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Abstract
This paper studies a low-thrust station-keeping of near rectilinear halo orbits in the Earth–
Moon quasi-bicircular dynamical model, and it is illustrated using resonant near rectilinear
halo orbits as nominal orbits. The control laws considered use a dynamical reshaping strategy
that cancels the unstable Floquet modes and stabilize the motion. Furthermore, asymptotic
stabilization can be achieved adding the central Floquet modes into the reshaping procedure.
Using the Jet Transport technique, the control laws can be explicitly given as high-order
Taylor polynomials in terms of the deviation between the state of the spacecraft and the
corresponding isochronous state. The explicit closed-form of the controller, obtained using
Jet Transport, allows fast control acceleration computation, which could be also of interest
for an onboard implementation. Moreover, the robustness of the station-keeping method is
shown introducing orbit determination errors in both position and velocity.
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1 Introduction

Near rectilinear halo orbits (NRHOs) are a subset of the halo families of periodic orbits
around the collinear equilibrium points of the circular restricted three body problem (RTBP),
and correspond to the first interval of linear stability along the halo families (see Gómez
and Mondelo (2001)). For the L1 and L2 points, these orbits have a close passage to the
small primary, as well as a large out-of-plane amplitude relative to the orbital plane of the
primaries. These geometric characteristics make them potentially useful in the Earth–Moon
system, since they provide the possibility to examine the Moon polar region and, due to their
nearly stable character, they have also been considered for long-term missions and activities
in the cislunar space. In particular, NRHOs have been widely regarded as the candidate orbits
for the Lunar Orbital Platform-Gateway (LOP-G) mission (Laurini et al. 2015).

NRHOs have already been studied by several authors, including (Williams et al. 2017),
Guzetti et al. (2017), and Zimovan-Spreen et al. (2020), that have analyzed their dynamical
properties, such as stability, resonances and eclipse avoidance, as well as the characteristics
of the trajectories in their neighborhood, which has been shown to be useful in the design of
their transfer trajectories. These studies have been done using the RTBP as dynamical model,
in some cases enhancedwith the gravitational perturbations of other Solar Systembodies. The
station-keeping along these trajectories has also been studied using impulsive strategies. For
instance, Guzetti et al. (2017) examined the x-axis control strategy considering navigation
errors, spacecraft noise and orbital perturbations. Muralidharan and Howell (2020) analyzed
the effects of several factors, including maneuvers location and duration, and target horizon
time, on the performance of the x-axis control strategy. In fact, the geometrical behavior anal-
yses by Farrés et al. (2022) have shown that the x-axis control strategy stabilizes the motion
by canceling the unstable mode. Moreover, some other impulsive station-keeping strategies
include the target point method (Gómez et al. 1998), the Floquet mode approach (Simó et al.
1987) and the discrete-time slidingmode control strategy (Lian et al. 2014). As for low-thrust
station-keeping strategies, they can be divided into two categories: the first one is based on
control theory techniques, while the second onemakes use of the dynamical characteristics of
the RTBP (Shirobokov et al. 2017). Most of the low-thrust station-keeping strategies belong
to the first category, which include, for instance, backstepping technique (Gao et al. 2019),
optimal periodic control techniques (Gao et al. 2019), model predictive control (Misra et al.
2018), and active disturbance rejection control (Lou et al. 2016). Comparatively, the liter-
ature on strategies in the second category is scarce. In fact, the second strategies are more
insightful and fuel-efficient, because they exploit the geometry of the phase space around
the nominal orbit and eliminate the unstable modes which cause the divergence from the
desired trajectory. In this context, Scheeres et al. (2003) designed a continuous Hamilto-
nian structure-preserving (HSP) framework which cancels the hyperbolic modes using the
feedback of the instantaneous unstable and stable manifolds.

The purpose of the present paper is the study and implementation of a low-thrust station-
keeping of NRHOs in the higher-fidelity Earth–Moon quasi-bicircular dynamical model, that
includes the gravitational effect of the Sun. In this model, which is more realistic than the
RTBP, NRHOs become unstable and, by this reason, sensitive to non-modeled perturbations
and orbit determination errors. The current investigation examines and extends a dynamical
reshaping station-keeping scheme that effectively overcomes non-modeled errors as well
as position and velocity uncertainty in orbit determination. This scheme is to reshape the
unstable and/or central Floquetmodes into stable ones using low-thrust propulsion.Compared
to the HSP framework in Scheeres et al. (2003), the dynamical reshaping framework is more
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dynamically intuitive, and adaptable to particular adjustments and performance by selecting
the parameters of the algorithm.

The paper is organized as follows: Sect. 2 is a summary that includes the equations of
motion, some properties about NRHOs and resonant periodic orbits, and fixes the notation
used for the Jet Transport technique to be used in the station-keeping procedure. Based on the
geometric structures around the resonant NRHOs, Sect. 3 explains the station-keeping strat-
egy and its implementation. Section4 gives and discusses the results obtained in the numerical
simulations, including some properties about the geometric behavior of the methodology, as
well as its stability properties, robustness and cost. Finally, the paper ends with some con-
clusions in Sect. 5.

2 Mathematical preliminaries

2.1 Equations of motion

The quasi-bicircular problem (QBCP) was first introduced by Andreu in Andreu (1998)
to account for the effect of Sun’s gravity on the motion of spacecraft in the Earth–Moon
system. Mathematically, this model is a time-periodic restricted four body problem (RFBP)
which can be considered as a periodic perturbation of the restricted three body problem
(RTBP). Different to the classical bicircular problem (BCP) (Simó et al. 1995), the QBCP is
dynamically coherent which means that the motion of the primaries (Sun, Earth and Moon
in our case) is a solution of the general three body problem. The model is determined by
means of a collocation method for its Fourier coefficients (Andreu 1998) or a continuation
scheme starting from a solution of two body problem (Gabern 2003). Both the QBCP and
the BCP consider a coplanar motion for the primaries but the QBCP has been proved much
more realistic for orbits close to libration points.

For the motion of the spacecraft in the QBCP we consider a pulsating rotating frame. The
origin is at the Earth–Moon barycenter and the Earth and Moon are fixed on the x−axis.
Moreover, the unit of distance is scaled such that the Earth–Moon distance is always equal
to one, the time is scaled such that the period of the pulsating rotating frame is equal to 2π ,
and the mass is scaled such that the sum of the masses of the Earth and Moon is equal to one.
With these normalizations and similar to the RTBP, the Earth is located at [μ, 0, 0]T and the
Moon at [μ − 1, 0, 0]T.

In this pulsating rotating frame, when the low-thrust acceleration a = [ax , ay, az]T is
included into the QBCP, the equations of motion are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Table 1 Main constant parameters of the QBCP which are from the JPL ephemeris data DE405 (see Andreu
(1998))

μ mS ωS TS = 2π/ωS

0.0121505816 328900.5423094043 0.925195985520347 6.791193871907968

where x = [x, y, z, ẋ, ẏ, ż]T is the state of spacecraft, rPE = √
(x − μ)2 + y2 + z2, rPM =√

(x − μ + 1)2 + y2 + z2, mS is the mass of Sun and rPS = √
(x − α7)2+(y − α8)2+z2.

Denoting by TS the period of the system, the coefficients α1, . . . , α8 are TS-periodic real
functions whose Fourier expansions are given by:

αi (θ) = ai0 +
∑

k≥0

aik cos(kθ) +
∑

k≥0

bik sin(kθ), i = 1, . . . , 8,

where θ = ωSt and ωS = 2π/TS is the frequency of the motion of the Sun. Moreover,
αi are even functions (i.e. cosine series) for i = 1, 3, 4, 6, 7 and odd (i.e. sine series) for
i = 2, 5, 8. In particular, [α7, α8, 0]T is the position of the Sun inside the plane of motion
of the primaries. The numerical values of the Fourier coefficients for the αi functions can be
found in Andreu (1998) while other constant values of the model are given in Table 1.

2.2 Near rectilinear halo orbits and resonant periodic orbits

Near rectilinear halo orbits (NRHOs) are members of the L1 and L2 halo orbit families in
the Earth-Moon RTBP. The NRHOs offer advantages such as stability, cheap transfer options
from the Earth and feasible transfer options to the lunar surface (Williams et al. 2017). In
particular, some Sun-resonant NRHOs have advantageous non-eclipsing properties for L2

Earth-Moon librationpoint orbits. Therefore, theseSun-resonantNRHOshavebeen identified
as potential long-term locations for the LOP-G in the cislunar region (Zimovan-Spreen et al.
2020).

Since the Earth–Moon QBCP is a TS-periodic system, when the halo orbits in the RTBP
are continued into the QBCP, they include the frequency of the Sun and almost all them
become two-dimensional invariant tori. Nevertheless, the Sun-resonant orbits remain periodic
because their period is a (rational) multiple of the period of the Sun. It is worth to note that,
during the numerical continuation of these resonant periodic orbits from the RTBP to the
QBCP, several bifurcations to two or more periodic orbits of the QBCP appear. Moreover,
several new resonant periodic orbits have been identified through a bifurcation analysis
when adding the solar radiation pressure into the QBCP (Jorba-Cuscó 2018; Gao et al.
2022). According to Andreu (1998), Table 2 summarizes the resonance, label, and linear
normal behavior associated to the resonant halo-type orbits around the L1 and L2. Each
line corresponds to different periodic orbits of the QBCP bifurcated from the same orbit
of the RTBP. Besides, the first character of each label is a number that corresponds to the
equilibrium point (1 or 2), and is followed by an enumeration index for halo-type orbits.
The stability properties (linear normal behavior) of the periodic orbits are characterized by
the eigenvalues of the associated monodromy matrix, which can be gathered by pairs. Each
pair of complex conjugate eigenvalues (λ, λ ∈ C with ‖λ‖ = 1) corresponds to a central
behavior, and each pair of real eigenvalues (λ, λ−1 ∈ R) to a saddle one. There exist also
complex saddle cases involving two pairs of inverse and complex conjugate eigenvalues with
non zero real part. For instance, the label (C ×C ×C) stands for Center × Center × Center,

123



Low-thrust station-keeping control... Page 5 of 21 14

Table 2 Low order halo-type resonant periodic orbits around the L1 and L2 points

RTBP Number of QBCP NRHO
label Resonance bifurcated orbits label

01C (S × C × C) 1 : 3 2 1C (S × C × C), 1D (S × S × C) YES

01E (CS × C) 1 : 3 2 1E (S × S × C), 1F (S × S × C) NO

02A (S × S × C) 1 : 2 4 2A (S × S × C), 2C (S × C × C) NO

02E (C × C × C) 1 : 3 2 2E (C × C × C), 2F (S × C × C) YES

02G (S × C × C) 1 : 4 2 2G (S × C × C), 2H (S × S × C) YES

The first column shows the labels assigned to the orbits in the RTBPmodel, all of them starting with ‘0’ as first
character. The second character of these labels indicates the equilibrium point (1 or 2) and the third character
identifies the orbit uniquely. The second column gives the order of the resonance. The third column displays
the number of bifurcated orbits. The fourth column shows the labels corresponding to these bifurcated families
in the QBCP. Finally, the fifth column indicates if the orbits belong to NRHO or not

(S×C ×C) for Saddle× Center× Center, (CS×C) for Complex Saddle× Center, etc. We
should note that 01C, 02E and 02G are the Sun-resonant NRHOs in the Earth–Moon RTBP,
and their resonances and QBCP equivalences are given in Table 2. In particular, Figs. 1 and
2 display orbits (01C, 1C, 1D) and (02E, 2E, 2F), respectively, which will be taken as the
nominal orbits for our station-keeping investigation. The symbol “×” denotes the position
of the spacecraft when t = 0, and at this moment, the Sun is on the positive x−axis and the
spacecraft is located in the x − z plane.

2.3 Jet Transport technique

Jet Transport is an automatic differentiation technique suitable to computer implementations
to calculate high-order Taylor derivatives of nonlinear functions. By means of an algebra of
truncated Taylor polynomials the JT procedure is able to provide the Taylor expansion of a
nonlinear function to an arbitrary selected order (Pérez-Palau et al. 2015; Pérez-Palau 2016).
In this paper, the JT technique facilitates the tasks of developing semi-analytical station-
keeping control laws, and obtaining the monodromy matrix of the controlled system for the
stability analysis. In fact, themonodromymatrix is directly obtained from the first order terms
of the JT propagation of the trajectory, because these terms correspond to the differential of
the Taylor expansion.

For any considered nonlinear function f , let us denote by x ∈ R
n the central base

point of evaluation and δx the symbolic variation with respect to it, so the initial jet can
be parameterized as [x] = x + δx. Starting from [x] = x + δx and implementing the
polynomial algebra of the JT technique, we can obtain the Taylor expansion of the function
f around the central base point x. This is:

[ f ([x])] = [ f (x + δx)] = f (x) + P f (δx) = f (x) +
∑

1≤k1+···+kn≤k

ck1···kn δx
k1
1 · · · δxknn ,

where ck1...kn are the coefficients of the expansion provided by the procedure, δx =
[δx1, . . . , δxn]T, k is the expansion order, and [k1, . . . , kn] is the multi-index exponent of the
monomial. Note that the symbol [·] is going to denote a JT expansion variable throughout
this paper.

In particular, for an ordinary differential equation ẋ = f (x, t), the JT enables automati-
cally calculate the high-order Taylor expansions of its associating flow map �(t; x0, t0). Let
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Fig. 1 3D representation and coordinate projections of orbits 1C and 1D of the QBCP and 01C of the RTBP.
The cross “×” denotes the position of the spacecraft (red “×” for 1C and blue “×” for 1D) when t = 0. At
this epoch the Sun is on the positive x−axis (Moon–Earth–Sun alignment), and the spacecraft is in the x − z
plane. Note that the normal behavior of the orbit can depend on this fact (see Table 2)

us denote by x(t0) = x0 ∈ R
n the initial condition of the dynamical system, then the initial

jet is again expressed in terms of a symbolic variation δx0 as [x0] = x0 +δx0 and represents
the neighborhood of the initial state. For the propagation we can consider any numerical
integration method (Runge–Kutta, Taylor, symplectic, etc) with its related computations
implemented in terms of the polynomial algebras. When the initial jet [x0] = x0 + δx0 is
propagated from t0 up to any final time t f , the procedure automatically delivers the final jet
[x f ] in the form of a Taylor expansion around the nominal final state, x f = �(t f ; x0, t0).
This is:

[x f ] = x f + P x f (δx0) = x f +

⎡

⎢
⎢
⎢
⎢
⎣

∑

1≤k1+...+kn≤k
c1k1...kn δx

k1
0,1 . . . δxkn0,n

...
∑

1≤k1+...+kn≤k
cnk1...kn δx

k1
0,1 . . . δxkn0,n

⎤

⎥
⎥
⎥
⎥
⎦

, (2)

where c jk1...kn are the coefficients of the expansion in the j-th component of the state, and

δx0 = [δx0,1, . . . , δx0,n]T. In general, in this paper we are going to use the symbol P y(z)
to denote the polynomial expansion of y in the variables z = (z1, . . . , zq).
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Fig. 2 3D representation and coordinate projections of orbits 2E and 2F of the QBCP and 02E of the RTBP.
The symbol “×” denotes the position of the spacecraft (red “×” for 2E and blue “×” for 2F) when t = 0.
Same comments as in Fig. 1

3 Dynamical reshaping station-keeping strategies

3.1 Geometric structure around the resonant NRHOs

Due to the Hamiltonian structure of the dynamical system, the eigenvalues of themonodromy
matrix associated with a periodic resonant NRHO can be divided into saddle pairs and/or
central pairs with different geometrical implications:

• A saddle pair (λi , λ j ) of real values and λi · λ j = 1 is associated with the normal
hyperbolic behavior of the orbit. The unstable eigenvalue λi is greater than 1 and the
eigenvector ei (0) provides an expanding direction. This means that λi and ei (0) are
related to the unstable manifold. In the same way, the stable eigenvalue λ j is less than 1
and the eigenvalue e j (0) are related to the stable manifold.

• A central pair (λm, λn) is formed by complex conjugated eigenvalues of modulus one, i.e
λm = λ̄n and ‖λm‖ = ‖λn‖ = 1. They are associated with a central behavior, i.e central
manifold, around the periodic orbit, giving rise to quasi-periodic orbits nearby. We are
going to use em(0) and en(0) to refer to the real and imaginary parts of the complex
eigenvectors associated to this pair of eigenvalues.

To analyze the behavior of the motion in the neighborhood of the nominal orbit, it is
convenient to introduce the Floquet modes which provide a basis with geometric meaning at
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any time. Following (Gómez et al. 1998), the Floquet modes for a saddle pair are defined as:

ẽi (τ ) = ei (τ ) exp

(

− τ

TS
ln λi

)

, ẽ j (τ ) = e j (τ ) exp

(

− τ

TS
ln λ j

)

,

while for a central pair the definition is:

ẽm(τ ) = cos

(

−	mτ

TS

)

em(τ ) − sin

(

−	mτ

TS

)

en(τ ),

ẽn(τ ) = sin

(

−	mτ

TS

)

em(τ ) + cos

(

−	mτ

TS

)

en(τ ),

where τ is a parameter used to parameterize the resonant orbit, ek(τ ) = A(τ )ek(0) being
A(τ ) the state transition matrix and ek(0) the eigenvector corresponding to the eigenvalue λk .
For the central modes, 	m is the angle of λm , and em(0) and en(0) are the real and imaginary
parts of the complex eigenvectors.

For a faster computation of a given state deviation in terms of the Floquet basis, we
introduce the so-called projection factors. Assume that at a given epoch t , the spacecraft is
close to the nominal orbit such that we associate it to a certain nominal state in the orbit.
In station-keeping missions, different types of nominal points can be defined according
to different criteria and several particular ones will be introduced in Sect. 3.2. For now,
to characterize the nominal point we consider τ as the time parameter. To this end, the
state deviation δx(t) = [δx(t), δy(t), δz(t), δẋ(t), δ ẏ(t), δż(t)]T, defined as the difference
between the state of spacecraft and its nominal state at epoch t , can be written in Floquet
frame as:

δx(t) =
6∑

i=1

ci (t)ẽi (τ ),

where ci (t) denote the components of δx(t) in the Floquet basis at epoch t . Then, by means
of elementary linear algebra, we have

ci (t) = π1
i (τ )δx(t) + π2

i (τ )δy(t) + π3
i (τ )δz(t) + π4

i (τ )δẋ(t) + π5
i (τ )δ ẏ(t) + π6

i (τ )δż(t),

where π i (τ ) = [π1
i (τ ), . . . π6

i (τ )]T is the i-th projection factor. In general, given the Floquet
matrix [ẽ1(τ ), . . . , ẽ6(τ )], the value of π j

i (τ ) is equal to the adjoint of the j-th element of the
i-th column divided by the determinant of the matrix. For simplification, unless necessary,
the time dependence will be omitted for clarity.

So we note that ci can be computed just doing the dot product of the state deviation δx and
the i-th projection factor π i . In practice, it is convenient to compute the projection factors
π i (i = 1, · · · , 6) only once and, together with the nominal resonant periodic orbit and
associated Floquet modes, to store all them in terms of their Fourier coefficients. In this way
we have fast on-board evaluations when required.

3.2 Station-keeping controller

The dynamical reshaping methodology, introduced in Gao et al. (2022), is based on the
characteristics of the dynamical system and provides a low-thrust station-keeping control
framework. Making use of the geometric structures around periodic orbits discussed in
Sect. 3.1, the idea is to reshape the dynamical structures, and to stabilize the motion by
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turning the unstable and/or central Floquet modes into the stable modes using a continuous
control.

For the implementation of a station-keeping strategy, one usually needs to associate to
the current state of the spacecraft a state in the nominal orbit. According to different criteria,
the nominal point on the nominal orbit can be defined in several ways, such as the point
isochronous with the spacecraft, or the point at the minimum distance to the spacecraft in
the state space, or in a subset of the state space, for instance, in the configurations space. In
the simulations done, that are discussed in the next section, we show that the nominal point
selection influences the performance of the controller.

InAlgorithm1wepresent themain steps and ideas for the implementation of the dynamical
reshaping procedures. For a given deviation of the spacecraft with respect to the nominal state,
to obtain the control acceleration the procedure requires computing someFloquet components
ci and their first derivatives ċi , and then solving some specific reshaping equations, which
involve these quantities, in order. As we are going to see, this procedure can be point-wise
implemented but, bymeans of the JT technique, thefirst derivatives of theFloquet components
can be obtained semi-analytically, and the control laws can be expressed explicitly in a
higher-order polynomial formalism.Moreover, the JT framework enables the station-keeping
approaches to be dealt in a unified and elegant manner, independently on the way the nominal
point is defined.

Algorithm 1Main steps for the implementation of dynamical reshaping procedures.
1: For a given state of spacecraft xs at epoch t , compute the nominal point xn and the associated time

parameter τn . (The explicit functional dependency on xs and t as xn(xs , t) and τn(xs , t) will be skipped
in most parts of the discussion for clarity);

2: Compute the i-th projection factors needed by evaluating their associated Fourier series at τn , π i_n =
π i (τn) ;

3: Compute Floquet components as ci = 〈π i_n , δxn〉, where δxn = xs − xn ;
4: Obtain the derivatives of ci with respect to time. Note that these derivatives also depend on the low thrust

acceleration a applied at epoch t , which is currently unknown, ċi (a);
5: Based on ci and ċi , impose reshaping equations of the form ċ∗(a) + G∗ c∗ = 0, with G∗ > 0, to have an

exponential decay in selected Floquet components;
6: Solve the imposed reshaping equations to obtain the control acceleration a at time t .

The statement 1 of Algorithm 1 is straightforward when implemented in point-wise form.
Within the framework of JT technique, as was discussed in Sect. 3.1, we need to expand
about a central base state, as explained below. For convenience, the isochronous point xiso is
chosen as the central base point at epoch t (the subscript iso denotes the isochronous point).
Denoting by δxiso a symbolic state variation with respect to the central base point, the state
of spacecraft at epoch t can be written as [xs] = xiso + δxiso. Note that δxiso is a symbol
including the six state components, and the actual state of the spacecraft is determined from
[xs] for a particular value of δxiso. We will abuse this type of notation in what follows. The
JT expansions must be considered symbolically computed, but evaluated at a particular value
when implemented. Denoting by δt a symbolic time variation, introducing the low-thrust
acceleration a as three additional JT variables and considering Eqs. (1), the Taylor expansion
of the state of spacecraft at epoch [t+] = t + δt is

[x+
s ] = xiso + Px+

s
(δxiso, δt, a). (3)
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Fig. 3 Relationships among
central point, nominal point, and
spacecraft. [xn ] is the nominal
point for [xs ], x+

iso is the
isochronous (central base) point
for [x+

s ], while
[δxn ] = [xs ] − [xn ], and
[δx+

iso] = [x+
s ] − [x+

iso]. Note
that [xn ], x+

iso, [δxn ], and [δx+
iso]

are not used in the
implementation, and they are
shown here just to make the
explanations clearer

For a given state of spacecraft [x+
s ] at epoch [t+] = t + δt , symbolically expressed as in

Eq. (3), denote by [x+
n ] the associated nominal point, and by [τ+

n ] the corresponding time
parameter. Implementing the nominal point computation using the JT algebra, we obtain the
corresponding nominal point and time parameter in terms of the JT symbolic variables δxiso,
δt and a as

[x+
n ] = xiso + Px+

n
(δxiso, δt, a), [τ+

n ] = t + Pτ+
n
(δxiso, δt, a). (4)

At this point,wehave completed thefirst statement ofAlgorithm1.Note that the computations
obtaining xn and τn from xs in a point-wise implementation, are the same ones that obtain
[x+

n ] and [τ+
n ] from [x+

s ] using the JT algebra. But, in contrast to the point-wise computation,
Eq. (4) are simple polynomials that provide the nominal state information for any state of
spacecraft just measuring the deviation with respect to the isochronous (central base) point.
Moreover, expressions like Eq. (4) can be obtained for a convenient sampled set of central
base points on the nominal orbit, and then one can perform interpolation or Fourier analysis
of the polynomial coefficients. The result will be short closed expressions to obtain, in an
efficient way, the nominal point associated to any state of spacecraft, and with a final form
that does not depend on the particular definition of the nominal point used (of course, the
values of the coefficients depend on the choice of the nominal point, but the formal form of
the final expression does not).

We also remark that, when the isochronous point is taken as the nominal point then
[τ+

n ] = t + δt , i.e. the time parameter does not depend on δxiso and a. In this case [x+
n ] is

the Taylor expansion of the nominal point following the natural motion of the system (i.e.
Equations 1 with ax = ay = az = 0) with central base point xiso and time variation δt ,
i.e. [x+

n ] = xiso + Px+
n
(δt). See Fig. 3 for a schematic representation of the central point,

nominal point, and spacecraft using the JT approach.
The statements 2 and 3 of Algorithm 1 are straightforward in a point-wise implementation.

Analogously, doing the JT-based evaluation of the Fourier series at time parameter [τ+
n ], we

can obtain the i-th projection factor associated with the nominal point as

[π+
i_n] = π i_iso + Pπ+

i_n
(δxiso, δt, a), (5)

where π i_iso is the i-th projection factor associated with the central base state xiso at epoch t .
Moreover, Eqs. (3) and (4) provide the state deviation between the spacecraft and its nominal
point at epoch [t+] as

[δx+
n ] = [x+

s ] − [x+
n ] = Pδx+

n
(δxiso, δt, a),
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and with Eq. (5) we obtain the i-th component in the Floquet basis as

[c+
i ] = 〈[π+

i_n], [δx+
n ]〉 = Pc+

i
(δxiso, δt, a). (6)

As we see, thanks to the JT approach, the Floquet components can also be obtained as a
polynomial expansion suitable for a full neighborhood of the central base point.

Is in the statement 4 of Algorithm 1 where we find the major difference between the
point-wise and JT implementations. Thanks to the introduction of the symbolic variable δt
in Eq. (3), in the JT implementation the first derivative of [c+

i ]with respect to time is trivially
computed as

[ċ+
i ] = d[c+

i ]
dδt

= Pċ+
i
(δxiso, δt, a). (7)

And finally, using Eqs. (6) and (7) with δt = 0, we obtain [ci ] and [ċi ] at epoch t as
[ci ] = Pci (δxiso, a), [ċi ] = Pċi (δxiso, a). (8)

In the point-wise implementation, we can take a small time step 
t for numerical dif-
ferentiation. Denote by ẋ = f (x, t, a) the the differential equations (1), and the low-thrust
acceleration a at time t is to be determined at the end of the control procedure. Note that, for
the measured state xs of spacecraft at time t , and a given acceleration a, one can approximate
the state x+

s at time t + 
t using Euler’s method

x+
s (a) 	 xs + f (xs, t, 0)
t + [0, 0, 0, aT]T
t, (9)

and for the obtained result, x+
s (a), one can compute the associated nominal state x+

n (a), the
corresponding time parameter τ+

n (a), and, finally, any Floquet component c+
i (a) associated

to the deviation δx+
n (a) = x+

s (a)−x+
n (a), following the usual procedure. On the other hand,

as the components of a are small, a first order Taylor expansion gives

c+
i (a) 	 c+

i (0) + ∂c+
i

∂ax
ax + ∂c+

i

∂ay
ay + ∂c+

i

∂az
az,

where the values of the partial derivatives of c+
i (a) can be approximated by usual numerical

differentiation evaluating the previously described function c+
i (a) with suitable steps in a.

Finally, we have

ċi (a) 	 c+
i (a) − ci


t
= 1


t

(

c+
i (0) − ci + ∂c+

i

∂ax
ax + ∂c+

i

∂ay
ay + ∂c+

i

∂az
az

)

,

which is an expression of the form ċi = Ai + Bi a, where the value Ai , and the 1× 3 matrix
Bi are known.

Note that Eq. (9) is suitable for a faster implementation. However, similar expressions
Ai + Bi a could be obtained considering any other integration method for the propagation of
xs(a) by the flow associated to Eqs. (1) for the time step 
t , and then considering a higher
order numerical differentiation formula for the time derivative. Nevertheless, the procedure
presented is specially simple when considering the isochronous point as the nominal one.

Another option for the computation of ċi is to take the time derivative of the dot product
ci = 〈π i_n, δxn〉, this is,

ċi (a) = 〈π i_n, δ ẋn(a)〉 + 〈π̇ i_n(a), δxn〉 = 〈π i_n, ẋs(a) − ẋn(a)〉 +
〈
dπ i_n

dτn

dτn(a)
dt

, δxn

〉

.
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In this case, denoting by I the 6× 6 identity matrix, and taking into account the dependency
xn(xs, t) we have,

δ ẋn(a) = ẋs(a) − ẋn(a) = f (xs, t, a) − ∂xn
∂xs

f (xs, t, a) − ∂xn
∂t

=
(

I − ∂xn
∂xs

)
(
f (xs, t, 0) + [0, 0, 0, aT]T) − ∂xn

∂t
.

where ∂xn/∂xs and ∂xn/∂t can be obtained by numerical differentiation (note that
∂xn/∂xs=0 and ∂xn/∂t = f (xn, t, 0) when considering the isochronous nominal point
and ∂xn/∂t = 0 when considering the nominal point at minimum distance). Moreover,
dτn(a)/dt can be either obtained by numerical differentiation considering τ+

n (a), similar to
the previous discussion, or by means of

dτn(a)
dt

= ∂τn

∂xs
f (xs, t, a) + ∂τn

∂t
= ∂τn

∂xs

(
f (xs, t, 0) + [0, 0, 0, aT]T) + ∂τn

∂t
,

where ∂τn/∂xs and ∂τn/∂t are computed at the same time as ∂xn/∂xs and ∂xn/∂t (note that
∂τn/∂xs = 0 and ∂τn/∂t = 1 for the case of isochronous nominal point and ∂τn/∂t = 0 for
the nominal point at minimum distance). As we see, following this alternative procedure for
the computation of ċi , we again obtain an expression of the form ċi = Ai + Bi a.

Steps 5 and 6 of Algorithm 1 are formally similar using either the point-wise implementa-
tion or the JT one. Within the dynamical reshaping methodology, the unstable modes should
be canceled using the low-thrust acceleration to stabilize the system. In addition, the stable
modes can be left alone, since they are already associated with an exponential decay. Fol-
lowing with the notation of the JT discussion, one way is to reshape the i-th unstable Floquet
mode component in order to decay exponentially as

[ fi ] := [ċi ] + Gi [ci ] = P fi (δxiso, a) = 0. (10)

where Gi > 0 is a constant gain factor selected in order to modulate the decaying rate
versus the cost (the modulus of a). This approach turns out in solving the parametric-implicit
Eq. (10) to obtain the required a in terms of δxiso, this is

[a] = Pa(δxiso).

In case that there are more than one unstable Floquet modes, for instance c1 and c3, the
reshaping formulation will require to fulfill these two equations

[ f1] = P f1(δxiso, a) = 0,

[ f3] = P f3(δxiso, a) = 0.
(11)

Because there are three components in the low-thrust acceleration a, at most three unstable
modes can be reshaped simultaneously. When the nominal orbit has only one or two unstable
modes, then the reshaping formalism of Eqs. (10) or (11) is under-determined. So aminimum
norm constraint for a can be considered such that the low-thrust acceleration is the optimal
one. Considering a nominal orbit of the type (S × S × C), where {c1, c3} are unstable,
{c2, c4} are stable, and {c5, c6} are central components, one can also incorporate the central
components into the reshaping algorithms. For instance, the reshaping formulation could
fulfill these 3 requirements:

[ f1] = P f1(δxiso, a) = 0,

[ f3] = P f3(δxiso, a) = 0,

[ f56] = P f56(δxiso, a) = 0,

(12)
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where now [ f56] := [ċ56] + G56[c56] = 0, being c56 = w5c5 + w6c6 a weighted sum of
the c5 and c6 components with w5 + w6 = 1. However, depending on the way we choose
the equations, incompatibly issues may appear for some epochs, and the acceleration a may
not be determined for all values of t ∈ [0, TS] (mod TS). In the neighborhood of these
time values, the low-thrust propulsion should be stopped or prescribed in another way. As
there exist many options for the design of controllers within the reshaping methodology, all
the ones considered in this work are free of incompatibility issues. For instance, instead of
considering Eqs. (12) which have an incompatibility issue for orbit 1D, one can consider this
other form which is free of it:

[ f15] = P f15(δxiso, a) = 0,

[ f36] = P f36(δxiso, a) = 0,
(13)

where, similar to the definition of [ f56], now [ f15] and [ f36] involve c15 = w1c1 +w5c5 and
c36 = w3c3 +w6c6, again withw1 +w5 = w3 +w6 = 1. Since the unstable components are
the main concern in the reshaping procedure, it is reasonable to set w1 ≥ w5 and w3 ≥ w6,
i.e. w1 ≥ 0.5 and w3 ≥ 0.5.

Wecan also apply reshaping strategies to orbits of type (C×C×C), like2E,where {c1, c2},
{c3, c4}, and {c5, c6} are central pairs. Avoiding incompatibility issues, we can consider the
reshaping formalism,

[ f135] = P f135(δxiso, a) = 0,

[ f246] = P f246(δxiso, a) = 0,
(14)

where [ f135] and [ f246] include c135 = w1c1+w3c3+w5c5 and c246 = w2c2+w4c4+w6c6
with w1 + w3 + w5 = w2 + w4 + w6 = 1.

In a point-wise implementation, the steps 5 and 6 of Algorithm 1 just use similar equations
of the form ċ∗(a)+G∗c∗ = 0 where now c∗ and ċ∗ are the values and expressions computed
for the particular state of spacecraft at time t , as we have seen during the procedure. Then,
in the point-wise implementation, the low-thrust acceleration a, after solving a linear system
of equations, is only obtained for the particular time and the particular deviation measured.
It needs to be updated, redoing all the computations in Steps 1–6, after a certain time step. In
the JT implementation we obtained a control law of the form [a] = Pa(δxiso) which is valid
for any deviation from the nominal point at time t . Moreover, the polynomial coefficients of
the developed control laws are periodic with the same period as the nominal orbit, therefore,
sampling a set of epochs along the period, they can be computed just once per sample,
and stored by means of their Fourier coefficients obtaining also a continuous expression in
time. In this way, the control acceleration can be trivially obtained by evaluation of closed
polynomial formulae. Therefore, compared to the point-wise framework, the JT technique
allows a much faster computation of the control acceleration.

4 Numerical simulations and discussions

4.1 Stability of the reshaping control laws

To ensure the good performance of the selected control law we have to evaluate the linear
stability of the controller. This is going to be done in the following analyzing the eigenvalues
of monodromy matrix associated with controlled systems. In addition, the JT expansion
orders have been set to 3, giving us more than enough accuracy at a low computational cost.
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Table 3 Eigenvalues of the monodromy matrix M0, associated with orbits 1C, 1D, 2E, and 2F

Nominal orbit Monodromy λ1, λ2 λ3, λ4 λ5, λ6 ‖λ‖max
matrix

1C M0 12.7252, 0.0786 0.9952 ± 0.0982 i 0.8625±0.5061 i 12.7252

1D M0 13.0898, 0.0764 1.1219, 0.8914 0.8505±0.5360 i 13.0898

2E M0 0.9976 ± 0.0687 i 0.8489 ± 0.5271 i −0.1476±0.9890 i 1.0

2F M0 1.0682, 0.9362 0.8483 ± 0.5295 i −0.1596±0.9872 i 1.0682

‖λ‖max is the norm value of the largest eigenvalue of the associated monodromy matrix

For convenience, the monodromy matrix associated with a given control law is denoted by
means of a subscript. In this way, theMc1 ,Mc1,3 ,Mc15,36 , andMc135,246 denote themonodromy
matrices respectively associated with the {c1}, {c1, c3}, {c15, c36}, and {c135, c246} reshaping
control laws of the previous section. In addition, the monodromy matrix for the natural
system, i.e. the one obtained when no control law is applied, is denoted by M0.

Table 3 shows the eigenvalues of M0 associated with resonant NRHOs 1C, 1D, 2E,
and 2F. In particular, the norm value of the largest eigenvalue ‖λ‖max gives the stability
properties of the orbits. It is clear that 1C, 1D and 2F are mildly unstable whereas 2E is
linearly stable. However, according to Figs. 1 and 2, these four orbits are close the Moon
whichmakes dynamics highly sensitive to non-modeled perturbations and orbit determination
(OD) errors. Reshaping only the unstable mode components and selecting the isochronous
point as the nominal one, Tables 4 gives the eigenvalues of the matrices Mc1 , Mc1,3 and
Mc1 associated with orbits 1C, 1D and 2F, for different values of the gain factors. For
convenience, we consider always G1 = G3 when reshaping the {c1, c3} components of orbit
1D. As a result of the control with positive gain factors, the unstable eigenvalues are reduced
to a small value, which is less than one and about e−Gi TS , and their values decrease as the
gain factor increases. In addition, all the other stable and central eigenvalues remain the
same, indicating that these controllers do not produce asymptotic stability. Incorporating the
central modes together with the unstable ones into the reshaping algorithm, Table 5 analyses
the eigenvalues of Mc15,36 for orbit 1D, where the components c15 = w1c1 + w5c5 and
c36 = w3c6 + w6c6 are reshaped, for different weight values. In particular, G15 = G36 = 1,
w1+w5 = w3+w6 = 1, andw1 is set equally tow3 for convenience. According to the table,
all the eigenvalues are less than one which means that in these cases the asymptotic stability
has been achieved. Moreover, Table 4 also gives the results of {c135, c246} reshaping control
laws for 2E for different gain factors G135 and G246 where c135 = c1/3 + c3/6 + c5/2 and
c246 = c2/3 + c4/6 + c6/2. According to the table the asymptotic stability can also been
achieved. Therefore, from Table 4 of 2E and Table 5 of 1D we can conclude that asymptotic
stability can be achieved by means of properly incorporating the central Floquet modes into
the reshaping algorithm.

As it has been mentioned before, the choice of the nominal point can have effect
on the performance of the controller. Let us consider the {c1, c3} components reshaping
control law for the orbit 1D as an example. Table 6 analyses the results for several dif-
ferent nominal points which are at minimum distance to the spacecraft in the sense that
dn = wp

√
δx2n + δy2n + δz2n + wv

√
δẋ2n + δ ẏ2n + δż2n is minimum where wp + wv = 1

and δxn = [δxn, δyn, δzn, δẋn, δ ẏn, δżn]T is the state deviation between spacecraft and the
nominal point. In particular, the nominal point is named as minimum position deviation
point for wp = 1 and wv = 0, and as minimum speed deviation point for wp = 0 and
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Table 5 Eigenvalues of Mc15,36 associated with 1D for G15 = G26 = 1 when considering the isochronous
nominal point

Weights w1, w3 λ1, λ2 λ3, λ4 λ5, λ6 ‖λ‖max

0.5 0.0011, 0.0764 0.0011, 0.8914 0.8538 ± 0.4333 i 0.9575

0.6 0.0011, 0.0764 0.0011, 0.8914 0.8117 ± 0.4508 i 0.9285

0.7 0.0011, 0.0764 0.0011, 0.8914 0.8062 ± 0.4715 i 0.9340

0.8 0.0011, 0.0764 0.0011, 0.8914 0.8159 ± 0.4921 i 0.9528

0.9 0.0011, 0.0764 0.0011, 0.8914 0.8320 ± 0.5105 i 0.9761

The reshaped components are c15 = w1c1 + w5c5 and c36 = w3c3 + w6c6 with different values of weight.
‖λ‖max is the norm value of the largest eigenvalue of the associated monodromy matrix

Table 6 Eigenvalues ofMc1,3 associated with orbit 1DwithG1 = G3 = 1when considering several different
minimum distance nominal points

Weights wp, wv λ1, λ2 λ3, λ4 λ5, λ6 ‖λ‖max

1.0, 0.0 0.0011, 0.0720 0.0011, 0.9396 0.9202 ± 0.4081 i 1.0066

0.9, 0.1 0.0011, 0.0720 0.0011, 0.9470 0.9162 ± 0.4032 i 1.0010

0.8, 0.2 0.0011, 0.0721 0.0011, 0.9510 0.9138 ± 0.4010 i 0.9979

0.7, 0.3 0.0011, 0.0721 0.0011, 0.9536 0.9123 ± 0.3997 i 0.9960

0.6, 0.4 0.0011, 0.0721 0.0011, 0.9553 0.9112 ± 0.3988 i 0.9946

0.5, 0.5 0.0011, 0.0721 0.0011, 0.9567 0.9104 ± 0.3982 i 0.9937

0.4, 0.6 0.0011, 0.0721 0.0011, 0.9577 0.9099 ± 0.3977 i 0.9930

0.3, 0.7 0.0011, 0.0721 0.0011, 0.9584 0.9093 ± 0.3974 i 0.9923

0.2, 0.8 0.0011, 0.0722 0.0011, 0.9590 0.9089 ± 0.3972 i 0.9919

0.1, 0.9 0.0011, 0.0722 0.0011, 0.9595 0.9085 ± 0.3969 i 0.9914

0.0, 1.0 0.0011, 0.0722 0.0011, 0.9600 0.9083 ± 0.3968 i 0.9912

‖λ‖max is the norm value of the largest eigenvalue of the associated monodromy matrix

wv = 1.0. According to the table, the controlled system is slightly unstable for points with
wp > 0.9(wv < 0.1) since themodulus of the complex eigenvalues {λ5, λ6} is slightly larger
than 1, and asymptotically stable for points with wp < 0.9(wv > 0.1). Similar analyses on
the effects of nominal points can be done for other cases.

4.2 Geometric behavior of the reshaping control laws

Following (Muralidharan and Howell 2020), we consider three levels of OD errors for the
missions about the Earth–Moon NRHOs. Error level 1: mean 0 and standard deviation (3σ )
of 1 km in each position component and 1 cm/s in each velocity component; error level 2:
mean 0 and standard deviation (3σ ) of 3 km in each position component and 3 cm/s in each
velocity component; and error level 3: mean 0 and standard deviation (3σ ) of 5 km in each
position component and 5 cm/s in each velocity component. Moreover, the initial injection
error x0 will be set to [5 km, 5 km, 5 km, 5 cm/s, 5 cm/s, 5 cm/s]T which is large enough
for Earth–Moon libration point missions.

Considering orbit 1D as an example, in Fig. 4 we show the time evolution of the Floquet
coefficients of the controlled trajectory along 3 years and for the {c1, c3} reshaping controller
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Fig. 4 Time evolution of the Floquet coefficients for orbit 1D. Reshaping control laws of components {c1, c3}
with G1 = G3 = 1 for a 3 years simulation

for both isochronous point andminimum speed deviation point. According to its design, there
is an exponential decay of c1 and c3 for both nominal points. Since c2 and c4 are associated
with the stable modes, they tends to zero along the control process. For the isochronous point
control, c5 and c6 oscillate because the modulus of the corresponding complex eigenvalues is
equal to 1. However, c5 and c6 decay slowly for the minimum velocity distance point control
due to the asymptotic stability of the controlled system. Incorporating the central modes into
the reshaping algorithm by considering the {c15, c36} components, we give the results of the
evolution of the Floquet coefficients in Fig. 5. According to this figure, the reshaped compo-
nents c15 and c36 decay exponentially as well as all the components ci (i = 1, 2, 3, 4, 5, 6),
showing that asymptotic stability has been achieved for the {c15, c36} components control
law.

We should note that similar results are obtained for the orbit 2E. However, for the orbits
2F and 1C, the controlled trajectories diverge although the eigenvalue analyses in Table 4
show that the controlled systems are stable. This is because the dynamics is very sensitive
at the initial time due to the proximity to the Moon according to Figs. 1 and 2. The initial
injection errors make the spacecraft to move quickly away from the nominal orbit and loosing
the controllability.

4.3 Robustness of reshaping control laws to OD errors and cost estimations

OD accuracy is important in station-keeping missions because the measurement of the state
of spacecraft is indispensable to obtain the control acceleration. However, OD errors are
unavoidable in spacemissions. Therefore, it is necessary to test the robustness of the proposed
controllers in front ofOD errorswhere the three aforementioned levels are considered. Taking
the orbit 1D with {c1, c3} components reshaping control law as example, Fig. 6 presents the
relative distance between the spacecraft and the nominal orbit considering both isochronous
and minimum speed deviation nominal points. In particular, to assess the relative distance
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Fig. 5 Timeevolution of theFloquet coefficients for orbit1D. Reshaping control lawsof components {c15, c36}
with G15 = G36 = 1 for a 3 years simulation and isochronous nominal point

between the controlled trajectory and the nominal orbit in a reasonable way, the relative
distance between the spacecraft and the minimum position distance point is also given.
The observation frequency is set to 1h. According to the first row, when the isochronous
point is considered as nominal point, the relative distance between the spacecraft and the
nominal point is quite large, even for the smallest OD error level 1 where the maximum
distance reaches almost 100 km. For the larges OD error level 3, this maximum distance
even reaches 350 km. However, the spacecraft is still close the nominal orbit according to
the distance measured with respect to the minimum position distance point. Comparing the
results for the two nominal points, the accuracy of station keeping seems higher for the
minimum velocity distance point in terms of relative distance between the spacecraft and
nominal point. However, under the isochronous point controller, the spacecraft is closer to
the nominal orbit. Moreover, according to the figure, both control laws are able to maintain
the spacecraft in a neighborhood of the nominal orbit for the 10 years simulations, although
the controlled trajectory tends to diverge under the error level 3. In addition, we can see that
a higher OD accuracy means a higher accuracy of the station keeping.

Let us finally provide some estimations on the magnitude of thrust and propellant con-
sumption needed to apply the control strategies. Figure 7 shows the time histories of the
control accelerations corresponding to the controlled trajectories displayed in Fig. 6. It can
be seen that the magnitude of the control is close to 1.0×10−8 m/s2 for OD error level 1, and
1.0×10−7 m/s2 OD error level 3. And the choice of the nominal point has negligible impact
on the magnitude of the control acceleration. Considering OD error level 3, for a 200, 000 kg
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Fig. 6 Relative distance between the spacecraft and the nominal orbit along 10 years for 1D {c1, c3} com-
ponents reshaping control laws with G1 = G3 = 1. Left column: with respect to the nominal point; Right
column: with respect to the minimum position deviation point

Fig. 7 History of the control acceleration corresponding to the station-keeping controller in Fig. 6 Left column:
error level 1; Middle column: error level 2; Right column: error level 3
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space station, this translates into a thrust of 2.0× 10−2 N and a total 
V of about 31.54m/s
for a 10-year mission.

5 Conclusions

The near rectilinear halo orbits (NRHOs) have been recognized as nominal orbits for the
Gateway mission, however, their equivalences in the Quasi-Bicircular Problem (QBCP) are
unstable and sensitive to non-modeled perturbations and orbit determination (OD) errors.
Therefore, this paper investigates the low-thrust station keeping of the NRHOs where the
dynamical reshaping approaches are evaluated. In particular, several reshaping strategies are
proposed according to the geometrical structures of the nominal orbits and different nominal
points are considered. Moreover, Jet Transport (JT) technique is used to formulate the control
laws in a semi-analytic way making them explicitly expressed in a high-order polynomial
formalism, where the variables are the state deviations between spacecraft and associated
isochronous point. The JT technique not only unifies the control procedures independently
of the nominal point considered, but also provides a straightforward way to obtain the mon-
odromy matrix 1of the controlled system for its stability analysis.

The eigenvalues analysis of monodromy matrices show that the dynamical reshaping
station-keeping control laws can stabilize themotion in the neighborhood of the nominal orbit
by canceling the unstable Floquet modes. Asymptotic stability can be further achieved by
incorporating the central Floquet modes into the reshaping algorithms. According to analysis
on the geometric behaviors, the reshapedmotion components decay exponentially as deigned
showing the controllers have intuitive dynamical behaviors. In addition, three different levels
of OD errors have been considered in the station keeping proving the robustness of the
proposed reshaping controllers to the OD errors, and the level of OD errors determines
the station keeping accuracy. We should note that when the isochronous nominal point is
considered, the spacecraft seems to be far away from the nominal point, but the controlled
trajectory is actually close the nominal one. Additionally, it is shown that the fuel needs of
the controllers are reasonable and suitable to be implemented using a low-thrust propulsion
device.
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