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Abstract
We present the non-integrability proof for the planar elliptic restricted three-body problem.
Two versions of this problem are considered: the classical one when only gravitational inter-
actions are taken into account, and the photo-gravitational version where radiation pressure
from the primaries is also included. Our result is valid for nonzero eccentricity and arbitrary
mass ratio of the primaries. In the proof, we apply the differential Galois approach to study
the integrability.

Keywords Elliptic restricted three-body problem · Non-integrability · Radiation pressure

1 Introduction

One of the fundamental model systems of celestial mechanics which has a plenty of appli-
cations is the restricted three-body problem. In this model, we assume that a point with a
negligible mass moves in the gravity field of two other point masses called the primaries
with masses m1 and m2. They move in elliptic Keplerian orbits around their common mass
centre. In the special case when ellipses become circles, we speak about the circular restricted
three-body problem. As examples of the restricted three-body problem, we mention the Sun-
Jupiter-asteroid or Sun-planet-object systems. In the case when an infinitesimal mass particle
moves in the same plane as the orbits of the primaries, the problem is called planar ellip-
tic restricted three-body problem, otherwise is called spatial one. We introduce the mass
parameter μ = m2

m1+m2
, m2 ≤ m1, μ ∈ (0, 1/2] and we assume that m1 + m2 = 1. Then

the primaries have the following masses: the heavier one m1 = 1 − μ and the lighter one
m2 = μ, respectively. The circular restricted three-body problem with μ = 1

2 is called the
Copenhagen Problem after the series of papers published by Strömgren and colleagues in
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the Copenhagen Observatory Publication, see Szebehely and Nacozy (1967), Danby (1967)
and references therein.

The problem of the integrability of the circular problem was investigated by many authors
using different techniques starting from the famous memoir of Poincaré (1890) in which
he proved the non-existence of an additional first integral which is analytic in coordinates,
momenta and parameter μ for small μ. The dynamical reason of the non-integrability is the
existence of periodic solutions with nonzero characteristic exponents, which originate from
the breaking of periodic invariant tori of the integrable approximations. Poincaré improved
and extended his result in Poincaré (1892, Chap. 5) where he started from the restricted
planar circular problem, then passed to the unrestricted planar problem, and finally to the
unrestricted spatial problem. Ideas and methods presented in these works were interpreted,
extended and generalized by many authors. Using the Melnikov method Xia (1992) showed
that for small enough μ, there exist transversal homoclinic orbits and this implies the non-
existence of any real analytic integral for all but possibly finite number of values of μ. This
result was generalized inGuardia et al. (2016)where the occurrence of transverse intersection
between the stable and unstable manifolds of the infinity (the notion introduced by authors)
for anyμ ∈ (0, 1)was shown. Recently, the non-integrability of this problemwas also proved
by means of differential Galois approach in Yagasaki (2021).

We know only few papers devoted to study the same question for the elliptic problem.
The Arnold diffusion in the circular problem is prevented by KAM tori, but it is possible in
the elliptic case, see Féjoz et al. (2016). For example, Xia (1993) proved the presence of the
Arnold diffusion.His proof is based on the fact that the transversal homoclinic orbits in the cir-
cular restricted three-body problem exist. Capiński et al. (2016) used another approach based
on shadowing of pseudo-orbits generated by two dynamics: an ‘outer dynamics’, given by
homoclinic trajectories to a normally hyperbolic invariant manifold, and an ‘inner dynamics’,
given by the restriction to that manifold. Other diffusive orbits in elliptic restricted three-body
problem are described in Bolotin (2006). Along these orbits, the angular momentum changes
in a bounded interval while trajectories come close to collisions. In Delshams et al. (2019),
authors proved the existence of orbits whose angular momentum performs arbitrary excur-
sions in a large region leading to global instability. In Guardia et al. (2017), Delshams et al.
(2019), the existence of oscillatory orbits for the elliptic case and in Llibre and Simó (1980);
Guardia et al. (2016) for the circular case, was proved. A trajectory is called oscillatory if it
leaves every bounded region but returns infinitely often to some fixed bounded region.

The phenomena mentioned above show that the dynamics of the elliptic restricted three-
body system is complex and in fact it is not integrable. All these results have been shown
with applications of highly advanced analytical methods.

Our aim is to give a proof of the non-integrability of the planar elliptic restricted three-body
problem. We consider two versions of this problem. In the classical version of the problem,
only the gravitational interactions are taken into account, while in the photo-gravitational
problem also the radiation pressure forces are included. We use methods which till now were
not applied to study the integrability of the elliptic restricted problem.

2 Equations of motion

We assume that the considered three masses move in a plane. The primaries with masses
m1 and m2 move in Keplerian elliptic orbits around their common mass centre, which is
taken as the origin of the inertial barycentric and the rotating reference frames. The x-axis
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Fig. 1 Geometry of the restricted
three-body problem in the
rotating and pulsating frame

of the rotating frame is directed from the more to the less massive primary. The coordinates
are rescaled by the distance between the primaries. In this rotating and pulsating frame, the
primaries are located at P1 = (−μ, 0) and P2 = (1 − μ, 0), respectively, see Fig. 1.

The motion of the third body with an infinitesimal mass is described by the following
equations

d2q1
dν2

− 2
dq2
dν

= f (e, ν)
∂U

∂q1
,

d2q2
dν2

+ 2
dq1
dν

= f (e, ν)
∂U

∂q2
, (1)

where

f (e, ν) = 1

1 + e cos ν
,

and the effective potential is

U = 1

2
(q21 + q22 ) + 1 − μ

r1
+ μ

r2
, r1 =

√
(q1 + μ)2 + q22 , r2 =

√
(q1 − 1 + μ)2 + q22 .

The independent variable in these equations is the true anomaly ν. For details, see, Szebehely
(1967, Sect. 10.3), Gawlik et al. (2009). We fix the units in such a way that m1 + m2 = 1,
the gravitational constant G = 1, the semi-major axis of the relative orbit of the primaries
a = 1.

As it is well known, the system has five equilibria, called the Lagrange points. In our

considerations, we will use only triangular libration point L4 =
(
1
2 − μ,

√
3
2

)
. In the inertial

frame, this is just an elliptic orbit and its eccentricity and the semi-major axis are the same
as the relative orbit of the primaries.

The photo-gravitational elliptic restricted three-body problem is a generalization of the
above described system when an infinitesimal mass is affected not only by gravitation but
also by radiation pressure from the primaries. We assume that both the primaries are stars
radiating a constant amount of the light and the infinitesimal mass is a spherical particle with
a uniform albedo. Since the radiation pressure force Fr changes with the distance according
to the same inverse square law as the gravity force Fg but with opposite sign, the total force
exerted by a primary is F = Fg − Fr = Fg (1 − β), where β = Fr/Fg and the effect
of the radiation pressure is the same as that of reducing the stellar mass by a term β, see
e.g. Chernikov (1970), Todoran and Roman (1993). The tidal and rotational distortions of
the radiating primaries are here neglected. If we introduce σ 3

i = 1 − βi , i = 1, 2 for the
respective primaries, then the equations of motion of the infinitesimal mass particle are the
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following

d2q1
dν2

− 2
dq2
dν

= f (e, ν)
∂W

∂q1
,

d2q2
dν2

+ 2
dq1
dν

= f (e, ν)
∂W

∂q2
,

W = 1

2
(q21 + q22 ) + σ 3

1 (1 − μ)

r1
+ σ 3

2 μ

r2
.

(2)

The constants areσi ∈ [0, 1],whereσi = 1 corresponds the previously described casewithout
radiation, while σi = 0 corresponds to the situation when radiation pressure force balances
the gravitational force. Also the photo-gravitational problems with only one radiating body
are considered as it was in the first article concerning the photo-gravitation restricted three-
body problem of Radzievskii (1950), whereas the primaries were considered: the Sun and a
planet, and a dust particle as an infinitesimal mass. For a discussion of different versions of
this problem see Kunitsyn and Polyakhova (1995).

If σ1 +σ2 ≥ 1, then there exist triangular libration points, and, in this case L4 = (q01 , q
0
2 ),

where

q01 = 1
2

(
1 − 2μ + σ 2

1 − σ 2
2

)
, q02 = 1

2

√
4σ 2

1 − (
1 + σ 2

1 − σ 2
2

)2
.

Thus, the distances between the primaries and the libration point are

r01 = σ1, r01 = σ2, (3)

so, assumption σ1 + σ2 ≥ 1 is just the triangle inequality because the distance between the
primaries is 1.

Let us notice that the equations of motion (2) as well as its particular case (1) are Hamil-
tonian. In fact, they are equivalent to the canonical equations generated by the following
Hamiltonian function

H(q, p, ν) = 1

2
(p21 + p22) + p1q2 − p2q1 + f (e, ν)

[ e
2
cos(ν)(q21 + q22 ) + V (q1, q2)

]
,(4)

where

V (q1, q2) = −σ 3
1 (1 − μ)

r1
− σ 3

2 μ

r2
. (5)

Let us notice that Hamilton equations governed by (4) have an additional first integral L =
p1q2 − p2q1 in the following cases: when either μ = 0 or μ = 1, i.e. one of the primaries
vanish, orwhenσ1 = σ2 = 0, i.e.when radiation pressure forces of both the primaries balance
their gravitational interactions. The Hamiltonian system generated by (4) is not autonomous
(ν is the independent variable); however, it is 2π periodic.

3 Non-integrability theorem

Our aim is to study the integrability of the Hamiltonian system given by (4). At first, we
recall some basic facts about the integrability.

An autonomous Hamiltonian system with n degrees of freedom is given by its Hamil-
tonian function H(q, p), where q = (q1, . . . , qn) and p = (p1, . . . , pn) are the canonical
coordinates and momenta, respectively. A function F(q, p) is a first integral of this system
if it is constant along all solutions of the Hamilton equations

d

dt
q = ∂H

∂ p
(q, p),

d

dt
p = −∂H

∂q
(q, p), (6)
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or equivalently, if {H , F} = 0, where

{H , F} =
n∑

i=1

(
∂H

∂qi

∂F

∂ pi
− ∂H

∂ pi

∂F

∂qi

)
, (7)

denotes the Poisson bracket.We say that the system is integrable in the Liouville sense, or that
it is completely integrable if it admits n functionally independent first integrals F1, . . . , Fn
which pairwise commute, that is, {Fi , Fj } = 0, for i, j = 1, . . . , n. The integrability of
the system implies that it is solvable by quadratures. For a detailed exposition, see, Arnold
(1989), Arnold et al. (1988).

If the Hamiltonian of the system depends explicitly on time H = H(q, p, t), then we can
introduce an additional canonical pair of variables (qn+1, pn+1) and Hamiltonian function
K = H(q, p, pn+1) − qn+1. Then, the last pair of equations of motion reads,

d

dt
qn+1 = ∂H

∂t
(q, p, pn+1),

d

dt
pn+1 = 1. (8)

Hence, pn+1 is the time. We say that the non-autonomous Hamiltonian system given by
Hamiltonian H(q, p, t) is completely integrable, if the system with (n + 1) degrees of
freedom given by Hamiltonian K = H(q, p, pn+1) − qn+1 is completely integrable. For a
detailed explanation, we refer here to the paper of Kozlov (1983).

In our investigation of the integrability of the elliptic restricted problem, we apply a
method which is based on the study of the variational equations of the considered system
along a particular solution. The variational equations are Hamiltonian and if the original
system is integrable, then the variational system is also integrable. The variational equations
are linear, and their integrability puts strong restrictions on the properties of the monodromy
and the differential Galois groups which are attached to them. These arguments are just a
starting point for the Ziglin and the Morales–Ramis theories, see Morales Ruiz (1999). The
fundamental result of this approach is the Morales–Ramis theorem.

Theorem 1 Assume that a complex Hamiltonian system with n degrees of freedom is inte-
grable with complex meromorphic first integrals in the Liouville sense in a neighbourhood
of a phase curve �. Then, the identity component of the differential Galois group of the
variational equations along � is Abelian.

For details, see the paper of Morales Ruiz (1999). Although this theorem is based on
involved mathematical theory, it appears that it can be effectively applied to study the inte-
grability of a wide variety of systems from dynamical astronomy, physics and other branches
of applied sciences. It is enough to mention here the problem of the integrability of the
three-body problem which was solved thanks to the application of this theory, see articles
Boucher andWeil (2003), Maciejewski and Przybylska (2011), and also Tsygvintsev (2000),
Tsygvintsev (2001) where the monodromy group that is a subgroup of the differential Galois
group was used. Moreover, it appears that for application of this theorem, there are algo-
rithms accessible for a wide audience. A practical introduction to the subject and numerous
applications of the above theorem can be found in Morales-Ruiz and Ramis (2010).

In the above theorem, it is assumed that the Hamiltonian as well as the first integrals
which guarantee the integrability are complex meromorphic functions. In the considered
case, Hamiltonian (4) is not a meromorphic function because it contains terms with radicals.
However, as it was explained in Combot (2013), Maciejewski and Przybylska (2016), still
one can apply the Morales–Ramis theory for systems with algebraic potentials.

We formulate our main result in the following two theorems. The first one concerns the
classical restricted problem.
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Theorem 2 If μ ∈ (
0, 1

2

]
, and e ∈ (0, 1), then the system given by Hamiltonian (4) with

σ1 = σ2 = 1, is not completely integrable with first integrals which are meromorphic
functions of variables (q1, q2, p1, p2, r1, r2, cos(ν), sin(ν)).

The second theorem concerns the photo-gravitational problem.

Theorem 3 If μ ∈ (
0, 1

2

]
, e ∈ (0, 1), and

σ1 + σ2 > 1, (9)

then the system given by Hamiltonian (4) is not completely integrable with first integrals
which are meromorphic functions of the variables (q1, q2, p1, p2, r1, r2, cos(ν), sin(ν)).

Notice that in the above theorem, we assume the strict inequality (9), although the triangular
libration point L4 exists when σ1 + σ2 = 1. We did not exclude this case accidentally. The
reason is that, as we demonstrate it later, for this particular case the necessary conditions
are fulfilled. An investigation of the integrability in this case needs stronger tools. Here, we
remark only that in the case σ1 + σ2 = 1, the triangular point is, in fact, a collinear one.

The above theorems also prove the non-integrability of the spatial version of the restricted
problem as the former is an invariant subsystem of the latter.

In the proof of this theorem, we will use the Morales–Ramis Theorem 1. As a particular
solution, we take the triangular libration point L4. This is why, we need the assumption (9).

4 Variational equations

We consider our problem in the extended phase space with coordinates (q1, q2, q3) and
the conjugated momenta (p1, p2, p3). We set z = (q, p, q3, p3), where q = (q1, q2) and
p = (p1, p2). In this space, equations of motion of the system are generated by Hamiltonian

K(z) = H(q, p, p3) − q3. (10)

They have the following form

q̇1 = p1 + q2, ṗ1 = p2 − f (p3, e)

(
eq1 cos(p3) + ∂V

∂q1
(q1, q2)

)
,

q̇2 = p2 − q1, ṗ2 = −p1 − f (p3, e)

(
eq2 cos(p3) + ∂V

∂q2
(q1, q2)

)
,

q̇3 = − e

2
f (p3, e)

2 sin(ν)
(
q21 + q22 − 2V (q1, q2)

)
, ṗ3 = 1.

(11)

These equations admit the particular solution

q1(ν) = q01 , q2(ν) = q02 , p1(ν) = −q02 , p2(ν) = q01 , (12)

q3(ν) = −1

2
f (ν, e)

[
(q01 )

2 + (q02 )
2 − 2V (q01 , q

0
2 )

]
, p3(ν) = ν. (13)

The variational equations along this solution have the form

d

dν
Z = A(ν)Z, (14)
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where

A(ν) =
⎡
⎣

J I 0
− f (ν, e) [e cos(ν)I + V ] J 0

0 0 D(ν)

⎤
⎦ , (15)

I =
[
1 0
0 1

]
, J =

[
0 1

−1 0

]
, D(ν) =

[
0 d(ν)

0 0

]
, V = V ′′(q01 , q02 ), (16)

and

d(ν) = e

4
f (ν, e)3

(
− 2 cos(ν) + e(cos(2ν) − 3)

)[
(q01 )

2 + (q02 )
2 − 2V (q01 , q

0
2 )

]
. (17)

As it is clearly visible, the system (14) splits into two subsystems. The first one, called the
normal variational equation, corresponds to the first 4 × 4 block, the second one, called the
tangential equation, is given by the 2× 2 block. In our study of the integrability, it is enough
to investigate the normal variational equation, that is

d

dν
z = AN(ν)z, AN(ν) =

[
J I

− f (ν, e)[e cos(ν)I + V ] J

]
, (18)

where z = [z1, z2, z3, z4]T .
We perform a further simplification of this equation. To this end, we first make a trans-

formation with constant coefficients. Namely, we put x = Cz, where z = [z1, z2, z3, z4]T
denotes the original variables, and

C =
[

R(ϕ) 0
R(ϕ)J R(ϕ)

]
, R(ϕ) =

[
cosϕ − sin ϕ

sin ϕ cosϕ

]
, (19)

where ϕ is a parameter which we will fix later. As a result, we obtain

d

dν
x = BN(ν)x, BN(ν) = CAN(ν)C−1 =

[
0 I

f (ν, e)[I − Ṽ ] 2J
]

, (20)

where Ṽ = R(ϕ)V R(ϕ)−1. Because the Hessian matrix V is real and symmetric, one can
find a rotation matrix R(ϕ) which transforms it to the diagonal form. Thus, we can assume
that the matrix I − Ṽ is diagonal. Direct calculations give

I − Ṽ = diag(c+, c−), c± = 3

2
(1 ± δ) , (21)

where

δ = √
1 − g, g = μ(1 − μ)

(
4 − (σ 2

1 +σ 2
2 −1)2

σ 2
1 σ 2

2

)
, δ ∈ [0,∞). (22)

For the classical purely gravitational problem, the parameter δ simplifies to

δ = √
1 − 3μ(1 − μ), δ ∈ (1/2, 1). (23)

Notice that the case δ = 0 is impossible in the purely gravitational problem, and in the
photo-gravitational problem, it occurs when μ = 1/2 and σ 2

1 + σ 2
2 = 1.

In the lemmas below, the value δ = 1 is excluded. Again, this case is impossible in the
purely gravitational problem. It occurs only when g = 0. As by assumption μ(1 − μ) �= 0,
according to (22) we have

0 =
(
4 − (σ 2

1 +σ 2
2 −1)2

σ 2
1 σ 2

2

)
= 1

σ 2
1 σ 2

2

(σ1 − σ2 − 1) (σ1 − σ2 + 1) (σ1 + σ2 − 1) (σ1 + σ2 + 1) .
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Thus, one factor in the above formula vanishes. However, as σ1, σ2 ∈ (0, 1], there is only
one possibility, namely σ1 + σ2 = 1. In this case, L4 coincides with a collinear libration
point L1.

The above simplification of the variational equation for the triangular libration points in
the elliptic restricted three-body problem is well known, see for example Szebehely (1967,
Sect. 10.3) or Grebenikov (1964). For the triangular libration points of the photo-gravitational
elliptic restricted three-body problem, it can be found in Markellos et al. (1992).

If we introduce the entries of the Hessian matrix

V = V ′′(q01 , q02 ) =
(

α β

β γ

)
,

α = (1−μ)σ3
1

(
(q02 )2−2(q01+μ)2

)

(r01 )5
+ μσ3

2

(
(q02 )2−2(μ−1+q01 )2

)

(r02 )5
, β = 3(μ−1)σ3

1 q
0
2 (q01+μ)

(r01 )5
− 3μσ3

2 q
0
2 (μ−1+q01 )

(r02 )5
,

γ = (μ−1)σ3
1 (2(q02 )2−(q01+μ)2)

(r01 )5
+ μσ3

2

(
(q01 )2−2(q02 )2+2q01 (μ−1)+(μ−1)2

)

(r02 )5
,

where

r01 =
√

(q01 + μ)2 + (q02 )
2, r02 =

√
(q01 − 1 + μ)2 + (q02 )

2,

then the parameter ϕ determining the orthogonal transformation R(ϕ) diagonalizing V can
be obtained from the vanishing of off-diagonal elements of the transformed matrix Ṽ =
R(ϕ)V R(ϕ)−1 which gives

ϕ = 1

2
arctan

(
2β

γ − α

)
. (24)

The transformed normal variational equation depends only on two parameters: e ∈ (0, 1)
and δ ∈ [0,∞). However, planning an application of the Morales–Ramis theory we need
to our disposal tools which allow determining the monodromy and the differential Galois
group of this parameter-dependent equations. Unfortunately, for systems of four equations,
there are no sufficiently strong results. This is why we will continue a simplification of the
equation.

In the sixties of the previous century, the analysis of the stability of libration points
was a popular subject, see Danby (1964), Grebenikov (1964), Bennett (1965), Alfriend and
Rand (1969), Tschauner (1971), Meire (1981). Just for the needs of these investigations,
Tschauner (1971) found a time dependent transformation which splits the systems of four
coupled equations into two uncoupled second-order equations. Later Meire (1981), Matas
(1982), Matas (1973) continued the study of this problem in more details. All of these results
concerns only the classical elliptic restricted problem. At first, we assume that δ �= 0, and let
us introduce the following quantities

Q(e, δ) = 9δ4 − 8δ2 + e4 + 2δ2e2, � = √
Q(e, δ), (25)

and matrices

B±(ν) = B0(ν) ± �

4δ
f (ν, e)J, (26)

where

B0(ν) = f (ν,e)
4δ

[−2e sin(ν)(δ − e cos(ν)) −3δ2 + e2 cos(2ν)

−3δ2 + e2 cos(2ν) −2e sin(ν)(δ + e cos(ν))

]
+ J . (27)
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Fig. 2 Curve Q(e, δ) = 0 (solid
line) and curve η−(e, δ) = 0
(dashed line) with crossing points
denoted by dots

Now, the transformation given by

x = T (ν) y, T (ν) =
[

I I
B+(ν) B−(ν)

]
, (28)

is non-singular if Q(e, δ) �= 0. In fact,

det T (ν) =
[
f (ν, e)

2δ

]2
Q(e, δ). (29)

Using this transformation, we obtain

d

dν
y = B(ν) y, (30)

where

B(ν) = T (ν)−1 (
BN(ν)T (ν) − T ′(ν)

) =
[
B+(ν) 0

0 B−(ν)

]
. (31)

The above transformation is just a simple generalization of the transformation given by
Tschauner (1971), see also Markellos et al. (1993).

The values of the parameters that lie on the curve Q(e, δ) = 0, see solid line curve in
Fig. 2, are excluded in the above considerations. However, we cannot exclude them from
the study of the integrability. We did not find any investigation of this particular case. The
question if the variational equations split in these cases was unknown. This is whywe decided
to investigate it with the help of differential algebra tools, see Compoint and Weil (2004).
Omitting the details, the result is the following.

Assume that Q(e, δ) = 0, and set

S(ν) =
⎡
⎣ 0

1

2δ(1 + 3e cos ν)
U(ν)

1
2 f (ν, e)J I

⎤
⎦ , (32)

where

U(ν) =
[ −2e sin(ν)(δ + e cos(ν)) δ(3δ − 4e cos(ν) − 4) − e2 cos(2ν)

δ(3δ + 4e cos(ν) + 4) − e2 cos(2ν) 2e sin(ν)(e cos(ν) − δ)

]
.

(33)

123



13 Page 10 of 22 M. Przybylska, A. J. Maciejewski

Fig. 3 The curve of admissible
values of σ1 and σ2 denoted by a
thick line corresponding to δ = 0

The matrix S(ν) is invertible because

det S(ν) = 1

2 + 2e cos ν(4 + 3e cos ν)
.

Then, the change of variables y = S(ν)x transforms equation (20) to equation (30) with
a block triangular form of the matrix B(ν)

B(ν) = S(ν)−1(BNS(ν) − S′(ν)) =
[
B0(ν) 0
B21(ν) B22(ν)

]
, (34)

where B0(ν) is given by (27) and the explicit forms of the matrices B21(ν) and B22(ν) will
not be used later. Notice that if Q(e, δ) = 0, then B0(ν) = B+(ν) = B−(ν).

Finally, we consider the particular case when δ = 0, or equivalently, case g = 1, see (22).
Themaximal value of the function, g = g(μ, σ1, σ2) in the considered domain of parameters,
is one. Clearly, it is achieved for μ = 1/2, as the first term μ(1− μ) of g is positive and has

the maximum 1/4 at μ = 1/2. As it is easy to verify, the second term g̃ = 4 − (σ 2
1 +σ 2

2 −1)2

σ 2
1 σ 2

2

of g, see (22), achieves its maximum value 4 along the curve σ 2
1 + σ 2

2 − 1 = 0. This curve
is contained in the domain where the libration point L4 exists denoted by a grey region, see
Fig. 3.

For this particular case,matrixV is diagonal and thematrix of normal variational equations
given in (20) simplifies to

BN(ν) =

⎡
⎢⎢⎣

0 1 1 0
−1 0 0 1

3
2+2e cos ν

− 1 0 0 1
0 3

2+2e cos ν
− 1 −1 0

⎤
⎥⎥⎦ . (35)

Now, the change of variables y = T (ν)x with the constant matrix

T (ν) =

⎡
⎢⎢⎣
0 0 −1 i
i 1 0 0
i −1 0 0
0 0 −1 −i

⎤
⎥⎥⎦ , (36)
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transforms the system (20) into (30) where the block diagonal matrix B(ν) given by (31) has
the following blocks

B+(ν) =
[
i 3i

2+2e cos ν
− i

−i i

]
, B−(ν) =

[ −i −i
3i

2+2e cos ν
− i −i

]
. (37)

5 Non-integrability

In this section, we outline the proof of Theorem 3. By Theorem 1, if the system is integrable,
then the identity component of the differential Galois group of variational equations (14) is
commutative. We also say that the differential Galois group is virtually commutative.

Anyway, our plan is to show that this group is not virtually commutative. The important
fact is that if the differential Galois group of a system is virtually commutative, then the
differential Galois group of each of its subsystem is also virtually commutative. From this
fact, it follows that it is enough to investigate the normal variational equation (18) which
after simple change of variable has a particularly simple form (20).

As we showed in the previous section, a further simplification is possible. Namely, after
transformation (28), the system has a block diagonal form (30). Hence, it is enough to
investigate a subsystem corresponding to one of these blocks. We choose

d

dν
y = B+(ν) y, y = [y1, y2]T . (38)

Elements of matrix B+(ν) are periodic functions of ν. Algorithms which we are going to
apply assume that the coefficients of the considered system are rational functions of the
independent variable. This is why we introduce the new independent variable z = eiν . After
this transformation, we obtain

d

dz
y = C+(z) y, C+(z) = −izB+(−i ln z). (39)

As

d

dν
= iz

d

dz
, sin ν = 1

2i

(
z − 1

z

)
, cos ν = 1

2

(
z + 1

z

)
, (40)

matrix C+(z) is rational as required. Now we can claim the following.

Lemma 4 If e ∈ (0, 1), δ ∈ (0,∞) \ {1} and Q(e, δ) �= 0, then the differential Galois group
of equation (39) is not virtually commutative.

The proof of this lemma is given in “Appendix A”. In this way, we proved our Theorem 3
except the cases when Q(e, δ) = 0.

Let us assume now that Q(e, δ) = 0. Then, as we have shown in the previous section,
the variational equations can be transformed to the block-triangular form (34). Hence, for
further considerations, we take the subsystem corresponding to the block B0(ν), see (27),
and we make the same change of independent variable as in the previous case. In effect, we
obtain the following system

d

dz
y = C0(z) y, C0(z) = −izB0(−i ln z). (41)

Elements of the matrix C0(z) are rational functions of z. The final step of our reasoning is
the following lemma.
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Lemma 5 If e ∈ (0, 1), δ ∈ (0,∞) \ {1} and Q(e, δ) = 0, then the differential Galois group
of equation (39) is not virtually commutative.

We prove this lemma in “Appendix A”.
Finally, we consider the particular case excluded in the previous lemmas when δ = 0.

Then, the variational equations can be also transformed to the block-triangular form (34) with
blocks B+, B− given in (37). In the next step, we rationalize the subsystem corresponding
to B+ defining matrix of linear system with rational coefficients C+(z) according to (39).
Analysis of the differential Galois group of these linear differential equations gives the last
lemma.

Lemma 6 If e ∈ (0, 1) and δ = 0, then the differential Galois group of equation (39) is not
virtually commutative.

The proof of this lemma is also contained in “Appendix A”.
In effect, we have shown that for all assumed values of the parameters the differential

Galois group of a subsystem of the variational equations is not virtually commutative, so the
differential Galois group of the variational equations is not virtually commutative. Hence, by
the Morales–Ramis Theorem 1, the system is not integrable.

6 Conclusions

In this paper, we have presented the non-integrability proof of the elliptic restricted three-
body problem for arbitrary nonzero eccentricity e ∈ (0, 1) and arbitrary ratio of masses of
the primaries μ ∈ (

0, 1
2

]
. Analysis was made for the classical case when only gravitational

influence of the primaries on the test particle is considered and also for the photo-gravitational
version when also the radiation pressure from the primaries is included. This generalization
introduces two additional parameters which measure the strength of the radiation forces
from two primaries. We prove the non-integrability of this problem for all allowable values
of parameters such that the triangular libration point exists.

The proof uses properties of the differential Galois group of four dimensional variational
equations along a particular solution determined by the triangular libration point L4. When
checking the differential Galois group of variational equations, their factorization into two
2D subsystems turned out to be very useful.

The fact that we succeeded to prove the non-integrability of the photo-gravitational prob-
lem for a whole domain of four parameters is in some sense exceptional. Typically, for certain
values of parameters, the necessary conditions are fulfilled. We showed that the variational
equations for both, classical and photo-gravitational problem, depend only on two parameters
e and δ, and this is why the complete integrability analysis was performed for both versions
simultaneously.

We show that the method used for proving the non-integrability when applied to study
the considered system reduces to a quite simple algorithm which can be applied for other
problems.
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Appendix A: Proofs

Here, we present the proofs of Lemmas 4, 5 and 6 . All of them are just direct applications
of Lemma 7 which we formulated in “Appendix B”. This Lemma, follows from the Kovacic
algorithm (Kovacic 1986). It is described in many places, see, for example Morales-Ruiz
(1989), Duval and Loday-Richaud (1989). So here we only recall that this algorithm gives
definitive answer when a second-order differential equation with rational coefficient

w′′ + p(z)w′(z) + q(z)w = 0, p(z), q(z) ∈ C(z), (A.1)

is solvable in terms of Liouvillian functions. If it gives the negative answer, then the dif-
ferential Galois group of this equation is not virtually commutative. This is why it is used
frequently in cases when for the integrability studies of a system the Morales–Ramis Theo-
rem 1 is applied.

Before we pass to the proofs, we recall that a system of two linear equations

y′
1 = a11(z)y1 + a12(z)y2, y′

2 = a21(z)y1 + a22(z)y2, (A.2)

can be transformed into a second-order differential equation of the form (A.1). This trans-
formation is not unique. In general, we take a linear combination w = α1y1 + α2y2 with
constant coefficients α1 and α1. Then, we calculate w′, and using it together with (A.2) we
can expressw′′ in terms ofw andw′. This procedure works for a ‘generic’ choice of (α1, α2)

and different choices of these constants give different coefficients p(z) and q(z).

A.1. Proof of Lemmas 4 and 5

First, we transform system (39) to the second-order equation. We put w = y1 + iy2. Using
the above described procedure, we obtain an equation of the form (A.1) with

p(z) = 1

z

(
1 + 2e2

e2 − 3δ2z2

)
,

q(x) = 3
e2 + δ2ez

(
z2 + 3

) + δz2(δ + �)

z
(
ez2 + e + 2z

) (
e2 − 3δ2z2

) .

(A.3)

In order to apply Lemma 7, we transform this equation to the reduced form

v′′ = r(z)v, r(z) = 1

2
p′(z) + 1

4
p(z)2 − q(z), (A.4)

by setting

w = v exp

[
−1

2

∫ z

z0
p(s) ds

]
. (A.5)
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Rational function r(z) reads

r(z) = 3

4

P(z)

z2
(
ez2 + e + 2z

) (
e2 − 3δ2z2

)2 , (A.6)

where P(z) is a polynomial of degree six

P(z) =
6∑

i=0

ai z
i , a0 = e5, a1 = −2e4, a2 = e3

(
e2 − 2δ2

)
, (A.7)

a3 = 4δe2(7δ − �), a4 = 3δ2e
(
11δ2 + 2e2

)
, a5 = 6δ3(δ + 2�), a6 = 9δ4e.

(A.8)

Singular points of equation (A.6) are zeros of the denominator of the function r(z) and the
infinity. Thus, the equation has six singular points

z0 = 0, z1,2 = ± e√
3δ

, z3,4 = −1

e

(
1 ±

√
1 − e2

)
, z∞ = ∞. (A.9)

At first, we assume that they are pairwise different. That is, that the discriminant disc(d(z))
of the polynomial

d(z) = z
(
ez2 + e + 2z

) (
e2 − 3δ2z2

)
,

does not vanish. Direct calculations give

disc(d(z)) = −48δ2e6
(
e2 − 1

) (
9δ4 − 12δ2 + e4 + 6δ2e2

)2
.

As e, δ ∈ (0, 1), this discriminant vanishes if the polynomial

η(e, δ) = (
e2 + 3δ2

)2 − 12δ2 (A.10)

vanishes. Hence, at first we assume that η(e, δ) �= 0. Even under this assumption, it can
happen that for certain values of parameters, the numerator and the denominator of r(z) are
not relatively prime. Then, the order of singular points can depend on parameters. To check
this, we have to calculate the resultant of the numerator and denominator of r(z). If they have
a common factor, then the resultant vanishes. It appears that for the assumed values of the
parameters, it vanishes only along the curve η(e, δ) = 0. A justification of this fact is direct,
but rather long, so we omit it.

The function r(z) has the following expansion at singular points

r(z) = αi

(z − zi )2
+ O((z − zi )

−1), (A.11)

where

α0 = α1 = α2 = 3

4
, α3 = α4 = 0.

Moreover, its expansion at infinity reads

r(z) = 3

4z2
+ O(z−3).

Hence, all singularities of equation (A.6) are regular. The differences of exponents �i at the
respective singularities are

�0 = �1 = �2 = �∞ = 2, �3 = �4 = 1.
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Thus, it is possible that the logarithmic terms are present in local solutions near a singularity,
see explanations above equation (B.7) in “Appendix B”. In fact, such a term can be found for
a solution near z = 0. One local solution corresponding to the exponent ρ+ = 3/2 has the
form

w+(z) = z3/2 f (z), f (z) = 1 +
∞∑
i=1

f +
i zi . (A.12)

One can find easily that

f +
1 = −1

e
, f +

2 = 3
δ2 + 3

8e2
,

so, according to formula (B.8), the coefficient g2 multiplying the logarithmic term in local
solution is

g2 = −3
δ2 − 1

4e2
.

As δ ∈ (0,∞) \ {1}, g2 �= 0 and the logarithmic term is always present.
Now, we show that equation (A.4) does not admit a nonzero hyperexponential solution.

For the definition of this notion and its calculations, see “Appendix B” starting from the
paragraph above Lemma 7. According to equation (B.9), we have to select all possible
choices of exponents ε = (ε0, . . . , ε4, ε∞) such that

n = ε∞ − (ε0 + ε1 + ε2 + ε3 + ε4)

is a non-negative integer. Because z3 and z4 are poles of the first order, then ε3 = ε4 = 1,
see “Appendix B”. For the remaining singular points we have

ε0, ε1, ε2, ε∞ ∈
{
−1

2
,
3

2

}
.

In effect there is only one choice

ε =
(

−1

2
,−1

2
,−1

2
, 1, 1,

3

2

)
, (A.13)

which gives n = 1, and the corresponding function ω(z) defined in (B.9) is

ω(z) = −1

2

(
1

z
+ 1

z − z1
+ 1

z − z2

)
+ 1

z − z3
+ 1

z − z4
.

Inserting the polynomial P(z) = z + p0 into equation (B.11), we obtain a system of three
algebraic equations for (p0, e, δ) which has a solution only when either e = 0 or δ =
±1. These values of parameters are excluded, thus there is no polynomial P(z) of degree
one which satisfies equation (B.11). In effect, Eq. (A.4) does not admit a hyperexponential
solution, and its differential Galois group is not virtually commutative.

The above conclusion is valid under the assumptions that η(e, δ) �= 0, see (A.10). Poly-
nomial η(e, δ) factorizes as

η(e, δ) = η+(e, δ)η−(e, δ), η±(e, δ) = e2 + 3δ2 ± 2
√
3δ. (A.14)

The curve η+(e, δ) = 0 does not have a real component, so it is enough to investigate the
curve η−(e, δ) = 0, see dashed curve in Fig. 2. This curve admits the following rational
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parametrization

e = 2s

1 + s2
, δ = 2

√
3s2

3(1 + s2)
.

As we restricted values of δ to interval (0,∞) \ {1}, the range of s is (0,∞) \
{√

3 + 2
√
3
}
.

With this parametrization the differential equation (A.4) has five singular points

z0 = 0, z1 = −1

s
, z2 = +1

s
, z3 = −s, z∞ = ∞. (A.15)

At point z = z3 the function r(z) has a pole of order one. The differences of exponents �i

at the respective singularities are

�0 = �2 = �∞ = 2, �1 =
√
2(1 + sign(s2 − 1)), �3 = 1. (A.16)

If s < 1, then �1 = 0, and the logarithmic term always appears in local solutions near
z = z1. We show that such term appear for s > 1 in local solutions near z = 0. One local
solution near this point is

w+(z) = z3/2
(
1 + f +

1 z + f +
2 z2 + · · · ) , (A.17)

where

f +
1 = −1

2

(
s + 1

s

)
, f +

2 = 13s4 + 18s2 + 9

32s2
. (A.18)

Hence, by formulae (B.8), we get

g2 = −s4 + 6s2 + 3

16s2
. (A.19)

Equation g2 = 0 has only one positive root s =
√
3 + 2

√
3 corresponding to the excluded

value δ = 1. Thus, g2 �= 0 for s ∈ (0,∞) \
{√

3 + 2
√
3
}
, and the logarithmic term in the

local solutions is present.
Let s < 1. We show that Eq. (A.4) does not admit a hyperexponential solution. There are

four choices of exponents

ε = (ε0, ε1, ε2, ε3, ε∞) =
(

−1

2
,+1

2
,−1

2
, 1,

3

2

)

such that
n = ε∞ − (ε0 + ε1 + ε2,+ε3),

is a non-negative integer, and here n = 1. The function ω(z) now is

ω(z) = −1

2

(
1

z
− 1

z − z1
+ 1

z − z2

)
+ 1

z − z3
.

With this ω(z), the polynomial P(z) = z + p0 is not a solution of Eq. (B.11) with s ∈(
0,

√
3 + 2

√
3
)
for any p0.
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If s > 1, then there are four choices of the exponents

ε(1) = (ε0, ε1, ε2, , ε3, ε∞) =
(

−1

2
,−1

2
,−1

2
, 1,

3

2
,

)
,

ε(2) = (ε0, ε1, ε2, , ε3, ε∞) =
(
3

2
,−1

2
,−1

2
, 1,

3

2
,

)
,

ε(3) = (ε0, ε1, ε2, , ε3, ε∞) =
(

−1

2
,
3

2
,−1

2
, 1,

3

2
,

)
,

ε(4) = (ε0, ε1, ε2, , ε3, ε∞) =
(

−1

2
,−1

2
,
3

2
, 1,

3

2
,

)
,

for that Eq. (A.4) can have a hyperexponential solution. For the first choice n = 2 as the
degree of polynomial P(z). Function ω(z) is now

ω(1)(z) = −1

2

(
1

z
+ 1

z − z1
+ 1

z − z2

)
+ 1

z − z3
.

Inserting now P(z) = z2 + p1z + p0 into Eq. (B.11), we obtain a system of five polynomial
equations in (p0, p1, s) which does not have any solution.

The remaining three choices correspond to n = 0 and without loss of the generality one
can take P(z) = 1 and the corresponding functions ω(z) are

ω(2)(z) = 3

2z
− 1

2

(
1

z − z1
+ 1

z − z2

)
+ 1

z − z3
,

ω(3)(z) = 3

2

1

z − z1
− 1

2

(
1

z
+ 1

z − z2

)
+ 1

z − z3
,

ω(4)(z) = 3

2

1

z − z2
− 1

2

(
1

z
+ 1

z − z1

)
+ 1

z − z3
.

In all these cases, substitution to Eq. (B.11) gives an overdetermined system for s which does
not have a solution. So, in this case the equation does not admit hyperexponential solution,
and the differential Galois group of the equation is not virtually commutative. This ends the
proof of Lemma 4.

Let us note that in the above proof, we did not use the assumption that Q(e, δ) �= 0. The
only unchecked possibility is that curves Q(e, δ) = 0 and η(e, δ) = 0 intersect. But if it is
so, then also η(e, δ) − Q(e, δ) = 4δ2(e2 − 1) = 0 and this holds only for δ = 0 or e = 1.
However, these values are excluded by assumption. In effect, the Lemma 5 is also proved.

Figure 2 shows the curve Q(e, δ) = 0 plotted with solid line and the curve η−(e, δ) = 0
represented by a dashed line. These curves intersect only at two points (e, δ) = (0, 0) and

(e, δ) =
(
1,

√
3
3

)
excluded by assumptions from this analysis.

A.2. Proof of Lemma 6

Finally, we consider the case when δ = 0, thus we consider the variational equations (39)
defined by the matrix B+(ν) given in (37). Then, the second-order equation for the variable
w = y2 takes the form (A.1) with rational coefficients

p(z) = −1

z
, q(z) = 3

z(ez2 + 2z + e)
(A.20)
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and the reduced form (A.4) of this equation has coefficient

r(z) = 3

4z2
− 3

z(ez2 + 2z + e)
. (A.21)

The condition for coalescence of singularities is e(e2 − 1) = 0, thus by assumptions we
always have four singularities: one pole of the second-order z0 = 0, two poles of the first-

order z1,2 = −1±√
1−e2

e and the infinity z∞ = ∞ with the local expansion of r(z)

r(z) = 3

4z2
+ O(z−3). (A.22)

Taking into account (A.21) and (A.22), the coefficients αi of the expansions of r(z) at
singularities defined in (A.11) and differences of exponents are respectively

α0 = α∞ = 3

4
, α1 = α2 = 0,

�0 = �∞ = 2, �1 = �2 = 1.

Then,we checkwhether in local solutions near z0 which have the form (A.12), the logarithmic
terms are present. Coefficients f +

1 and f +
2 are

f +
1 = −1

e
, f +

2 = 9

8e2
,

and according to formula (B.8), the multiplier g2 of the logarithmic term in the local solution
is

g2 = 3

4e2
.

It means that g2 �= 0 and the logarithmic term in the local solutions is always present. Now
we check whether equation (A.4) admits a nonzero hyperexponential solution. We have only
one choice of ε = (ε0, ε1, ε2, ε∞) such that

n = ε∞ − (ε0 + ε1 + ε2),

is a non-negative integer. For poles of the first-order, ε1 = ε2 = 1 and the remaining
exponents belong to the set

ε0, ε∞ ∈
{
−1

2
,
3

2

}
.

This gives only one choice

ε =
(

−1

2
, 1, 1,

3

2

)
,

with n = 0 and

ω(z) = − 1

2z
+ 1

z − z1
+ 1

z − z2
.

Without loss of generality, we can take P(z) = 1 and substitution into Eq. (B.11) gives
contradiction 1 �= 0. Thus, also in this case, a subset of normal variational equations does
not have a hyperexponential solution and its differential Galois group is full SL(2,C) which
gives the statement of Lemma 6.
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Appendix B: Second-order differential equations

Werecall basic notions and facts concerning linear second-order differential equations limited
to the needs of this paper. This topic is clearly presented in concise Chapter X of book
(Whittaker and Watson 1935).

Consider the second-order linear differential equation in reduced form with rational coef-
ficient

w′′ = r(z)w, r(z) ∈ C(z). (B.1)

A point z = c ∈ C is a singular point of this equation if it is a pole of r(z). It is a regular
singular point if it is a pole of order not higher than two. The infinity is a regular singular
point if function z−2r(z−1) has a pole z = 0 of order not higher than two. We assume that
all singularities of the considered equation are regular. Such an equation is called Fuchsian.

Then, the function r(z) has the following expansions: at a singular point c ∈ C

r(z) = αc

(z − c)2
+ O

(
(z − c)−1) , (B.2)

and in infinity

r(z) = α∞
z2

+ O
(
z−3) . (B.3)

Near each singular point c Eq. (B.1) has two linearly independent solutions of the form

w±(z) = (z − c)ρ± f (z), f (z) = 1 +
∞∑
i=1

f ±
i (z − c)i , (B.4)

where ρ± are solutions of the so-called indicial equation

ρ(ρ − 1) − αc = 0, (B.5)

that is

ρ± = 1

2

(
1 ± √

1 + 4αc

)
. (B.6)

They are called exponents of Eq. (B.1) at singularity c. Then, substituting expansion (B.4)
into Eq. (B.1), we can successively determine coefficients f ±

i for i = 1, 2, . . . .
This statement is valid under the assumption that the difference of exponents �c =

ρ+ −ρ− = √
1 + 4αc is not an integer. If s = �c is a non-negative integer, then the solution

w+(z) has the prescribed form (B.4). But the second solution w−(z) has to be determined
by the variation of constants method. It has the form

w(z) = gsw+(z) ln(z − c) + (z − c)ρ−h(z), (B.7)

where function h(z) is holomorphic at z = c. Constant coefficient gs can be determined
using the method described inWhittaker andWatson (1935) and the explicit formula is given
in Maciejewski et al. (2013). For small s, they are

g0 = 1, g1 = 2 f +
1 , g2 = −2 f +

2 + 3( f +
1 )2. (B.8)

If for a given singularity logarithmic terms are present in a local solution, then we say that
this singularity is logarithmic.

Differential Galois group of Eq. (B.1) is a subgroup of SL(2,C), see, for example, Kovacic
(1986), Morales Ruiz (1999). For testing the integrability, we need to decide if it is a proper
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subgroup of SL(2,C). The presence of a logarithmic singularity allows to formulate a simple
and effective criterion. Before its formulation, we recall that the function w(z) is called
hyperexponential ifw′(z)/w(z) is a rational function. In other words, it is of the formw(z) =
exp[∫ a(z)dz], where a(z) is a rational function.

Lemma 7 Assume that the differential equation (B.1) has a logarithmic singularity, and it
has no nonzero hyperexponential solution, then its differential Galois group is SL(2,C).

Let us describe shortly the algorithm which allows to find the hyperexponential solution
of Fuchsian equation (B.1), if it exists. In fact, it is the first case of the Kovacic algorithm
(Kovacic 1986).

The hyperexponential solution that we look for has the following form

w(z) = P(z) exp

[∫
ω(z)dz

]
, ω(z) =

M∑
i=1

εi

z − zi
, (B.9)

where P(z) is a polynomial, zi are poles of r(z) of the first or the second order, and εi is an
exponent corresponding to this singularity. For each second order pole we have two choices
for ε given by equation (B.6), and for each first order pole there is only one choice ε = 1.
Polynomial P(z) is of degree n, where

n = ε∞ −
M∑
i=1

εi , (B.10)

and ε∞ is the exponent at infinity. Here, the sum is taken over all poles of r(z). Moreover,
the polynomial P(z) has to be the solution of the following equation

P ′′ + 2ω(z)P ′ + (ω′(z) + ω(z)2 − r(z))P = 0. (B.11)

In practice as a candidate for P(z)we take a polynomial of degreenwith indefinite coefficients
and insert it into the above equation. Then, the problem reduces to finding solutions of linear
equations for these coefficients. For an equationwithm singular points,wehave2m+1 possible
choices of elements (ε1, . . . , εm, ε∞), so we have at most such number of possibilities for
choice of n and ω(z).

For the proof of the above Lemma and its numerous applications, we refer the reader to
Morales Ruiz (1999).

References

Alfriend, K.T., Rand, R.H.: Stability of the triangular points in the elliptic restricted problem of three bodies.
AIAA J. 7(6), 1024–1028 (1969)

Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, 2nd edn.
Springer, New York (1989)

Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical systems. III. Encyclopaedia of Mathematical Sciences,
vol. 3. Springer, Berlin (1988)

Bennett, A.: Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem.
Icarus 4(2), 177–187 (1965)

Bolotin, S.: Symbolic dynamics of almost collision orbits and skew products of symplectic maps. Nonlinearity
19(9), 2041–2063 (2006)

Boucher, D., Weil, J.-A.: Application of J.-J. Morales and J.-P. Ramis’ theorem to test the non-complete inte-
grability of the planar three-body problem. In: Fauvet, F., et al. (eds.), From Combinatorics to Dynamical
Systems. Journées de calcul formel en l’honneur de Jean Thomann, Marseille, France, March 22–23,
2002. de Gruyter, Berlin. IRMA Lect. Math. Theor. Phys. vol. 3, pp. 163–177 (2003)

123



Non-integrability of the planar elliptic restricted three-body… Page 21 of 22 13

Capiński,M.J., Gidea,M., de la Llave, R.: Arnold diffusion in the planar elliptic restricted three-body problem:
mechanism and numerical verification. Nonlinearity 30(1), 329–360 (2016)

Chernikov, Y.A.: The photogravitational restricted three-body problem. Astron. Zh. 47(1), 217–223 (1970)
Combot, T.: A note on algebraic potentials and Morales–Ramis theory. Celest. Mech. Dynam. Astronom.

115(4), 397–404 (2013)
Compoint, É., Weil, J.A.: Absolute reducibility of differential operators and Galois groups. J. Algebra 275(1),

77–105 (2004)
Danby, J.M.A.: Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J.

69, 165–172 (1964)
Danby, J.M.A.: Orbits in the Copenhagen problem asymptotic at L4, and their genealogy. Astron. J. 72, 198

(1967)
Delshams, A., Kaloshin, V., de la Rosa, A., Seara, T.M.: Global instability in the restricted planar elliptic three

body problem. Commun. Math. Phys. 366(3), 1173–1228 (2019)
Duval, A., Loday-Richaud,M.: A propos de l’algoritme de Kovačic. Technical report, Université de Paris-Sud,
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