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Abstract
We consider the Hill four-body problem where three oblate, massive bodies form a relative
equilibrium triangular configuration, and the 4th, infinitesimal body orbits in a neighborhood
of the smallest of the threemassive bodies. We regularize collisions between the infinitesimal
body and the smallest massive body, via McGehee coordinate transformation. We describe
the corresponding collision manifold and show that it undergoes a bifurcation when the
oblateness coefficient of the smallest massive body passes through the zero value.

Keywords Hill four-body problem · Oblate bodies · McGehee’s regularization ·
Ejection-collision orbits.

1 Introduction

We consider the Hill approximation of the circular restricted four-body problem with oblate
bodies, on the motion of an infinitesimal body under the gravitational influence of three
massive bodies of oblate shapes; the three bodies are assumed to be in a relative equilibrium
triangular configuration, and the motion of the infinitesimal body is assumed to take place
in a neighborhood of the smallest of the three bodies, which we think of as an asteroid.
See Burgos-García et al. (2020). The resulting gravitational field in the Hill approximation
contains a non-Newtonian term which depends on the oblateness coefficient of the asteroid.
We use McGehee coordinates to regularize collisions between the infinitesimal body and
the asteroid, which amounts to blowing up the collision set to a manifold that captures the
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dynamics in the singular limit. (Note that, due to the non-Newtonian term in the potential, the
Levi-Civita regularization does not apply to this setting.) We describe the collision manifold
and the regularized dynamics in a neighborhood of it. We show that each collision solution is
branch regularizable, and each extension of a collision solution is a reflection. We also show
that the collision manifold is not block regularizable. Moreover, we show that the collision
manifold undergoes a double saddle-node bifurcation as the oblateness coefficient of the
asteroid passes through the zero value. When the shape of the asteroid becomes prolate, no
collisions between the infinitesimal body and the asteroid are possible.

The four-body system that we consider here can be viewed as a model for the Sun-
Jupiter-Hektor-Skamandrios system; Hektor is a Jupiter’s trojan asteroid, and Skamandrios
is a moonlet of Hektor. Hektor’s shape can be approximated by a dumb-bell figure and has
one of the largest oblateness coefficients among objects of similar size in the solar system
(Descamps 2015). The moonlet Skamandrios appears to have a complicated orbit, which
is close to 1:10 and 2:21 orbit/spin resonances; a small change could potentially eject the
moonlet or make it collide with the asteroid (Marchis et al. 2014). This justifies our interest
in understanding collision orbits.

McGehee coordinate transformation was introduced in McGehee (1981) to regularize
collisions in a central force field of the form U (x) = |x|−α , where x ∈ R

2 and α > 0. He
also introduced the concept of branch regularization. A solution is branch regularizable if it
has a unique real analytic extension past the collision. Branch regularization concerns the
extension of individual solutions. The concept of block regularization considers collective
extensions of solutions; it was introduced by Easton in Easton (1971) who referred to it as
‘regularization by surgery’. A flow is called block regularizable if it is diffeomorphic to the
trivial parallel flow in a deleted neighborhood of the collision set.

McGehee transformation has been applied to show the existence of ejection-collision
orbits, which start and end at a collision. Llibre showed analytically the existence of ejection-
collision orbits in the restricted three-body problem (Llibre 1982), Lacomba and Llibre
showed numerically the existence of transverse ejection-collision orbits in the Hill problem
for some value of the energy (Lacomba and Llibre 1988), while Delgado-Fernández showed
analytically the existence of such orbits for all sufficiently small energies in Fernández (1988).
Other related works include (Devaney 1981; Pinyol 1995; Ollé et al. 2018; Alvarez-Ramírez
et al. 2021).

McGehee regularization can also be applied to quasi-homogeneous central force fields
of the form U (x) = γ1|x|−α1 + γ1|x|−α2 , with γ1, γ2, α1, α2 > 0; see Stoica et al. (2000).
Belbruno usedMcGehee transformation to regularize collisionswith a black hole in Belbruno
and Pretorius (2011) in order to establish the relationship between the null geodesic structure
of the Schwarzschild black hole solution, and the corresponding inverse-cubic Newtonian
central force problem. Belbruno and collaborators also used the McGehee transformation
to study the regularizability of the big bang singularity, including the case when random
perturbations modeled by Brownian motion are present in the system (Belbruno 2013; Xue
and Belbruno 2014; Belbruno and Xue 2018). Other applications of related interest include
(Diacu et al. 2000; Galindo and Mars 2014; ElBialy 2009; Ollé et al. 2022).

A contribution of our work is that we perform McGehee regularization of collisions in
a four-body problem (rather than in a central force field), where the non-Newtonian part of
the gravitational potential is owed to the shape of the body. As a matter of fact, our work
assumes amore general setting, of aHill four-body problemwith a general quasi-homogenous
potential, which includes the oblateness effect as a particular case. Another contribution is
that we perform a bifurcation analysis as the oblateness coefficient varies, with the surprising
conclusion that collisions cease to occur as we switch from oblate to prolate shape.
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2 Setup andmain result

2.1 Hill four-body problemwith oblate bodies

In this section,wedescribe theHill approximation of the circular restricted four-bodyproblem
with oblate massive bodies. This problem concerns the dynamics of an infinitesimal body
(particle) moving in a plane under the gravitational influence of three oblate bodies of masses
m1 > m2 > m3, but without influencing their motion. We refer to these three bodies as
primary, secondary, and tertiary, respectively. We express the gravitational potential of each
body in terms of spherical harmonics truncated up to second-order zonal harmonic, that is,

Vi (x1, x2, x3) = mi

r
+ mi

r

(
Ri

r

)2
(
Ci
20

2

) (
3

( x3
r

)2 − 1

)
, (2.1)

where r = (x21 + x22 + x23 )
1/2, Ri is the average radius of the i-th body, and the gravitational

constant is normalized to 1. The dimensionless quantity Ci
20 is the coefficient of the zonal

harmonic of order 2, with Ci
20 < 0 for an oblate body, Ci

20 = 0 for a spherical body, and
Ci
20 > 0 for a prolate body. Further, we denote Ci = Ci

20R
2
i /2.

For the circular restricted four-body problem, the assumption is that the three massive
bodies are in a relative equilibrium configuration, that is, they move on circular orbits around
their center of mass while preserving their mutual distances constant over time. In the case
when the bodies have no oblateness, the only non-collinear relative equilibrium configuration
is the Lagrangian equilateral triangle. When the bodies are oblate, the gravitational potential
is no longer Newtonian, and the relative equilibrium is no longer an equilateral triangle. It
has been shown in Burgos-García et al. (2020) that there is a unique relative equilibrium
which is a scalene triangle. Such triangle has the property that the body with the larger Ci

is opposite to the longer side of the triangle. We normalize the units of distance so that the
distance between m1 and m2 is set to 1, and we let u1 be the distance from m1 to m3, and u2
be the distance from m2 to m3. See Fig. 1. The sides u1 and u2 are uniquely determined by
the implicit equations

1 − 3C12 = 1

u31
− 3C13

u51
= 1

u32
− 3C23

u52
, (2.2)

where we denote Ci j = Ci + C j .
Given such a relative equilibrium configuration, the motion of the particle in a vicinity

of the tertiary is described by the Hamiltonian of the circular restricted four-body problem
(see, e.g., Burgos-García et al. (2020)). However, the corresponding Hamiltonian equations
are difficult to treat analytically. Therefore we consider below the Hill approximation of the
circular restricted four-body problem. This is derived by rescaling the distances by a factor of
m1/3

3 , writing the associatedHamiltonian in the rescaled coordinates as a power series inm1/3
3 ,

and neglecting all the terms of order O(m1/3
3 ) in the expansion. The oblateness coefficient

Ci also gets rescaled to ci = m−2/3
3 Ci

20R
2
i /2. This procedure yields an approximation of the

motion of the particle in an O(m1/3
3 )-neighborhood of the tertiary, while the primary and the

secondary are ‘sent to infinity’. We obtain a much simpler Hamiltonian than the one for the
circular restricted four-body problem, for which the contribution of the primary and of the
secondary to the gravitational potential is given by a quadratic polynomial. Specifically, the
Hamiltonian of the Hill four-body problem relative to some convenient co-rotating frame is
given by
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Fig. 1 Scalene triangle relative
equilibrium

H =1
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(2.3)

where μ = m2
m1+m2

, and λ1 and λ2 are given by the following formulas

λ1 = 1

2

(
2 − 2(1 − μ)

u51
− 2μ

u52
+ 3(1 − μ)

u31
+ 3μ

u32
− 3

u31u
3
2

√
�

)
,

λ2 = 1

2

(
2 − 2(1 − μ)

u51
− 2μ

u52
+ 3(1 − μ)

u31
+ 3μ

u32
+ 3

u31u
3
2

√
�

)
,

(2.4)

where

� = (μu31 + (1 − μ)u32)
2 − μ(1 − μ)u1u2

(−u41 − u42 + 2u21 + 2u22 + 2u21u
2
2 − 1

)
.

When we restrict to the planar problem (x3 = 0), the Hamiltonian becomes

H = 1

2
(y21 + y22 ) + x2y1 − x1y2 +

(
1 − λ2

2

)
x21 +

(
1 − λ1

2

)
x22

− 1

(x21 + x22 )
1/2

+ c3
(x21 + x22 )

3/2
,

(2.5)

where the constant terms (1−μ)c1
u31

and μc2
u32

were dropped, as they do not appear in the Hamil-

tonian equations. We note that in the planar problem the oblateness of the primary and the
secondary plays no role.

We denote byMh the 3-dimensional energy manifold

Mh = {H = h}. (2.6)
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Remark 2.1 An example of a system that can be modeled by the Hill four-body problem is
the Sun-Jupiter-Hektor-Skamandrios system (Burgos-García et al. 2020). Hektor is a Jupiter
Trojan,which is approximately located at Lagrangian point L4 of the Sun-Jupiter system, thus
forming an approximate triangular relative equilibrium configuration with Sun and Jupiter.
Hektor is the biggest Jupiter Trojan and has one of the largest values of the oblateness
coefficients among the objects of its size in in the Solar system. Hektor’s moonlet, Skaman-
drios, can be viewed as the fourth, infinitesimal body. In this case, the constants that appear
in (2.3) are c3 = −1.327161 × 10−7, μ = 0.0009533386, u1 = 1 − 5.94154 × 10−11,
u2 = 1 − 1.99318 × 10−12, λ1 = 0.002144, and λ2 = 2.997855.

2.2 Main result

The main result of the paper is stated below, and the proof is given in Sects. 4 and 6.

Theorem 2.2 For the system (2.5) with oblate tertiary, i.e., c3 < 0, each collision solution is
branch regularizable, and each extension of a collision solution is a reflection. The collision
manifold is not block regularizable.

At c3 = 0, the reduced system of equations associated to the collision manifold undergoes
a double saddle-node bifurcation. For c3 = 0, the collision manifold is branch and block
regularizable.

For the system (2.5) with a prolate tertiary, i.e., c3 > 0, there are no collisions.

The collision manifold and the corresponding reduced system of equations are described
in Sect. 6.

3 Branch and block regularization

We give a brief review of branch and block regularization following (McGehee 1981).
For a differential equation

ẋ = F(x) (3.1)

with F a real analytic vector field on some open set U ⊆ R
n , and ˙ = d

dt . The standard
existence and uniqueness theorem for ODE’s gives for each initial condition x(0) ∈ U a
unique, real analytic solution x(t) defined on a maximal interval (t−, t+) with −∞ ≤ t− <

0 < t+ ≤ +∞. Solutions for which −∞ < t− or t+ < +∞ are said to have a singularity
at t∗ = t− or t∗ = t+, respectively.

We briefly describe the concept of branch regularization.
If x1(t) and x2(t) are solutions of (3.1), with x1 ending in a singularity at time t∗ and

x2 beginning in a singularity at t∗, and there exists a multivalued analytic complex function
having a branch at t∗ and extending both x1 and x2 when we regard the time t as complex,
then x1, x2 are said to be branch extensions of one another at t∗.

A solution x(t) of eq. (3.1) with a singularity at t∗ is said to be branch regularizable at t∗
if it has a unique branch extension at t∗. The extension is called a ‘reflection’ if the velocity
vector reverses direction at collision, and is called a ‘transmission’ if the direction of the
velocity vector is preserved at collision. See Fig. 2a and b.

The eq. (3.1) is said to be branch regularizable if every solution is branch regularizable at
every singularity.
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Now, consider the motion of a single particle in a potential field given by

U (x) = |x|−α with x ∈ R
2. (3.2)

The equation of motion is given by the second-order equation

ẍ = ∇U (x),

or equivalently, by the first-order system{
ẋ = y,

ẏ = − α|x|−α−2x.

Let β = α
2 and γ = 1

1+β
= 2

2+α
.

We recall the following result from McGehee (1981):

Theorem 3.1 A collision solution for the potential (3.2) is branch regularizable if and only
if γ = p

q with p < q positive integers, gcd(p, q) = 1, and q odd.
Moreover, if p is even, the extension solution is a ‘reflection’, and when p is odd, the

extension solution is a ‘transmission’.

In Stoica et al. (2000), this result has been extended for quasi-homogeneous potentials of
the form

U (x) = γ1|x|−α1 + γ2|x|−α2 with x ∈ R
2, (3.3)

where γ1, γ2 > 0, α2 > α1 > 0.

Theorem 3.2 A collision solution for the potential (3.3) is branch regularizable if and only
if both

2

2 + max(α1, α2)
, and

min(α1, α2)

2 + max(α1, α2)

are of the form p
q with p < q positive integers, gcd(p, q) = 1, and q odd.

We now describe the concept of block regularization. Denote by φt = φ(·, t) the flow of
(3.1).

A compact invariant set N ⊆ U is called isolated if there exists an open set V ⊆ U –
referred to as an isolating neighborhood – such that N ⊂ V is the maximal invariant subset
of V .

Let B ⊆ U be a compact set with non-empty interior, and assume that the boundary
b = ∂B of B is a smooth submanifold. Define

b+ = {x ∈ b | φ(x, (−ε, 0)) ∩ B = ∅, for some ε > 0},
b− = {x ∈ b | φ(x, (0, ε)) ∩ B = ∅, for some ε > 0},
t ={x ∈ b | φ̇(x, 0) is tangent to b}.

The set B is called an isolating block if b+ ∩ b− = t.
If N is an isolated invariant set, we say that B isolates N if the interior set Int(B) of B is

an isolating neighborhood for N. For every isolated invariant set N, there exists an isolating
block which isolates N. If B is an isolating block, then there exists an isolated invariant set
N (possibly empty) which is isolated by B. See Conley and Easton (1971).
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The asymptotic sets to N are defined by

a+ = {x ∈ b+ | φ(x, (0,+∞)) ⊂ B},
a− = {x ∈ b− | φ(x, (−∞, 0)) ⊂ B}.

The map across the block is defined as


 : b+ \ a+ → b− \ a−,


(x) = φ(x, T (x)),

where T (x) = inf{t > 0 | φ(x, t) /∈ B} is the time spent inside the block.
If B is an isolating block, then the application 
 is a diffeomorphism. See Conley and

Easton (1971).
An isolating block B is said to be trivializable if the map 
 extends uniquely to a diffeo-

morphism from b+ to b−.
The theory of isolating blocks can be applied to singularities by essentially replacing the

role of an isolated invariant setN as above with the set of singularities, as we shall see below.
In Sect. 4, we will see that, going through regularized coordinates and time rescaling, the

set of singularities for (2.3), which consists of the origin, gets transformed into an invariant
set, which is in fact a manifold (referred to as a collision manifold).

Let F(x) be a vector field defined on U \ N, where N is a compact set representing the
singularities of the vector field. Let B ⊆ U be compact set with non-empty interior, such that
b = ∂B is a smooth submanifold, and with b∩N = ∅. Define the subsets b+,b− ⊂ b in the
same way as above. Under these conditions, the definition of an isolating block is the same
as before.

The orbit through a point x is defined by

O(x) = {φ(x, t) | φ(x, t) is defined }.

That is, there are no invariant sets in B.
An isolating block B is said to isolate the singularity setN ifN ⊂ Int(B) and if O(x) 
⊂ B

for all x ∈ B \ N.
The asymptotic sets to N are defined by

a+ = {x ∈ b+ | φ(x, t) ∈ B for all t ≥ 0 for whichφ(x, t) is defined},
a− = {x ∈ b− | φ(x, t) ∈ B for all t ≤ 0 for whichφ(x, t) is defined}.

We define the map across the block 
 : b+ \ a+ → b− \ a− as before.
The singularity set N is said to be block regularizable if there exists a trivializable block

B which isolates N. See Fig. 2c, d.
Regarding block regularization, we recall the following result from McGehee (1981):

Theorem 3.3 A collision set for the potential (3.2) is block regularizable if and only if β =
1 − 1

n for n positive integer.
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Fig. 2 Different types of singularities: a branch regularizable–reflection, b branch regularizable–transmission,
c block regularizable–the sets a+, a− associated to the block B are marked by dotted and solid lines, respec-
tively, and the set t is marked by empty circles, d not block regularizable–same convention as in (c)

4 McGehee transformation

We rewrite the Hamiltonian (2.5) in a simpler form

H = 1

2
(y21 + y22 ) + x2y1 − x1y2 + Ax21 + Bx22

− 1

(x21 + x22 )
ν/2

− c

(x21 + x22 )
α/2

,

(4.1)

where˙= d
dt , and 1 ≤ ν < α. The corresponding potential is quasi-homogeneous.

In the case of the potential (2.5), we have

ν = 1, α = 3, A = 1 − λ2

2
, B = 1 − λ1

2
, λ1, λ2 > 0, c = −c3. (4.2)

We identify x, y ∈ R
2 with the complex numbers x1 + i x2, y1 + iy2, respectively. The

corresponding Hamilton equations are

ẋ = ∂H

∂ y
= y − i x,

ẏ = − ∂H

∂x
= − νx

|x |ν+2 − αcx

|x |α+2 − iy − T x,
(4.3)

where T is the real-linear transformation given by T (x1 + i x2) = 2Ax1 + 2Bx2i , and
|x | = (x21 + x22 )

1/2.
We perform a coordinate change to new real coordinates (r , θ, v,w), with r > 0 and

θ ∈ T
1, defined as follows

x = rγ eiθ ,

y = r−γβ(v + iw)eiθ ,
(4.4)

where

β = α

2
, and γ = 1

β + 1
= 2

α + 2
.
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Writing (4.4) in terms of components, we have

x1 = rγ cos θ,

x2 = rγ sin θ,

y1 = r−γβ(v cos θ − w sin θ),

y2 = r−γβ(v sin θ + w cos θ).

(4.5)

The new coordinates (r , θ, v,w) in terms of the old coordinates (x1, x2, y1, y2) are given by

r = |x | 1
γ ,

θ = arg(x),

v = rγβ(y1 cos θ + y2 sin θ),

w = rγβ(−y1 sin θ + y2 cos θ).

(4.6)

The new coordinates are known as theMcGehee coordinates (McGehee 1981).We rewrite
the Hamiltonian equations (4.3) in the new coordinates and equate the real and imaginary
parts on the two sides. From

ẋ = [
γ rγ−1ṙ + irγ θ̇

]
eiθ ,

∂H

∂ y
= [

r−βγ (v + iw) − irγ
]
eiθ ,

ẏ = [−βγ r−βγ−1ṙ(v + iw) + r−βγ (v̇ + iẇ) + r−βγ (v + iw)i θ̇
]
eiθ

= [−βr−βγ−1v(v + iw) + r−βγ (v̇ + iẇ) + r−βγ (v + iw)i(r−1w − 1)
]
eiθ ,

−∂H

∂x
=

[
− νrγ

rγ (ν+2)
− αcrγ

rγ (α+2)
− i

v + iw

rγβ

]
eiθ − 2Arγ cos θ − i2Brγ sin θ

=
[
−νrγ (−1−ν) − αcrγ (−1−α) − i(v + iw)r−γβ

+2rγ (−A cos2 θ − B sin2 θ) + i2rγ (A − B) sin θ cos θ
]
eiθ ,

we obtain

ṙ = (β + 1)v,

θ̇ = r−1w − 1,

v̇ = βv2 + w2 − αc

r
− ν

rγ (ν+2)−1
− 2Ar cos2 θ − 2Br sin2 θ,

ẇ = (β − 1)vw

r
+ 2(A − B)r sin θ cos θ.

(4.7)

In the above, after equating ẋ = ∂H
∂ y we obtain ṙ = (β + 1)v and θ̇ = r−1w − 1, which we

substitute in the equation for ẏ. We also use that 1−γ
γ

= β, −γβ = γ − 1, and α = 2β. The
fact that T is real-linear transformation but not-complex linear is taken into account when
factoring out eiθ in the equation for − ∂H

∂x by expressing T x = (T xe−iθ )eiθ .
The equations (4.7) have a singularity at r = 0. We remove the singularity by introducing

a new time parameter τ given by

dt = rdτ. (4.8)
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The equations (4.7) expressed in terms of the new time τ become

r ′ = (β + 1)vr ,

θ ′ =w − r ,

v′ = (βv2 + w2 − αc) − νr2−γ (ν+2) − 2Ar2 cos2 θ − 2Br2 sin2 θ,

w′ = (β − 1)vw + 2(A − B)r2 sin θ cos θ,

(4.9)

where ′ = d
dτ
. Since ν < α, we have that 2 − γ (ν + 2) > 0. Thus, the obtained differential

equations have no singularity at r = 0; the singularity has been ‘removed’. We also note that
the terms νr2−γ (ν+2) − 2Ar2 cos2 θ − 2Br2 sin2 θ and 2(A − B)r2 sin θ cos θ tend to 0 as
r → 0, so they can be neglected for r sufficiently small.

The energy condition H = h in the new coordinates, when we use (4.5), becomes

1

2
r−2γβ(v2 + w2)

+ rγ (1−β) sin θ(v cos θ − w sin θ) − rγ (1−β) cos θ(w cos θ + v sin θ)

+ Ar2γ cos2 θ + Br2γ sin2 θ − r−γ ν − cr−γα = h,

(4.10)

which, after multiplying both sides by r2γβ = r2−2γ yields

v2 + w2 − 2c

2
− rw + r2(A cos2 θ + B sin2 θ) − r2−γ (ν+2) = r2−2γ h. (4.11)

We define the energy manifold Mh as the set of points (r , θ, v,w) satisfying (4.11). When
r = 0 the energy condition (4.11) reduces to

v2 + w2 − 2c = 0. (4.12)

Remark 4.1 In the case of the potential (3.2), one obtains a system of 4-equations similar to
(4.9):

r ′ = (β + 1)vr ,

θ ′ = w,

v′ = β(v2 − 2) + w2,

w′ = (β − 1)vw,

(4.13)

This system is partially decoupled—the first two equations are determined by the last two
equations. Also, the energy manifold Mh projects onto {v2 + w2 < 1} when h < 0, onto
{v2 + w2 > 1} when h > 0, and onto {v2 + w2 = 1} when h = 0. See McGehee (1981).

In the case of our system (4.9), the second equation has an extra term owed to the Coriolis
effect in (2.3), the third equation has extra terms owed to oblateness and to the effect of the
primary and secondary, and the fourth equation has an extra term owed to the effect of the
primary and secondary.

Also, the system (4.9) is fully coupled, and there is no obvious relation between the regions
bounded by v2 + w2 = 2c in the (v,w)-plane and the energy h.

Writing the energy condition (4.11) as

v2 + w2 − 2c

2
= r2−2γ h + rw − r2(A cos2 θ + B sin2 θ) + r2−γ (ν+2), or

h = 1

r2−2γ

(
v2 + w2 − 2c

2

)
− 1

r1−2γ w + r2γ (A cos2 θ + B sin2 θ) − 1

rνγ
,
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we see that for r � 1 the sign of h is the same as the sign of v2 + w2 − 2c. Thus, the points
in Mh with h > 0 and r ≈ 0 project onto {v2 + w2 > 2c} and the points in Mh with h < 0
and r ≈ 0 project onto {v2 + w2 < 2c}.

5 Equilibrium points and Hill regions

A straightforward computations shows that (4.9) has 6 equilibrium points, which in terms of
the (r , θ, v,w)-coordinates are given by

E± = (0, θ0,±
√
2c, 0),

E1 = (r1, 0, 0, r1), E2 = (r1, π, 0, r1),

E3 = (r2, π/2, 0, r2), E4 = (r2, 3π/2, 0, r2)

(5.1)

for arbitrary θ0 ∈ T
1, r1 being the solution of

r2(1 − 2A) − νr2−γ (ν+2) − αc = 0, (5.2)

and r2 being the solution of

r2(1 − 2B) − νr2−γ (ν+2) − αc = 0. (5.3)

Note that (5.2) and (5.3) have unique solutions. The equilibrium points E1, E2, E3, E4 are the
same as the x- and y-equilibrium points for the Hill four-body problem in Burgos-García
et al. (2020), respectively (referred to as L1, L2, L3, L4 in Burgos-García (2016)). The points
E1, E2 are of center-saddle type; the points E3, E4 are of center-center type provided that μ is
less than some critical value μcr. On the other hand, E± form circles of equilibrium points.
The eigenvalues at each point of E± are

0,±(β + 1)
√
2c,±2β

√
2c,±(β − 1)

√
2c.

The circle E+ has a 4-dimensional unstable manifold and the circle E− has a 4-dimensional
stable manifold, which necessarily coincide.

The effective potential for the system (4.1) is

�(x1, x2) = 1

2

(
λ2x

2
1 + λ1x

2
2

) + 1

(x21 + x22 )
ν/2

+ c

(x21 + x22 )
α/2

,

which written in McGehee coordinates becomes

�(r , θ) = 1

2

(
λ2r

2γ cos2(θ) + λ1r
2γ sin2(θ)

) + r−νγ + cr−αγ .

Then the Hill region for an energy level h, defined as the projection on the energy manifold
onto configuration space, represents the region of possible motions, and is given by

{(r , θ) | �(r , θ) ≥ −h}
which, after multiplying both sides by r2−2γ becomes{

(r , θ) | 1
2

(
λ2r

2 cos2(θ) + λ1r
2 sin2(θ)

) + r2−γ (ν+2) + c + hr2−2γ ≥ 0

}
.

TheHill region for the energy levels below, at, and above that of the equilibrium points E1, E2,
is shown in Fig. 3.
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Fig. 3 Hill region for energy levels below, at, and above that of E1,E2 in McGehee coordinates: a in (r , θ)-
coordinates, b in (x, y)-coordinates
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Fig. 4 Short period orbit near collision: a in (x, y)-Cartesian coordinates, b in (x, y)-Cartesian coordinates –
magnification near the tertiary (marked by *) and the E1, E2, E3, E4 equilibrium points (marked by +), c in
(r , θ)-coordinates

The system (4.9) allows the study of the dynamics both near and far from collisions. In
particular, it can be used to compute families of orbits that start far from collision and tend
asymptotically to collision. For example, we can compute the so-called long and short period
families of periodic orbits near E3, E4, which were studied in Burgos-García (2016). Such
families of periodic orbits were originally considered in Deprit et al. (1967) in the context of
the planar circular restricted three-body problem, where they emanate from the center-center
equilibrium points L3 and L4. Such equilibrium points do not exist in the Hill three-body
problem, but they appear in the Hill four-body problem, as noted in Burgos-García (2016).
The long period family of orbits undergoes a bifurcation with the short period family, and
the short family approaches a collision with the tertiary as the energy h tends to +∞. An
orbit from the short period family, computed in both Cartesian and McGehee coordinates, is
shown in Fig. 4.

6 Collisionmanifold

From (4.12), the intersection between the energy manifoldMh and the 3-dimensional hyper-
plane

Z = {r = 0}

is a 2-dimensional manifold corresponding to collisions

N = {H = h} ∩ {r = 0}. (6.1)

It is referred to as the collision manifold. Thus, from (4.12) we obtain that

N = {(r , θ, v,w) | r = 0, θ ∈ T
1, v2 + w2 = 2c}, (6.2)

so the collision manifold is a 2-dimensional torus provided c > 0. Note that this torus is
independent of the energy level h, and is the boundary of each energy manifold Mh .

The collision manifold is an isolated invariant set for the flow of (4.9). If a trajectory
approaches the singularity, i.e., r → 0 as t → ±t∗, then in the (r , θ, v,w) coordinates the
trajectory approaches the collision manifold N as τ(t) → ∓∞. The argument is the same as
in McGehee (1981).
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Fig. 5 The dynamics on N and Z

V

W

θ

Since r ′ = 0 when r = 0, it follows that the set Z is invariant under the solutions of the
system (4.9). Thus, we can consider the restriction of (4.9) to Z, which is given by

θ ′ =w,

v′ =βv2 + w2 − αc,

w′ = (β − 1)vw.

(6.3)

The dynamics on Z is the skew product between the dynamics in the variables (v,w) and the
dynamics in θ . See Fig. 5. The solution of the equation in θ is determined by the solutions of
the (v,w)-subsystem, which is independent of θ . We refer to the (v,w)-subsystem of (6.3)
as the reduced system associated to the collision manifold.

Define

K = |w|α|v2 + w2 − 2c|1−β . (6.4)

We claim that K is an integral of motion for the (v,w)-subsystem of (6.3). Indeed, using
(6.3) we obtain

K ′ = α|w|α−1w′|v2 + w2 − 2c|1−β + |w|α|v2 + w2 − 2c|−β(2vv′ + 2ww′)
= α|w|α−1(β − 1)vw|v2 + w2 − 2c|1−β

+ |w|α|v2 + w2 − 2c|−β(2v(βv2 + w2 − αc) + 2w(β − 1)vw)

= |w|α−1|v2 + w2 − 2c|−β(β − 1)vw
[
α(v2 + w2 − 2c)

−2(βv2 + w2 − αc) − 2(β − 1)w2]
= 0.

By (6.2), the collision manifold N intersects the (v,w)-plane along the 0-level set of the
integral K .

We now describe the geometry of the (v,w)-subsystem. The equilibrium points are S± =
(±√

2c, 0) and Q± = (0,±√
αc). The circle

C = {v2 + w2 = 2c}
is invariant under the flow of the subsystem, and passes through the points S±. Thus, S±
correspond to points on the collision manifold N, while Q± do not.

The circle C in the (v,w)-plane corresponds to the collision manifold N, while the other
orbits of the (v,w)-subsystem represent projections of orbits on various energy levels onto
the (v,w)-plane.
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The eigenvalues of the linearized system at Q± are

±√
2(β − 1)αc,

and since one is positive and the other is negative, both points are saddle points. The eigen-
values of the linearized system at S± are

±2β
√
2c, ±(β − 1)

√
2c.

Both eigenvalues at S+ are positive hence this is a source. Both eigenvalues at S− are negative
hence this is a sink.The linew = 0 is also invariant under theflow,wherev′ < 0 for |v| <

√
2c

and v′ > 0 for |v| >
√
2c. The phase portrait is shown in Fig. 6.

Each point Q± has 1-dimensional stable and unstable manifolds in the (v,w)-plane; these
manifolds are asymptotic to S±. In the full phase space, the points Q± lie on circular orbits
C± given by

r = 0, θ = θ0 ± t
√

αc, v = 0, w = ±√
αc, for t ∈ R,

of energy +∞. Each circle C± has 2-dimensional stable and unstable manifolds in Z.
The points S± lie on the circles of equilibria E± contained in N. The circle E+ has a 2-

dimensional unstable manifold inN, while the circle E− has a 2-dimensional stable manifold
in N; the stable and unstable manifolds coincide. In Z the circle E+ has a 3-dimensional
unstable manifold, and the circle E− has a 3-dimensional stable manifold; these manifolds
coincide as well.

We summarize the type of orbits that appear near collision:

Orbits beginning and ending in collision These orbits form an open set in the phase
space, representing the branch of the unstablemanifold of E+ that coincideswith a branch
of stable manifold of E−. Such orbits correspond to initial conditions whose projection
onto the (v,w)-plane is in {(v,w) | v2 + w2 < 2c}.
Orbits that only begin or only end in collision These orbits form open sets in the phase
space, representing the branches of the unstablemanifold of E+ and of the stablemanifold
of E−, respectively, whose projection onto the (v,w)-plane is in {(v,w) | v2+w2 > 2c}.
Asymptotic orbits than begin or end in collision These orbits represent branches of
the stable and unstable manifolds of the hyperbolic invariant circles C±.
Swing-by orbitsThese are orbits coming from afar, passing near the hyperbolic invariant
circles C±, and then moving away.

Recall that for the system 2.5 we have ν = 1, α = 3, β = 3
2 , and γ = 2

5 . By Theorem
3.2 it follows that each collision solution is branch regularizable. Since p = 2 is even, each
extension solution is a ‘reflection’.

By examining Fig. 6, we observe that the collision manifold N is not an isolated invariant
set, and therefore it is not block regularizable. This agrees with the case of the potential (3.2),
where for β ≥ 1 the collision manifold N is not an isolated set.

As c → 0, the two saddles, the source, and the sink coalesce through a double saddle-node
bifurcation. See Fig. 7.

For c = 0, the collision manifold is reduced to a point, and it is both branch and block
regularizable.

We now discuss the case when c < 0. This describes a situation when the tertiary is a
prolate body, In this case, the set of (v,w) with v2 + w2 = 2c is the empty set. Thus the
collision set N is empty. Then the (v,w)-subsystem

v′ =βv2 + w2 − αc,

w′ = (β − 1)vw,
(6.5)
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Fig. 6 Left: c = 1. Right: c = 0.1

Fig. 7 Phase portrait of the (v, w)-subsystem: a c = 0, b c = −1

has the property that v′ > 0. The phase portrait is shown in Fig. 7. In this case, there are no
collisions.

The physical interpretation is the following. Denoting c = −c̃ where c̃ > 0, the Hamil-
tonian (2.5) becomes

H = 1

2
(y21 + y22 ) + x2y1 − x1y2 + Ax21 + Bx22

− 1

|x |ν/2 + c̃

|x |α/2 .

(6.6)

The term − 1
|x |ν/2 in the potential corresponds to an attractive force, and the term c̃

|x |α/2

corresponds to a repulsive force. When the particle approaches the tertiary, since 1 ≤ ν < α
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Fig. 8 Phase portrait of the
(v, w)-subsystem for α < 2 and
c > 0

the repulsive force becomes dominating, preventing collisions between the particle and the
tertiary to occur. This situation is also described in Saari (1974).

Remark 6.1 One can consider a simple model that takes into account the size of the asteroid.
Since ν = 1, α = 3, β = 3

2 , and γ = 2
5 , the powers of r that appear in (4.9) are

r2−γ (1+ν) = r4/5 � r � r2.

We can neglect the powers rk of r with k > 4/5. Then collisions correspond to setting
r = R3, the average radius of the tertiary; in the case of Hektor, in the normalized units
R3 = 1.18716 × 10−7. Then (4.9) yields

θ ′ = w,

v′ = (βv2 + w2 − αc) − νR2−γ (ν+2)
3 ,

w′ = (β − 1)vw.

(6.7)

This system is essentially the same as the system (6.3) with the term −αc replaced with the
term −αc− νR2−γ (ν+2)

3 . Then the analysis of collisions is similar to the one above. Another
possibility could be to neglect the powers rk of r with k > 1. Of course, it is possible to
consider more sophisticated models that take into account the dumb-bell shape of Hektor
or more general asteroid shapes, in which case the gravitational potential (2.1) needs to be
modeled differently, e.g., Lam et al. (2021).

Remark 6.2 There are several moons in the Solar System that are considered to be approx-
imately prolate spheroids in shape, for example, Uranus’ moons Cordelia, Cressida,
Desdemona, Juliet, Ophelia, and Rosalind.

Remark 6.3 The (v,w)-subsystem of (6.3) is undergoing another bifurcation at α = 2 when
c > 0 is held fixed. When α = 2, the points Q± lie on the collision manifold. When α < 2,
the points Q± become centers, and the points S± become saddles. The phase portrait is as
in Fig. 8.
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Fig. 9 Phase portrait of the
(v, w)-subsystem for c = 0 with
the coordinate change (4.4) with
γ = 2

2+ν
and β = ν

2

Remark 6.4 In the case when c = 0, the term − c
|x |α in (4.1) vanishes. Then one can perform

the coordinate change (4.4) with γ = 2
2+ν

and β = ν
2 , as in McGehee (1981). The resulting

collisionmanifold is a torus which intersects the (v,w)-plane in a circle as in Fig. 9. Note that
the phase portrait is qualitatively the same as in Fig. 8. It contains two circles of equilibria
located at v = ±√

2 and a cylinder of orbits given by w = 0 connecting the two circles.
The collision set is both branch and block regularizable. It is interesting that this coordinate
change leads to a different collisionmanifold from the one in (6.2), but nevertheless its branch
and block regularization properties are the same.

7 Conclusions

In this paper, we provide an explicit McGehee coordinate transformation to regularize colli-
sion in the planar Hill four-body problemwith oblate bodies. This transformation can be used
to understand the behavior of collision and near-collision orbits. In particular, our formulas
can be implemented in numerical integrators to compute orbits that pass close to an oblate
Jupiter’s trojan asteroid.

We also describe the collision manifold and show that it undergoes a bifurcation as the
oblateness coefficient of the asteroid passes through the zero value. We note here that the
bifurcation observed for this system is very different from the one described by McGehee
(1981) for the potential energy U (x) = |x|−α in (3.2), which undergoes a bifurcation when
the parameter α passes through the critical value αcr = 2.

It is interesting to note that when the oblateness approaches zero (and hence the gravita-
tional potential becomes Newtonian), the limiting collision manifold that we obtain is not
the same as the collision manifold obtained by applying the McGehee coordinate transfor-
mation to the Newtonian potential. It would be interesting to see if there is a McGehee-type
coordinate transformation for which the limiting collision manifold is the same as in the
Newtonian case. Another interesting problem would be to extend these results to the spatial
Hill four-body problem with oblate bodies.
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