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Abstract
We consider the Keplerian arcs around a fixed Newtonian center joining two prescribed
distinct positions in a prescribed flight time. We prove that putting aside the “opposition
case” where infinitely many planes of motion are possible, there are at most two such arcs
of each “type.” There is a bilinear quantity that we call b which is in all the cases a good
parameter for the Keplerian arcs joining two distinct positions. The flight time satisfies a
“variational” differential equation in b, and is a convex function of b.

1 Introduction

Gauss (1809) wrote in his Theoria motus:
“Hence, inversely, it is apparent that two radius vectors given in magnitude and position,

togetherwith the time inwhich the heavenly body describes the intermediate space, determine
the whole orbit. But this problem, to be considered among the most important in the theory
of the motions of the heavenly bodies, is not so easily solved, since the expression of the
time in terms of the elements is transcendental, and, moreover, very complicated.”

What Gauss calls “this problem” is called today Lambert’s problem: given a center of
attraction, an initial position and a final position, find an arc of Keplerian orbit joining the
two positions in a given time τ . Gauss gave two numerical methods to solve this problem,
and modern authors have published dozens of efficient methods. Strangely enough, despite
the prestigious mathematical descent of the problem, the basic question of the number of the
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solutions remained open. This number is correctly guessed for example in Gooding (1990).
We only know one publication addressing the question of the proof, by Simó (1973), and
giving a proof in themain cases. But a further convexity argument is needed to get this number
in the multirevolution cases, requiring long computations which are only sketched by Simó.
We have already presented some simple proofs in Albouy and Ureña (2020). We can now
complete this preliminary work. The unsolved questions about the number of the solutions
completing a prescribed number of half-turns are now solved by observing a linear differential
equation of the first order. We get stronger results by introducing two new parameters for
the family of arcs with given ends. The flight time τ is a convex function of each of them.
The first parameter, the inverse of the angular momentum C , becomes singular when the line
from the initial to the final positions includes the attracting center. We will explain why this
singularity is a necessary consequence of a good property: the energy is a rational function
of C or 1/C . The second parameter b does not have this singularity: it is a good parameter
in all the cases. But the expression of the energy contains square roots.

To solve Lambert’s problem is to compute the Keplerian arcs corresponding to a given
triangle OAB and a positive flight time. Lambert’s problem is a root finding problem, where
the question is to find the values of C or b which correspond to the given value of τ . Our
convexity results have an important practical consequence: Newton’s method for finding the
roots is robust.

Hénon (1968) found numerous cases where several Keplerian arcs start from a point of
spacetime and arrive at another point of spacetime. In his study, one of the arcs is described
by the Earth on its nearly circular orbit. He proposed a second arc as a possible trajectory for
an interplanetary spacecraft, which would return to the Earth without spending energy.

Beyond the practical applications, a surprising aspect of our Theorems is their uniformity.
Putting aside some obvious exceptions, the number of arcs does not depend on the initial and
the final positions. It is the same whatever the prescribed number of completed turns. The
arcs change continuously but never disappear when the prescribed flight time is increased.

2 Statement of themain results

Definition 2.1 AKeplerian arc is a solution of theKepler problem restricted to a finite interval
of time. The length of this interval is called the flight time. The center of attraction is denoted
by O. The arc starts at a point A and ends at a point B. For a nonflat triangle OAB the type
k of a Keplerian arc is the number of completed half-turns around O. An arc of type k ≥ 2
is called multirevolution. The arc then belongs to an elliptic solution of the Kepler problem.
If for example k = 2 or k = 3, the arc starts at A, passes through B and A, and ends at B. If
k = 0 or k = 1, the arc is called simple and the Keplerian solution may be elliptic, parabolic
or hyperbolic.

Theorem 2.2 Given any three points O, A and B forming a nonflat triangle, and any flight
time τ > 0, there is exactly one arc of type 0 and exactly one arc of type 1. Given any integer
number k ≥ 2, there is a positive real number Tk such that the number of arcs of type k is
zero if τ < Tk , one if τ = Tk , two if τ > Tk .

Proof See §6 for a proof and §8 for a second proof.
Euler’s formula and related formulas. Let rA = ‖OA‖, rB = ‖OB‖, c = ‖AB‖, s =

rA + rB. At the unique parabolic arc of type 0 and at the unique parabolic arc of type 1 the
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flight times are, respectively,

T0 = (s + c)3/2 − (s − c)3/2

6
, T1 = (s + c)3/2 + (s − c)3/2

6
. (1)

Let �/2 be the oriented area of the triangle OAB. The respective angular momenta of these
parabolic arcs are

C0 = 2�√
s2 − c2(

√
s + c − √

s − c)
, C1 = − 2�√

s2 − c2(
√
s + c + √

s − c)
. (2)

Here Heron’s formula for the area of the triangle 4�2 = (s2 − c2)(c2 − (rA − rB)2) gives a
simplification and the value C−2

0 = C−2
1 = (r−1

A + r−1
B )/2 in the case s = c.

Remark Euler (1743) obtained the first formula (1) as the result of a simplification in the end
of a computation. As it depends only on c and s, T0 is the same for all the class of triangles
with same s and c, which includes a flat triangle where B is between O and A. For such a
triangle, the motion is rectilinear and formula (1) is easy to understand. In 1761, Lambert
proved that the flight time, the energy, s and c are functionally dependent. Euler immediately
expressed to Lambert his admiration. Many proofs were subsequently proposed, as well as
sign discussions (see Albouy 2019).

Proposition 2.3 For a nonflat triangle OAB, the above special flight times satisfy 0 < T0 <

T1 < T2 < T3 < · · · . Moreover, for any k ≥ 0, Tk+2 − Tk > (π/4)(s + c)3/2.

Proof For a given elliptic orbit we have τk + P = τk+2 where τl is the time to go from A to B
along the arc of type l, and P = 2πa3/2 is the Keplerian period, where a = −(2H)−1 is the
semi-major axis. We write inf τk + inf P < inf τk+2 where the infimum is on all the elliptic
orbits passing through A and B. The inequality is strict since the variational differential
equation (9) excludes τ ′ = H ′ = 0. This gives the last inequality of the Proposition since
according to Gauss (1809), §106, the ellipse of minimal period has its second focus on the
chord AB, and since Tk = inf τk on the elliptic orbits, in both cases k ≤ 1 and k ≥ 2. The
inequality T2k < T2k+1 is easily obtained by Lambert’s reduction (see 8.1) to the rectilinear
case 0 < xB < xA. Here, starting with the same initial velocity vA, the arc of type 2k + 1
takes more time than the arc of type 2k, since when the latter reaches B, the first still have
to bounce and to reach B again. The inequality T2k+1 < T2k+2 is obtained by a similar
argument. ��
Corollary 2.4 In the planar Kepler problem, for any endpointsA andB,A 	= B, for any flight
time τ > 0, the total number of the Keplerian arcs is finite. It is two when τ is small enough.
It increases with τ and tends to infinity as τ → +∞.

Proposition 2.5 Consider the parabolic arc of type 0 and flight time T0, the parabolic arc of
type 1 and flight time T1 and the unique arc of type k ≥ 2 and flight time Tk introduced in
Theorem 2.2. Let Ck , k = 0, 1, 2, . . . be their respective angular momenta. Then

Tk = 4(s�2
k + 2c2)�

3(4c2 − �4
k )Ck

, where �k = 2�√
s2 − c2Ck

. (3)

Proof We can check directly this formula in the cases k = 0 and k = 1 from (1) and (2). Note
that the result of the computation is not so easy to predict. The formula is indeed a surprising
consequence of the variational differential equation (9). This formula becomes 3τH ′ = 2 in
both cases k ≤ 1 and k ≥ 2. It is enough to rationalize this formula by using the angular
momentum C as an intermediate variable: H ′ = (dH/dC)(dC/db). ��
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Remark 2.6 We will extend Theorem 2.2 to the excluded cases where O, A, B are collinear.
In a first case, which we call the opposition case, O is strictly between A and B. In a second
case, which we call the rectilinear case, B is strictly between O and A. The statement may
be adapted in order to include each of these cases. However, the adaptation is different in
each case. In the opposition case, the arcs of types 2k and 2k + 1 are isometric. Indeed,
any Keplerian arc may be rotated in space around the axis AOB, giving infinitely many
arcs. We may still have a statement where even and odd types are replaced by clockwise and
anticlockwise types, andwhere themotions are all restricted to a given plane. In the rectilinear
case, the orbits are rectilinear, the clockwise and anticlockwise planar orbits merge together.
The motion may experience collisions, after which it is classically extended by a bouncing
which preserves the energy. The number k of half-turns should be adapted and defined as the
number of completed periods plus the number of collisions with O. In the more particular
cases O = B or A = B, the questions are simpler, but the statements are different. We
restrict the statement of the Theorem to the main case in order to avoid a too long statement.
However, the main novelty of this work is the introduction of a variable bwhich parametrizes
the Keplerian arcs in all the cases with A 	= B. Our method of proof is carefully selected in
order to apply to all these cases. This may be useful, since the collinearity of O, A and B
creates technical problems when the question is to follow a Keplerian arc changing while A
or B are continuously changing (see Russell 2022).

3 Brief description of the arcs from A to B

We always consider that after a collision with O the Keplerian arcs are continued in the
classical way. The velocity tends to infinity when going to collision. The body “bounces”
and goes back on the same rectilinear path with opposite velocity. The energy is unchanged
at the collision. See e.g., Albouy (2019).

Definition 3.1 Given two points A and B, A 	= O, B 	= O, we say that the pair of vectors
(pA, pB) is a pair of compatible terminal velocities or in brief a terminal pair if the Keplerian
orbit around O which passes at A with velocity pA passes at B with velocity pB.

Remark 3.2 If there is an arc starting from A with velocity pA and later arriving at B with
velocity pB, then (pA, pB) is a terminal pair. As well, if there is an arc starting from (qB, pB)

and later arriving at (qA, pA), then (pA, pB) is a terminal pair. Both sorts of arc coexist in
the case of an elliptic orbit. Terminal pairs may be continuously changed from a situation
where there is a unique hyperbolic arc which is from A to B to a situation where there is a
unique hyperbolic arc which is from B to A. These arcs are the two hyperbolic continuations
of two complementary elliptic arcs.

The classical first integrals of the planar Kepler problem, where q = (x, y) ∈ R
2, p =

q̇ = (v,w) ∈ R
2, are the angular momentumC , the eccentricity vector (α, β) and the energy

H :

C = xw − yv, α = x

r
− Cw, β = y

r
+ Cv, H = v2 + w2

2
− 1

r
.

By combining the first three equalities, we find the equation of the orbit r = αx + β y +C2.
Note that if the orbit is hyperbolic only the relevant branch of the hyperbola is represented
by this equation.
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Proposition 3.3 The two vectors pA and pB form a terminal pair if and only if the angular
momentum, the eccentricity vector and the energy have the same value at (qA, pA) as at
(qB, pB).

Proof In the nonrectilinear case, we assume a common value at A and B of (C, α, β). It
determines the equation of a Keplerian orbit on which at least an arc may be found. So the
pair of velocities is a terminal pair. In the rectilinear case, the energy is the only relevant first
integral. Starting on the Ox axis at (xA, vA), the body passes at xB with the velocity vB or
−vB due to the energy conservation. If it is−vB at a passage, then it is vB at another passage.
Meanwhile occurs a bouncing at O or a culmination, which changes the sign of the velocity.

��
Proposition 3.4 We assume that the triangle OAB is not flat. The map which associates to a
terminal pair its angular momentum is one to one. Consequently for any angular momentum
C ∈ ]−∞, 0[ ∪ ]0,+∞[, there is a unique terminal pair (pA, pB) with angular momentum
C. This pair is a linear combination of C and C−1 with coefficients depending on OAB.

Proof When fixing a nonzero C , Proposition 3.3 gives a linear system of 4 equations in the
4 variables (vA, wA, vB, wB):

xAwA − yAvA = C, −wA + wB = −C−1r−1
A xA + C−1r−1

B xB,

xBwB − yBvB = C, vA − vB = −C−1r−1
A yA + C−1r−1

B yB. (4)

The energy integral is omitted, since the energies are equal if these 4 equations are satisfied.
The determinant xAyB − yAxB = � is nonzero due to the nonflatness hypothesis. ��

Formula for the terminal velocities. Let us solve the linear system (4). The right-hand side
is sum of a term in C and a term in C−1. Thus the solution is sum of a term in C and a term
in C−1. The term in C satisfies vA = vB and wA = wB. Then vA = (xB − xA)C/�, wA =
(yB − yA)C/�. The term in C−1 satisfies (vA, wA) = λA(xA, yA), (vB, wB) = λB(xB, yB)

for some (λA, λB) ∈ R
2. Then

CλA� = rB − xAxB + yAyB
rA

= 2rArB + c2 − r2A − r2B
2rA

,

CλB� = xAxB + yAyB
rB

− rA = −c2 + r2A + r2B − 2rArB
2rB

.

Heron’s formula is 4�2 = (s2 − c2)(c2 − (rA − rB)2) so

C

�
λA = 2

rA(s2 − c2)
,

C

�
λB = − 2

rB(s2 − c2)
.

The solution is
⎛
⎜⎜⎝

vA
wA

vB
wB

⎞
⎟⎟⎠ = C

�

⎛
⎜⎜⎝
xB − xA
yB − yA
xB − xA
yB − yA

⎞
⎟⎟⎠ + 2�

(s2 − c2)C

⎛
⎜⎜⎝

r−1
A xA
r−1
A yA

−r−1
B xB

−r−1
B yB

⎞
⎟⎟⎠ . (5)

Similar formulas with other expressions of the two coefficients were given by Jacobi (1837,
1838), p. 92, p. 96, Godal (1961) or Battin (1987). Terminal velocities are described in Godal
as drawing a hyperbola when C varies. The formula may be interpreted as interpolating the
case C = 0+, where the arc is in the limit the segment BO then the segment OA, and the
case C = ∞, where the arc is the segment AB.
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Corollary 3.5 Assume� > 0. The real numbers C0 and C1 given by (2) satisfy 0 < −C1 < C0.
The Keplerian arcs of type k have an angular momentum C ∈ Dk where D0 =] − C1,+∞[,
D1 =]− C0, 0[ and for any m > 0, D2m =]− C1, C0[, D2m+1 =]− C0, C1[. For any C ∈ Dk

there is a unique arc of type k and of angular momentum C. Its terminal velocities are given
by (5).

This Proposition only admits the arcs with tA < tB. An arc with tA > tB is obtained from
an arc with tA < tB by changing the signs of the terminal velocities and consequently the sign
of C . It is natural to consider that for example there are Keplerian arcs with C ∈ ]0,−C1].
They are of type 1 but have a negative flight time.

Proposition 3.4 defines two branches of terminal pairs, one with C > 0, the other with
C < 0. When C > 0 is close to zero, the orbit is hyperbolic, the arc has type 1 and negative
flight time. Let us increase C . At C = |C1|, the orbit is parabolic. Then, the orbit is elliptic
and all the types coexist. At C = C0, the orbit is parabolic, the arc has type 0 and positive
flight time. Finally, for C > C0, the orbit is hyperbolic of type 0.

3.6. The energy. Combining 2H = v2A + w2
A − 2/rA with (5) gives

2H = C2c2

�2 + 4(xAxB + yAyB − r2A)

rA(s2 − c2)
− 2

rA
+ 4�2

(s2 − c2)2C2

or

2H = C2c2

�2 − 4s

s2 − c2
+ 4�2

(s2 − c2)2C2 . (6)

This fraction factorizes if we use as variables the same square roots ξ = √
s + c, η = √

s − c
as in Euler’s formula (the square root is also related to the C → C, z �→ z2 regularizing
map, where C = Oxy). We get

2Hξ2η2�2 = (η − ξ − �)(η − ξ + �)(η + ξ − �)(η + ξ + �), where � = 2�

ξηC
. (7)

The roots correspond to C = ±C0 and C = ±C1, where C0 and C1 are given by formula (2).
The description in Proposition 3.4 has a defect: flat triangles OAB are excluded. Such

exclusion should happen due to the following monodromy obstruction. Suppose there is a
coordinate determining, as C does for the hyperbolic orbits, a unique Keplerian arc for each
triangle, but which would also be defined for a flat triangle. Then, fixing this coordinate
and following this arc while O is turning around B, A and B being fixed, the arc would
be rectilinear of type 0 at the beginning, but rectilinear of type 1 after one turn. This is a
contradiction.

A natural idea while seeing formula (5) is to use C/� as a coordinate instead of C .
This gives an extension to the rectilinear case, but not to the opposition case, where the
denominator s2 − c2 is zero, and where the terminal velocities are not in the line BOA.
Formula (7) suggests to consider the coordinate �. Here the monodromy obstruction shows
that

√
s − c changes sign when O crosses the segment AB.
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4 A new coordinate for the families of arcs

Consider instead of C or C/� or � the quantity b = 〈qB, pB〉 − 〈qA, pA〉, which in the
planar case satisfies

b = xBvB + yBwB − xAvA − yAwA = c2C

�
− 2s�

(s2 − c2)C
. (8)

The right-hand side, deduced from formula (5), shows that b is an increasing function of
C/� in both intervals ] − ∞, 0[ and ]0,+∞[. In both intervals b varies from −∞ to +∞.
So there are two values of C for each value of b (see Fig. 1). Let us see what happens in the
cases where the triangle OAB is flat.

Lemma 4.1 (rectilinear case). If O, B, A are on the Ox axis, 0 < xB < xA, then the motion
is rectilinear. The terminal pairs (vA, vB) ∈ R

2 are only constrained by the energy equation
v2A − 2x−1

A = v2B − 2x−1
B . They form the two branches of an equilateral hyperbola, one with

vB < 0, the other with vB > 0. Each value of the coordinate b ∈ R corresponds to one
terminal pair on one branch and one terminal pair on the other branch.

Proof The line b = xBvB − xAvA in the plane (vA, vB) cuts the equilateral hyperbola in two
points, one on each branch. ��
Lemma 4.2 (opposition case). If B, O, A are on the Ox-axis, xB < 0 < xA, then all the
terminal pairs satisfy ‖qA ∧ pA‖ = C0 where 2C−2

0 = r−1
A + r−1

B . The plane of motion is
arbitrary. In the plane Oxy where yA = yB = 0 we have vA = vB and this unconstrained
real number together with the choice C = ±C0 parametrizes all the terminal pairs. Each
value of the coordinate b = xBvB − xAvA = −(rA + rB)vA corresponds to one terminal
pair on the branch C = C0 and one terminal pair on the branch C = −C0.

Proof The third condition (4) isC−1−wA = −C−1−wB orC−1−Cx−1
A = −C−1−Cx−1

B
or 2C−2 = x−1

A − x−1
B > 0. The fourth condition (4) is vA = vB. ��

Proposition 4.3 In the plane, if the three points O, A, B are distinct, then for any b ∈ R,
there are exactly two terminal pairs (pA, pB) satisfying 〈qB, pB〉 − 〈qA, pA〉 = b. In the
nonrectilinear case, the angular momentum C is positive on one pair, negative on the other
pair. In the rectilinear case, the velocity at the inner endpoint is positive on one pair, negative
on the other pair. The choice of branch C/� > 0 in the nonflat case gives the consistent
choice vB < 0 in the rectilinear limit.

Proof In the rectilinear case the coordinate C/� is undetermined and replaced by (xB −
xA)−1(vA + vB)/2 ∈ ] − ∞, 0[ ∪ ]0,+∞[, according to (5). If C/� > 0, this limit should
be positive, and as we know that |vB| > |vA|, vB should be negative. ��
4.4. Families of arcs.The variable b is thus a coordinate for the branches of terminal velocities
even in the previously missing cases where O, A, B are collinear. After restricting it to an
interval, b is a coordinate for any family of arcs of Corollary 3.5, but also for the similar
families of arcs with collinear O, A and B. We still need to adapt to these cases the definition
of the type.

Simplest case. If B = O the motion is rectilinear. Instead of a pair of compatible terminal
velocities there is a terminal velocity vA ∈ R. Corresponding to types 0 and 1 there is only
one type, with coordinate vA ∈ ] − ∞,

√
2/xA[. For any l ≥ 1, corresponding to types 2l
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Fig. 1 A graph of C �→ b when
� > 0

and 2l + 1, there is one type, with coordinate vA ∈ ] − √
2/xA,

√
2/xA[. The variable b is

−xAvA. It is a coordinate of the unique branch.
Rectilinear case. The type k of a rectilinear arc starting at A is the number of times the

body bounces off of O, plus the number of times it passes again at A with the initial velocity
vA. There are arcs of any type k ∈ N.

Opposition case.Here the plane ofmotion should be fixed. An arc is obtained from another
by a reflection of axis BOA. There are several ways of defining the type. If we identify an
arc with the reflected one, we reduce the number of types as in the simplest case B = O.

4.5. Sign of the energy.The domain of negative energy in the variable b depends on the choice
of branch of terminal pairs. It is b ∈ ] − ξ + η, ξ + η[ for a negative � ∈ ] − ξ − η,−ξ + η[,
and b ∈ ]−ξ −η, ξ −η[ for a positive � ∈ ]ξ −η, ξ +η[. Here again, as in §3.6, ξ = √

s + c
and η = √

s − c. The expressions of the zeros of the energy (the bounds of these domains)
in the variable � and in the variable b are remarkable. Note that the domain in b always
contains b = 0, while the domains in � never contain � = 0. Note that the geometric means
of the bounds in � are, respectively, � = −√

2c and � = √
2c. They both correspond to the

minimal energy. Their respective images by (8) are b = η
√
2c/ξ and b = −η

√
2c/ξ .

Corollary 4.6 Assume A 	= B. The quantity b is a coordinate for any of the above described
families of arcs of given type. In the multirevolution case, b ∈ ] − ξ + η, ξ + η[ or b ∈
] − ξ − η, ξ − η[. For the simple arcs, the interval for b is ] − ∞, ξ + η[ or ] − ξ + η,+∞[
or ] − ∞, ξ − η[ or ] − ξ − η,+∞[.

Wewill now prove that the second derivative with respect to b of the energy H is positive.
We should not forget that there are two branches of terminal velocities. To get the value
of H , we should give b and choose a branch. In the next proposition, the choice should be
consistent in the rectilinear case and in the nonflat case (see Proposition 4.3). If we choose
C/� > 0 in the nonflat case, then in the rectilinear case 0 < xB < xA, the choice is vB < 0.

Proposition 4.7 (algebraic Lambert theorem). Let rA, rB and c be the three sides of a triangle
OAB, and b = 〈qB, pB〉 − 〈qA, pA〉. Let H(b, rA, rB, c) be the energy of the terminal
pair determined by this data and a consistent choice of branch. Then H(b, rA, rB, c) =
H(b, xA, xB, xA − xB) where 2xA = rA + rB + c, 2xB = rA + rB − c.

Proof The positive value of C/� given by solving (8) only depends on b, s = rA + rB and
c. Now (6) shows that the value of H only depends on b, s, and c. These three quantities are
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the same in the left-hand side and in the right-hand side of the proposed equality. Finally, in
the opposition case where s = c, the result follows from the formula 2H = b2/c2 − 2/c. ��

Proposition 4.8 Fix a branch of terminal velocities and consider H : R → R, b �→ H(b).
Then H ′′(b) > 0. The energy H tends to +∞ when b → −∞ or b → +∞. It has a unique
minimum, for which H is negative.

Proof According to Proposition 4.7, it is enough to conclude in the rectilinear case, where
0 < xB < xA, H = v2A/2 + 1/xA and b = xBvB − xAvA. We have dH/dvA = vA and
db/dvA = xBvA/vB − xA since v2A/2 + 1/xA = v2B/2 + 1/xB. Then

H ′ = vAvB

xBvA − xAvB
=

( xB
vB

− xA
vA

)−1
,

H ′′ = xBv3A − xAv3B

(xBvA − xAvB)3
=

( xB
vB

− xA
vA

)−3( xB
v3B

− xA
v3A

)
> 0.

The inequality is deduced from |vB| > |vA|, which also implies that the denominator is
nonzero. Now if b → ±∞, then vA → ±∞ or vB → ±∞, and consequently H → +∞.
Finally, we know that H has two zeros, so the minimum value is negative. ��

5 The variational differential equation

We chose the coordinate b after the following variational considerations. Let q be the position
and q �→ U a force function. In the Kepler problem U = 1/r . The equation of motion is
q̈ = ∇U . We set p = q̇ . The energy H = ‖p‖2/2−U is conserved along the solutions. We
call (tA, qA, pA) the time, the position and velocity vectors at the initial point A, (tB, qB, pB)

the same quantities at the final point B. There are several remarkable linear combinations
with constant coefficients of theMaupertuis action and the Levi-Civita time, i.e.,

∫ tB

tA
‖p‖2dt and

∫ tB

tA
Udt .

In particular, the integral of the Lagrangian function or Hamilton action from A to B is

S =
∫ tB

tA

(1
2
‖p‖2 +U

)
dt .

Hamilton’s principle of stationary action gives the laws of dynamics through the variation of
S on paths with fixed ends (tA, qA) and (tB, qB). A classical formula in Hamilton (1834) gives
the variation of S during a change in orbit, as a function of the changes in ends (δtA, δqA)

and (δtB, δqB):

δS = 〈δqB, q̇B〉 − 〈δqA, q̇A〉 − H(δtB − δtA).

A report on the early proofsmay be found inAlbouy (2019). Aswell known,Hamilton’s ideas
were suggested by and extend to other fundamental physical theories. Another combination
is

∫ tB

tA

(
1

2
‖p‖2 −U

)
dt = H(tB − tA).
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The function J = 〈q, q̇〉 satisfies J̇ = ‖q̇‖2 + 〈q, q̈〉 = ‖p‖2 + κU if we assume that U is
positively homogeneous of degree κ , which implies 〈∇U , q〉 = κU . This linear combination

∫ tB

tA
(‖p‖2 + κU )dt = JB − JA = b

is “exact” in the sense that it is a periodic functionofBwhenB ismoving along aperiodic orbit.
All these remarkable integrals satisfy remarkable identities. Notably, the Kepler equation

(−2H)3/2t = u − e sin u,

appears as such an identity. Here e is the eccentricity, u the eccentric anomaly. Indeed, differ-
entiating with respect to t gives (−2H)3/2 = (1− e cos u)u̇ = −2Hru̇. So (−2H)−1/2u =∫
dt/r is the Levi-Civita time. The Kepler equation, when multiplied by (−2H)−1/2, is

simply

−2
∫ tB

tA

(
1

2
‖p‖2 −U

)
dt =

∫ tB

tA
Udt −

∫ tB

tA
(‖p‖2 −U )dt,

with tA fixed at the pericenter. It is difficult to deduce Theorem 2.2 from the Kepler equation
and the usual Keplerian recipe. In contrast, another identity between the above integrals,
which includes S instead of the Levi-Civita time, easily gives the proof. We denote by
τ = tB − tA the signed flight time. Here is the combination.

Lemma 5.1 If the force function U is positively homogeneous of degree κ , then (2 + κ)S =
2b+(−2+κ)Hτ . Ifκ = −1as in the case of theNewtonian force function then S = 2b−3Hτ .

Lemma 5.2 For any natural integer k, consider b as parametrizing the arcs of type k from A
to B. The flight time τ satisfies the “variational” differential equation

2Hτ ′ + 3τH ′ = 2, (9)

where H and τ are expressed as functions of b and where ′ marks the derivative with respect
to b.

Proof The variation of S with fixed ends is δS = −Hδτ . The variation of the previous
identity is 2Hδτ + 3τδH = 2δb. It is enough to take b as the parameter for the variation. ��

Remark 5.3 The period P of the Keplerian orbits passing through A and B, expressed as a
function of b, satisfies 2HP ′ + 3PH ′ = 0. If τ is the flight time on an arc of type k, τ + P
is the flight time on an arc of type k + 2 with the same terminal pair. Both flight times satisfy
the same differential equation. The differential equation suggests the following renumbering
of the types of arcs. An arc of type 2l should have index l. An arc of type 2l − 1 should have
index −l. The flight time τ0 on an arc of type 0, or index 0, is a solution of the differential
equation. Then the signed flight time on an arc of index l with the same terminal pair is
τ0 + l P and it satisfies the same differential equation.

6 Proof of Theorem 2.2 with the variational differential equation

Theorem 2.2 is an easy corollary of this Proposition.
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Proposition 6.1 Consider the Keplerian arcs from A to B, A 	= B, of a given type as a one
parameter family, the parameter being the quantity b = 〈qB, pB〉 − 〈qA, pA〉. The positive
flight time τ on this arc, considered as a function of b, does not have a local maximum. If the
type corresponds to simple arcs, τ(b) does not have a critical point.

Proof The derivative with respect to b of the variational differential equation 2Hτ ′+3τH ′ =
2 is

2Hτ ′′ + 5H ′τ ′ + 3H ′′τ = 0.

Proposition 4.8 concludes that H ′′(b) > 0 everywhere. At a critical point bc wehave τ ′(bc) =
0 and consequently H(bc)τ ′′(bc) < 0. Every critical point in the interval where H < 0 is
a local minimum. In the multirevolution case, we have H < 0 and the proof is finished.
In the case of a family of simple arcs, any critical point bc in the interval with H > 0
should be a local maximum. But at a bound bp of this interval H(bp) = 0 and consequently
H ′(bp)τ ′(bp) < 0. According to Corollary 4.6 this interval is ] − ∞, bp[ or ]bp,+∞[.
In the first case, H ′(bp) < 0 and τ ′(bp) > 0. There should be a local minimum in the
interval ]bc, bp[. This is a contradiction. In the second case, H ′(bp) > 0 and there is the
same contradiction. To further conclude that there are no critical points in the case of simple
arcs, we apply the same argument to the interval with H < 0. Between a bound bp of this
interval and a local minimum bc, there would be a local maximum, which is impossible. ��
Remark 6.2 It may be considered as inelegant to specify b as the parameter and then state a
conclusionwhich essentially does not depend on the parameter. However, we should consider
that parameters are often proposed which are not monotone functions of b, such as the
energy or the eccentricity. Such a parameter could in principle produce, at an arc where the
monotonicity is lost, a local maximum. About the angular momentum, it is monotone but
constant if O, A and B are on a line. In brief, the specification of b makes the statement
shorter.

7 Convexity of the flight time: Particular results

Proposition 7.1 (arcs finishing at collision). Let η(xI , vI ) ∈ R
+ be the flight time up to the

Keplerian collision of a body dropped without angular momentum from xI ∈ R
+ with a

velocity vI ∈ R. The successive derivatives of η with respect to vI are all positive.

Proof Weparametrize the free fall by the velocity v, which satisfies Newton’s law v̇ = −x−2.
We have

η(xI , vI ) =
∫ vI

−∞
x2dv, with x = 2

v2 − 2H
, H = v2I

2
− 1

xI
. (10)

We change the variable v to u = vI − v. Then

η(xI , vI ) =
∫ +∞

0
x̂2du, with x̂ = 2

(vI − u)2 − 2H
.

This relation gives 1/x̂ = −uvI + u2/2 + 1/xI , and if u is fixed, dx̂/dvI = x̂2u. Denoting
by η′ the partial derivative with respect to vI , we get

η′ =
∫ +∞

0
2x3udu > 0, η′′ =

∫ +∞

0
6x4u2du > 0, etc.
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Fig. 2 The family of orbits in the
case rA = rB

��
7.2. Differential equation.As a limit case of the variational differential equation (9), we have
2Hη′ + 3vIη = −2xI . We can also obtain this equation by differentiation and integration
by parts from (10). In the case H = 0, the differential equation becomes the identity 3vIη =
−2xI .

Remark If the motion continues by bouncing a given number of times, still finishing at
collision, the flight time is still a convex function of vI , but is no longer increasing. It
decreases from infinity, reaches a minimum and increases again to infinity, while vI varies
between the escape velocity and its opposite. At the minimum the differential equation gives
again the relation 3vIη = −2xI .

Proposition 7.1 will now be extended to arcs from A to B where B is not assumed to
coincide with O. The result depends on which coordinate for the arcs replaces vA.

Proposition 7.3 (arcs of type 0). In the plane Oxy, the Keplerian arcs of type 0 around O
whose ends A and B are distinct, symmetric with respect to the vertical axis Oy and placed
at an ordinate yA > 0, are parametrized by the inverse of the angular momentum υ = 1/C
varying in the interval ]0, (rA − yA)−1/2[. The flight time τ0 = tB − tA is a function of υ

whose successive derivatives are all positive. We have: τ0 → 0 when υ → 0 and τ0 → +∞
when υ → (rA − yA)−1/2.

Corollary 7.4 In the Euclidean plane or space, consider three pointsO,A,B forming a nonflat
triangle with rA = rB. There is a unique Keplerian arc of type 0 around O going from A to
B in a given positive flight time. This arc is in the plane OAB and is symmetric with respect
to the perpendicular bisector of AB.

Proof It is easily proved that the arc is symmetric with respect to the Oy axis (see Albouy
and Ureña 2020). It thus belongs to a conic section with polar equation

r = C2

1 − β sin θ
,

withC > 0 andβ ∈ R. The absolute value |β| is the eccentricity,C is the angularmomentum,
C2 is the semi-parameter. The conic section passes through A, of polar coordinates (rA, θA),
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with θA ∈ ]0, π/2[, and through B, of polar coordinates (rB, θB) = (rA, π − θA). This is
expressed by the single condition

rA = C2

1 − β sin θA
, which is rA − C2 = β yA

with β ∈ ] − ∞, rA/yA[ or equivalently with C2 ∈ ]0,+∞[. The new form of the polar
equation is

r = C2

1 − y−1
A (rA − C2) sin θ

= yA
sin θ − (rA sin θ − yA)C−2 .

At the ends of the interval, the arc is a limit of hyperbolas. When β → −∞, it is a segment
going from A to B. When β → β0, it is a pair of segments, from A to O and then from O to
B (see Fig. 2). The arc of type 0 is the upper arc, which exists if and only if β ∈ ] − ∞, 1[.
This is C2 ∈ ]rA − yA,+∞[. We express the flight time along the symmetric arc of type 0
by using the expression C = r2θ̇ of the angular momentum:

τ0 =
∫ tB

tA
dt =

∫ θB

θA

r2

C
dθ = y2AC

−1
∫ θB

θA

(
sin θ − (rA sin θ − yA)C−2)−2dθ.

It is natural to use the variable υ = C−1 ∈ ]0, (rA − yA)−1/2[. We differentiate under the
integration symbol. Note that the function

r2

y2AC
= υ(

sin θ − (rA sin θ − yA)υ2
)2 = υ

(h − gυ2)2

with h = sin θ > 0 and g = rA sin θ − yA > 0 is already the derivative in υ of

r

2yAg
= 1

2g(h − gυ2)
.

The function (h − gυ2)−1 with h > 0 and g > 0 has all its successive derivatives in υ

positive in the domain υ ∈ ]0, √h/g[. Consequently dn(τ0(υ))/dυn > 0 for any n ∈ N. ��
The arcs of type 1 in the rectilinear case. We use the notation η for the flight time to

collision as in Proposition 7.1 and furthermore set ηA(v) = η(xA, v), ηB(v) = η(xB, v).
The type 1 flight time is τ1 = ηA(vA) + ηB(−vB) since after bouncing we arrive at B with
a vB > 0, while η was counted in Proposition 7.1 from B to O, starting with the opposite
velocity. We compute the first and second derivatives of τ1 with respect to b = xBvB − xAvA
considered as the coordinate on the branch vB > 0 of terminal pairs (vA, vB) ∈ R

2 satisfying
v2A − 2x−1

A = v2B − 2x−1
B . The positions xA and xB are fixed and satisfy 0 < xB < xA. We

have

τ ′
1 = η′

A(vA)v′
A − η′

B(−vB)v′
B, τ ′′

1 = η′′
A(vA)v′2

A + η′′
B(−vB)v′2

B + R,

R = η′
A(vA)v′′

A − η′
B(−vB)v′′

B.

According to Proposition 7.1, the first two terms of τ ′′
1 are always positive. We will prove that

R > 0. As 0 = b′′ = xBv′′
B − xAv′′

A, there is a function λ such that v′′
A = λx−1

A , v′′
B = λx−1

B .
Let us compute λ. The energy relation is vAv′

A = vBv′
B. We have d(xBvB − xAvA)/dvA =

(xBvA − xAvB)/vB and

v′
A = vB

xBvA − xAvB
, v′′

A = v′
A

xB(v2A − v2B)

vB(xBvA − xAvB)2
= xB(v2A − v2B)

(xBvA − xAvB)3
.
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λ = xAxB(v2A − v2B)

(xBvA − xAvB)3
= xB − xA

(xBvA − xAvB)3
, R = λ

(η′
A(vA)

xA
− η′

B(−vB)

xB

)
.

Wesee thatλ has the sign of vB, since−xAvB dominates in the denominator and the numerator
is negative. So λ is positive and we are left to prove that the parenthesis is positive.

Lemma 7.5 Let a particle be ejected from the Keplerian collision with a center O, at time
t = 0. Call v ∈ R its velocity, x > 0 its position, H = v2/2 − 1/x its energy. Then
tv/x → 2/3 as t → 0. On all the motion in positive time, tv/x is decreasing up to −∞ if
H < 0, constant if H = 0, increasing up to +∞ if H > 0.

Proof In the case H = 0, x = gt2/3, v = 2gt−1/3/3 with g = 3
√
9/2. This gives tv/x =

2/3, and also gives the limiting value for H 	= 0. If H > 0, the Keplerian recipe is a =
−(2H)−1, x = a(1 − cosh u), −|a|−3/2t = u − sinh u, du/dt = (cosh u − 1)−1|a|−3/2,
v = |a|−1/2 sinh u(cosh u − 1)−1. Thus

tv

x
= sinh2 u

(cosh u − 1)2
− u

sinh u

(cosh u − 1)2
,

d

du

tv

x
= − 3 sinh u

(cosh u − 1)2
+ u

2 + cosh u

(cosh u − 1)2
> 0 for all u > 0

since the Taylor expansion of the numerator u5(1/24− 1/40) + u7(1/720− 1/1680) + · · ·
has no negative terms. If H < 0, x = a(1 − cos u), a−3/2t = u − sin u, du/dt = (1 −
cos u)−1a−3/2, v = a−1/2 sin u(1 − cos u)−1 thus

tv

x
= − sin2 u

(1 − cos u)2
+ u

sin u

(1 − cos u)2
,

d

du

tv

x
= 3 sin u

(1 − cos u)2
− u

2 + cos u

(1 − cos u)2
< 0 for all u ∈ ]0, 2π[

since 3 sin u/(2 + cos u) − u is zero at u = 0 and its derivative −(1 − cos u)2/(2 + cos u)2

is negative. ��
Lemma 7.6 Call η′(x, v) the partial derivative with respect to v, with fixed x, of the flight
time η(x, v) needed to reach the collision by starting from x with velocity v. Let us choose
an arbitrary energy H. Let x(v) = (v2/2 − H)−1 be the value of x corresponding to this
choice. Then η′(x(v), v)/x(v) is increasing with v.

Proof According to Proposition 7.1, η′ > 0. According to the differential equation
2Hη′ + 3vη = −2x , η′/x = (2H)−1(−2 − 3vη/x). If H 	= 0, the question is reduced
to the monotonicity of the function vη(x(v), v)/x(v). But η(x, v) is the function t(x,−v) of
Lemma 7.5, where the velocity −v is decreasing all along the orbit, and where H is constant
all along the orbit. So vη/x is increasing with v if H < 0, decreasing when v is increasing
if H > 0. Consequently η′/x is increasing with v in both cases. If H = 0, the differential
equation gives vη/x = −2/3, which we already know from Proposition 7.1. Differentiating
it, we get 2Hη′′ + 5vη′ + 3η = 0, which gives 5η′/x = −3η/(xv) = 2/v2 if H = 0, which
is also increasing with v since v < 0. ��
Proposition 7.7 (arcs of type 1). In the rectilinear case, 0 < xB < xA, the second derivative
τ ′′
1 with respect to b of the flight time τ1 > 0 is positive. The first derivative τ ′

1 is negative.

Proof Since vB > 0 and v2B − v2A > 0, we have vA > −vB and according to Lemma 7.6, the
above quantity R is positive. This proves τ ′′

1 > 0. Now as vA → −∞, τ1 → 0, vB → +∞
and b → +∞. As we proved that τ ′

1 decreases, τ
′
1 < 0. ��

123



How many Keplerian arcs are there... Page 15 of 17 18

Fig. 3 Four Keplerian arcs of
type 0 with same c, rA + rB and
H

8 Convexity of �: General results and second proof of Theorem 2.2

8.1. Lambert’s theorem and L-congruence.According to Lambert’s theorem (see Lambert
1761; Gooding 1990; Albouy 2019), bymoving O on an ellipse with foci A and B, we change
continuously all the Keplerian arcs of type k going from A to B in a given flight time τk ,
without changing either their number or the integer k or the energy of each arc. Gooding
(1990) calls L-congruents the arcs obtained from each other by following such a continuous
change (see Fig. 3).

The L-congruence furthermore leaves invariant the quotient C/�, as shown by formula
(6). Formula (8) shows that b = 〈qB, pB〉 − 〈qA, pA〉 is also invariant. We gave in 4.7
an “algebraic Lambert theorem” which indeed states the L-invariance of b. The variational
differential equation is L-invariant, which indicates an alternative proof of the L-invariance
of τ , which is Lambert’s theorem.

TheL-congruence reduces Lambert’s problem to the casewith rA = rB.Aswell, it reduces
it to the case where O, B, A are on a line in this order. So, Proposition 7.3 extends to the
nonsymmetric cases. The opposition case should nevertheless be excluded. In the same way,
Proposition 7.7 extends to the nonrectilinear cases, including the opposition cases which are
L-congruent to the case of Proposition 7.1.

8.2. Convex composition of functions. If the (smooth) real function ϕ satisfies ϕ′ > 0 and
ϕ′′ > 0, if the real function f satisfies f ′ > 0 and f ′′ ≥ 0, then the composed function
g : y �→ f (ϕ(y)) satisfies g′ > 0 and g′′ > 0. This is proved by the formulas g′ = ϕ′ f ′ and
g′′ = ϕ′′ f ′ + (ϕ′)2 f ′′. The same formulas prove the convexity of g in other cases.

Here, we restrict the discussion to the coordinates �/C and b, which are related by (8).
For other coordinates and references see Albouy and Ureña (2020).

Proposition 7.3 proves that the flight time τ0 > 0 satisfies τ ′
0 > 0 and τ ′′

0 > 0. Here ′ is the
derivative with respect to the coordinate �/C . Here C > 0 and � > 0 since xA = −xB > 0
and yA = yB > 0. Let us pass to the coordinate b.

The change in variable �/C �→ b given by (8) satisfies b′ < 0. If C/� < 0, b′′ < 0. If
C/� > 0, b′′ > 0. We are in this last case. We need the reciprocal change: ϕ : b �→ �/C .
We have ϕ′ < 0, ϕ′′ > 0. Consequently the function b �→ τ0 has a negative first derivative
and a positive second derivative.

Proposition 7.7 proves that the flight time τ1 > 0 satisfies τ ′
1 < 0 and τ ′′

1 > 0. Here ′ is the
derivative with respect to the coordinate b. Here vB > 0 which is consistent with �/C < 0.
Let us pass to the coordinate �/C . Here ϕ(�/C) = b, ϕ′ < 0, ϕ′′ < 0. Then C/� �→ τ1
has a positive first derivative and a positive second derivative.
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Theorem 8.3 Consider a nonflat triangle OAB. Consider the Keplerian arcs from A to B of
any given type as a one parameter family, the parameter being 1/C, inverse of the angular
momentum. The positive flight time τ on this arc, considered as a function of 1/C, has a
positive second derivative.

Proof About τ0, we extend Proposition 7.3 to general arcs by L-congruence. About τ1, we
extend Proposition 7.7 by L-congruence and pass to the variable 1/C by convex composition.
So both τ0 and τ1 have a positive second derivative in 1/C . We obtain a positive second
derivative of the Keplerian period by adding τ0(−1/C) and τ1(1/C). By similar additions,
we include the multirevolution flight times. ��

This Theorem extends to the rectilinear case by changing the coordinate 1/C into vA−vB,
as shownby computingvA−vB with formula (5).Note that (vA+vB)(vA−vB) = 2/xA−2/xB
since the energy in A is the energy in B. The quantities vA, H , b are rational functions of
vA − vB. But Theorem 8.3 cannot be extended to the opposition case. This is proved by the
monodromy obstruction explained at the end of §3. In the next Theorem, all the cases are
included.

Theorem 8.4 Consider the Keplerian arcs from A to B, A 	= B, of any given type as a one
parameter family, the parameter being the quantity b = 〈qB, pB〉 − 〈qA, pA〉. The positive
flight time τ on this arc, considered as a function of b, has a positive second derivative.

Proof About τ0, we extend Proposition 7.3 to general arcs by L-congruence. The rectilinear
case is included by changing �/C into vA − vB. We then pass to the variable b by convex
composition. The opposition case is included by extending Proposition 7.1 by L-congruence.
About τ1, we extend Proposition 7.7 by L-congruence. We conclude as in the previous
Theorem. ��

Theorem 8.4 gives the convexity of τ , while Proposition 6.1 only proves that τ does not
have a local maximum. Our main Theorem 2.2 was deduced from Proposition 6.1. It is a
fortiori deduced from Theorem 8.4.
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