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Abstract
The anisotropic Kepler problem is a model of the motion of free electrons on an n-type semi-
conductor and is known to be a non-integrable Hamiltonian system.Whilemany approximate
periodic solutions have been found through numerical calculation (Sumiya et al. in Artif Life
Robot 19:262–269, 2014), none have been rigorously proved to exist. In this paper, we first
show that the action functional of the anisotropic Kepler problem has a minimizer under a
fixed region condition with boundary conditions on a vertical half-line. Next, we identify the
smallest collision trajectory that satisfies the same boundary conditions. By constructing an
orbit with an action functional smaller than this collision orbit via local deformation, we show
that the collision solution does not become the minimizer. This holds for any μ ∈ (0, 1).
Reversibility allows the periodic orbit to be constructed from the minimizer obtained via the
action functional.

Keywords The Kepler problem · Periodic solutions · Variational method

1 Introduction

The n-body problem, which has been studied since Newton discovered universal gravita-
tion, is concerned with the motion when n mass points are gravitationally attracted to each
other. Poincare showed that the three-body problem cannot be solved under various settings.
Therefore, it is not possible to find a general solution of the n-body problem, but it may be
possible to find a special solution, in particular, a periodic solution. One way to find such
a solution is the variational method. For example, Chenciner and Montgomery famously
proved the existence of the figure-eight solution to the 3-body problem with equal masses
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(Chenciner and Montgomery 2000). In this paper, we apply this method to the anisotropic
Kepler problem (AKP).

Equations of motion of a two-dimensional potential system are defined by:

ẍ = −∂V

∂x
, ÿ = −∂V

∂ y
(1.1)

where V (x, y) is a potential function. The potential of the AKP is represented by:

V (x, y) = − 1
√
x2 + μy2

(μ > 0)

and the Lagrangian by:

L(x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2) − V (x, y). (1.2)

Gutzwiller introduced this problem (Gutzwiller 1991) as an equation modeling free electrons
in n-type semiconductors. The AKP is non-integrable for μ �= 1 Yoshida (1987) and has a
horseshoe in the range of μ > 9/8 or μ < 8/9 Devaney (1978). A number of approximate
periodic solutions of the AKP have been obtained via numerical calculation, but none have
been mathematically proved to exist. In this paper, we use the variational method to prove
the existence of periodic orbits with certain properties in the AKP.

Our main result is the following.
Main result. For any T > 0 and any μ, there exists a periodic orbit q(t) = (x(t), y(t)) that
has period 4T and satisfies the following properties in the AKP:

• ẋ(0) = ẏ(T ) = 0
• x(−t) = x(t), y(−t) = y(t), x(t + T ) = −x(−t + T ), y(t + T ) = −y(t + T )

• q(t) is orthogonal to the x- and y-axis at t = 0 and t = T , respectively;
• For all t ∈ (0, T ), x(t) decreases monotonically and y(t) increases monotonically.

We organize this paper as follows. Section2 introduces preliminaries for our proof, includ-
ing reversibility and the conditions for the action functional to have the minimizer. In Sect.
3, we formulate the AKP by the variational method. Section4 shows that the minimizer has
no collision. In Sect. 5, we show the result of numerical calculation using AUTO.

2 Preliminaries

2.1 Reversibility

Consider the following ordinary differential equation:

q̇ = F(q), q ∈ R
d . (2.1)

Definition 2.1 (Reversibility) Let R be an involuntary linear map from R
d to R

d , i.e., R2 =
En . If (2.1) satisfies:

F(Rx) + R(Fx) = 0,

then (2.1) is said to be reversible with respect to R.

With a simple calculation, we obtain the following lemma.

123



Variational proof of the existence of periodic orbits in the… Page 3 of 9 27

Lemma 2.2 Assume that (2.1) satisfies reversibility. Then, if q(t) is a solution of (2.1), then
so is to Rq(−t).

We define

Fix(R) := {q ∈ R
d | Rq = q}.

Lemma 2.3 For a solution q(t) of (2.1), q(T ) ∈ Fix(R) is satisfied if and only if q(T + t) =
Rq(T − t).

Proof If q(T + t) = Rq(T − t), then q(T ) ∈ Fix(R) by substituting t = 0. Conversely,
we assume that q(T ) ∈ Fix(R). From Lemma 2.2, if q(T + t) is a solution, then so is to
Rq(T − t). Since the initial values match from q(T ) = Rq(T ), the lemma follows owing to
the uniqueness of the solution. ��

2.2 Minimizers of the action functional

We describe the known results of the variational problem of the Lagrangian system. Let
I = [0, T ]. Let D be a configuration space in R

d . We define A, B ∈ D as non-empty affine
spaces. Let T A and T B be linear spaces created by translating A andB so that they pass
through the origin. We set:

CA,B = {q ∈ C2(I ,D)|q(0) ∈ A, q(T ) ∈ B}. (2.2)

The Lagrangian is L(q, q̇), and the action functional is:

A(q) =
∫ T

0
L(q, q̇) dt .

A solution q that satisfies A′(q) = 0 is called the critical point of A(q).

Lemma 2.4 If q ∈ CA,B,T is a critical point ofA, then q(t) satisfies theEuler–Lagrange equa-
tion, where I = (t0, t1). Moreover, ∂L

∂ q̇ (q(t0), q̇(t0)) is orthogonal to T A and ∂L
∂ q̇ (q(t1), q̇(t1))

is orthogonal to T B. Furthermore, if L = 1
2 |q̇|2 −V (q), then q̇(t0) is orthogonal to T A and

q̇(t1) is orthogonal to T B.

We consider a Sobolev space

H1(I ,D) =
{
q : I → D|q ∈ L2(I ,D),

dq
dt

∈ L2(I ,D)

}

and set the norm as:

||q||H1 :=
√∫ T

0
|q|2 + |q̇|2 dt .

Definition 2.5 (coercive) Let� ∈ H1(I ,D). The action functionalA|� is said to be coercive
when it satisfies

A(q) → ∞ as ||q||H1 → ∞ (q ∈ �).
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Fig. 1 The minimizer we aim to
find

We set

�(A, B) = {q ∈ H1(I ,D)|q(0) ∈ A, q(T ) ∈ B}.

Lemma 2.6 Let A, B ∈ D. If there exists C0 < 1 that satisfies:

a · b ≤ C0|a||b| (2.3)

for any a ∈ A and b ∈ B, then A|� is coercive.

Lemma 2.7 (Tonelli 1925) Suppose that A|� is coercive. Then, there exists a minimizer
q∗ ∈ �. Moreover, the minimizer q∗ satisfies q∗ ∈ CA,B, i.e., q∗ is smooth.

3 Formulation of the AKP by the variational method

We set D = R
2 − {(0, 0)} and consider the boundary condition:

A = {(x, 0) ∈ D|x > 0}, B = {(0, y) ∈ D|y > 0}. (3.1)

It is clear that A and B satisfy (2.3). Therefore, from Lemmas 2.6 and 2.7, there exists
minimizer in �(A, B). Moreover, from Lemma 2.4, q̇∗(0) is orthogonal to A and q̇∗(T ) is
orthogonal to B. The minimizer q∗ is a solution of AKP unless q∗ is a collision orbit (Fig. 1).
The monotonicity will be shown later.

4 Estimation of collision orbit

Without loss of generality, we can limit the parameter μ in the AKP to 0 < μ < 1 by
substituting 1/μ instead of μ and applying appropriate change of variables.
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Now, we identify the collision orbit that minimizes the action functional. Using the polar
coordinates q = (r cos θ, r sin θ), the action functional in the AKP is expressed by:

A(q) =
∫

1

2
(ṙ2 + r2θ̇2) + 1

r
√
cos2 θ + μ sin2 θ

.

From this, we can see the following about the collision orbit that minimizes the action
functional:

• θ̇ = 0 from the minimum of the kinetic energy term. In other words, the collision
satisfying θ̇ �= 0 is not a minimizer because the trajectory transformed into θ̇ = 0
minimize action functional.

• θ = 0 from the minimum of the potential energy term. In other words, the collision sat-
isfying θ �= 0 is not minimizer because the trajectory transformed into θ = 0 minimizes
action functional.

Therefore, it suffices to show that the collision orbit that starts from positive part of the x-axis
and moves to the origin along x-axis is not a minimizer. In the following, we discuss the orbit
that starts from the origin andmoves to the positive part of the x-axis along the x-axis because
both have the same action functional and the latter is easier to handle.

4.1 Local transformation

We use the following for local evaluation of the collision orbit.

Lemma 4.1 [Sundman’s estimate, Siegel and Moser (2012)] We assume that collision tra-
jectories q1, . . . , ql in a system with a Kepler-type potential collide with c at t = t0. Then:

qk = c+ (t − t0)
2/3ak + O(t − t0) (k = 1, . . . , l).

From Lemma 4.1, the collision orbit qcol that starts from the origin and moves along the
positive part of the x-axis is represented by:

qcol = (at2/3 + O(t), 0), a = 3

√
9

2
.

The main term of the action functional A(qcol) at t ∈ [0, ε] is:
(
2

3
a2 + 3

a

)
ε1/3.

We define a local transformation δε at t ∈ [0, ε] as follows, where n,m ∈ N and free for the
moment.

qcol + δε(t) =

⎧
⎪⎨

⎪⎩

(aε−1/3t, cεm) (0 ≤ t ≤ εn)(
aε−1/3t, cεm ε−t

ε−εn

)
(εn ≤ t ≤ ε)

qcol(t) (t > ε)

.

We can estimate the action functional at t ∈ [0, ε] after transformation by:

A(qcol + δε) <

(
1

2
a2 +

√
2

a

)

ε1/3 + 1√
μc

εn−m + c2

2
ε2m−1.

Therefore, by choosing n,m so that:

m ≥ 2/3, n ≥ m + 1/3,
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Fig. 2 Collision orbit that
minimizes the action functional

Fig. 3 Local transformation

we obtain A(qcol) > A(qcol + δε). The above remarks demonstrate that the collision orbit
is not a minimizer.

4.2 Constructing a periodic solution

We discuss how to construct a periodic solution from the minimizer in the main theorem.

Lemma 4.2 We assume that q = (x(t), y(t)) is a minimizer of AKP under the boundary
condition �(A, B). Then, x(t) and y(t) are monotone.
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Fig. 4 Reversible solutions

Proof From (3.1), x(0) > x(T ) = 0 and it is a monotonous decrease if it is monotone.
Assume that x(t) is a monotonous decrease. Then, there exist a, b ∈ [0, T ] such that a < b
and x(a) < x(b). Then, by themean value theorem, there exist c ∈ [a, b] and d ∈ [b, T ] such
that ẋ(c) > 0 and ẋ(d) < 0. From the intermediate value theorem, there exists e ∈ (c, d)

such that ẋ(e) = 0. Therefore, we find that x(t) takes a local maximum value at t = e. We
set

x∗(t) =
{
max(x(t), x(e)) (t ∈ [0, e])
x(t) (t ∈ (e, T ]) .

Since x(t) ≤ x∗(t), we see that |x ′(t)| ≥ |x∗′(t)|and A(x, y) > A(x∗, y). This is contrary
to the fact that x(t) is a minimizer. Similar arguments apply for the case of y. ��
The AKP can be represented by:

ẋ = px , ẏ = py, (4.1)

ṗx = −∂V

∂x
, ṗy = −∂V

∂ y
, (4.2)

and (4.1) has reversibility with respect to:

R1 =

⎛

⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟
⎠ , R2 =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟⎟
⎠ .

We assume that q(t) = (x(t), y(t)) is a solution at t ∈ I . Then, from Proposition 2.2,
q1(t) = (−x(−t), y(−t)), q2(t) = (x(−t),−y(−t)), q3(t) = (−x(t),−y(t)) are also
solutions, as illustrated in Fig. 4.

The following lemma shows that these solutions are connected smoothly:

Lemma 4.3 ẋ(0) = 0 and ẏ(T ) = 0

Proof From Gelfand and Fomin (2000), the variation in t ∈ [0, T ] is

δ J =
∫ T

0

(
Lx − d

dt
L ẋ

)
hx (t)dt +

∫ T

0

(
Ly − d

dt
L ẏ

)
hy(t)dt + (Lẋδx + L ẏδy) |t=T

t=0 .

(4.3)

where hx (t) and hy(t) are increments and δx(0), δx(T ), δy(0), δy(T ) are the boundary
coordinate increments. Since q is a minimizer, δ J = 0. From the boundary conditions,
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Fig. 5 Periodic solutions

δx(T ) = 0 and δy(0) = 0. Therefore, by substituting them in (4.3), we obtain:

ẋ(0)δx(0) = 0, ẏ(T )δy(T ) = 0

for any increment. ��

From the above lemma, we obtain a smooth periodic solution like Fig. 5.

Fig. 6 Calculation results
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5 Numerical calculation

Figure6 shows the results of numerical calculation of the periodic solution of the AKP using
AUTO. The initial solution is the solution of the Kepler problem with μ = 1:

x(t) =
(π

2

)− 2
3
cos

π t

2
, y(t) =

(π

2

)− 2
3
sin

π t

2
, 0 ≤ t ≤ 1.

We continue by reducing μ from 1 to 0. The boundary conditions are:

x(1) = y(0) = ẋ(0) = ẏ(0) = 0.
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