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Abstract
Aegaeon (S/2008S 1) is the last satellite discovered by the Cassini spacecraft at the end of
the 2000s. Like the satellites Methone and Anthe, it is involved in mean motion resonance
with the mid-sized Mimas. In this work, we give a detailed analysis of the current orbit of
Aegaeon identifying the resonant, secular and long-term perturbations due to Mimas and
the oblateness of Saturn, and the effects of Tethys. For this task, we perform thousands of
numerical simulations of full equations of motion of ensembles of small bodies representing
clones of Aegaeon. We have mapped the domain of the 7:6 Mimas-Aegaeon resonance in
the phase space of the semi-major axis and eccentricity. It displays a large area dominated by
regular motions associated with the 7:6 corotation resonance surrounded by chaotic layers.
Aegaeon is currently located very close to the periodic orbit of the resonance, which extends
up to eccentricities ∼ 0.025 centered at semi-major axis ∼ 168, 028 km. We show that the
current orbit of Aegaeon has an important forced component in eccentricity due to the 7:6
resonance. The orbital inclination of Aegaeon has a non-negligible forced value due to long-
term perturbations of Mimas. These two forced modes explain the complex perturbed orbit
of Aegaeon without requiring the co-existence of multiple resonances.
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Aegaeon
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1 Introduction

Throughout the 2000s theCassini space probe discovered the new close-in satellitesMethone
(S/2004S 1; Porco2004), (S/2004S 1; Porco 2004), Anthe (S/2007S 4; Porco 2007), Aegaeon
(S/2008S 1; Porco 2009), and rediscovered Pallene (S/2004S 2; Porco2004), which had
already been detected in Voyager’s images (see Spitale et al. 2006). After that, studies on
these intriguing small objects (with diameters less than 10km) relied on their origins (e.g.
Porco et al. 2007, Charnoz et al. 2010), ring–satellite interactions and stability of particles
e.g. Hedman et al. 2009, Madeira et al. 2018, Rodríguez and Callegari 2021); surfaces char-
acteristics (e.g. Hedman et al. 2010; Thomas and Helfenstein 2020); or resonant dynamics,
phase space properties and long-term stability (Hedman et al. 2010; El Moutamid et al. 2014;
Munõz-Gutiérrez andGiuliattiWinter 2017; Callegari andYokoyama 2010a, 2020; Callegari
et al. 2021; Rodríguez et al. 2022, submitted - this Issue).

In this work, we aim to continue with the latter branch of research listed above by studying
in detail the orbital dynamics of Aegaeon. Our primary motivation is to give continuity to our
investigations of the so-called “corotation resonances”, which correspond to that dynamical
regime where the critical angle associated to resonance librates around the longitude of
the pericenter (or of the apocenter) of the disturbing body. In the Saturnian system, Anthe,
Methone, andAegaeon are currently trapped in the domains of the 11:10Anthe-Mimas, 15:14
Methone-Mimas, and 7:6Mimas-Aegaeon mean motion corotation resonances, respectively.
Mimas is the perturbing body since it is a mid-sized satellite with almost 400km in diameter,
representing the dominant mass in the above resonant pairs. In the case of the 7:6 resonance,
the critical angle σ2 = 7λM − 6λAe − �M librates around π with relatively small amplitude
(Hedman et al. 2010), where the subscripts M , Ae refer toMimas and Aegaeon, respectively;
λ and � are the mean longitude and the longitude of the pericenter.

Numericalmappings of thewhole domains of the 11:10Anthe-Mimas and 15:14Methone-
Mimas resonances have been studied in detail by Callegari and Yokoyama (2020) and
Callegari et al. (2021), respectively. In this work, we will focus entirely on the 7:6 Mimas-
Aegaeon resonance. It is worth emphasizing that the three resonances have been studied
by El Moutamid et al. (2014) by adopting average models and numerical techniques like
surfaces of section. Munõz-Gutiérrez and Munõz-Gutiérrez and Giuliatti Winter (2017) and
Rodríguez and Callegari (2021) also explored the phase space of the three resonances, but
their approaches involve the dynamical lifetime of assemblies of particles surroundingAnthe,
Methone and Aegaeon.

The main results on the dynamics of Aegaeon are given in Sect. 2. A global view of
the Aegaeon phase space obtained with dynamical maps is introduced in Section 2.1. The
mapping of the resonance has been done numerically with a model which includes several
satellites disturbing the Aegaeon’s orbit, being more general than previous studies of the
phase space of the 7:6 resonance (e.g. El Moutamid et al. 2014). A close view of the current
orbit of Aegaeon is given in Section 2.2. In particular, we show that the current resonant state
is very close to equilibrium solutions associated to the corotation resonance, explaining the
small amplitude (∼ 15 degree) of libration of σ2. In Sections 2.2 and 2.3, we isolate the main
gravitational perturbations of the orbit of Aegaeon through numerical Fourier analysis. They
are physically interpreted in terms of corotation resonance and forced resonant components
in eccentricity and inclination.

Hedman et al. (2010) reported seven other critical arguments of interest in the disturbing
function associated with the 7:6 resonance, besides the corotation angle. They refer these
angles by ϕI L R , ϕx , ϕy , ϕa , ϕb, ϕc, ϕd . (See Table 1 in Section 2.4 for definitions. In this work,
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we utilize a different notation (σi ) for the critical angles.) Adopting a different methodology,
we also isolated the same set of critical arguments with physical significance selected by
Hedman et al. (2010). Although neither of these angles permanently librate, Hedman et al.
(2010) explain their intriguing time variations in terms of multiple resonances acting on the
orbit of Aegaeon.We follow the steps of the two previous works on Anthe andMethone (Cal-
legari and Yokoyama 2020; Callegari et al. 2021), and interpret the perturbing components
on the orbit of Aegaeon as a result of the composition of several fundamental frequencies
of the system involving the corotation resonance and the long-term time variations of the
Aegaeon and Mimas orbits. This discussion is given in Section 2.4.

Hedman et al. (2010), exploring the orbit of Aegaeon with initial values within the error
uncertainty of the vector state of Aegaeon at that epoch, report that the close vicinity of its
present orbit shows a rich dynamical environment in numerical simulations. By adopting a
different methodology (we varied the initial orbital elements around the current ones at the
epoch rather than vector states), we give evidence that the Aegaeon phase space at initial
conditions located relatively far from the current neighborhood reveals other regions of
physical interest. We denote these loci of the phase space by D and S and orbits within them
will be investigated in Section 3.1 and 3.2, respectively.

In Sect. 4, we close the paper with the main conclusions and some discussion.

2 Dynamical Maps and the 7:6 Mimas-Aegaeon resonance

2.1 A global view of the 7:6 resonance

As pointed out in Sect. 1, one of the main goals of this work is to study the global dynamics
of the 7:6 Mimas-Aegaeon mean motion resonance. For this task, we utilize the dynamical
mapping of the phase space. Figures1a,b,c show three examples of dynamical maps. The
initial conditions are taken in grids, and the orbits are numerically obtainedwith the numerical
integrator RA15 (Everhart 1985). For each initial condition, the map is obtained after spectral
analysis of a determined variable of the problem (denoted by VA), like semi-major axis,
eccentricity, or inclination. For this task, we apply the Fast Fourier Transform method (e.g.
Press et al. 1996).

The model adopted in numerical simulations consists of full equations of motion, consid-
ering Saturn, clones of the satellite Aegaeon, Mimas, Enceladus, Tethys, and Dione, and we
take into account the non-central components J2 and J4 of the Saturn’s gravitational field.
The details on the equations of motion and reference system adopted in this work are given in
Callegari and Yokoyama (2010b). To reduce computational time in the integrations of dense
mappings, Rhea and Titan may not be included in general since their perturbations can be
neglected in the sense that themain structures of themap are preserved in the absence of these
satellites. The latter conclusion is based on a great deal on numerical experiments; however,
the pair Rhea-Titan is considered when individual numerical integration devoted determining
the main frequencies of the Aegaeon are performed since these cases do not require large
computational efforts (e.g. Figures 3, 4). It is worth noting that only the initial conditions of
the grid are changed, in general, the initial eccentricity versus the initial semi-major axis in
the plane (a0, e0), so that all other initial elements of the clones of Aegaeon and the other
satellites are always fixed at the date January 01, 2016. The initial values have been taken
from the Horizons system of ephemerides, provided by JPL/NASA. See Appendix.
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The spectra are obtained in such a way that, for each initial condition, we associate a
spectral number, N , consisting of the number of peaks in that spectrum that are larger than
a previously determined percentage of the highest peak. This percentage will be denoted by
RA, the reference amplitude, and it is usually 1% or 5% of the largest peak. In the account of
N we exclude those peaks linked to short period smaller than 15 day so that the dynamical
maps are free from short-term variations, and this may have important consequences in their
interpretation. The dynamical maps are constructed in such a way that we associate a color
palette where distinct tones are linked with different values of N . We must choose a cutoff
value of N , say N∗, which is arbitrary in general, but must be chosen so that when N > N∗,
the same color is considered. Additional details on this technique can be seen in Callegari
et al. (2021).

The dynamical maps constructed in the way described above are very useful to detect
regions of phase space with significant physical meaning. Several of these regions are shown
in Fig. 1. In Figures1a,b,c the ranges �a = 200 km in semi-major axis [167,960km -
168,160km] and �e = 0.035 in eccentricity have been adopted. The magenta stars in the
maps show the location of Aegaeon on the adopted date (January 01, 2016). At this date, the
initial osculating values of the semi-major axis, eccentricity, and inclination (w.r.t. Saturn’s
equator) area0 ∼ 168, 033.2km, e0 ∼ 0.0032, i0 ∼ 0.001degree. Themaps inFigures1a,b,c
have been generated after numerical integration and Fourier analysis of 40,411 orbits.

The structure having the format of a candlelight in the vicinity of Aegaeon in the interval
[168,000km - 168,060km] and reaching 0.023 in eccentricity, represents the domain of the
Corotation zone associated with the 7:6 Mimas-Aegaeon mean-motion resonance. In the
whole region, indicated by C in Fig. 1, the critical angle σ2 = 7λM − 6λs − �M librates
around π , where s indicates a test satellite clone of Aegaeon.

The maps reveal that the interior of the Corotation zone is generally whitish, with small
values of the spectral number N . This occurs since the motion is regular due to the trapping
into resonance. An exception of this regular aspect occurs at the bottom of the Corotation
zone when the inclination of the test satellites is Fourier analyzed (Fig. 1c). In this case, a
black horizontal strip can be seen for orbital eccentricities very close to the current one at
the date. This structure is denoted by D in the maps.

At larger eccentricities in themaps, other two regular regions appear isolated and separated
from the Corotation zone by black regions associated with their separatrices. Note that in the
inclination map, there is also a separatrix inside the regular region at the right indicated by
S. The analysis of dynamics within this region will be devoted to Sect. 3.

Rodríguez and Callegari (2021) consider the mapping of Aegaeon’s phase space adopting
the technique of calculation of mean values of �a, �e, �i , for each numerical simulation.
The results of Fig. 1 can be compared with figure 5 in Rodríguez and Callegari (2021).
There is good accordance in the results of the determination of the boundaries of the 7:6
Mimas-Aegaeon resonance, but the fine structures are better determined with mapping in the
frequency domain.

In the following (Sects. 2.2, 2.3, and 2.4), the current orbit of Aegaeon will be fully
explored.

2.2 The current orbit of Aegaeon: resonant perturbations and the Corotation zone.

Figure1d shows the bottom part of the Corotation zone in more detail, allowing us to identify
more refined structures, like the loci of the equilibrium solution associatedwith theCorotation
zone, C. It appears like an almost vertical yellow line, reaches e0 = 0 close to a = 168, 028
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Fig. 1 Dynamical mappings around the current orbit of Aegaeon at date January 01, 2016, where a0 ∼
168, 033.2 km, e0 ∼ 0.0032 (indicated by a magenta star). C is the Corotation zone studied in Sections 2.1
and 2.2. The black strip D and the region S are analyzed in Sections 3.1 and 3.2, respectively. The integration
time for each initial condition is 287.08 year, a time step of 0.1 day. N is the spectral number defined in
Section 2.1. In (a,b,c): Maps with �a = 1.25 km, �e = 0.00014, and the reference amplitude RA utilized
in the variable (VA) are (a) semi-major axis (RA=5%), (b) eccentricity (RA=5%), (c) inclination (RA=1%).
The triangle magenta symbol in (a) has initial conditions (a0, e0) = (167, 990, 0.0025). (d): Detailed at
the bottom of (c), where a total of 15,251 initial conditions have been integrated, and RA is 0.3%. Magenta
symbols correspond to different (a0, e0). Square: (168, 014, 0.0025); crux (168, 045, 0.0025); open circle
(168, 030, 0.0032)

km, and crosses the region D at e0 ∼ 0.0025. We can note that the position of Aegaeon in
the map is very close to the periodic orbit, a result that agrees with Hedman et al. (2010).

Our dynamical maps are constructed after analyses of the spectra of the orbits. We can
have a more quantitative knowledge of the distribution of the frequencies in the phase space
by making unidirectional sweepings of the resonance by adopting the initial semi-major axis
of test satellites as a free parameter in numerical simulations. The results are the “individual
dynamical power spectra”, denoted by IPS. The y-axis of an IPS shows, for each initial
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Fig. 2 Top row: Individual Power Spectra (IPS) of 1500 clones of Aegaeon constructed from spectra of
different variables indicated at the top of the plots. Pσ2 is the period corresponding to the 7:6 Mimas-Aegaeon
Corotation resonance. P42 ∼ 26, 214.4 is associated to Mimas-Tethys 4:2 resonance. P�� , P��: Mutual-
secular long-term Mimas-Aegaeon perturbations. H1 and H2 are harmonics. Bottom row: Individual spectra
of the orbit corresponding to the initial semi-major axis indicated by a vertical dashed line in the top row,
similar to the current value of Aegaeon at January 01, 2016. Integration time is 1720 year, time step 0.12 day.
The approximated values of the main periods are indicated close to the peaks. The x-axis of the spectrum of
the semi-major axis is shown with a logarithmic scale

condition, the periods associated with the peaks in the spectrum with amplitudes larger than
a prefixed fraction (the RA amplitude defined before).

For this task, we must fix the initial eccentricity and the other initial elements. Let us
begin with the current osculating eccentricity of Aegaeon on January 01, 2016, indicated by
the blue dotted line e0 = 0.0032 in Figure1d. Figure2 shows three IPSs calculated from
the spectra of the semi-major axis (top row), eccentricity (middle), and inclination (right) of
1500 test satellites in the interval 167, 970 ≤ a0 ≤ 168, 090 km. RA is 1%, and y-axes are
given in logarithmic scale. The model and integration time are the same as defined in Fig. 1.
The loci of the fundamental periods are distributed in the vertical direction and identified
with different symbols.

The isolated (almost) horizontal line in Figure2, top-left, is the functional dependence of
the period of libration of σ2 with a0, and it is indicated by Pσ2 . There is a smooth variation
of Pσ2 with a0. Thus, in this interval of the semi-major axis, the dominant peak in the spectra
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of the semi-major axis is that one associated with Corotation resonance, as can be seen in
the spectrum given in the blue curve at the bottom of the IPS. The initial condition for the
spectrum corresponds to the initial state of Aegaeon at the date, a0 ∼ 168, 033.2 km, as
indicated by a vertical dashed line in the IPS, where Pσ2 ∼ 1278.7 day.

The continuation of Pσ2 is interrupted at the left and right borders of the resonance, where
two vertical “barriers” are reached at a0 ∼ 168, 000 km and a0 ∼ 168, 070 km. The spectra
of orbits have a large number of peaks surrounding the fundamental frequencies, showing
their irregular (and possibly chaotic) nature. This occurs because these regions of the phase
space are located within the separatrices of the resonance (see figure 6 in Callegari and
Yokoyama 2020).

The libration of corotation angle σ2 is given in purple curve in Fig. 3. Note that the time
variation of the semi-major axis follows themode of the resonance. Additionally, there is also
a long-term component of P42 ∼ 26, 214.4 day which is associated with the perturbations
on the orbit of Aegaeon due to the Mimas-Tethys 4:2 mean motion resonance. Callegari et al.
(2021) reported the same perturbation in the case of the satellite Methone, while Hedman
et al. (2010) pointed out it in the case of Aegaeon. The 4:2 perturbation appears like an upper
horizontal in IPS of the semi-major axis (Figure2). From the spectrum of the semi-major
axis, we can see that the half -amplitude of variation of the semi-major axis due to the 4:2
resonance is comparable to that induced by corotation resonance: ∼ 3 km. This agrees with
the total amplitude of ∼ 13 km which can be roughly estimated by inspection of Fig. 3. H1,
indicated in IPS and spectra of the semi-major axis is a harmonic of P42 with one-third of the
fundamental period. (Similar result is also observed in the case of Methone, Callegari et al.
(2021)).

Figure3 shows the geometric orbital elements of Aegaeon. We adopt the osculating ele-
ments in this work, in particular, in the construction of the dynamical maps. However, the
geometric elements are calculated when we analyze the individual orbits of Aegaeon and
some test satellites since, in this type of problem we are dealing with in this work, osculating
orbital elements may suffer large short-term variations due to J2 while the corresponding
geometric elements do not. This occurs in general for orbital eccentricity very close to zero,
and the most affected variables are the eccentricity, mean anomaly, and argument of the
pericenter. This discussion is given in detail in Callegari and Yokoyama (2020) and Callegari
et al. (2021) for this sort of situation (close-in satellites revolving around a strong J2 field).
The geometric elements have been calculated from the vector states of the clones of Aegaeon
in our simulations, applying the algorithm of Renner and Sicardy (2006).

Next, let us consider the long-termvariations on the orbit ofAegaeon due tomutual-secular
interactions with Mimas and secular variations due to J2.

2.3 The current orbit of Aegaeon: themutual-secular long-termmodes.

The corotation resonance affects all variables, therefore Pσ2 must also appear in the other
IPSs of eccentricity and inclination, as it is indicated in Fig. 2. In the case of these two latter
variables, there are two additional components that are very preeminent in the spectra and are
related to the following angles: �� = �M − �s and �� = �M − �s . These variables are
linked respectively to the inclination and eccentricity variables (Brouwer 1961, Clemence
1966). Following Callegari et al. (2021), the fundamental frequencies associated with these
angles are denoted by secular-mutual long-term modes (see also Callegari and Yokoyama
2020). They rise due to the J2 secular perturbations on �i and �i , i for all satellites (and,
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in very small amount, due to J4), and the mutual secular and long-term perturbations on the
test satellites due to the closest mid-sized satellite, Mimas.

The loci of P�� and P�� in Fig. 2 are shown in the spectra of the corresponding variables.
Note that the continuation of P�� and P�� are also interrupted at the chaotic borders
of the resonance, but rise again beyond the separatrix since they are independent of the
resonance. It is worth noting that the perturbation in the orbits of Aegaeon and therefore the
principal properties of IPSs aremainly dictated by interactionswithMimas and J2. Numerical
experiments have shown that among all other satellites considered in simulations, Tethys has
the larger contribution; in particular, its effects are significant for orbits given in the domains
of the separatrices of the resonance.

In the case of Mimas-Aegaeon, the associated periods are P��M−Ae ∼ 832.20 day and
P��M−Ae ∼ 825.65 day. See the plots of eccentricity, inclination,��M−Ae and��M−Ae in
Fig. 3. Note that the period of “secular” interactions (P��M−Ae and are P��M−Ae ) are smaller
than the resonant period Pσ2 ∼ 1278.7 day. A similar result has been reported in the case of
Enceladus-Dione 2:1 mean motion resonance in Callegari and Yokoyama (2007). The IPS
of eccentricity and corresponding spectrum show also the harmonic H2 between P�� and
Pσ2 , which is a linear combination of these periods such that the frequency f��−σ2 has the
corresponding period PH2 = P(��−σ2) = 1

P��
− 1

Pσ2
= 2330.17 day.

Figure 4 a,b shown in green curves two detailed views of the geometric eccentricity and
inclination given in Figure3, where the resonant and the secular-mutual long-termmodes are
indicated by arrows. Pink curves are plots of analytical solutions of secular theory including
Mimas-Aegaeon, J2, and J4 (e.g. Murray and Dermott 1999, chapter 7). The results of linear
theory show good agreement with numerical simulations of full equations of motion where
several satellites are considered.

The green curve in Figure4c shows the projection of the geometric orbit of Aegaeon onto
the plane (eAe cos(��M−Ae), eAe sin(��M−e)). Note that there is a forced component of
∼ 0.00023 (indicated by vertical dashed blue line) centered at ��M−Ae = π such that the
projected orbit is almost tangent to the axis eAe cos(��M−e) = 0. Thus, since the forced
and free eccentricities have the same order the magnitude, ��M−e alternates its variation
between retrograde circulation and oscillation aroundπ , as can be seen in the plot of this angle
in Fig. 3. The result of the secular theory (pink curve) shows a very small forced component
of ∼ 0.00002 centered at ��M−Ae = 0 (indicated by vertical dashed pink line in Fig. 4c).

Figure4d shows the same orbits in the plane (i Ae cos(��M−Ae), i Ae sin(��M−e)). There
is a forced component of i f ∼ 0.001degree (indicated byvertical dashedblue line) centered at
��M−Ae = 0 such that the projected orbit is almost tangent to the axis i Ae cos(��M−Ae) =
0.Note that the forced component in inclination is similar to the current value of the geometric
inclination to the date (i Ae ∼ 0.001 degree). In fact, the free inclination is very small. Though
small, there are consequences of the forced mode in inclination on the orbit of Aegaeon, and
further discussions will be given in Section 3.1.

The large differences between forced centers of the projected curves of the secular linear
theory and the current orbit of Aegaeon in Fig. 4c have an important consequence: the 7:6
Mimas-Aegaeon is responsible for the forced component in eccentricity ofAegaeon, centered
at ��M−Ae = π . Following the same arguments given in Callegari et al. (2021), we can
take an orbit outside the resonance to see that now the forced mode in eccentricity due to
resonance is almost null so that the projected orbit will be closer to the corresponding one
provided by the secular theory. An example is shown in Fig. 4e-g. The initial condition is
indicated by a triangle in Fig. 1. Note that the mutual-secular long-term mode is dominant,
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Fig. 3 Time variations of geometric orbital elements and some critical arguments of the disturbing function
obtained from numerical simulation of a satellite similar to Aegaeon. For sake of clarity in the interpretation of
the dynamics, the x-axes of the plots are shown in two different scales depending on the plot. In parentheses,
we give the notation of the angles as reported by Hedman et al. (2010). See Table 1 and Sect. 2 for definitions.
The initial conditions have been taken from Horizons System of ephemerides at the date 2016-01-01 and
are listed in Appendix. The simulations include the Aegaeon and the mid-sized satellites up to Titan, and
J2 and J4 of Saturn. Horizontal arrows show the main regimes of motion and have the following meaning:
RM: resonant mode; MS-LT-ecc: mutual-secular long-term mode in eccentricity; MS-LT-incl: mutual-secular
long-term mode in inclination
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Fig. 4 Green curves show geometric orbital elements of distinct orbits calculated from numerical simulations
with the same model adopted in Fig. 3. Pink curves result from corresponding initial conditions obtained
from secular theory. The main regimes of motion are indicated by horizontal arrows (see Figure3; QRM
means quasi-resonant mode). Vertical dashed lines indicate the approximated forced centers of the orbits.
(a-d) Current Aegaeon, starting from initial conditions at date 2016-01-01 and indicated by the magenta
star in Fig. 1 (a0 ∼ 168, 033.2 km, e0 ∼ 0.0032). Green curves in (a,b) are detailed views of the same
plots given in Fig. 3; (c,d) Projection of the orbit onto the planes (eAe cos(��M−Ae), eAe sin(��M−e))
and (i Ae cos(��M−Ae), i Ae sin(��M−Ae)). (e-h) The same as (a-d), in the case of an orbit outside the
Corotation zone indicated by magenta triangle in Fig. 1a,b,c (a0 = 167, 900 km, e0 = 0.0025). s indicates a
test satellite
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Table 1 The arguments of the expanded disturbing function of the three-body problem up to degree four in
eccentricity and inclination associated to a general (p + 1):p first-order mean motion commensurability (p
is an integer; see table B.4 in Murray and Dermott 1999). p = 6 for the 7:6 Mimas-Aegaeon mean motion
resonance. Symbols i and o refer to the inner and outer satellite in the resonant pair, respectively (such that
i : Aegaeon, o: Mimas in the case of the current Mimas-Aegaeon resonance). ϕx , ϕy , ϕa , ϕb , ϕc , ϕd , ϕCER ,

ϕI L R are the notations of the same corresponding angles studied in Hedman et al. (2010). s = sin i
2 , where (in

this work) i is the inclination of the satellite orbit with respect to the equator of Saturn, and the other symbols
indicate the classical orbital elements: λ (mean longitude), � (longitude of the ascending node), � (longitude
of the pericenter), e (orbital eccentricity)

Critical argument: Argument of the cosine Factors
(index)

σ1 (ϕI L R ) (p + 1)λo − pλi − �i ei , e
3
i , ei e

2
o , ei (s

2
o + s2i )

σ2 (ϕCER ) (p + 1)λo − pλi − �o e2i eo, eo(s
2
o + s2i )

σ3 (ϕx ) (p + 1)λo − pλi + �o − 2�i e2i eo

σ4 (ϕy ) (p + 1)λo − pλi − 2�o + �i ei e
2
o

σ5 (p + 1)λo − pλi + �i − 2�i ei s
2
i

σ6 (p + 1)λo − pλi + �o − 2�i eos2i
σ7 (ϕb) (p + 1)λo − pλi − �i − �o + �i ei si so

σ8 (ϕa ) (p + 1)λo − pλi − �i + �o − �i ei si so

σ9 (p + 1)λo − pλi + �i − �o − �i ei si so

σ10 (ϕd ) (p + 1)λo − pλi − �o − �o + �i eosi so

σ11 (ϕc) (p + 1)λo − pλi − �o + �o − �i eosi so

σ12 (p + 1)λo − pλi + �o − �o − �i eosi so

σ13 (p + 1)λo − pλi + �i − 2�o ei s
2
o

σ14 (p + 1)λo − pλi + �o − 2�o eos2o

while the resonance now is replaced by a quasi-resonant state driven by a rapid oscillation
(Fig. 4e).

2.4 The current orbit of Aegaeon: the Hedman’s angles

Of particular importance among the several angles listed in Table 1 is the Lindblad angle
σ1 = 7λM−6λAe−�Ae. (See Table 1; the corresponding angleswith the notation adopted by
Hedman et al. (2010) are also indicated at the left in (2)-(7).). The blue curve in Fig. 3 shows
that geometric σ1 alternates between oscillation around zero and retrograde circulation. σ1
can be written as a combination of the corotation angle and ��M−e in the following way.
Define β so that β = 7λM −6λAe. Adding and subtracting �M in the expression of σ1 given
in Table 1 we have:

σ1 = β − �Ae

= β − �M
︸ ︷︷ ︸

+�M − �Ae
︸ ︷︷ ︸

= σ2 + ��M−Ae. (1)

Joining with the results of Section 2.3, we conclude that since all the time ��M−Ae oscil-
lates around π , σ1 oscillates around zero because σ2 librates around π . When ��M−Ae

circulates, the same occurs with the Lindblad angle. Inspection of the plots of the geometric
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angles ��M−Ae, σ1 and σ2 in Fig. 3 allows us graphically to confirm this composition of
fundamental modes.

Hedman et al. (2010) have alreadynoted the above compositionσ1 = σ2+��M−Ae. Their
description of the time variations of σ1 are that Aegaeon’s orbit lies close to the boundaries
of the Lindblad resonance. Here we give a more general interpretation of the problem by
noting that the true and the only resonant angle defining the 7:6 Mimas-Aegaeon resonance
is the corotation angle, which always librates around π . σ2, on this turn, alternates between
different episodic regimes ofmotion due to the forced component in eccentricity in��M−Ae.

Many other geometric angles displayed in Table 1 exhibit compositions of the fundamental
frequencies in their time variations similar to the case of the Lindblad angle:

ϕx : σ3 = β + �M − 2�Ae

= β − �M
︸ ︷︷ ︸

+ (�M + �M − �Ae − �Ae)
︸ ︷︷ ︸

= σ2 + 2��M−Ae, (2)

ϕy : σ4 = β − 2�M + �Ae

= β − �M
︸ ︷︷ ︸

−�M + �Ae
︸ ︷︷ ︸

= σ2 − ��M−Ae, (3)

ϕb : σ7 = β − �Ae − �M + �Ae

= β − �M
︸ ︷︷ ︸

+�M − �Ae
︸ ︷︷ ︸

−�M + �Ae
︸ ︷︷ ︸

= σ2 + ��M−Ae − ��M−Ae, (4)

ϕa : σ8 = β − �Ae + �M − �Ae

= β − �M
︸ ︷︷ ︸

+�M − �Ae
︸ ︷︷ ︸

+�M − �Ae
︸ ︷︷ ︸

= σ2 + ��M−Ae + ��M−Ae, (5)

ϕd : σ10 = β − �M
︸ ︷︷ ︸

−�M + �Ae
︸ ︷︷ ︸

= σ2 − ��M−Ae, (6)

ϕc : σ11 = β − �M
︸ ︷︷ ︸

+�M − �Ae
︸ ︷︷ ︸

= σ2 + ��M−Ae. (7)

σ4 is the same as σ2 with the opposite signal in the ��M−Ae component (compare (3)
and (1) and the plots of σ1 and σ4 in Figure3). σ3 is driven mainly by ��M−Ae enhanced
in amplitude by a factor 2 (compare the plots of ��M−Ae and σ3). Note that we have added
and subtracted �M in the expression of σ3, σ7 and σ8 to obtain the final forms (2), (4) and
(5), while in the other cases singles arrangements of their expressions (see Table 1) have been
done.

σ10 and σ11 are driven by��M−Ae so that they circulate in distinct directions. In general,
it is difficult to note in plots of σ10 and σ11 the composition of ��M−Ae with the frequency
of the resonance (equations (6) and (7)), since the period of σ2 is larger than the period of
��M−e (Pσ2 ∼ 1278.75 day, P��M−Ae ∼ 832.20 day). However, there are some intervals
of time that ��M−e oscillates around zero with small amplitude, so that the libration of
σ2 around π rises in the plots of σ10, σ11. An example of this fact can be seen at the time
∼ 27, 000 day in Figure3 (compare the plots of the geometric σ10, σ11 and ��M−Ae).

The σ8 variation is explained by the composition of two main two modes: it is driven
by ��M−Ae, and shows episodic oscillations around zero. The latter occurs due to the
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sum of the components of ��M−Ae and σ2 when both are oscillating around π . Another
situation occurs when��M−Ae is not oscillating: in this case, it is circulating in the opposite
direction of that ��M−Ae, both with almost the same periods, P��M−Ae ∼ 832.20 day,
P��M−Ae ∼ 825.65 day. Interestingly, their sum may also oscillate around π , as it is shown
by the angle θ = ��M−s + ��M−s (Figure3). The above description of σ8 for the current
orbit of Aegaeon will be clearly in Section 3.1, Figure5, where close orbits with slightly
different initial conditions will be studied.

σ7 is driven by ��M−Ae component in opposite direction of that σ8 (compare equations
(4) and (5)). In the case of simultaneous oscillations of ��M−Ae and σ2 the descriptions
given above for σ8 are valid, but the same is not true in the case when ��M−Ae circulates,
since due to changed sign in ��M−Ae, their components are superposed.

3 Additional analysis within and outside the Corotation zone

3.1 The D dark strip

In this section, let us investigate the nature of the dark structureD located inside theCorotation
zone and very close to the orbit of Aegaeon. As pointed out before, this black strip inside the
Corotation zone is only present in the dynamical maps constructed with Fourier analyses of
the orbital inclination (compare Fig. 1a,b and Fig. 1c). In the following, wewill give examples
that show that the D region is associated with induced time variations in inclination due to a
forced component in this orbital element (e.g. Figure 4d).

Figure5 displays results of an orbit with e0 = 0.0025 and a0 = 168, 014 km. This position
is indicated by the magenta square in Fig. 1d, so we are choosing an initial condition over
the dark strip. The two first plots at the top in Figure5 show that the time variation of the
inclination is linked to ��M−s in such a way that when the latter oscillates around zero the
former has the minimum variation (s for a test satellite). Green points plotted at the bottom-
right in Fig. 5 are the projection of the orbit onto the plane (is cos(��M−s), is sin(��M−s).
There is a cloud of points concentrated around the forced inclination i f ∼ 0.001 degree.
Contrary to the current orbit (green curve in Figure4d), where only occasionally ��M−Ae

oscillates, now a much more evident forcing in inclination is seen. Thus, the oscillation of
��M−s is related to the forced component in inclination.

The consequences of the forced component in inclination on the time variations of σ10,
σ11, and σ8 are visible and easier explained than before (Section 2.3). In the cases of σ10,
σ11, all the time ��M−s oscillates around zero, σ2 resonant libration component around π

rises (recall equations (6) and (7)).
Let us to consider σ8 = σ2 + ��M−s + ��M−s (equation (4)). We have that ��M−s

always circulates in this case, due to larger free eccentricity, despite forced eccentricity (see
projected orbit at bottom-left in Figure5. Thus, two regimes of variation of σ8 can occur
depending on the behavior of��M−s : i) when��M−s oscillates around zero, σ8 circulates,
driven by the ��M−s circulation mode; ii) when ��M−s circulates, its sum with ��M−s

oscillates around π , as indicated by θ = ��M−s +��M−s in Figure5. Thus, by adding σ2,
which librates around π , σ8 oscillates around zero. Inspection of the orbit over D strip with
initial condition indicated by magenta crux in Fig. 1 shows the same main results reported
above so that there is a symmetry with respect to line of the equilibrium solution associated
to corotation C.
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Fig. 5 Critical angles and geometric elements for an orbit with e0 = 0.0025 and a0 = 168, 014 km - magenta
square in Fig. 1. Bottom green curves: projected orbit onto the planes (is cos(��M−s ), is sin(��M−s ) (right)
and (es cos(��M−s ), es sin(��M−s ) (left), where s is for a test satellite
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Fig. 6 Critical angles and geometric elements for an orbit with e0 = 0.0032 and a0 = 168, 030 km - open
circle in Fig. 1. All definitions are given in Table 1, Figs. 1 and 5

123



21 Page 16 of 21 Callegari and Rodríguez

Fig. 7 A detailed view of the
region S indicated in Fig. 1c,
where now we calculate the
maximum variation in orbital
inclination (�i) for each initial
condition in the map. The green
symbols represent the adopted
initial values for individual runs
(see text for details)

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1
68

07
0

 1
68

07
5

 1
68

08
0

 1
68

08
5

 1
68

09
0

 1
68

09
5

 1
68

10
0

 1
68

10
5

 1
68

11
0

Δi [deg]

E
cc

en
tr

ic
ity

Semi-major axis [km]

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16

The elements shown in Figure6 correspond to the open circle in Figure1d. As expected,
the amplitude of libration of the corotation angle is very small since the initial condition is
located almost inside the corotation center, C, which gives the loci of the equilibrium of the
resonance. The green curve at the bottom in Figure6 shows a strong forced component in
eccentricity so that ��M−s oscillates around π . Now three other critical angles oscillate
around different centers: σ1 (ϕLER), σ3 (ϕx ), σ4 (ϕy). This example resembles the case of the
current orbit of the satellite Methone, as studied and fully explored in Callegari et al. (2021).
σ1, σ3, σ4 are explained by inspection of (1), (2), (3), respectively, by noting that ��M−s

oscillates around π in this case. It is important to note that this initial condition differs by
only ∼ 3 km in the semi-major axis compared to the current orbit of Aegaeon (magenta star
in Fig. 2). Recall the complex orbit of Aegaeon studied in Section 2.4.

3.2 The S region

As pointed out in Fig. 1c (Section 2.1), there is a large region of the phase space at the top of
the Corotation zone where regular motion occurs. Figure7 shows a new dynamical map close
to the occurrence of the S region. We performed 10, 000 numerical simulations considering
the perturbation of Mimas, Enceladus, Tethys, and Dione, plus Saturn’s oblateness including
J2 and J4 coefficients. To investigate the variation of the orbital elements within this region,
we choose three initial conditions such that a = 168, 080 km and e = 0.016, 0.018, 0.025,
keeping other orbital elements equal to the Aegaeon’s ones at 2016/01/01. These values cor-
respond to eccentricities at the bottom (square), top (crux) and inside (circle) the darkest zone
(see green symbols in Fig. 7). Each initial condition was integrated for 200 yr, representing
77,513 Mimas orbital periods.

Figure8 shows the time variation of the angle θ = ��M−s + ��M−s and other orbital
elements for the above-mentioned initial conditions. θ is the same angle explored in Section
2.4. On one hand, the simulation starting with the highest (lowest) value of eccentricity
indicates a retrograde (prograde) circulation of θ . On the other hand, for e = 0.018, θ

oscillates around zero with amplitude ∼ 100◦ (note the difference between the integration
times). It is important to note that the orbital inclination oscillates with the same period of θ .
Moreover, the period of oscillation strongly depends on the initial value of the eccentricity.

A numerical inspection of a large set of initial conditions within the investigated domain
allowed us to show that, for those initial positions in the map at the top (bottom) of the
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Fig. 8 (Top-Left): Long-term variation of θ = ��M−s +��M−s for three individual numerical simulations.
From top to bottom: crux, circle, and square symbols in Fig. 7. (Top-Right): The same now for the long-term
variation of the orbital inclination. (Bottom-Left): Semi-major axis. (Bottom-Right): Orbital eccentricity Note
the different scales of the y-axes of the plots of eccentricity and inclination
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darkest region, the angle θ has a retrograde (prograde) circulation. This indicates that the
dark structure inside the S region is associated with a kind of separatrix linked to the variation
of θ .

The time variations of the semi-major axis and eccentricity do not show any special
behavior within the region highlighted in Figure7. In particular, these both variables are
not confined (see Fig. 8) in the volume of phase space encompassing region S, ruling out
therefore the possibility of the existence of any high-order mean motion resonance.

Further investigations of the dynamics inside this S region are outside of our initial goals
in this work. In conclusion, it is a region related to a secular motion of the system, where
the variable θ = ��M−s +��M−s can be almost stationary oscillating zero, suffering also
transition of circulation regimes around the loci of the dark strip.

4 Conclusions and Discussions

Motivated by the richness of the dynamic environment of Aegaeon first reported in Hedman
et al. (2010), in this work we study the current orbit of this small moon with extended data
and techniques of a non-linear system. We performed numerical integrations of thousands
of clones of the satellite in the close vicinity of the current orbit, allowing us to obtain an
in-deep study of the phase space of the 7:6 Mimas-Aegaeon resonance. This resonance is
well-characterized by the libration of the corotation angle σ2 around π , what means that the
conjunctions between Mimas and Aegaeon occur in a line which always oscillates around
the longitude of the apocenter of Mimas.

We explain the anomalous transitions between circulation and oscillation of the Lindblad
angle σ1 = 7λM − 6λAe − �Ae (ϕLER in Hedman et al. 2010), and the angles σ3 (ϕx ), σ4
(ϕy), σ7 (ϕb), σ8 (ϕa), displayed in Fig. 3. We have shown that the alternations of regimes
of motion of these angles are consequences of a forced component in eccentricity in the
orbit of Aegaeon due to resonance, leading to the angle ��M−Ae = �M − �Ae oscillates
episodically around π . The forced eccentricity is e f ∼ 0.0002, and has a similar magnitude
to the free eccentricity, as conjectured in Hedman et al. (2010).

In the cases of σ11 (ϕc) and σ10 (ϕd ), the relative motion of the longitudes of the ascending
nodes of Mimas and Aegaeon, ��M−Ae = �M − �Ae, plays an important role (Hedman
et al. 2010). In particular, we have shown that this synodic angle ��M−Ae may episodically
oscillate around zero. We explain this anomalous variation of relative ascending nodes by
determining a forced component in inclination of the orbit of Aegaeon i f ∼ 0.001 degree,
a value similar to the current geometric inclination to the date so that the free inclination is
very small. It is worth noting that the forced value of the orbital inclination of Aegaeon is
due to long-term perturbations with Mimas, not the 7:6 resonance.

Our interpretations of the perturbations of the orbit of Aegaeon are based on the funda-
mental frequencies which, after being determined numerically with spectral analysis, can be
physically explained in terms of resonant, secular, and long-term perturbations mainly due
to Mimas and J2. It is not required the co-existence of multiple resonances acting in the
orbit of Aegaeon, avoiding in this case potential signals of chaotic motion in its current orbit.
Moreover, we have shown that the main perturbations are due to Mimas, the term J2 of the
Saturn gravitational field, and with weaker contribution, Tethys.

Similar results have been found and discussed in the cases of Anthe and Methone, which
also have very regular orbits trappedwithin their respective corotation resonanceswithMimas
(see Callegari and Yokoyama 2020, Callegari et al. 2021, and references therein). However,
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due to the complexity of the resonant perturbations acting on the orbit of Aegaeon, at first
glance, this would make the 7:6 resonance with Mimas distinct from Anthe’s andMethone’s,
but it is not the case. In fact, the Corotation zone is isolated in the phase space, reaching
eccentricities ∼ 0.025 and semi-major axis given in the interval ∼ 168, 000− 168, 060 km,
as we could determine in the numerical mapping of the phase space. The onlymain difference
which distinguishes the case ofMimas-Aegaeon is the forced inclination. Individual analyses
of orbits at the region the D (Fig. 1a,b) show that “instabilities” mapped at the bottom part of
the Corotation zone are related to this forced component in inclination of test satellites. The
maps shown in Figures1b,c confirm this, where the analyzed variables were the semi-major
axis and eccentricity, and the dark region is not present.

A key characteristic of the Mimas-Aegaeon resonance when compared with the other
two corotation resonances is the closer proximity of the Aegaeon’s orbit to the center of the
7:6 resonance, a result highlighted in Hedman et al. (2010) and confirmed in our numerical
mappings of the loci of the periodic orbit associated to the corotation resonance (see Fig. 1d).
Hedman et al. (2010) conjectured that interactions of Aegaeon with other objects in that
region would explain its current orbital configuration (Aegaeon is immersed in an arc within
the G-ring).

Far from the current orbit of Aegaeon and its neighborhood, we have found the existence of
a regime of regular motion surrounding the separatrices of the 7:6 Corotation zone. A similar
regime of motion has been already been in Callegari and Yokoyama (2010a) in the case of
the satellite Pallene. No mean motion resonance is associated with those sites, and inspection
of individual orbits in the interior of the S region reveals an equilibrium configuration of the
secular angle θ = ��M−s + ��M−s (s for test satellite), which is linked to the inclination
of the orbital plane.

Acknowledgements Thanks to XX Brazilian Colloquium on Orbital Dynamics (2021 virtual Edition), and
Tadashi Yokoyama.

Appendix: Initial conditions and parameters

Table 2 gives the initial osculating elements and masses of the mid-sized satellites of Saturn
and Aegaeon provided by Horizons system of ephemerides at date January 01, 2016.

The physical data for Saturn areMS = 5.6834×1026 kg, RS = 60, 268±4 km (equatorial
radius), J2 = 0.01629071 and J4 = −0.0009358 (Jacobson et al. 2006).
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