Jacobian integral

By multiplying the equations of motions 19 by ẋ and ẏ, respectively, and then adding the
results, one can derive:

1

2

d

dt

(
ẋ2 + ẏ2

) + d

dt
U = 0 (22)

which clearly indicates a constant of the motion. This constant could be considered as the
energy in the rotating frame, or

1

2

(
ẋ2 + ẏ2

) +U = E (23)

though, in the literature related to dynamical astronomy, it is more common to use the Jacobi
integral C = −2E instead of E . The value of this constant could be determined based on
initial conditions, i.e., initial position and velocity, of themotion of the test particle. However,
it should be mentioned that for the sake of simplicity, here we assume that the term c1a0
is constant. This assumption is useful for our simple toy models; however, in reality it only
works when we are dealing with short periods of time (compared to 1/H0).

Since the kinetic energy 1
2

(
ẋ2 + ẏ2

)
cannot be negative, the motion of the test particle is

restricted to the region of space where the condition ẋ2 + ẏ2 = 2 (E −U ) ≥ 0 is strictly
true. This condition could be interpreted as follows: When a test particle with an energy in
the rotating frame E moves in a bounded subspace which is defined by condition E > U ,
then the particle will always remain in that region. This situation could happen when the test
particle is very close to either of the masses m1 and m2, i.e., when it is deep in the potential
well of one of the massive objects. See Fig. 7. However, when the subspace is not closed, the
test particle could eventually escape from the initial region and move to another region of
the subspace.

To see clearly what happens here, we plot the effective potentialU , in units of GM/(d1 +
d2):

U

GM/(d1 + d2)
= −1 − μ

ρ′
1

− μ

ρ′
2

+ε
[
(1 − μ)ρ′

1 + μρ′
2

] − 1

2
(1 + ε)

[
(1 − μ)ρ′ 2

1 + μρ′ 2
2

]
(24)

in which μ = m2/M , ρ′
i = ρi/(d1 + d2) is a dimensionless scale for i = 1, 2, and

ε ≡ 2c1
a0/G

M/(d1 + d2)2
(25)
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Fig. 7 The effective potential, in units of GM/(d1 + d2), for different values of the dimensionless energy in
the rotating frame E ′ ≡ E/(GM/(d1 + d2)) and the ratio ε, in the case μ = 0.3

is a parameterwhich determines the ratio of theMODacceleration compared to theNewtonian
one. We have plotted the dimensionless effective potential 24 in Fig. 7 for μ = 0.3, various
values of the dimensionless energy in the rotating frame E ′ ≡ E/(GM/(d1 + d2)) and
different values of ε.

It is quite interesting that the addition of the specific modified potential of MOD does not
change the shape of U and the reason for this is relatively easy to understand. Imagine a test
particle near the massm2 in a way that we have ρ′

2 
 1. Therefore, the termμ/ρ′
2 dominates

other terms in Eq. (24). (It even dominates the modified potential terms proportional to ε.)
In other words, in a very close distance to m2, the Newtonian potential well dominates the
dynamics. On the other hand, far from the objects, i.e., when ρ′

1  1 and ρ′
2  1, the second-

order terms related to the centrifugal force dominate both Newtonian and MOD potentials.
These are the terms of the form ∝ ρ′ 2

i in Eq. (18) and when they dominate, the test particle
would be in another potential well. Of course, the presence of the MOD term causes the
former potential well to be deeper. Thus, we see that in Fig. 7 by increasing the parameter
ε, i.e., by increasing the MOD term compared to the Newtonian term, the forbidden regions
extend. For example, for E ′ = −1.5 and ε = 1.0 we still would have a large realm of
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forbidden subspace while there is no forbidden subspace in the Newtonian gravity (ε = 0)
for this energy. However, as stated before, the figure also shows that the form of the potential
stays the same. In fact, we will prove in the next part that the number of the critical points
does not change either. We would have three saddle points (L1, L2 and L3) along the axis of
x while there are two symmetric maximum points (L4 and L5) off the x-axis.

Now, let’s check the realms of possible motion (Koon et al. 2000). Let’s designate the
energy at every Lagrange point Li as E ′

i and the energy of the test particle by E ′
p . Then, if

E ′
p < E ′

1, the test particle could not transfer between the two interior potential wells (around
m1 and m2). The existence of the MOD term, i.e., ε > 0, only makes this condition stronger
because the attractive force becomes stronger with increasing ε. See Fig. 7 with E ′ = −2.1,
for example, and various values of ε. In addition, when E ′

1 < E ′
p < E ′

2, there appears a path
between the two masses on the x-axis. Thus, the test particle could now transfer between
regions around m1 and m2; however, it could not go to the exterior region which extends to
infinity. Also, we could see that with increasing ε, the neck might close up again, i.e., the
net attractive force becomes stronger and now the test particle is confined again. Thus, it
is possible for a test particle in Newtonian gravity with a specific energy to cross the neck
between m1 and m2; however, the particle with the same energy in MODmight be incapable
of crossing between m1 and m2 regions. To see this point, in Fig. 7 compare the row with
E ′ = −1.9 and various values of ε. There is also the possibility of E ′

2 < E ′
p < E ′

3 in which
the particle could transfer between the interior and the exterior realms. Again, by increasing
ε, this possibility might close up.

Moreover, as we will prove in the following, the L4 and L5 Lagrange points happen at
ρ′
1 = ρ′

2 = 1. Thus, in these points we would have E ′
4 = E ′

5 = −3/2 + ε/2. Now, when
E ′
3 < E ′

p < E ′
4, the test particle could move through all x-axis and has access to almost

entire space, unless forbidden areas around L4 and L5. It is easy to see that by increasing
ε, the forbidden subspace around these two points grows. Finally, when E ′

p > E ′
4, the

particle has access to the entire space. Again, a particle with a specific energy could be free
to move in Newtonian dynamics but still banned from some areas in MOD (with the same
energy).

3.2 Lagrange points

The equilibrium points of the motion are the points in which the test particle remains at rest
in the rotating frame of reference. According to Eq. (19), this situation happens when ∂U

∂x = 0
and ∂U

∂ y = 0. Writing in terms of ρ1 and ρ2, one could see that these two equations are equal
to

Ux = ∂U

∂ρ1

∂ρ1

∂x
+ ∂U

∂ρ2

∂ρ2

∂x
= 0

Uy = ∂U

∂ρ1

∂ρ1

∂ y
+ ∂U

∂ρ2

∂ρ2

∂ y
= 0 (26)

This homogeneous system of equations provides two sets of solutions (in total, five distinctive
points of Li ). The first set of solutions are obtained when

det

(
∂ρ1
∂x

∂ρ2
∂x

∂ρ1
∂ y

∂ρ1
∂ y

)
�= 0; (27)
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thus, these solutions must satisfy the following equations:

∂U

∂ρ1
= ∂U

∂ρ2
= 0. (28)

Please note that the solutions to this set of equations depend on the type of the extended
gravity potential which is under consideration since it depends on U . Using Eq. (20) one
could see that there are in general nine distinct solutions for this system of equations

ρ1

d1 + d2
= ±√−4ε − 3 − 1

2(ε + 1)
,

ρ2

d1 + d2
= 1

ρ1

d1 + d2
= ±√−4ε − 3 − 1

2(ε + 1)
,

ρ2

d1 + d2
= ±√−4ε − 3 − 1

2(ε + 1)

ρ2

d1 + d2
= ±√−4ε − 3 − 1

2(ε + 1)
,

ρ1

d1 + d2
= 1

ρ1

d1 + d2
= ρ2

d1 + d2
= 1 ⇐ the only real solution. (29)

which only one of them, i.e., the last one, is real since the quantity
√−4ε − 3 is, by definition,

imaginary. This real solution arises within the context of Newtonian theory too and it could
be described as follows: if an equilateral triangle is constructed with masses m1 and m2

placed at the two vertices of the triangle, then the equilibrium point would occur at the third
vertex. The equilibrium point in the direction of positive (negative) y is named the fourth
(fifth) Lagrange point L4 (L5).

The second set of solutions arises when the determinant of coefficients in the system of
equations 26 is null:

det

(
∂ρ1
∂x

∂ρ2
∂x

∂ρ1
∂ y

∂ρ1
∂ y

)
= det

( x+d1
ρ1

x−d2
ρ2

y
ρ1

y
ρ2

)
= 0 (30)

which is true only in the case of y = 0, i.e., this set of solutions occurs on the x-axis. Please
note that this constraint is independent of the type of the extended gravity under study, i.e.,
no relation to U . According to Eq. (21), on the x-axis we have ∂U

∂ y |y=0 = 0; thus, we should

investigate the zeros of ∂U
∂x to find the extremum points:

Ux = Gm1 (x + d1)

|x + d1|3 + Gm2 (x − d2)

|x − d2|3

+ 2c1a0
M

(
m1

x + d1
|x + d1| + m2

x − d2
|x − d2|

)

︸ ︷︷ ︸
−ω2x = 0 (31)

This equation, being of third order, must have three solutions. (This might change in other
extended gravities.) To find these solutions, one could break down the x-axis into three parts,
i.e., (−∞,−d1), (−d1, d2) and (d2,+∞), and then analyze the behavior ofUx separately in
these subintervals. Before doing so, we note that the term due to modified dynamics, i.e., the
underlined term in Eq. (31), only adds a constant to Ux in each subintervals. This constant
would be of the general form of 2c1a0

M (±m1 ± m2). Also, we note that Uxx is everywhere
negative

Uxx = − 2Gm1

|x + d1|3 − 2Gm2

|x − d2|3 − ω2 (32)
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and goes to −∞ near x = −d1 and x = d2. An important observation here is the disappear-
ance of the MOD term in Uxx . In fact, it could be easily seen that any additional potential of
the form ∝ rn produces a term in Uxx of the form of (for every gravitating particle i)

U ∝ rn ⇒ Uxx ∝ ρn−2
i

(
1 + (n − 2)

(x ± di )2

ρ2
i

)

which only in the case of n = 1 is identically zero on the x axis. Thus, MOD does not change
the behavior of the Uxx on the x-axis, and similar to Newtonian gravity, Uxx in MOD is
strictly negative on y = 0 axis.

Since Uxx is negative everywhere on y = 0, it turns out that Ux is decreasing in all three
subintervals. Let’s first consider the subinterval (d2,+∞). When x → d+

2 , the function
Ux diverges to +∞ while for x → +∞, Ux goes to −∞. Thus, there must be a zero for
Ux in (d2,+∞). We will call this point the second Lagrange point L2. A similar situation
happens when we consider the other two subintervals. For example, within the subinterval
(−∞,−d1), we have Ux → +∞ when x → −∞ while the function Ux diverges to −∞
when x → −d−

1 Thus, there must be another zero forUx in (−∞,−d1). This point is called
the third Lagrange point L3 while the one within (= −d1, d2) is named L1. We will now
investigate the stability of orbits around Lagrange points.

3.3 Stability of the Lagrange points

We investigate the stability of orbits around equilibrium points by employing a perturbative
method. If the Lagrange point under consideration is located at (x0, y0), then the equation
of motion at a point (x, y) very near to the Lagrange point

x = x0 + ξ

y = y0 + η (33)

would be governed by the equation of motion 19 as follows:

ξ̈ − 2ωη̇ = −Ux (x0 + ξ, y0 + η)

η̈ + 2ωξ̇ = −Uy (x0 + ξ, y0 + η) (34)

Now, we expand the right-hand side of the above equation to first order in ξ and η as

Ux (x0 + ξ, y0 + η) = Uxx (x0, y0) ξ +Uxy (x0, y0) η

Uy (x0 + ξ, y0 + η) = Uyy (x0, y0) η +Uxy (x0, y0) ξ. (35)

These expansions would be employed in the following to study the stability of motion around
the Lagrange points.

Stability of orbits around L1, L2 and L3: For these points, wewould haveρ1 = |x0+d1|,
ρ2 = |x0 − d2| and y = 0; thus, from Eq. (35) one can derive the next set of equations

ξ̈ − 2ωη̇ = (
2Ω2

N + ω2) ξ

η̈ + 2ωξ̇ = − (
Ω2

N + Ω2
MOD − ω2) η (36)

in which

Ω2
N = Gm1

|x0 + d1|3 + Gm2

|x0 − d2|3
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Ω2
MOD = 2c1a0

M

(
m1

|x0 + d1| + m2

|x0 − d2|
)

. (37)

A critical observation here is that the underlined terms in the derivatives of 21 are equal to
zero. This happens only for a linear potential form as could be checked simply. Therefore,
the current model only modifies the form of the equation of motion in the direction of η.

To check possible divergence of the solutions, we will put ξ = ξ0eλt and η = η0eλt into
the last equations to derive

(
λ2 − 2Ω2

N − ω2 −2ωλ

2ωλ λ2 + Ω2
N + Ω2

MOD − ω2

) (
ξ0
η0

)
=

(
0
0

)
(38)

which would imply that the determinant of the coefficient matrix must be zero for any
nontrivial solution to exist:

λ4 + (
2ω2 − Ω2

N + Ω2
MOD

)
λ2 − (

2Ω2
N + ω2) (

Ω2
N + Ω2

MOD − ω2) = 0 (39)

This, in turn, results in

λ2 = 1

2

(
Ω2

N − Ω2
MOD − 2ω2) ±

√
9Ω4

N − 8ω2Ω2
N + Ω2

MOD

(
Ω2

MOD + 6Ω2
N + 8ω2

)

(40)

Here, we could see that one could simply derive the Newtonian counterpart of this result
by putting ΩMOD = 0, as we expected. Compare with page 641 of Desloge (1982), for
example.

Let us investigate the nature of the solutions in this case. If we demand that the solutions
have to be stable, then λ must be purely imaginary, i.e., λ2 < 0. For this to be true, we must
have (from the biquadratic equation 39):

− (
2Ω2

N + ω2) (
Ω2

N + Ω2
MOD − ω2) > 0

or, since the term
(
2Ω2

N + ω2
)
is always positive, we would have

Ω2
N + Ω2

MOD − ω2 < 0 (41)

On the other hand, we might find another bound on these values by considering Eq. (31) that
must be true at the Lagrange points on the x-axis:

Ux (x0) = Gm1 (x0 + d1)

|x0 + d1|3 + Gm2 (x0 − d2)

|x0 − d2|3

+ 2c1a0
M

(
m1

x0 + d1
|x0 + d1| + m2

x0 − d2
|x0 − d2|

)

︸ ︷︷ ︸
−ω2x0 = 0 (42)

From here, we can derive

Ω2
N + Ω2

MOD − ω2

= Gm1d1
x0

(
1

|x0 − d2| − 1

|x0 + d1|
)

×
(

1

|x0 − d2|2 + 1

|x0 + d1||x0 − d2| + 1

|x0 + d1|2 + 2c1a0/G

M

)
. (43)
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The terms in the parentheses in the last row are positive definite. Also, the term on the second
row is always positive since

1

x0

(
1

|x0 − d2| − 1

|x0 + d1|
)

=

⎧
⎪⎨

⎪⎩

−(d1+d2)
x0(x0−d2)(x0+d1)

, L3 : x0 < −d1
− 2x0+d1−d2

x0(x0−d2)(x0+d1)
, L1 : − d1 < x0 < d2

(d1+d2)
x0(x0−d2)(x0+d1)

, L2 : x0 > d2.

The positiveness of the first and the third quantities is trivial; however, to see that the second
one is also positive we note that within the interval of −d1 < x0 < d2, the inequalities of
2x0 + d1 − d2 + d2 > x0 and d2 > x0 always hold; thus, 2x0 + d1 − d2 > 0 must be
correct in this interval. Therefore, we see that the conditions 41 and 43 are in contradiction.
For this reason we realize that λ could not be purely imaginary; hence, λ2 must be positive.
From here, we conclude that λ has at least a positive root. So, one of the solutions will grow
exponentially and the orbit becomes unstable near L1, L2 and L3.

Stability of orbits near L4 and L5: Regarding Eqs. (15) and (29), for these two Lagrange
points we would have

ρ1 = ρ2 = d1 + d2

x0 = −d1 + d2
2

y0 = ±
√
3

2
(d1 + d2) (44)

from which we could derive the second-order derivatives of the potential at the point (x0, y0)
as follows:

Uxy = −√
3α2 (3 + ε)

(
m1 − m2

m1 + m2

)

Uyy = −3α2 (3 + ε)

Uxx = −α2 (3 + ε)

α2 = GM

4(d1 + d2)3
(45)

Putting these values into the perturbation equations 35 and writing them in the matrix form
(

λ2 +Uxx −2ωλ +Uxy

2ωλ +Uxy λ2 +Uyy

) (
ξ0
η0

)
=

(
0
0

)
(46)

one could find the next eigenvalue equation

0 = (
λ2 +Uxx

) (
λ2 +Uyy

) − (−2ωλ +Uxy
) (
2ωλ +Uxy

)

= λ4 + (
Uxx +Uyy + 4ω2) λ2 +UxxUyy −U 2

xy

= λ4 + 4α2 (1 + 3ε) λ2 + 4α4 (1 + 3ε)2 R2

in which

R2 ≡ 3(3 + ε)2

(1 + 3ε)2
× m1m2

(m1 + m2)2

123



19 Page 24 of 53 H. Shenavar

Fig. 8 The boundaries of stable and unstable systems in L4 and L5 Lagrange points, defined by μ, for
different values of ε. Systems within the bullet shape curve are unstable. When ε increases, i.e., when the term
proportional to a0 begins to dominate the equation of motion, systems with larger mass ratios could be stable
in their L4 and L5 Lagrange points even when μ > 0.04. For example, in the case of ε ≈ 0.5, i.e., the vertical
line in the above plot, systems with a mass ratio of μ � 0.2 could still be stable

is a dimensionless quantity. Be aware of a mistype in the corresponding eigenvalue equation
of Desloge (1982), i.e., equation (75) on page 642 of the book. The maximum value of the
parameter 3(3 + ε)2/(1 + 3ε)2 in the above equation is equal to 27 and it happens when
ε = 0, i.e., Newtonian model, while the minimum value is equal to 1/3 and it occurs for
large values of ε, i.e., when the fifth force of modified dynamics completely dominates the
system.

The solutions to the above eigenvalue equation could be simply found as:

λ2 = 2α2 (1 + 3ε)
(
−1 ±

√
1 − R2

)
. (47)

According to this equation, the system is stable if λ is pure imaginary, i.e., if and only if
R2 < 1:

R2 < 1 ⇒ μ <
1

2
− 1

2

√

1 − 4 (1 + 3ε)2

3(3 + ε)2
or,

μ >
1

2
+ 1

2

√

1 − 4 (1 + 3ε)2

3(3 + ε)2
(48)

These two inequalities are similar from physical point of view because it does not matter
which mass defines μ. A system in its L4 and L5 points would be stable if the inequality 48
is satisfied. For the case of Newtonian gravity, i.e., ε = 0, we say that if μ � 0.04 then the
system would be stable. We have plotted the bounds on μ in Fig. 8 as a function of ε. It is
clear from this plot that the region of stable systems growswith increasing ε. (The area within
the bullet shape contains all systems with unstable L4 and L5 points. Also, the Newtonian
case is represented by the vertical axis, i.e., ε = 0.) For example, systems with a mass ratio
of μ � 0.2 could still be stable if ε ≈ 0.5. See the vertical line corresponding to ε = 0.5 in
Fig. 8. In fact, according to Fig. 8, systems with ε > 0.75 are completely stable in their L4

and L5 points, i.e., R2 is always less than 1 in these cases. Large values of ε happen only
at galactic and extragalactic scales as we will see in following. To summarize, L4 and L5
points with (μ, ε) outside of the bullet shape of Fig. 8 are stable according to MOD.
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Table 2 Two-body configurations in galactic scales

System m1 m2 d1 + d2 μ ε

(M�) (M�) (kpc)

MW-TGC ∼ 5 × 1010 ∼ 2 × 105 ∼ 5 4.0 × 10−6 ∼ 0.3

MW-TOC ∼ 5 × 1010 ∼ 3 × 102 ∼ 5 6.0 × 10−9 ∼ 0.3

MW-LMC ∼ 5 × 1010 ∼ 1 × 1010 ∼ 50 1.6 × 10−1 ∼ 25

MW-SMC ∼ 5 × 1010 ∼ 7 × 109 ∼ 61 1.2 × 10−1 ∼ 45

LMC-SMC ∼ 1 × 1010 ∼ 7 × 109 ∼ 23 4.1 × 10−1 ∼ 32

M 51 (a-b) 5.8 × 1010 2.5 × 1010 20 3.0 × 10−1 2.9

M 51 (a-b) 5.8 × 1010 2.5 × 1010 100 3.0 × 10−1 73.4

Data related to the Milky Way (MW), typical globular cluster (TGC) and typical open cluster (TOC) are
derived from Binney and Tremaine (2008), chapter one. In addition, properties of Large Magellanic Cloud
(LMC) and Small Magellanic Cloud (SMC) are derived from van den Bergh (2000). Moreover, the masses of
M51a ( Whirlpool or NGC5194) and M51b (NGC5195) are reported from Mentuch Cooper et al. (2012)

We have reported the values of ε and μ for various two-body configurations within the
solar system in Table 1. The highest values of ε in the solar system could be found for Sun–
Neptune and Sun–Plutoids and it is about ε ≈ 10−5 (Plutoids listed here: Pluto, Eris, and
Haumea). The case of Sun–Eris is the highest in the solar system. These values show that
the dynamics of the three-body systems within solar system should be mainly governed by
Newtonian model, i.e., little room for a vivid sign of this type of extended gravity in the
solar system. In addition, with the exception of Pluto–Charon, all values of μ are well below
the critical value of 0.04 for the stability of L4 and L5 point. This makes the stability of the
orbit of any third object within L4 point of Pluto–Charon an interesting question; however,
the parameter ε in this system is of the order of 10−8 which again points to the fact that the
system is governed by Newtonian dynamics (of course, in short periods of evolution of the
system).

Although Penner (2020) has argued that MOND could be tested in Sun–Jupiter and Sun–
Neptune saddle regions, for which the net gravitational field is smaller than 10−10ms−2. This
could be a crucial test for MOND because, tidal stresses are expected to diverge in this model
at saddle points while they are finite in Newtonian model (Bekenstein and Magueijo 2006).
Tidal stresses also remain finite in MOD, as one might check in a straightforward manner.
Thus, there is the possibility of distinguishing between various extended gravities at these
saddle points; though, careful experimentation must be prepared to achieve this goal.

In addition, the long-range nature of the fifth force of MOD most probably affects the
long-term stability of the solar system (in spite of being a small term). The reason for this
expectation is that the fifth force reduces the accessible states at large distances as we will
explain below. The question of the stability of the solar system in extended gravities is an
interesting question and needs to be addressed carefully in due time.

Fortunately, we have now growing data on other planetary systems. These systems could
also be considered as a laboratory in testing extended gravities. For example, Kepler 444,
which is a triple star system, would also be a good candidate in investigating RTBP in MOD.
As Table 1 show, with μ = 0.417 and ε = 1.50 × 10−5 (Kepler 444 A as the most massive
body and the combination of Kepler 444 BC as the second body), this is the best stellar
system that author could find to test RTBP in MOD. In fact, although the value of ε is still
not quite substantial, the large value of μ and non-negligible value of ε would provide a
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Fig. 9 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 7 M with the
distance of d = 20D. The evolution time is 3000 T , the initial position ofm3 is chosen randomly to be within
(x0 ± 0.1x0, y0 ± 0.1y0) and this particle rotates initially in the same direction of m1 and m2. The ejection
in Newtonian models is more common than the MOD models

chance to compare the stability of the system under MOD and Newtonian laws. In the case
of Kepler 47, however, the value of ε is quite small and one has to run the system for much
longer times, compared to Kepler 444 system, to see a clear difference between Newton and
MOD models.

Since the Newtonian force and the fifth force are quite comparable at galactic and extra-
galactic scales, the machinery of RTBP is supposed to produce vivid effects at these scales.
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Fig. 10 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 7 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.5x0, y0 ± 0.5y0) and this particle rotates initially in the same direction of m1 and m2

To see this point, we have reported the values of ε and μ for some nearby galactic systems
in Table 2. It could be seen from this table that in the case of Milky Way and a typical
globular cluster (MW-TGC), or Milky Way and a typical open cluster (MW-TOC), the value
of ε is quite large. This shows that the fifth force is expected to have a major effect on the
evolution of the globular clusters around the Milky Way. However, in these cases the values
of μ are small and even negligible; thus one expects that RTBP would be dominated by the
Newtonian force here. On the other hand, in the case of Milky Way and Large Magellanic
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Fig. 11 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 7 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± x0, y0 ± y0) and this particle rotates initially in the same direction of m1 and m2

Cloud (MW-LMC), or Milky Way and Small Magellanic Cloud (MW-SMC), the estimated
values of μ and ε are quite substantial. Because the value of ε is quite large in these cases,
it is expected that the orbits of LMC and SMC are both dominated by the fifth force, instead
of the Newtonian force. Also, since the value of μ is considerable too in the cases of MW-
LMC and MW-SMC, the orbits of any star around these objects would be a perfect case for
investigating RTBP in MOD (see Fig. 8). Although, it should be noted that a similar situation
would happen for LMC-SMC system, making the problem a four-body problem indeed.
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Fig. 12 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 7 M with the
distance of d = 20D in the rotating frame. The evolution time is 3000 T , the initial position of m3 is chosen
randomly to be within (x0 ± 0.1x0, y0 ± 0.1y0) and this particle rotates initially in the same direction of m1
and m2. The code also provides Jacobi integral and physical energy of each test particle

The M51a galaxy (also known as NGC5194 or Whirlpool galaxy) and its companion
M51b (or NGC5194) are usually considered as a classic example of interacting galaxies
(Toomre and Toomre 1972). Here, we see that μ is about 0.3 and if the two galaxies become
really close, e.g., a distance of about 20 kpc, then the Newtonian and the fifth force are of
the same order. However, when the distance between M51a and M51b becomes larger, say
around 100 kpc, the share of the Newtonian force decrease drastically in comparison with
the fifth force. Thus, within MOD model the companion galaxy could still affect Whirlpool
even from large distances while the Newtonian force is now negligible at ≈ 100 kpc. The
difference between the two models could be checked by modifying the code of Toomre and
Toomre (1972) to include the MOD’s fifth force. This is a relatively straightforward task as
we report the code, and its results, in future.

As Weinberg (2000) has explained, in the case of the effects of the Milky Way on Large
Magellanic cloud structure, the interaction between these two systems could have significant
observational consequences. For example, orbits of the LMC disk are reported to be “torqued
out of the disk plane, thickening the disk and populating a spheroid.” Furthermore, the prob-
lem of the structural evolution of the companions could be studied using analytic models
as well as n-body simulations. The three-body analysis of such systems is of course a first
step in understanding the observations. This type of analysis clarifies the general behavior
of the test particle, i.e., stars, thus paving the way for simple observational comparisons and
understanding the results of future n-body simulations. Comparing accurate n-body simula-
tions and observational data could then be used to test models of extended gravities since
these models show explicit dissimilarities in their n-body behavior. However, considering
the current level of accuracy in observational data, the methods (analytical vs. n-body) and
the physical assumptions (dark matter vs. extended gravities) that we choose to study the
problem could make the interpretation of the final results quite debatable.
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4 Simple PRTBP laboratory

This section provides a qualitative view toward the nature of orbits in RTBP within MOD
model. A rigorous analysis based on a geometric framework (Fitzgerald and Ross 2022)
is also possible, though it is beyond the scopes of the current study. Here, we provide a
MATHEMATICA code to test the behavior of a test particle in the case of restricted three-
body problem. This code compares Newtonian and MOD models and works as follows. We
will use the units in Eq. (6). In addition, the particles m1 and m2 are moving on circles with
angular frequency ω (see Eq. (14)) and the motion of the third particle does not affect m1

and m2. You may put c1 = 0 in Eq. (14) to derive the Newtonian angular frequency of the
motion. Moreover, both m1 and m2 start their motion on the x-axis, while the initial position
of particle m3 is chosen around the Lagrange point L4, given by Eq. (44), and it is perturbed
by a random function times some scale length. This choice of the initial position for m3 is
based on Eq. (33), i.e., (x0, y0) being the coordinate of L4 while (ξ, η) is the displacement
perturbation. Also, the particles m1 and m2 rotate counterclockwise while the test particle
could rotate in both directions. (This is done by changing a phase factor in the code.) Finally,
the initial angular speed of m3 is chosen randomly between zero and twice the real part of λ

in Eq. (47). (For the Newtonian case, one should put ε = 0 in Eq. (47).)
The set of equations of motion with the above-mentioned initial conditions, is solved

numerically using NDSolve inMATHEMATICA 10.0. Because the scaling of the three-body
problem is broken in MOD, the parameter space of the problem is much larger compared
to the Newtonian case. However, according to the above discussions, and specially Tables 1
and 2, we would expect to see vivid difference between the two models in galactic scales.
Thus, we presume m1 = 10 M, m2 = 7 M, d = 20 D and a simulation time of 3000 T .

In addition, the initial position of m3 is chosen randomly to be within (x0 ± 0.1x0, y0 ±
0.1y0). The results are provided in Fig. 9 which includes ten plots of MOD orbits and their
Newtonian counterparts. The random initial position in each case is shown by a blue point.
The orbits of m1 and m2 are shown as two concentric circles while the trajectory of m3 is
shown by dotted curves. (Using the electronic version of the work, the reader may zoom in to
see more details in the plots.) In this figure, it is seen that most Newtonian orbits diverge after
a few revolutions while the MOD orbits are non-divergent in this case (Of course, Newtonian
orbits could be stable as we see below). All initial positions in this figure lie outside of the
m2 orbit. The trajectory of m2 is shown by the circle with the larger radius. Then, in Figs. 10
and 11 we have expanded the area of random initial position to (x0 ±0.5x0, y0 ±0.5y0) and
(x0 ± x0, y0 ± y0), respectively. In these figures too, ejection is more common in the case
of Newtonian model compared to the MOD one. However, the rate of ejection in Newtonian
case is less than the Newtonian plots of the previous figure. Also, it is seen that if the initial
positions of m3 is within the circle of large radius, the orbits seem to be more stable (less
ejections in both Newtonian and MOD models). In one particular case, i.e., the last row in
Fig. 11, MOD presents an ejection, while the Newtonian orbit, within the time of 3000 T , is
still bounded.

The test particlem3 and the two massive particles could also rotate in opposite directions.
This could be achieved simply by adding a phase factor to the code, as discussed before, to
makem3 rotate clockwise initially. The result of such experiments is reported in Figs. 13, 14,
and 15 in “Appendix A.” The interesting phenomenon here is the appearance of much more
regulated orbits in comparison with the cases where all particles rotate counterclockwise. If
this is not due to shear chance, it needs to be investigated in more detail. In these figures too,
the rate of ejections in Newtonian model is vividly larger than MOD.
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Also, we can decrease, or increase, the mass ratio and see how the model of RTBP works.
In the rest of the figures in the “Appendix A,” we have used m2 = 3M (Figs. 16, 17, 18, 19,
20, and 21) and m2 = 1M (Figs. 22, 23, 24, 25, 26, and 27). By decreasing μ, it is seen that
the orbits become more regulated. This is expected since m1 starts to dominate the system
now. In all of these figures too, the Newtonian orbits show a larger rate of ejections compared
to MOD ones.

A similar behavior of divergent orbits could also be seen in Figs. 3 and 5. From dynamical
point of view, this behavior of three-body systems under MOD is rooted in the long-range
nature of the fifth force. In fact, in galactic and extragalactic scales this force is quite strong
and it could bound the systems more efficiently. In other words, although the particle m3

might be ejected from the system due to close encounters, in MOD it would most probably
come back eventually and make restricted orbits (due to the long-range behavior of the fifth
force).

It is illuminating to consider this behavior from the point of view of statistical mechanics
too. It is now well known that within Newtonian dynamics, actual astrophysical systems,
e.g., star clusters, galaxies, etc., are “open” since particles in such systems could in principle
fly to infinity (Padmanabhan 1990). In fact, it could be proved that the density of states
becomes divergent if the integral defining this function extends to infinity. It should be noted
that even in the case of an ideal gas, one could derive such divergent quantity unless the
gas is contained within a box. Thus, it is usually assumed that the gravitating system under
consideration lives inside a spherical box. As Padmanabhan (1990) argues, this assumption
is justified by presuming a small rate of evaporation for gravitating particles. However,
MOD’s partition function of an NBody system contains a factor of exp(−2βc1a0r) which
saturates the integrals at large radii r naturally. Here, β is proportional to the reciprocal of
the thermodynamic temperature. On the other hand, the problem of the statistical mechanics
of the three-body problem is somehow different because in this case, the number of particles
is quite small. Although, using the method of Monaghan (1976a, b); Nash and Monaghan
(1978), it is still possible to build a statistical theory of the three-body problem. We will
report such theory based on MOD in future and show that because of the long-range nature
of the fifth force, the integral defining the density of states would be finite; meaning that the
states at far distances would be less favorable than the near ones.

In addition, one may derive the orbits in the rotating frame (of the two large body). See
Fig. 12. A codewhich shows orbits in the rotating frame is also available online. Furthermore,
this code presents Jacobi integral and physical energy of each test particle. One could easily
see that the Jacobi integral is a constant of the motion (as it should be) while the physical
energy is not.

5 Discussions and conclusion

Themain result of thiswork is that the stability of the three-body systems depends crucially on
the governing dynamics. This has been shown through analyzing general three-body systems
(Sect. 2), restricted three-body problem (Sect. 3) and some simple PRTBP configurations
(Sect. 4), in all of which the difference between Newtonian and MOD models is explicit.
The general dependency might seem obvious at first glance; however, it is important to know
exactly at what scales of length and time one should expect such effects. The effects of the
fifth force are anticipated to be unambiguous at galactic scales, although, even at the scales
of the solar system, one would expect modifications in the long-term stability of the system
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due to long-range nature of the fifth force (which results in less favorable states at larger
distances).

This study could be extended in a few directions. For example, it should be now clear
that when a long-range fifth force exists, the rotation curve of any galaxy could be modified
due to the presence of neighboring galaxies. An analytical approach to this problem, i.e.,
a test particle in the field of two galaxies, would be challenging; though, it could be also
illuminating. However, at this point, the best strategy to solve this problem seems to be
through numerical modeling of the gravitational potential of the neighboring galactic system
(neighboring galaxies could be assumed as point particles) and then adding the field of the
target galaxy to derive the total potential. In this way, one could estimate the effect of the
surrounding matter distribution on the rotation curve of a galaxy.

Another interesting problem arises when we investigate the behavior of an ensemble of
particles under the influence of two major objects, e. g. two galaxies. This is the classic
problem of Toomre and Toomre (1972) who first explained the formation of galactic bridges
and tails in their classic paper. As it turns out, the method and the code of Toomre and
Toomre could be simply modified to contain the fifth force which is discussed here. The
results of the simulations, however, are strikingly different and the main distinctions are as
follows: First, the companion could harass the target galaxy even from large distances, i.e., a
very close encounter is not necessary for this matter. This is due to the long-range nature of
the interactions. Second, long-lived filaments could form between the two objects in certain
situations, without the merging of the two objects. We will report these findings in future. As
discussed before, a persistent challenge here would be to model the effect of the neighboring
objects on the main ones, especially considering the long-range nature of the fifth force.

As Fig. 9 onward shows, test particles with the same initial position display drastically
different orbits under Newtonian and MOD models (In most cases, the initial velocities are
very close too). This variety of orbits under different dynamics is good news for investigation
of extended gravities signatures; however, it should be quantified. In fact, the general behavior
of the gravitating systems in extended gravities needs to be surveyed through methods of
statistical mechanics. This is also true about the statistical behavior of three-body systems,
though here we are dealing with small numbers of particles as Monaghan (1976a) explains.
A successful statistical theory in extended gravities could greatly simplify the analysis of
these exotic models and possibly clears the way in finding the governing equation of motion
at galactic, and extragalactic, scales. The results of such statistical analysis could then be
compared with catalogs of isolated triplet galaxies in the local universe (Argudo-Fernández
et al. 2015) to put an upper bound on the constants of the extended gravities or limit their
interpolating functions. The antigravity nature of Λ term in ΛCDM model could be tested
against the attractive fifth force of MOD in isolated triplets. The main problem here would
be whether any version of extended gravities could be found to encompass the statistical
distribution of both compact and wide triplet galaxies. See Emel’yanov et al. (2016) for an
investigation of wide triple galaxies in the standard model.

Meanwhile, the theoretical challenges of extended gravities, and the signatures of these
theories, are hoped to be gradually understood with further investigations. Particularly, in the
case of modified dynamics, one might argue that if there is a connection between local and
global physics, the equation of motionmight show a dependency to theHubble parameter and
its derivatives, as a result of this connection. A simple search through literature shows that
there are indeed some reports on this connection, though, in any occasion, there is another
explanation too. For example, at the scale of the solar system we might mention an apparent
anomalous, weak, long-range acceleration in Pioneer 10 and Pioneer 11, generally known as
Pioneer anomaly which is very close to ≈ cH0 (Anderson et al. Oct. 1998,A; Turyshev and
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Toth 2010); though, there are also reports in favor of thermal origin of the Pioneer anomaly
(Turyshev et al. 2011, 2012). In addition, at galactic and extragalactic scales,MONDwhich is
based on a fundamental acceleration ≈ cH0 has achieved tremendous success in addressing
the missing mass problem (Famaey and McGaugh 2012), though the community mostly
favors CDM paradigm (Turner 2022). Even at cosmic scale, there are implications that a
term proportional to the Hubble parameter H in Friedmann equations could play the role
of dark energy (Cai et al. 2011; Clifton et al. 2012). Of course, in this case too there is the
cosmological constant Λ, as well as other forms of dark energy, to explain the accelerated
expansion of the universe. These coincidences might disappear with more accurate data in
future, or they might be explained through a final successful model of dark matter and dark
energy (The situation is an interesting example of the philosophical question: “How does one
distinguish between physical laws and coincidence?”, which is also related to the problem of
induction and confirmation of physical laws). Currently, however, these observations open
up the possibility of a unification through a new equation of motion; and there have been
some interesting theoretical speculations in this regard. For instance, we might mention an
effective theory of gravity by Grumiller (2010, 2011), a fourth-order conformal gravity by
Mannheim and Kazanas (1989, 1994); Mannheim (2006) and a theory of five-dimensional
brane world unification of space, time and velocity by Behar and Carmeli (1999); Carmeli
(2003) which all predict a Pioneer–Rindler constant acceleration term.

Of course, not all extended theories of gravity could be true. In fact, a feasible strategy to
determine the viability of extended gravity models is to seek experiments and observations
to put upper bounds on the free parameters of the model (for example, here c1) and then
pushing this limit to lower values with more accurate experiments and observations. (In the
case of MOND, the form of the interpolating function should be tested too, in addition to
the free parameter of the model, i.e., a0.) If due to this process the upper bound on the
free parameters converges to a certain value, then the extended gravity under consideration
would be considered safe (at least for now). However, if different regimes, experiments
and observations report contradictory results on the bound, we may be able to rule out the
model. This stage, however, depends crucially on the accuracy of the test which could be
best achieved in controlled experiments. This is why laboratory experiments are the best
hope in finding, or rejecting, extended theories of gravity. However, it is also important to
test new models at larger scales, because after all, these theories are invented to address
the discrepancies at galactic and extragalactic scales. Thus, astrophysical data are also an
important source in testing the modified models of gravity, although the error bars in these
data usually grow at larger distances (mainly due to uncertainty in the distance itself) and
this problem might restrict our ability to rule out some models of extended gravity based on
data at large scales.

Another possibility for an accurate test of MOD model would be to use binary pulsars.
See Kramer et al. (2021) who employs these systems and confines Bekenstein (2004) TeVeS
theory, which is a relativistic version ofMOND, and alsoDamour and Esposito-Farese (1993)
theory. However, to use precise measurements of these objects, one needs to overcome the
theoretical challenges (as discussed in Sect. 2) and rebuild the model for a typical binary
system.
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Fig. 13 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 7 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.1x0, y0 ± 0.1y0) and this particle rotates initially in the opposite direction of m1 and m2

made use of NASA’s Astrophysics Data System. The MATHEMATICA codes related to orbit integration are
provided in my GitHub repository (https://github.com/Shenavar/ThreeBodyinMOD).

Appendix A: Supplementary figures

See Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27.
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Fig. 14 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 7 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.5x0, y0 ± 0.5y0) and this particle rotates initially in the opposite direction of m1 and m2
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Fig. 15 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 7 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± x0, y0 ± y0) and this particle rotates initially in the opposite direction of m1 and m2
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Fig. 16 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 3 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.1x0, y0 ± 0.1y0) and this particle rotates initially in the same direction of m1 and m2
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Fig. 17 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 3 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.5x0, y0 ± 0.5y0) and this particle rotates initially in the same direction of m1 and m2
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Fig. 18 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 3 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± x0, y0 ± y0) and this particle rotates initially in the same direction of m1 and m2
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Fig. 19 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 3 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.1x0, y0 ± 0.1y0) and this particle rotates initially in the opposite direction of m1 and m2
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Fig. 20 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 3 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.5x0, y0 ± 0.5y0) and this particle rotates initially in the opposite direction of m1 and m2
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Fig. 21 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 3 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± x0, y0 ± y0) and this particle rotates initially in the opposite direction of m1 and m2
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Fig. 22 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 1 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.1x0, y0 ± 0.1y0) and this particle rotates initially in the same direction of m1 and m2
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Fig. 23 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 1 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.5x0, y0 ± 0.5y0) and this particle rotates initially in the same direction of m1 and m2
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Fig. 24 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 1 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± x0, y0 ± y0) and this particle rotates initially in the same direction of m1 and m2

123



Three-body problem in modified dynamics Page 47 of 53 19

Fig. 25 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 1 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.1x0, y0 ± 0.1y0) and this particle rotates initially in the opposite direction of m1 and m2
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Fig. 26 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 1 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± 0.5x0, y0 ± 0.5y0) and this particle rotates initially in the opposite direction of m1 and m2
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Fig. 27 The evolution of a test particle around two massive objects of m1 = 10 M and m2 = 1 M with
the distance of d = 20 D. The evolution time is 3000 T , the initial position of m3 is chosen randomly to be
within (x0 ± x0, y0 ± y0) and this particle rotates initially in the opposite direction of m1 and m2
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