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Abstract
We construct a highly-symmetric periodic orbit of eight bodies in three dimensions. In this
orbit, each body collides with its three nearest neighbors in a regular periodic fashion. Regu-
larization of the collisions in the orbit is achieved by an extension of the Levi-Civita method.
Initial conditions for the orbit are found numerically. Linear stability of the orbit is then
shown using a technique by Roberts. Evidence toward higher-order stability is presented as
an additional result of a numerical calculation.
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1 Introduction

In the Principia Mathematica (see Newton, updated), Newton gives mathematical equations
governing the motion of point masses within their mutual gravitational field. Specifically, for
n point masses in R

d located at xi with mass mi for i = 1, 2, . . . , n, we have that

mi ẍi =
∑

i �= j

Gmim j

|xi − x j |2
(

xi − x j

|xi − x j |
)

. (1)

Here, the dot represents the derivative with respect to time, and G is a constant. A suit-
able choice of units gives G = 1, which is often assumed for mathematical simplicity.
(In SI units, the US National Institute of Standards and Technology1 gives the value
G = 6.67430×10−11m3/kg ·s2, with a standard uncertainty of 0.00015×10−11m3/kg ·s2.)

Collision singularities of the n-body problem occur when xi = x j for some i �= j . Under
suitable conditions, collisions of two bodies can be regularized. Regularization involves a
change of temporal and spatial variables so that the collision point becomes a regular point

1 https://physics.nist.gov/cuu/Constants/index.html.
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for the differential equations. Collision singularities have received a great deal of study. Of
particular note is a result by McGehee (1973), which shows that in general, a collision of
three or more bodies cannot be regularized.

Many periodic orbits featuring collisions have been produced. Existence, stability, and
other properties of periodic orbits with three bodies in one spatial dimension are studied in
both analytical and numerical contexts as early as 1956 in Schubart (1956) and as recently as
2019 in Kuang et al. (2019). Works between these years include (Hénon 1977; Hietarinta and
Mikkola 1993; Saito andTanikawa 2007;Moeckel 2008;Venturelli 2008; Saito andTanikawa
2009, 2010; Shibayama 2011; Yan 2012c; Ouyang et al. 2015). Orbits with four bodies in
one spatial dimension are featured in Shibayama (2011), Martínez (2012), Huang (2012),
and Yan (2012a). Orbits in two spatial dimensions featuring collisions were studied as early
as 1979 in Broucke (1979) and as recently as 2021 in Simmons (2021), with other notable
works including (Roy and Steves 2001; Bakker et al. 2010; Sivasankaran et al. 2010; Bakker
et al. 2011; Waldvogel 2012; Bakker et al. 2012; Ouyang et al. 2012; Yan 2012b; Bakker
and Simmons 2015). Additionally, in Shibayama (2011) and Martínez (2012), large families
of highly-symmetric orbits are given in one, two, and three dimensions, all of which can be
expressed in two degrees of freedom. Additionally, three-dimensional restricted collision-
based orbits are studied in Moeckel (1984), Lúcia and Claudio (2008), Brandão et al. (2017),
and Guardia et al. (2021) as a case of the e = 1 Sitnikov problem, which can be reduced to
a time-dependent two-degree-of-freedom problem.

This paper studies a three-degree of freedom, highly-symmetric, periodic orbit of eight
bodies featuring collisions. The bodies form the vertices of a rectangular prism at all points
in time, with edges parallel to the standard coordinate axes in R

3. Each body collides with
its three nearest neighbors in a regular periodic fashion. This appears to be the first three-
degree-of-freedom collision-based periodic orbit studied.

The remainder of the paper is as follows: In Sect. 2, we set up and regularize the Hamilto-
nian that corresponds to the configuration being considered. Section 3 details the construction
of the periodic orbit. We first describe the orbit in the regularized setting. Then, we analyti-
cally establish sufficient conditions for the orbit to exist. Finally, we complete the existence
proof with a numerical calculation.

Section 4 establishes the linear stability of the orbit. We first review some preliminary
details of stability, including linear stability. Next, we establish notation for the symmetries of
the orbit. We next detail some results by Roberts in Roberts (2007) that allow us to establish
the linear stability of the orbit in a rigorous numerical fashion in terms of these symmetries.
Applications to the orbit under consideration are detailed after each result. Finally, in Sect. 5,
we give results of the numerical stability calculation established in the previous section, as
well as some further numerical evidence of higher-order stability of the orbit.

2 The Hamiltonian setting and regularization

2.1 Configuration

We consider the Newtonian 8-body problem with point unit masses located at
(±q1,±q2,±q3), where the choices of sign are taken independently of each other, and each
qi ≥ 0 (see Fig. 1). The positions of the bodies lie at the vertices of a rectangular prism. We
will accordingly refer to this as the rectangular prismatic configuration, or RPC for brevity.

Note that when q1 = 0, if q2q3 �= 0, then we have four pairs of bodies colliding in the
x = 0 plane. Similar results hold in the y = 0 and z = 0 planes by permuting the subscripts.
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Fig. 1 The rectangular prismatic
configuration (RPC)

Fig. 2 The RPC orbit. Four simultaneous binary collisions occur in the x = 0, y = 0, and z = 0 planes in
turn as pictured. For clarity, the trajectory of one of the eight bodies is highlighted

We seek an orbit possessing these four-pair collisions in the x = 0, y = 0, and z = 0 planes
in a periodic fashion as pictured in Fig. 2.

An analogous two-degree-of-freedom orbit of four bodies in the xy plane, with bodies
located at±(x, y) and±(y, x)with alternating collisions along the lines y = ±x , was shown
to exist in Ouyang et al. (2012). Linear stability of that orbit was established in Bakker et al.
(2010). A four-degree-of-freedom variation of this orbit with two pairs of unequal masses
was discussed in Bakker et al. (2012), in which the linear stability was shown to be dependent
upon the ratio of the pairs of masses.

2.2 The Hamiltonian setting

The potential energy is the sum of 28 terms. For convenience, these are divided up into cube
diagonals, face diagonals, and edges.

Each of the four cube diagonals (see Fig. 3) contributes a term of the form

1√
(2q1)2 + (2q2)2 + (2q3)2

= 1

2
√
q21 + q22 + q23

. (2)

Let I = {1, 2, 3}. Each face diagonal (see Fig. 4) contributes a term of the form

1√
(2qi )2 + (2q j )2

= 1

2
√
q2i + q2j

, (3)
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Fig. 3 Cube diagonals (4 total)

Fig. 4 Face diagonals (12
total—the remaining six are on
the opposite faces of the cube)

with i, j ∈ I and i �= j . Specifically are four terms for each of the three possible choices of
indices. Lastly, each edge contributes a term of the form

1√
(2qi )2

= 1

2qi
, (4)

with i ∈ I. Again, for each index there are four terms. Hence, the total potential energy of
the system is

U = 2√
q21 + q22 + q23

+ 2√
q21 + q22

+ 2√
q21 + q23

+ 2√
q22 + q23

+ 2

q1
+ 2

q2
+ 2

q3
. (5)

Let pi = q̇i denote the components of the momentum of the bodies. The kinetic energy
for the system is

K =
8

(√
p21 + p22 + p23

)2

2
= 4

(
p21 + p22 + p23

)
. (6)

The Hamiltonian for the system is then given by H = K −U .
It is worth noting that as long as q1q2q3 �= 0, then q̈i < 0 for i ∈ I .
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2.3 Regularization

We regularize the collisions that occur at qi = 0 using an extension of the Levi-Civita method
(see Levi-Civita 1920). Specifically, let

F =
∑

i∈I

√
qi Pi . (7)

This generates a coordinate transformation given by

Qi = ∂F

∂Pi
= √

qi pi = ∂F

∂qi
= Pi

2
√
qi

, (8)

or

qi = Q2
i pi = Pi

2Qi
. (9)

In these coordinates, the potential energy for the system is given by

Ũ = 2√
Q4

1 + Q4
2 + Q4

3

+ 2√
Q4

1 + Q4
2

+ 2√
Q4

1 + Q4
3

· · ·

+ 2√
Q4

2 + Q4
3

+ 2

Q2
1

+ 2

Q2
2

+ 2

Q2
3

. (10)

The new kinetic energy is given by

K̃ = P2
1

Q2
1

+ P2
2

Q2
2

+ P2
3

Q2
3

. (11)

The new Hamiltonian is given by H̃ = K̃ − Ũ .

Lastly, to regularize the collisions at Qi = 0, we apply a change of time satisfying

dt

ds
= Q2

1Q
2
2Q

2
3. (12)

This gives the regularized Hamiltonian � = dt
ds (H̃ − E), or

� = P2
1 Q

2
2Q

2
3 + Q2

1P
2
2 Q

2
3 + Q2

1Q
2
2P

2
3

− 2Q2
1Q

2
2Q

2
3√

Q4
1 + Q4

2 + Q4
3

− 2Q2
1Q

2
2Q

2
3√

Q4
1 + Q4

2

− 2Q2
1Q

2
2Q

2
3√

Q4
1 + Q4

3

− 2Q2
1Q

2
2Q

2
3√

Q4
2 + Q4

3

− 2Q2
2Q

2
3 − 2Q2

1Q
2
3 − 2Q2

1Q
2
2 − EQ2

1Q
2
2Q

2
3, (13)

where E is the fixed energy of the system.
We now show that the system has been regularized as claimed. Let i, j, k ∈ I be distinct.

Then, at the collision where Qi = 0, Q j �= 0, and Qk �= 0, the condition � = 0 forces

P2
i Q

2
j Q

2
k − 2Q2

j Q
2
k = (P2

i − 2)Q2
j Q

2
k = 0. (14)

Then Pi = ±√
2. Moreover, since

Q̇i = d�

dPi
= 2Pi Q

2
j Q

2
k (15)
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54 Page 6 of 21 S. Simmons

then Q̇i �= 0 when Qi = 0. Hence, the orbit can be continued past the collision. (In the
regularized setting, we will use the dot notation to represent the derivative with respect to the
new time variable s.)

An important feature of the regularization that can be determined from Eq.15 is that both
Q̇i and Pi have the same sign at the collision time. Since Pi is continuous and non-zero at
collision time, the sign of Pi is the same before and after the collision. Hence, the sign of Q̇i

also does not change, so Qi must either pass from a negative to a positive value at collision,
or from a positive to a negative one.

It is worth noting that the planar orbit discussed in Ouyang et al. (2012) and Bakker
et al. (2010) is not “recoverable” from the RPC orbit under consideration, as forcing z = 0
throughout yields Q3 = 0. From Eq.14, we then have P3 = ±√

2 or Q1Q2 = 0. If the
former, the z = 0 plane cannot be an invariant subspace for this Hamiltonian system. If the
latter, the resulting orbit must lie entirely on the x- and y-axes, which does not describe the
planar orbits discussed.

3 The periodic orbit

3.1 Description

The desired orbit passes through four simultaneous binary collisions in the x = 0, y = 0,
and z = 0 planes in a periodic fashion, as pictured in Fig. 2. In a physical sense, we start with
the bodies with (non-regularized) positions given by

(±q1,±q2,±q3) = (0, ω, ω) (16)

and ending at
(±q1,±q2,±q3) = (ω, 0, ω), (17)

for some positive number ω. The proposed orbit will then be extended by a symmetry coin-
ciding with a rotation of 120◦ about the line x = y = z in R

3. In other words, the orbit
continues through a sequence of collisions

(±q1,±q2,±q3) : (0, ω, ω) → (ω, 0, ω) → (ω, ω, 0) → (0, ω, ω) → . . . , (18)

with the collisions being equally-spaced in time.

In the regularized coordinates, the velocity components can also be defined. Let
γ (s) = (Q1(s), Q2(s), Q3(s), P1(s), P2(s), P3(s))T . At each collision time with Qi = 0,
the sign of Qi changes as noted at the end of Sect. 2.3. Additionally, both γ (s) and −γ (s)
correspond to the same setting in the original coordinates. Hence, in the regularized setting,
one period of the orbit passes through six collisions rather than three.

3.2 Extension by symmetry

Lemma 1 Suppose γ (s) is a solution to the regularized Hamiltonian system � that satisfies

γ (0) = (0, α, α,
√
2,−β, β)T (19)

and
γ (2τ) = (α, 0, α, β,−√

2,−β)T . (20)
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for some τ > 0 and E < 0. Then γ (s) extends to a 12τ periodic orbit for the system �.

Proof We first establish the symmetries that will allow us to extend the orbit as claimed. By
direct calculation, we find that the equation for Q̇i is negated under the transformation
Pi �→ −Pi and remains fixed under any sign change of the remaining variables. We
also find that Ṗi is negated under Qi �→ −Qi and remains fixed under any other
sign change of the remaining variables. Furthermore, for any permutation σ ∈ S3,
since � is fixed under permutation of the subscripts by σ , then the equation of motion
for Q̇i in terms of Q1, Q2, Q3, P1, P2, P3 is the same as that of Q̇σ(i) in terms of
Qσ(1), Qσ(2), Qσ(3), Pσ(1), Pσ(2), Pσ(3). Similar permutation results hold for Pi .

Consider the orbit with initial conditions γ (2τ). By the symmetries just discussed, we
have that

Q̇1(2τ) = Q̇3(0),

Q̇2(2τ) = −Q̇1(0),

Q̇3(2τ) = Q̇2(0),

Ṗ1(2τ) = Ṗ3(0),

Ṗ2(2τ) = −Ṗ1(0),

Ṗ3(2τ) = Ṗ2(0). (21)

Moreover, the equations of motion are the same as those on the interval s ∈ [0, 2τ ] under
permutations and sign changes as discussed above. Existence and uniqueness of solutions to
differential equations gives

Q1(s + 2τ) = Q3(s),

Q2(s + 2τ) = −Q1(s),

Q3(s + 2τ) = Q2(s),

P1(s + 2τ) = P3(s),

P2(s + 2τ) = −P1(s),

P3(s + 2τ) = P2(s), (22)

is a solution to the Hamiltonian system given by �. Setting s = 2τ , we have that

γ (4τ) = (α,−α, 0,−β,−β,−√
2)T . (23)

Repeating the argument with initial conditions given by γ (4τ) gives

γ (6τ) = (0,−α,−α,−√
2, β,−β)T . (24)

Continuing in turn, we have that

γ (8τ) = (−α, 0,−α,−β,
√
2, β)T , (25)

γ (10τ) = (−α, α, 0, β, β,
√
2)T , (26)

γ (12τ) = (0, α, α,
√
2,−β, β)T . (27)

Since γ (0) = γ (12τ), the periodic orbit has been constructed as claimed. 	

Physically, the orbit constructed in Lemma 1 corresponds to an orbit in which all bodies

start in the x = 0 plane at collisions symmetrically placed along the lines y = ±z. The
velocity of each body projected onto the x = 0 plane is orthogonal to the projection of its
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54 Page 8 of 21 S. Simmons

position. The orbit then proceeds to collisions in the y = 0 and z = 0 planes with similarly
symmetric positions and velocities.

Note: We do not rule out the possibility of the existence of a “less symmetric” orbit.
Indeed, the arguments in Lemma 1 give the same conclusion if we assume that

γ (0) = (0, a, b,
√
2,−c, d)T , (28)

γ (2τ) = (b, 0, a, d,−√
2,−c)T , (29)

without the requirement that a = b and c = d . However, for simplicity we restrict ourselves
to the “reduced” case at the present time.

Lemma 2 Suppose γ (s) is a solution to the regularized Hamiltonian system � with γ (0)
defined as Eq.19 and that satisfies

γ (τ) = (a, a, b, c,−c, 0)T . (30)

for some τ > 0 and E < 0. Then γ (s) extends to a 12τ periodic orbit for the system �.

Proof Suppose γ (s) exists as claimed. Consider an orbit with initial conditions

γ (τ) = (a, a, b,−c, c, 0)T . (31)

Note that the values of all Pi (τ ) have been negated. Negating the momentum terms is equiv-
alent to reversing time. Then for the initial conditions in Eq.31, existence and uniqueness
must give us that

γ (2τ) = (0, α, α,−√
2, β,−β)T . (32)

Then using a similar symmetry argument as in Lemma 1, it must be that if

γ (τ) = (a, a, b, c,−c, 0)T , (33)

then
γ (2τ) = (α, 0, α, β,−√

2,−β)T . (34)

Applying Lemma 1 then gives the final result. 	

Hence, in the regularized setting, the orbit can be constructed if we can find initial con-

ditions that correspond to just the first twelfth of the orbit. This 12-fold symmetry is similar
to that of the figure-eight orbit of Moore, Chenciner, and Montgomery (see Moore 1993;
Chenciner and Montgomery 2000).

Note that at the time γ (τ), the vectors 〈a, a, b〉 and 〈c,−c, 0〉 (corresponding to position
and velocity, respectively) are orthogonal. This type of symmetry-extension has been studied
in other works as well (examples include Martínez 2012; Shibayama 2011).

3.3 Existence of the orbit

The results in this section serve to justify the numerical calculations that will ultimately
be used to find the periodic orbit. For some of the proofs in this section, it will be more
convenient to use the original qi and pi coordinates.

Lemma 3 Suppose at some time s0 we have that Qi Pi < 0. Then if the orbit does not pass
through an unregularized collision, there is some future time s∗ > s0 where Qi (s∗) = 0.
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Proof This is most easily proven in the original q and p coordinates. The initial conditions
correspond to some qi > 0 and pi < 0. Since ṗi = q̈i < 0, then pi < 0 as long as qi > 0.
Hence, we have a function qi (t) that is positive, decreasing, and concave down away from
collision times. If the first collision after this time occurs when qi = 0, then the proof is
complete. On the other hand, if some other collision q j = 0 occurs first, we can continue the
curves for qi and pi through the collision by using the regularization and “patching together”
the qi and pi curves past this time. The same inequality conditions on qi and pi still apply
after this collision. 	

Lemma 4 Suppose at some t0 time we have that 0 < qi < q j and pi < p j . Let ti > t0 and
t j > t0 be the first times where qi = 0 and q j = 0, respectively. If both ti and t j are finite,
then ti < t j .

Proof Define q̃(t) = qi (t)−q j (t) and p̃(t) = pi (t)− p j (t). We will show that both q̃ and p̃
are negative and have negative derivatives with respect to time. Then the region with q̃ < 0
and p̃ < 0 is forward-invariant (up to collision time), which implies the result.

We first have dq̃
dt = pi (t) − p j (t). By assumption, q̃(t0) < 0. Similarly, since

dpi
dt

= − 2qi
(q21 + q22 + q23 )

3/2
− 2qi

(q2i + q2j )
3/2

− 2qi
(q2i + q2k )

3/2
− 2

q2i
, (35)

then

d p̃

dt
= 2q j − 2qi

(q2i + q2j + q2k )
3/2

+ 2q j − 2qi
(q2i + q2j )

3/2
· · ·

+
(

2q j

(q2j + q2k )
3/2

− 2qi
(q2i + q2k )

3/2

)
+

(
2

q2j
− 2

q2i

)
. (36)

Showing the sign of Eq.36 is unfortunately not as straightforward. To simplify, we use the
transformation

qi = aq j qk = bq j . (37)

The assumption 0 < qi < q j gives 0 < a < 1. The only restriction on b is b > 0. With this
substitution, we obtain

d p̃

dt
= 2

q2j

(
1 − a

(a2 + b2 + 1)3/2
+ 1 − a

(a2 + 1)3/2
· · ·

+ 1

(b2 + 1)3/2
− a

(a2 + b2)3/2
+ 1 − 1

a2

)
. (38)

Certainly 2q−2
j is always positive. Define

f (a, b) = 1 − a

(a2 + b2 + 1)3/2
+ 1 − a

(a2 + 1)3/2
· · ·

+ 1

(b2 + 1)3/2
− a

(a2 + b2)3/2
+ 1 − 1

a2
. (39)

It is straightforward to show that f (1, b) = 0 for any b and that as a → 0+, f (a, b) → −∞.
Direct calculation gives
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d f

da
= −3a(1 − a)

(a2 + b2 + 1)5/2
− 1

(a2 + b2 + 1)3/2
− 3a(1 − a)

(a2 + 1)5/2
· · ·

− 1

(a2 + 1)3/2
+ 3a

(a2 + b2)5/2
+ 2

a3
. (40)

A simple exercise from calculus shows that the minimum value of the expression−3a(1−a)

with a ∈ [0, 1] is −3/4. This gives

d f

da
≥ −3

4(a2 + b2 + 1)5/2
− 1

(a2 + b2 + 1)3/2
− 3

4(a2 + 1)5/2
· · ·

− 1

(a2 + 1)3/2
+ 3a

(a2 + b2)5/2
+ 2

a3
. (41)

Since b2 > 0, we can appropriately remove some b2 terms from 41 to obtain

d f

da
≥ −3

4(a2 + 1)5/2
− 1

(a2 + 1)3/2
− 3

4(a2 + 1)5/2
· · ·

− 1

(a2 + 1)3/2
+ 3a

(a2 + b2)5/2
+ 2

a3
. (42)

Combining terms in 42 then gives

d f

da
≥ −3

2(a2 + 1)5/2
− 2

(a2 + 1)3/2
+ 3a

(a2 + b2)5/2
+ 2

a3
. (43)

The right side of 43 is certainly decreasing as b increases from zero toward infinity. Taking
the limit as b → ∞ then yields

d f

da
≥ −3

2(a2 + 1)5/2
− 2

(a2 + 1)3/2
+ 2

a3
(44)

for a ∈ (0, 1]. We claim that the right side of the expression in 44 is positive for all a ∈ (0, 1].
Certainly as a → 0+, this quantity is positive, as the 2a−3 term tends to infinity. Suppose
there is some a at which this quantity is zero. Then we must have

4a2 + 7

2(a2 + 1)5/2
= 2

a3
. (45)

Clearing denominators gives

4a5 + 7a3 = 4(a2 + 1)5/2, (46)

and then squaring both sides yields

16a10 + 56a8 + 49a6 = 16a10 + 80a8 + 160a6 + 160a4 + 80a2 + 16. (47)

A solution to this must also be a solution to

24a8 + 111a6 + 160a4 + 80a2 + 16 = 0 (48)

which certainly does not exist in real numbers. Hence, d f /da cannot change sign, and
therefore d f /da (and consequently d p̃/dt) are positive for all a and b. Since p̃ increases to
0 as a → 1− for any fixed value of b, it must then be the case that p̃ is negative, giving the
final result. 	


To help facilitate future discussion, define
 to be the set of ordered pairs (α, β) satisfying:
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• α ≥ 0
• β ≥ 0
• If γ (0) is defined as in Eq.19, then the first s∗ > 0 for which Q1Q2Q3(s∗) = 0 implies

Q2(s∗) = 0.

Note that for any initial condition γ (0) defined by Eq.19 for α > 0 and β > 0, integrating
the equations of motion on a sufficiently small interval s ∈ [0, ε] will yield unregularized
conditions 0 < q2 < q3 and p2 < p3. Then by Lemma 4, the first collision cannot be when
Q3 = 0. This definition also allows for Q1(s∗) = Q2(s∗) = 0 or Q2(s∗) = Q3(s∗) = 0,
but a Q1 = 0 collision cannot occur before a Q2 collision.

Lemma 5 For a fixed E < 0, there exists some α∗ > 0 so that if α > α∗, then (α, 0) /∈ 
.

Proof As α → ∞, with γ (0) as defined in Eq.19, the configuration of the four bodies
approaches four decoupled binary pairs whose trajectories are line segments parallel to the
x axis. Certainly for α sufficiently large it must be the case that the first collision occurs at
Q1 = 0, so (α, 0) /∈ 
. Hence, the set of all α for which (α, 0) ∈ 
 is bounded above. We
can then define α∗ to be the supremum of this set. 	

Lemma 6 Let γ (0) be defined as in Eq.19 with (α, β) ∈ 
 and E < 0. Then there is some
τ > 0 with τ = τ(α, β) so that Q1(τ ) = Q2(τ ).

Proof For s > 0 sufficiently small, we have that the signs of the components of γ are given
by

γ (s) = (+,+,+,+,−,+). (49)

Then by Lemma 3, we have that at some future time, Q2(s∗) = 0. Since (α, β) ∈ 
, it must
be that Q1(s∗) ≥ 0. Since Q2(0) − Q1(0) = α > 0 and Q2(s∗) − Q1(s∗) ≤ 0 the result
follows by the Intermediate Value Theorem. 	

Lemma 7 Set γ (0) as in Eq.19 for some 0 < α < α∗ and E < 0, with α∗ as defined in
Lemma 5. Then there is some β > 0 so that (α, β) ∈ 
 and

γ (τ) = (a, a, b, c1, c2, 0)
T , (50)

where τ is as defined in Lemma 6.

Proof Consider γ (0) = (0, α, α,
√
2, 0, 0), Then by the symmetry of �, Q2(s) = Q3(s) and

P2(s) = P3(s). For s > 0, P2(s) and P3(s) are both negative, so by Lemma 3 some future
time s∗ it must be that Q2(s∗) = Q3(s∗) < ε for any ε > 0. (Note that this tends toward an
unregularized collision.) Since (α, β) ∈ 
, we must have that Q1 > 0 for all 0 < s < s∗.
So at the time Q1(τ ) = Q2(τ ), it must be that P3(τ ) < 0. On the other hand, as β → ∞,
then the time s∗ where Q2(s∗) = 0 approaches 0. Then Q3(τ ) must also be positive, as if
s∗ → 0 then τ → 0. Certainly for β sufficiently high, (α, β) ∈ 
. The result then follows
from the Intermediate Value Theorem. 	


We expect that away from the potentially chaotic region near ||γ (0)|| = 0, there should
be a single value of β for which this holds.

Lemma 8 Set γ (0) as in Eq.19 for some E < 0. Then there is some α > 0 and β > 0 so that

γ (τ) = (a, a, b, c,−c, 0)T , (51)
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Fig. 5 The value of β (vertical axis) plotted against α (horizontal axis) for which Lemma 7 is satisfied. E = −1

This will be proven numerically.With β = β(α), we show that there is some value of α for
which the quantity P1(τ )+P2(τ ) is negative and a second value of α for which P1(τ )+P2(τ )

is positive. Again, the result follows from the Intermediate Value Theorem.
As a consequence of Lemma 8, we have the following

Theorem 1 There exists a periodic orbit corresponding to the Hamiltonian described in
Sect. 2.

3.4 Numerical results

We can find the value of α∗ as defined in Lemma 5 by integrating initial conditions as defined
in Eq.19. For E = −1, we find 3.74 < α∗ < 3.75. Specifically, for α = 3.75 we have that
Q1 = 0 is the first collision for time s > 0, but for α = 3.74 the conditions of Lemma 4 are
met after some finite time interval (after converting to the non-regularized coordinates).

For α ∈ {0.5, 0.6, . . . , 3.5, 3.6}, we use a bisection method to find the value of β as
defined in Lemma 7. Specifically, with initial conditions as defined in Eq.19 we integrate
the equations of motion using a fixed step-size Runge–Kutta method until the conditions of
Lemma 6 are satisfied. We then vary β to find the value for which P3(τ ) = 0. The results
are graphed in Fig. 5.

Next, setting β = β(α), we compute the value P1(τ ) + P2(τ ). The results are graphed in
Fig. 6. Forα = 0.5,we have P1(τ )+P2(τ ) = 2.14, and forα = 3.6we have P1(τ )+P2(τ ) =
−1.63, establishing Lemma 8. Notably, for the value α = 3.1, we find β = 0.6677 and
P1(τ ) + P2(τ ) = 0.0018.
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Fig. 6 The value of P1(τ ) + P2(τ ) (vertical axis) plotted against α (horizontal axis) where β = β(α) from
Lemma 7. E = −1

We then repeatedly refine the value of α (starting about α = 3.1) and repeat the process,
working to find the zero of P1(τ ) + P2(τ ). For E = −1, we find the appropriate values are

α = 3.100685, β = 0.668162. (52)

The full period of the regularized orbit is given by

12τ = 0.124736 (53)

A graph of numerical integration of the regularized equations of motion is given in Fig. 7.

4 Stability and symmetry

4.1 Definitions and preliminaries

Let O(γ0) be the set of all points in R
6 traced out in forward and backward time by the

solution to the regularized Hamiltonian � with initial conditions γ0. If we use the initial
conditions determined by α and β in the previous section, then the time interval 0 ≤ s ≤ 12τ
captures the entire orbit and O(γ0) is a closed loop in R

6. This orbit is Poincaré stable if
given any ε > 0 there is some δ > 0 so that for initial conditions γ̃0 with |γ̃0 − γ0| < δ, then
any point on the orbit O(γ̃0) is within ε of a point on the orbit O(γ0).

Poincaré stability is generally difficult to establish in all but the simplest cases. However,
there is a necessary condition that can be computed. Specifically, for a Hamiltonian system
with Hamiltonian � and a periodic orbit γ (s) with period T , consider the matrix differential
equation

X ′ = J D2�(γ (s)), X(0) = I , (54)
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Fig. 7 Integration of the regularized equations of motion with the initial conditions given by Eq.19, and values
of α and β from Eq.52

where D denotes the derivative, J is the symplectic matrix

J =
[
0 I

−I 0

]
, (55)

with I and 0 are appropriately sized identity and zero matrices. Then the monodromy matrix
of the orbit is the matrix X(T ), and the orbit is linearly stable if the eigenvalues of X(T ) all
have complex modulus 1 and all have multiplicity one, apart from pairs of eigenvalues equal
to 1 corresponding to first integrals of the system.

Linear stability can be established by considering conditions other that X(0) = I as well.
Specifically, if we let X(0) = Y0 be the initial condition to Eq.54, then Y (s) = X(s)Y0, so
X(T ) = Y (T )Y−1

0 . Hence, Y−1
0 Y (T ) is similar to the monodromy matrix X(T ), and linear

stability can be determined from either matrix as similarity preserves eigenvalues.
In theRPCsetting, our choice of coordinates has already forced the integrals corresponding

to center of mass, net momentum, and angular momentum to be zero. Hence, the monodromy
matrix corresponding to the periodic RPC orbit should contain one pair of eigenvalues 1
corresponding to the fixed value of the Hamiltonian. Further, it will be shown that a particular
choice of Y0 simplifies the calculation.

4.2 Symmetries of the orbit

A technique by Roberts allows us to further simplify this calculation by “factoring” the
monodromy matrix in terms of the symmetries of the orbit. We establish the symmetries of
the orbit in this section.

By construction of the orbit as given in Lemma 1, we have that

γ (s + 2τ) = S f γ (s), (56)
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where

S f =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (57)

So S f is a time-preserving symmetry of the orbit. This symmetry corresponds to a 120◦
rotation about the line x = y = z, coupled with an appropriate sign change which arises in
the regularized setting.

A time-reversing symmetry of the orbit is given by

γ (−s + 2τ) = Srγ (s), (58)

where

Sr =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 0 0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (59)

This can be proven using a similar technique as shown in Lemma 1. Setting s = τ gives
γ (τ) = Srγ (τ), implying that γ (τ) is an eigenvector of Sr with eigenvalue 1. Directly
computing this, we find that γ (τ) must be of the form

γ (τ) = (a, a, b, c,−c, 0)T (60)

for suitable values of a, b, and c. Note that this is exactly what was found in Lemma 2.

4.3 Roberts’s symmetry-reduction technique

The general results in this section are presented, with proof, in Section 2 of Roberts (2007).
Statements of the results are included here for convenience. The application of each result
to the RPC orbit is given after each statement. Results similar to Lemmas 11–13 also appear
in Roberts (2007), but the form presented in this section is specifically applied to the RPC
orbit.

Lemma 9 (Lemma 2.1 from Roberts (2007)) Suppose that γ (s) is a T -periodic solution of
a Hamiltonian system with Hamiltonian � and time-preserving symmetry S such that

(1) There exists some N ∈ N such that γ (s + T /N ) = Sγ (s) for all s,
(2) �(Sx) = �(x),
(3) S J = J S, and
(4) S is orthogonal.

Then the fundamental matrix solution X(s) to the linearization problem Ẋ = J D2�(γ (s))X
with X(0) = I satisfies

X(s + T /N ) = SX(s)ST X(T /N ). (61)

We note that the matrix S = S f from Eq.57 satisfies all of these hypotheses with T = 12τ
and N = 6.
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Corollary 1 (Corollary 2.2 from Roberts (2007)) Given the hypotheses of Lemma 9, the
fundamental matrix solution X(s) satisfies

X(kT /N ) = Sk(ST X(T /N ))k (62)

for any k ∈ N.

In the case of the RPC orbit, this gives us that X(12τ) = (STf X(2τ))6, as S6f = I .

Lemma 10 (Lemma 2.4 from Roberts (2007)) Suppose that γ (s) is a T -periodic solution of
a Hamiltonian system with Hamiltonian � and time-reversing symmetry S such that

(1) There exists some N ∈ N such that γ (−s + T /N ) = Sγ (s) for all s,
(2) �(Sx) = �(x),
(3) S J = −J S, and
(4) S is orthogonal.

Then the fundamental matrix solution X(s) to the linearization problem Ẋ = J D2�(γ (s))X
with X(0) = I satisfies

X(−s + T /N ) = SX(s)ST X(T /N ). (63)

The matrix S = Sr from Eq.59 satisfies all of these hypotheses with T = 12τ and N = 6.

Corollary 2 (Corollary 2.5 from Roberts (2007)) Given the hypotheses of Lemma 10,

X(T /N ) = SA−1ST A, A = X(T /2N ). (64)

In the case of the RPC orbit, noting that STr = Sr gives X(2τ) = Sr A−1Sr A with
A = X(τ ). Combining this with the earlier result, this gives us that the monodromy matrix
of the RPC orbit is X(12τ) = (STf Sr A

−1Sr A)6. Hence, we can evaluate the stability of the
orbit by evaluating the relevant differential equations along only a twelfth of the orbit.

Roberts also gives similar results for the case where the initial conditions given in Eq.54
are not the identity matrix. These are listed below.

Corollary 3 (Remark following Corollary 2.2 in Roberts (2007)) If Y (s) is the fundamental
matrix solution with X(0) = Y0, then

Y (s + T /N ) = SY (s)Y−1
0 ST Y (T /N ), (65)

and so
Y (kT /N ) = SkY0(Y

−1
0 ST Y (T /N ))k (66)

Corollary 4 (Remark following Corollary 2.5 in Roberts (2007)) If Y (s) is the fundamental
matrix solution with X(0) = Y0, then

Y (−s + T /n) = SY (s)Y−1
0 ST Y (T /N ), (67)

and so
Y (T /N ) = SY0B

−1ST B, B = Y (T /2N ). (68)

Combining these with previous results gives that for an arbitrary X(0) = Y0, the resulting
matrix solution Y (s) to Eq.54 satisfies

Y (12τ) = Y0(Y
−1
0 STf SrY0B

−1Sr B)6, (69)

so
X(12τ) = Y0(Y

−1
0 STf SrY0B

−1Sr B)6Y−1
0 , (70)
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where B = Y (τ ).
Define W = Y−1

0 STf SrY0B
−1Sr B. Then X(12τ) = Y0W 6Y−1

0 , and stability of the RPC
orbit is thus reduced to determining the eigenvalues of W .

For a properly chosen initial condition matrix Y0, some additional simplification of the
calculation can be done.

Lemma 11 (Lemma 4.1 from Roberts (2007)) Suppose that W is a symplectic matrix satis-
fying

1

2
(W + W−1) =

[
K 0
0 KT

]
. (71)

Then W has all eigenvalues on the unit circle if and only if the eigenvalues of K lie in the
real interval [−1, 1].
Proper choice of the matrix Y0 will give W of the required form.

Lemma 12 Setting δ = √
2/2 and

Y0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 −δ 0 δ 0
0 0 δ 0 δ 0
0 0 0 1 0 0
0 −δ 0 0 0 −δ

0 −δ 0 0 0 δ

⎤

⎥⎥⎥⎥⎥⎥⎦
(72)

gives a matrix W of the form in Lemma 11.

Proof Let


 =
[
I 0
0 −I

]
(73)

where I and 0 represent 3×3 identity and zero matrices, respectively. Then direct calculation
yields −Y−1

0 STf SrY0 = 
.

Set D = −B−1Sr B. Then bydefinition ofW wehave thatW = 
D. Since D2 = 
2 = I ,
then we know that W−1 = D
. Since B is symplectic, writing

B =
[
B1 B2

B3 B4

]
and Sr =

[
S 0
0 −S

]
, (74)

then the formula for the inverse of a symplectic matrix gives

B−1 =
[

BT
4 −BT

2−BT
3 BT

1

]
. (75)

Directly computing D gives

D =
[
KT L1

−L2 −K

]
(76)

with K , L1, and L2 defined up to sign by matrix multiplication. Then

W = 
D =
[
KT L1

L2 K

]
and W−1 = D
 =

[
KT −L1

−L2 K

]
(77)

and
1

2
(W + W−1) =

[
KT 0
0 K

]
(78)

as required. 	
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As noted earlier, our coordinate system has already made use of the first integrals corre-
sponding to center of mass, net momentum, and angular momentum in this setting. There is
an additional pair of eigenvalues 1 in the monodromy matrix corresponding to the remaining
first integral, the Hamiltonian itself. These can be found, with eigenvector, as shown below.

Lemma 13 The matrix K T has a right eigenvector [1 0 0]T with corresponding eigenvalue
1.

Proof Let v = Y−1
0 γ ′(0)/||γ ′(0)|| = Y T

0 γ ′(0)/||γ ′(0)||. Since Y0 is orthogonal and Sr is
symmetric, we have

W = Y−1
0 STf SrY0B

−1Sr B = Y T
0 STf SrY0B

−1STr B = Y T
0 STf Y (2τ) (79)

by Corollary 4 with s = 0.
Define γ (s) to be the periodic orbit with initial conditions defined in Sect. 3. Since γ ′(s)

is a solution to ξ̇ = J D2�(γ (s))ξ and

γ ′(0) = Y (0)Y−1
0 γ ′(0) = Y (0)v,

then
γ ′(s) = Y (s)Y−1

0 γ ′(0) = Y (s)v. (80)

This implies
Y−1
0 STf γ

′(2τ) = Y T
0 STf Y (2τ)v = Wv. (81)

Since
γ ′(0) = (2

√
2α4, 0, 0, 0, 0, 0) (82)

and
γ ′(2τ) = (0,−2

√
2α4, 0, 0, 0, 0) (83)

with α as defined in Eq.52, we have

STf γ
′(2τ) = γ ′(0). (84)

Then

Wv = Y−1
0 STf γ

′(2τ) = Y T
0 STf S f γ

′(0) = Y T
0 Y0v = v.

So v is an eigenvector of W with eigenvalue 1.
Since γ ′(0) is known, we have that v = Y−1

0 e1, where

e1 = [1 0 0 0 0 0]T . (85)

Direct calculation gives that v = e1. Then, sinceW satisfies the relation given in Lemma 11,
KT must have eigenvector [1 0 0]T with eigenvalue 1 as claimed. 	


As a consequence, we know that the matrix K must be of the form

K =
⎡

⎣
1 0 0
∗ k22 k23
∗ k32 k33

⎤

⎦ (86)

and so the eigenvalues of the lower-right 2 × 2 block will determine stability.
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5 Stability results

Using the matrix Y0 from Eq.72, we find the matrix B = Y (τ ) numerically with the initial
conditions from Eq.52. Then the matrix K is given numerically by

K =
⎡

⎣
1.0007 0.0004 −0.0001

−0.9038 0.3487 0.1926
1.7654 −1.1211 −1.1241

⎤

⎦ (87)

The values given for the k12 and k13 entries are the result of propagation of numerical error in
the calculation. Assuming they are zero as proven earlier, the eigenvalues from the lower-right
2 × 2 block of K are given by a simple application of the quadratic formula. We find

λ1 = 0.1836, λ2 = −0.95899 (88)

As a consequence of Lemma 11, we have the following

Theorem 2 The RPC orbit described throughout this paper is linearly stable.

We seek to give evidence of higher-order stability of the RPC orbit. Using E = −1 and
the values of α and β from Eq.52, we set

γ0 =(0, α + r cos(a) cos(b), α + r cos(a) sin(b), . . .√
2, β + r sin(a) cos(c),−β + r sin(a) sin(c)) (89)

where

a, b, c ∈ {0, π/6, π/3, π/2, . . . , 11π/6}, (90)

r ∈ {0.005, 0.010, 0.015, . . . , 0.100}. (91)

The equations of motion are run up to 200 collisions at Q1 = 0 for each possible combination
of a, b, c, and r . Integration is preemptively terminated after a time length of s = 1 has
occurred since the last Q1 = 0 collision. This time cutoff value seems reasonable given the
length of the period 12τ = 0.124736. We track the distance from ±γ (0) at those collision
times. For all values of r for which all 200 collisions were achieved on all values of a, b, and
c tested, the maximum distance from ±γ (0) at collision is given in the table below.

r distmax

0.005 0.0391
0.010 0.0824
0.015 0.1289
0.020 0.1833
0.025 0.2574

(92)

For all values of r ≥ 0.030, there is at least one value of a, b, and c for which fewer than 200
Q1 = 0 instances occur. For example, when r = 0.030 and a = b = π/6, c = 11π/6, only
34 instances of Q1 = 0 are recorded before the integration is terminated, giving evidence of
instability at this distance from the periodic orbit.
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