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Abstract
We propose a methodology to study the bifurcation sequences of frozen orbits when the
second-order fundamental model of the satellite problem is augmented with the contribution
of octupolar terms and relativistic corrections. The method is based on the analysis of twice-
reduced closed normal forms expressed in terms of suitable combinations of the invariants
of the Kepler problem, able to provide a clear geometric view of the problem.

Keywords Geometric reduction of the perturbed Kepler problem · Gravity field with zonal
harmonics · Frozen orbits

1 Introduction

Among themanifold versions of the perturbedKepler problem, the investigation of the gravity
field expanded in multipole terms has traditionally received great attention for its relevance
in applications. Therefore, several analytical tools have been developed to highlight the
most important phenomena. Perturbation theory with the construction of normal forms is the
standard method since the first pioneering studies (Brouwer 1959; Kozai 1962). The case in
which only zonal terms are included in one of the settings in which we can obtain explicit
approximations of the regular dynamics since the normal form is integrable. However, the
presence of several parameters, both dynamical (or ‘distinguished’ in the language of the
theory of integrable systems) and physical like the multipole coefficients, hinders a global
description of the dynamics. More efficient geometric and group-theoretic tools have been
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exploited to study the bifurcation of invariant objects when these parameters are varied
(Cushman 1983; Coffey et al. 1986, 1994; Palacián 2007).

Here, we study the bifurcation sequences of frozen orbits when the second-order funda-
mental model of the satellite problem is augmentedwith further features of a typical planetary
gravity field. We consider the contribution of the octupolar term (Vinti 1963; Coffey et al.
1994) and the relativistic correction due to the quadrupolar term (Heimberger et al. 1990).We
implement a twice-reduced normal form (Cushman 1988; Pucacco and Marchesiello 2014;
Pucacco 2019) which allows us to obtain in an efficient way the conditions for relative equi-
libria corresponding to the family of periodic orbits with fixed eccentricity and inclination.
The method is tested in the second-order J2-problem in which known results are reproduced
(Palacián 2007) and then applied to the above-mentioned perturbations. For the J4-problem,
interesting features around the parameter values of the ‘Vinti problem’ are highlighted with
an additional family of stable frozen orbits. For the relativistic J2-correction, the treatment
extends and completes several results obtained by Jupp and Brumberg (1991).

The plan of the paper is as follows: In Sect. 2, we recall the model problem based on the
normal from obtained after averaging with respect to the mean anomaly; in Sect. 3, we review
the reduction methods adapted to the symmetries of the present model, discuss the version
adopted here to cope with the structure of the Brouwer class of Hamiltonians and show how
it works in locating relative equilibria; in Sect. 4, we illustrate the results in concrete cases;
in Sect. 5, we conclude with some hint for possible developments and future works.

2 Themodel in closed normal form

We are discussing some aspects of the general problem described by a Hamiltonian of the
form:

H(L, H ,G, �, g, h) =
∞∑

j=0

ε jH j (L, H ,G, �, g, h), (1)

whereH0 is the Kepler Hamiltonian and the canonical Delaunay variables have the following
expression in terms of the standard Keplerian elements (a, e, i, �, ω,�)

L = √
μa, G = √

μa
√
1 − e2, H = √

μa
√
1 − e2 cos i, (2)

� = M, g = ω, h = �. (3)

In the above equation, ε is a formal parameter, called book-keeping parameter, suitably
chosen to order the hierarchy of perturbing terms (see Efthymiopoulos 2012). Therefore, we
have a perturbed Kepler problem.

Specifically, in the even zonal artificial satellite problem, we assume to start with the
‘original Hamiltonian’

H(q, p) = 1

2
p2 + VCGF − 1

c2

(
p4

8
− V2

CGF

2
− 3

2
VCGF p

2

)
(4)

in standard Cartesian form, where q = {x, y, z}, p = {ẋ, ẏ, ż}, p = | p|, VCGF is the
classical gravity field and c is the speed of light. We include the classical gravity field VCGF

expanded in terms of the zonal harmonics of even degree1

1 In this work, we focus on the even zonal problem. Thus, only the even zonal harmonics are considered
in the expansion of the gravitational potential. The complete expansion, including also tesseral terms, can be
found in (Kaula 1966).
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VCGF = −μ

r

[
1 −

∞∑

k=1

J2k
R2k
P

r2k
P2k(sin θ)

]
, (5)

where μ = GMP is the product of Newton constant and the mass of the ‘planet’, RP is its
radius and the Pk are the Legendre polynomials with

sin θ = z

r
, r =

√
x2 + y2 + z2.

We also add the first-order relativistic corrections following, for example, Weinberg (1972).
To simplify the structure of theHamiltonian, we then perform a closed-form normalisation

like in (Coffey et al. 1994) and (Heimberger et al. 1990). This method, inspired by works
of Deprit (1981, 1982), has the advantage of avoiding expansions in the eccentricity and
inclination (Palacián 2002; Cavallari and Efthymiopoulos 2022). The model in (4) is rich
enough to convey several interesting dynamical features keeping the closed-form structure
at the lowest level of complexity. In fact, after the Delaunay reduction and the elimination
of the ascending node, we deal with a secular Hamiltonian in closed form which depends on
only one degree of freedom, corresponding to the pair G and g (the argument of the perigee):

K(L, H ,G, g) =
∑

j

ε jK j (L, H ,G, g), (6)

with L and H formal integrals of the motion. The zero-order term is clearly

K0 = H0 = − μ2

2L2 . (7)

The first-order term is

K1 = μ4 J2R2
P (G2 − 3H2)

4G5L3
− μ4

c2L4

[
3
L

G
− 15

8

]
. (8)

The second-order term K2 consists of two contributions:

K2 = T2 + 〈H2〉.
The first is related to the propagation at second order of the J2 term in the normalising
transformation (Deprit 1969; Efthymiopoulos 2012),

T2 = 3μ6 J 22 R
4
P

128L5G11
×
[

− 5G6 − 4G5L + 24G3H2L − 36GH4L − 35H4L2

+G4(18H2 + 5L2) − 5G2(H4 + 2H2L2)

+2(G2 − 15H2)(G2 − L2)(G2 − H2) cos 2g

]

− 3μ6 J2R2
P

4c2L5G7

[
(G2 − 3H2)(4G2 − 3GL − 5L2) + (L2 − G2)(G2 − H2) cos 2g

]
.

(9)

The second is associated directly with the average of the H2 term:

〈H2〉 = 1

2π

∫ 2π

0
H2d�

= μ6 J2R2
P

8c2L5G7

[
(G2 − 3H2)(6L2 − 5G2) − 3(L2 − G2)(G2 − H2) cos 2g

]
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+ 3μ6 J4R4
P

128L5G11

[
(3G4 − 30G2H2 + 35H4)(5L2 − 3G2)

− 10(G2 − 7H2)(L2 − G2)(G2 − H2) cos 2g
]
. (10)

In this work, we do not consider terms of order higher than j = 2. Hamiltonians of
this type are generally denoted as ‘Brouwer’s’ ones (Brouwer 1959; Cushman 1983). They
are characterised by the independence on the mean anomaly � and the longitude of the
node h (with corresponding conservation of the actions L and H ), whereas the argument of
perigee appears only with the harmonic cos 2g. These symmetries will all be exploited in the
geometric approach described in the following.

The two relativistic terms proportional to J2/c2 appearing in (9) and (10) have the same
structure. However, in the literature (Heimberger et al. 1990; Schanner and Soffel 2018),
they are usually kept separate and are, respectively, referred to as the indirect and direct term
related to the non-trivial relativistic contribution of the quadrupole of the gravity field of the
central body. The ordering of the perturbing terms is performed by assuming (with a certain
degree of arbitrariness) the J2 and c−2 terms to be of order ε and the J4 term of order ε2,
like the J 22 and J2 × c−2 terms.

We remark that with a slight abuse of notation, we have denoted with the same symbols
the Delaunay variables appearing in (1) and (6). We have to recall that actually they are,
respectively, the original and the new variables related by the normalising transformation.
In the present work, we are not interested in the explicit construction of particular solutions.
Therefore,wewill not detail the back-transformation from the new to the original coordinates.
Moreover, we are not going to investigate any issue connected with the convergence of the
expansions. We rely on the asymptotic properties of these series and their ability to provide
reliable approximations, especially in the cases of Earth-like gravity fields.

For the sake of completeness, the different parts of the normalised Hamiltonian K =
K0 +K1ε + (T2 + 〈H2〉) ε2, expressed in terms of the orbital elements (a, e, i, ω), are given
by

K0 = − μ

2a
,

K1 = 1

4

μJ2R2
P

a3η3
(
1 − 3 cos2 i

)− 3

8

μ2

c2a2

(
1

η
− 5

)
,

T2 = 3μJ 22 R
4
P

128 a5η7

[
− (

5 η2 + 36 η + 35
)
sin4 i + 8

(−η2 + 6 η + 10
)
sin2 i

+8
(
η2 − 2 η − 5

)× 2 sin2 i
(
1 − η2

) (
1 − 15 cos2 i

)
cos 2ω

]

−3μ2 J2R2
P

4c2a4η5

[ (
4η4 − 3η − 5

)
(1 − 3 cos2 i) + sin2 i(1 − η2) cos 2ω

]
,

〈H2〉 = μ2 J2R2
P

8c2a4η5
[
(6 − 5η2)(1 − 3 cos2 i) − 3 sin2 i(1 − η2) cos 2ω

]

+ 3μJ4R4
P

128a5η7
[
(5 − 3η2)(35 sin4 i − 40 sin2 i + 8)

−10 sin2 i(1 − η2)(1 − 7 cos2 i) cos 2ω
]
,

with η = √
1 − e2.
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3 Geometric reduction

The secularHamiltonian in closed form in (6),while computedwith an ingenious combination
of tools based on the Lie transform method (Deprit 1969; Efthymiopoulos 2012) and the
elimination of the parallax (Deprit 1981), is nonetheless standard in being essentially an
average with respect to the mean anomaly (Deprit 1982; Palacián 2002). However, it is
liable to be treated with a group theoretically approach. It can be interpreted as a suitable
combination of the invariants generating the SO(3) symmetry of the Kepler problem. In
fact, the dynamics ensues from the reduction of the Hamiltonian defined on the space of the
trajectories having, for the unperturbed Kepler problem with negative energy, the structure
of the direct product of two spheres. The additional symmetries of the closed form of the
perturbed problem are exploited to identify a regular reduced phase spacewith the topology of
the2-sphere. In practice,wewill use a further transformation leading to a singular reductionon
a surfacewith equivalent topology,which produces a clearer geometric viewof the bifurcation
sequence of frozen orbits. Here, we provide a quick reminder of the invariant theory of the
Kepler problem and then apply the reduction process to perturbed Kepler problems described
by Brouwer’s Hamiltonians.

3.1 Invariants of the Kepler problem

Let us call G the angular momentum and A the Laplace–Runge–Lenz vector, given by

G = G

⎡

⎣
sin i sin h

− sin i cos h
cos i

⎤

⎦ , A =
√

1 − G2

L2

⎡

⎣
cos g cos h − sin g sin h cos i
cos g sin h + sin g cos h cos i

sin g sin i

⎤

⎦ ,

with i = arccos (H/G) the orbital inclination. By defining

x = G + LA, y = G − LA, (11)

we get the Poisson structure of the generators of SO(3)

{x1, x3} =x2, {x3, x2} = x1, {x2, x1} = x3,

{y1, y3} =y2, {y3, y2} = y1, {y2, y1} = y3,

and phase-space defined by the direct product of the two 2-spheres

x21 + x22 + x23 = L2, y21 + y22 + y23 = L2. (12)

It can therefore be imagined as the invariant space of the states characterised by given eccen-
tricity, inclination, and arguments of perigee and node, but nonetheless equivalent for what
pertains to the mean anomaly. In the unperturbed problem, the state is a given still point of
the invariant space. The state point is kept moving on it by the action of the perturbation.

3.2 Reduction of the axial symmetry

Perturbed Kepler problems described by Hamiltonians of the form (6) are characterised by
axial symmetry with H as formal third integral. In Cushman (1983) and Coffey et al. (1986),
it is shown that if 0 < |H | < L , the two-dimensional phase space of such problems is still
diffeomorphic to a sphere. Two different sets of variables, both functions of the Keplerian
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invariants xk, yk (k = 1, 2, 3) and suitable to analyse the dynamics, are proposed. The
variables (π1, π2, π3) are defined as: (Cushman 1983),

π1 =1

2
(x3 − y3) = L(A · k),

π2 =x1y2 − x2y1 = 2L(A × G) · k,
π3 =x1y1 + x2y2 = |G × k|2 − L2|A × k|2,

where k = (0, 0, 1)T . The phase-space is then

P = {
(π1, π2, π3) ∈ R

3 : π2
2 + π2

3 = ((L + π1)
2 − H2)((L − π1)

2 − H2)
}
. (13)

Instead, in Coffey et al. (1986), the variables (ξ1, ξ2, ξ3) are introduced, defined as:

ξ1 = L(G × A) · k, ξ2 = L|G|(A · k), ξ3 = 1

2

(|G × k|2 − L2|A|2) ,
or, in terms of Delaunay variables,

ξ1 =
√

(G2 − H2)(L2 − G2) cos g,

ξ2 =
√

(G2 − H2)(L2 − G2) sin g,

ξ3 =G2 − L2 + H2

2
.

(14)

In this case, the phase-space is the sphere of radius (L2 − H2)/2:

S =
{
(ξ1, ξ2, ξ3) ∈ R : ξ21 + ξ22 + ξ23 = (L2 − H2)2

4

}
. (15)

The relation between the πk and the ξk is

π1 =
√
2ξ2√

2ξ3 + L2 + H2
,

π2 = − 2ξ1,

π3 =2ξ3 + 2ξ22
2ξ3 + L2 + H2 .

The advantage of both these sets of variables with respect to the Delaunay variables is
well explained in Coffey et al. (1986) with an imaginative metaphor. In simpler words, we
can say that the Kepler reduction allows us to translate the closed-form dynamics in terms
of the invariants of the unperturbed problem (formal conservation of L) and the further
reduction generated by the invariants ξk is readily apt to account for the axial symmetry
associated with the formal conservation of H . Recalling the description of the states of the
space defined in (12), we nowhave that the states of (15), given a value of H , are characterised
by the eccentricity and the perigee but are nonetheless equivalent for what concerns h. The
dynamical evolution of the system is then determined by the intersections of the reduced
phase-space S with the Hamiltonian expressed in terms of the invariants, e.g. K(ξ1, ξ2, ξ3).

Whenever one uses the (G, g) chart to analyse the dynamics of the closed form for given
values of L and H , one excludes circular and equatorial orbits. Indeed, when either the orbital
eccentricity or the orbital inclination is zero, the argument of the perigee g is not defined; thus,
the Delaunay variables result unsuitable to evaluate the stability of such orbits, if they are
periodic as typically happens in the artificial satellite problem. Following Cushman (1983),
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in Iñarrea et al. (2004) it is shown that when K possesses independent symmetries of the
type

R1 :(π1, π2, π3) → (−π1, π2, π3),

R2 :(π1, π2, π3) → (π1,−π2, π3),

R3 :(π1, π2, π3) → (−π1,−π2, π3),

the phase-space can be further reduced, and the variables σ1, σ2, defined as:

σ1 = (L − |H |)2 − π2
1 , σ2 =

√
L2 + H2 − π2

1 + π3√
2

,

are introduced, where σ2 = G. We propose here to exploit a further set of variables, which
is particularly suitable when the normalised Hamiltonian possesses symmetries of the type

R1 :(ξ1, ξ2, ξ3) → (−ξ1, ξ2, ξ3),

R2 :(ξ1, ξ2, ξ3) → (ξ1,−ξ2, ξ3),

R3 :(ξ1, ξ2, ξ3) → (−ξ1,−ξ2, ξ3).

(16)

We introduce the variables (X , Y , Z) defined as:

X =ξ21 − ξ22 ,

Y =2ξ1ξ2,

Z =ξ3,

(17)

which turn the spherical phase space S into a lemon space:

L =
{
(X , Y , Z) ∈ R : X2 + Y 2 = (−Z2 + E2)2} , E = L2 − H2

2
.

This kind of reduction was proposed for the first time by Hanßmann and Sommer (2001).
It is an example of singular reduction (Cushman and Bates 1997) as opposed to the regular
setting generated by the invariants ξk . This occurs here due to the appearance of cusps in
the reduced phase-space L contrary to the smoothness of the 2-sphere S. However, as it will
appear clear in the following, this fact does not pose any practical issue in the induction
process implemented hereafter.

Even though the phase-space is still three-dimensional, we see that in the case in which
symmetries (16) are fulfilled (such as in the problem of the geo-potential when only even
zonal harmonics are retained), the transformed closed form does not depend on the variable
Y : K = K(X , Z). In particular, in the case of the Brouwer’s Hamiltonian (6), K depends
linearly on X , i.e. it is of the form:

K(X , Z; a) = g(Z; a) + f (Z; a)X , (18)

where a is the set of parameters characterising the problem, including the ‘distinguished
parameter’ E . For such a problem, the analysis of the intersection of the reduced phase-space
L with the function (18) is simplified by the extra symmetry of the Brouwer’s Hamiltonian
since, rather than working in the full 3D-space, all significant information can be obtained by
projection on the (Z , X) plane... As a matter of fact, when expressed in Delaunay variables,
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49 Page 8 of 46 I. Cavallari, G. Pucacco

(X , Y , Z) are equal to
X =(G2 − H2)(L2 − G2) cos 2g,

Y =(G2 − H2)(L2 − G2) sin 2g,

Z =G2 − L2 + H2

2
,

(19)

and, considering the structure of the normalised Hamiltonian presented in the previous sec-
tion, the possibility of using the general form (18) appears immediately justified.

3.3 Equilibrium points

Relative equilibria of the reduced systems correspond to periodic orbits of the original closed
form in (6), which in turn are approximations of the periodic orbits of the model problem
in (1). Our main concern refers to frozen orbits which play a major role in shaping the
phase-space structure of the system. They can be identified by locating ‘contacts’ between
the surfaces defined by the Hamiltonian function (18) and the lemon space L (Pucacco
and Marchesiello 2014) or in some peculiar case we will encounter in what follows if the
Hamiltonian possesses a one-dimensional level set whose intersection with the phase-space
produces additional (unstable) critical points. In the present subsection, we describe the
general procedure to locate equilibria, postponing to the next section the details of each case.

Considering G as a function of Z , G = √
Z + (L2 + H2)/2, the Poisson structure of the

(X , Y , Z) variables is

{X , Y } =8GZ
√
X2 + Y 2,

{X , Z} = − 4GY ,

{Y , Z} =4GY .

Henceforth, given a Hamiltonian of the form K in (18), the equations of motion are

dX

dt
={X ,K} = −4GY

∂K
∂Z

,

dY

dt
={Y ,K} = 4G

(
−2Z

√
X2 + Y 2 ∂K

∂X
+ X

∂K
∂Z

)
,

dZ

dt
={Z ,K} = 4GY

∂K
∂X

.

Since we are typically interested in elliptic trajectories, which implies G �= 0, there exist
equilibrium points whenever

{
Y = 0
X
(
2Z ∂K

∂X sign(X) + ∂K
∂Z

) = 0,
(20)

or
∂K
∂Z

= ∂K
∂X

= 0. (21)

Thevariables X , Y , Z are particularly useful in thefirst casewhen conditions (20) are fulfilled.
On the (X , Z) plane, the contour of the lemon space L is C = C+

⋃
C−, with

C± =
{
(X , Z) ∈ R

2 : |Z | ≤ E, X = ±X̂(Z; E)
}

,
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where
X̂(Z; E) = −Z2 + E2. (22)

For any values of the parameters a, condition (20) is fulfilled if X = 0. Thus, the normalised
Hamiltonian K always possesses the equilibrium points

E1 = (0, 0,−E) , E2 = (0, 0, E) .

From (19), Z = −E implies G = H ; thus, the equilibrium point E1 represents the family
of equatorial orbits. Instead, Z = E implies G = L: the equilibrium point E2 represents the
family of circular orbits. Condition (20) is also fulfilled whenever a level curve X̃(Z; a, k)
is tangent to the contour C, with k a given level set of the Hamiltonian K(X , Z; a). We can
therefore have an equilibrium point of coordinates (X̂(Z+; E), 0, Z+) if there exists Z = Z+
such that {

d X̃
dZ (Z+; a, k) = d X̂

dZ (Z+; E) ,

X̃ (Z; a, k) = X̂ (Z+; E) ,
. (23)

where

X̃(Z; a, k) = k − g(Z; a)
f (Z; a) (24)

is defined by recalling (18). From (23) and (24), we obtain that Z+ is a zero of the function
s+(Z; a) equal to

s+(Z; a) = − 1

f (Z; a)
∂K
∂Z

∣∣∣X=X̂(Z;E)
+ 2Z . (25)

Function s+(Z; p) can have multiple zeros corresponding to acceptable equilibrium solu-
tions. In the following, we will refer to them as equilibrium points of type E+. On the other
hand, we can have an equilibrium point of coordinates (−X̂(Z−; E), 0, Z−), if there exists
Z = Z− such that {

d X̃
dZ (Z−; a, k) = − d X̂

dZ (Z−; E) ,

X̃ (Z−; a, k) = −X̂ (Z−; E) .
(26)

In this case, Z− results to be a zero of the function s−(Z; a) given by

s−(Z; a) = − 1

f (Z; a)
∂K
∂Z

∣∣∣X=−X̂(Z;a) − 2Z . (27)

Similarly as before, equation s−(Z; a) = 0 can have multiple acceptable solutions. In this
case, we are going to talk about equilibrium points of type E−. From the first of (19), we
have that equilibrium points of type E+ correspond to the families of periodic orbits with
g = 0, π , while those of type E− correspond to the families of periodic orbits with g = ±π

2 .
In the second case of (21), if there exist X̄ ∈ R and Z̄ ∈ R fulfilling these conditions,

one must verify whether the two resulting equilibrium points Ē1 = (X̄ , Ȳ1, Z̄) and Ē2 =
(X̄ , Ȳ2, Z̄), with

Ȳ1 =
√(−Z̄2 + E2

)2 − X̄2, Ȳ2 = −Ȳ1,

belong to i.e. whether Ȳ1, Ȳ2 ∈ R. It is interesting to notice that for every Y the level curves of
theHamiltonian, {K = k}, given by (24), have a singularity at Z = Z̄ as ∂K

∂X (Z̄) = f (Z̄; a) =
0. The value Z = Z̄ gives a vertical asymptote that is a vertical plane in the 3D space X , Y , Z .
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49 Page 10 of 46 I. Cavallari, G. Pucacco

The condition

∂K
∂Z

= g′(Z) + f ′(Z)X = 0, namely X = − g′(Z)

f ′(Z)
,

gives an oblique asymptote, a tilted surface in the 3D space X , Y , Z . The two surfaces cross
in a straight line, orthogonal to the (Z , X) plane, which ‘pierces’ the lemon in the symmetric
fixed points Ē1, Ē2.

Remark 1 Each equilibrium point E1,2 in X , Y , Z , corresponds to one equilibrium in the
variables (ξ1, ξ2, ξ3), respectively, equal to

ξ E1 = (0, 0,−E), ξ E2 = (0, 0, E).

Instead, each equilibrium point of type E± and of type Ē1,2 corresponds to two equilibria.
We have the following list of correspondences:

ξ
E+
1,2 = (±

√
X̂(Z+; E), 0, Z+); ξ

E−
1,2 = (0,±

√
X̂(Z−; E), Z−);

ξ
Ē1
1,2 =

(
Ȳ1
ξ̄2

,±ξ̄2, Z̄

)
; ξ

Ē2
1,2 =

(
Ȳ2
ξ̄2

,±ξ̄2, Z̄

)
; ξ̄2 =

√√√√−X̄ +
√
X̄2 + Ȳ 2

1

2
.

3.4 Stability of the equilibria

To study the stability of the equilibrium points, it is more convenient to come back to the
variables ξ1, ξ2, ξ3 (Coffey et al. 1994). The transformed closed form is

K = g(ξ3; a) + f (ξ3; a)
(
ξ21 − ξ22

)
.

Let us set ξ = (ξ1, ξ2, ξ3)
T . We have

ξ̇ = F(ξ), F(ξ) = 2G

(
∂K
∂ξ

× ξ

)
.

We recall that G = G(ξ3) =
√

ξ3 + L2+H2

2 . Let us call ξ E an equilibrium point and
δξ = ξ − ξ E a small displacement from it. The linearised system around the equilibrium is

δξ̇ = DF|ξ=ξ E
δξ ,

where

DF(ξ)

= 2G

⎡

⎢⎢⎢⎢⎣

−2 ∂ f
∂ξ3

ξ1ξ2 −
(

∂K
∂ξ3

+ 2 f ξ3 − 2 ∂ f
∂ξ3

ξ22

)
−ξ2

(
∂2K
∂ξ23

+ 2 f + 2 ∂ f
∂ξ3

ξ3

)

(
∂K
∂ξ3

− 2 f ξ3 + 2 ∂ f
∂ξ3

ξ21

)
−2 ∂ f

∂ξ3
ξ1ξ2 ξ1

(
∂2K
∂ξ23

− 2 f − 2 ∂ f
∂ξ3

ξ3

)

4 f ξ2 4 f ξ1 4 ∂ f
∂ξ3

ξ1ξ2

⎤

⎥⎥⎥⎥⎦
.

Since the ξ ∈ S, the solution of the previous differential system must identically satisfy the
constraint

ξ1δξ1 + ξ2δξ2 + ξ3δξ3 = 0.
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Thus, we obtain the reduced system
[

δξ̇1
δξ̇2

]
= DFR(ξ = ξ E)

[
δξ1
δξ2

]
,

with

DFR(ξ)

= 2G

⎡

⎢⎢⎣

ξ1ξ2
ξ3

(
∂2K
∂ξ23

+ 2 f

)
ξ22
ξ3

(
∂2K
∂ξ23

+ 2 f

)
−
(

∂K
∂ξ3

+ 2 f ξ3 − 4 ∂ f
∂ξ3

ξ22

)

(
∂K
∂ξ3

− 2 f ξ3 + 4 ∂ f
∂ξ3

ξ21

)
− ξ21

ξ3

(
∂2K
∂ξ23

− 2 f

)
− ξ1ξ2

ξ3

(
∂2K
∂ξ23

− 2 f

)

⎤

⎥⎥⎦ .

To evaluate the stability of the equilibrium point, we have to compute the eigenvalues α1,2

of DFR(ξ E), by solving the characteristic equation

α2 − Tr DFR(ξ E)α + detDFR(ξ E) = 0,

with Tr DFR(ξ E) and detDFR(ξ E) the trace and the determinant of DFR(ξ E). By using
transformation (17), we obtain that the characteristic equation for the equilibrium point E1

is
α2 + 4H2 f 2 (−E; a) s−(−E; a)s+(−E; a) = 0, (28)

while the one for E2 is

α2 + 4L2 f 2 (E; a) s−(E; a)s+(E; a) = 0, (29)

with s+(Z; a) and s−(Z; a) given in (25) and (27). Note that whenever the parameters a are
such that an equilibrium point of either type E+ or E− coincides with E1 (i.e. Z = −E is
a zero of either s+(Z; a) or s−(Z; a)) E1 becomes degenerate. The same holds true for E2.
For an equilibrium point of type E+ of coordinates (X̂(Z+; E), 0, Z+), it can be proved that
the characteristic equation is

α2 + 16G2 f 2(Z+; a)X̂(Z+; E)

(
d2 X̃

dZ2 (Z+; a, k+) − d2 X̂

dZ2 (Z+; E)

)
= 0, (30)

with k+ the value of the Hamiltonian such that X̃(Z+; a, k+) = X̂(Z+; E). Similarly, for an
equilibrium point of type E− of coordinates (−X̂(Z−; E), 0, Z−) we have

α2 − 16G2 f (Z−; a)2 X̂(Z−; E)

(
d2 X̃

dZ2 (Z−; a, k−) + d2 X̂

dZ2 (Z−; E)

)
= 0, (31)

with k− such that X̃(Z−; a, k−) = −X̂(Z−; E). Since for Z �= ±E , X̂(Z; E) > 0, the
stability of the equilibrium points of type E+ and E− can be determined by comparing the
concavities of the level curve X̃(Z; a, k) and of the contour C of L at their point of tangency.
Finally, the characteristic equations for Ē1 and Ē2 are

α2 + 4Ḡ2
Ȳ 2
1,2

Z̄2

(
2K̄2

Z Z − 16 f̄ 2Z Z̄
2) = 0,

with

K̄Z Z = ∂2K
∂Z2

(
X̄ , Z̄; p) , f̄ Z = ∂ f

∂Z
(Z̄; p), Ḡ =

√

Z̄2 + L2 + H2

2
.
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49 Page 12 of 46 I. Cavallari, G. Pucacco

As Ȳ 2
1 = Ȳ 2

2 , the two characteristic equations coincide: Ē1 and Ē2 have the same stability.
When Ē1 and Ē2 coincide since Ȳ1 = Ȳ2 = 0, the resulting equilibrium point is degenerate.

Remark 2 To evaluate the stability, we can also exploit the Poincaré–Hopf index theorem:
Let M be a compact manifold and w a smooth vector field on M with isolated zeros. The

sum
∑

ι of the indices of the zeros of w is equal to the Euler characteristic of M (Milnor
1965).

As the phase space is a sphere in the coordinates (ξ1, ξ2, ξ3), its Euler characteristic is
equal to 2. Whenever E1 and E2 are Lyapunov stable, in the linearised reduced system
they are centres; thus, their indexes ι are both equal to +1. Instead, when one of them is
Lyapunov unstable, it corresponds to a saddle with ι = −1. Each equilibrium point of type
E± corresponds to two equilibriumpoints in (ξ1, ξ2, ξ3) (seeRemark 1), both either Lyapunov
stable or unstable. The bifurcation of a first stable pair implies a stability/instability transition
of one of the cusps so that the indexes are (+1 − 1 + 1 + 1). The bifurcation of a second
unstable pair implies that the cusp regains stability and the indexes are (+1+1+1+1−1−1).
Due generalisation applies in the case of the points of type Ē1,2.

4 Applications

4.1 The J2-problem

We are going to apply the variables X , Y , Z to analyse a classical and well-known problem in
the framework of the artificial satellite theory: the study of the secular Hamiltonian in which
only the second zonal harmonic of the gravitational potential is retained, i.e. the J2 terms.
From (7), (8), (9) and (10), the resulting closed form is

KJ2 = − μ2

2L2 + μ4 J2R2
P (G2 − 3H2)

4G5L3
+ 3μ6 J 22 R

4
P

128L5G11

[
− 5G6 − 4G5L

+ 24G3H2L − 36GH4L − 35H4L2 + G4(18H2 + 5L2)

− 5G2(H4 + 2H2L2) + 2(G2 − 15H2)(G2 − L2)(G2 − H2) cos 2g

]
.

To simplify its analysis, we make the system dimensionless by performing the following
choice of units: we take the orbital semi-major axis a as unit of length and the unit of time
such that μ = 1. Let us call ρ = H/L . In the adimensional system, the Delaunay actions L
and H become

L = 1, H = ρ,

where ρ = G cos i , with i the orbital inclination. Moreover, the action G coincides with
η = √

1 − e2, being e the orbital eccentricity. Since in the adimensional system the planet’s
radius RP < 1, let us set

λ = J2R
2
P ; (32)

λ plays here the role of small parameter, of the same order as the book-keeping parameter ε.
We drop the constant Keplerian term and we perform a transformation of the time variable
t �→ τ , defined as:

∂τ

∂t
= λ. (33)
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Thus, the secular Hamiltonian in closed form becomes

KJ2 = (G2 − 3ρ2)

4G5
+ 3λ

128G11

[
− 5G6 − 4G5 + 24G3ρ2 − 36Gρ4 − 35ρ4 + G4(18ρ2 + 5)

− 5G2(ρ4 + 2ρ2) + 2(G2 − 15ρ2)(G2 − 1)(G2 − ρ2) cos 2g

]
.

In these units, the X , Y , Z variables are

X = (G2−ρ2)(1−G2) cos 2g, Y = (G2−ρ2)(1−G2) sin 2g, Z = G2− 1 + ρ2

2
, (34)

and we also have E = (1−ρ2)/2. The introduction of the variables X , Y , Z leads to a closed
form with the same structure of K in (18), with

g(Z , a) = −5ρ2 + 2Z + 1
√
2
(
ρ2 + 2Z + 1

) 5
2

− 3λ

16
√
2
(
ρ2 + 2Z + 1

) 11
2

(
40Z3 + (−84ρ2 + 20

)
Z2

+ (−74ρ4 − 44ρ2 − 10
)
Z − 11ρ6 + 273ρ4

− ρ2 − 5& + 4
√
2 ρ2 + 4Z + 2

(−5ρ2 + 2Z + 1
)2 )

,

f (Z , a) = − 3

2
λ

(−29 ρ2 + 2 Z + 1
)

√
2
(
ρ2 + 2 Z + 1

) 11
2

,

and a = (ρ; λ). Note that if the terms proportional to λ are neglected, the problem has one
equilibrium solution for

Z = 9ρ2 − 1

2
, ∀ X , Y , (35)

which implies
G = Gc = √

5ρ. (36)

Sinceρ = G cos i , the orbit has then a stationary pericentre at the so-called critical inclination:

ic = arccos
1√
5
.

In the following, we study the J2-problem for |ρ| ∈ (0, 1) and λ ∈ (0, 1): we discuss the
existence and the stability of frozen orbits by analysing the corresponding properties of the
equilibrium points of the reduced system.

First of all, we show that the equilibrium point E1, representative of the family of equa-
torial orbits, is always stable. Then, we analyse the stability of the equilibrium point E2,
representative of the family of circular orbits. In particular, we determine the values ρ+ and
ρ− of |ρ| at which pitchfork bifurcations occur: for |ρ| between ρ− and ρ+ E2 is unsta-
ble, otherwise it is stable; moreover, there exist a stable equilibrium point of type E+ for
|ρ| < ρ+ and an unstable equilibrium point of type E− for |ρ| < ρ−. At last, we show that
the equilibrium points Ē1 and Ē2 do not exist for any ρ and λ.

For the J2 problem and the other problems analysed in the following, all the equilibrium
points of type E+ are indicated with an odd integer number larger than 1 as a subscript;
similarly, the subscript of the equilibrium points of type E− is an even integer number larger
than 2.

We recall that ρ = G cos i and G = √
1 − e2. In the procedure we follow, we select

a planet and we fix the value of the semi-major axis, on which λ depends through the
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49 Page 14 of 46 I. Cavallari, G. Pucacco

dimensionless RP . Suppose to select a value of ρ such that an equilibrium point of type E+
exists and to compute the value of the action G of such equilibrium point; from the selected
ρ and the value of G we can obtain the orbital eccentricity and inclination of the family
of orbits represented by the equilibrium point itself. The same holds for all the equilibrium
points. In the same way, since the eccentricity of the orbits represented by E2 is equal to zero,
from ρ+ and ρ− we can compute the values of the orbital inclination at which the stability
of the circular orbits changes.

4.1.1 Stability of E1

From (28), it results that the stability of the equilibrium point E1 depends on the sign of
s+(−E; a) and s−(−E; a). We have

s+(−E; a) = −2

7

8ρ4 + λ
(−7ρ2 + 12|ρ| + 31

)

λ
, s−(−E, a) = −8

7

2ρ4 + 3λ|ρ| + 6λ

λ
.

It is straightforward that s+(−E; a) < 0 and s−(−E, a) < 0 ∀λ ∈ (0, 1) and ∀|ρ| ∈ (0, 1).
Thus, the equilibrium point E1 is stable, and it does never coincide with equilibrium points
of either type E+ or E−.

4.1.2 Stability of E2

In analogy to E1, from (29) we obtain that the stability of E2 depends on the sign of s+(E; a)
and s−(E; a). We have

s+(E; a) = −1

2

425λρ4 − 146λρ2 + 80 ρ2 + 9λ − 16

λ
(
15ρ2 − 1

) ,

and

s−(E; a) = −1

2

(
365λρ4 − 82λρ2 + 80 ρ2 + 5λ − 16

)

λ
(
15ρ2 − 1

) .

The function s+(E; a) has two real zeros ρ = ±ρ+, where

ρ+ =
√
1

5
+ −4(3λ + 10) + 4

√
85λ2 + (3λ + 10)2

425λ
. (37)

Similarly, s−(E; a) possesses two real zeros ρ = ±ρ−, with

ρ− =
√
1

5
+ −4(8λ + 10) + 4

√−73λ2 + (8λ + 10)2

365λ
. (38)

It holds that ρ+ > ρ−, ∀λ ∈ (0, 1). Thus,

• for ρ+ < |ρ| < 1 and for 0 < |ρ| < ρ−, E2 is stable;
• for ρ− < |ρ| < ρ+, E2 is unstable.

Moreover, at |ρ| = ρ+ the degenerate E2 coincides with an equilibrium point of type E+,
while at |ρ| = ρ− it coincides with an equilibrium point of type E−.

If we approximate ρ+ and ρ− as series in λ, we obtain
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ρ+ ∼ 1√
5

(
1 + 1

10
λ − 7

200
λ2 − 7

800
λ3 + O(λ4)

)
, (39)

ρ− ∼ 1√
5

(
1 − 1

10
λ + 3

40
λ2 − 299

4000
λ3 + O(λ4)

)
. (40)

Thus, the bifurcations occur nearby the zero-order solution (35) when Z = E .

4.1.3 Existence and stability of the equilibrium points of type E+ and E−

The equilibrium points of type E+ correspond to the zeros of s+(Z; a). Performing the
change of variable Z �→ G using (34), we obtain

s+
(
G2 − 1 + ρ2

2
; a
)

= S+(G; a)
16λG(28ρ2 + 2G)

with

S+(G; a) = 32G8 + (−160ρ2 − 15λ)G6 − 24G5λ + (−98λρ2 + 21λ)G4 + 192G3λρ2

+ (225λρ4 + 198λρ2)G2 − 360Gλρ4 − 715λρ4.

The zeros of s+(G2 − 1+ρ2

2 ; a) are the zeros of S+(G; a). This is a polynomial function
of degree 8 in G. Thus, finding its zeros is not straightforward. However, some pieces of
information can be inferred by inverting the roles of G and ρ: we consider G as a parameter
and ρ becomes the independent variable of the problem. We obtain S+(G; a) = 0 for
ρ2 = ρ2

E+1,2
, with

ρ2
E+1,2

= G2

5λ

A+ ± 4
√
B+

C+
, (41)

A+ = (
49G2 − 96G − 99

)
λ + 80G4,

B+ = 1

16
(A2+ − 5λC+D+),

C+ = 45G2 − 72G − 143,

D+ = 32G4 − 15G2λ − 24Gλ + 21λ.

The solutions are admissible if 0 < ρ2
E+1,2

< G2. Since G ∈ (0, 1] and λ ∈ (0, 1), it is easy

to verify that C+ < 0 and

D+ > (32G4 − 15G2 − 24G + 21)λ > 0,

which implies B+ > A2+/16. Thus, ρ2
E+1

< 0 and is not an admissible solution. Instead,

ρ2
E+2

> 0. Since it also holds A+ − 5λC+ > 0 and

16B+ − (A+ − 5λC+)2 = 80λC+(8G4 − 7G2λ + 12Gλ + 31λ) < 0

we have ρ2
E+2

< G2. It follows that ρ2
E+2

is admissible ∀λ ∈ (0, 1) and ∀G ∈ (0, 1]. For
G = 1 we obtain ρ2

E+2
= ρ+; furthermore, it can be proved that

dρ2
E+2

dG
> 0 ∀G ∈ (0, 1], ∀λ ∈ (0, 1), (42)
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see Appendix. It follows that for each |ρ| ≤ ρ+ there exists only one value of G solving
S+(G; a) = 0. Thus, for each |ρ| ≤ ρ+ there exists only one equilibrium point of type E+,
which we call E3 and which coincides with E2 for |ρ| = ρ+.

The value of the only meaningful solution of S+(G; a) = 0 can be approximated with a
perturbation method. We observe that the solution of the ‘unperturbed’ problem with λ = 0
is just the critical value (36). Then, we can look for a solution of the form:

G+ = √
5ρ +

∑

k≥1

akλ
k .

At third order in λ, we find

G+ = √
5ρ + −1 + 4ρ2

10
√
5ρ3

λ − 14 + 6
√
5ρ − 81ρ2 − 24

√
5ρ3 + 100ρ4

5000
√
5ρ7

λ2

+ 353 − 336
√
5ρ − 4077ρ2 + 1944

√
5ρ3 + 12310ρ4 − 2400

√
5ρ5 − 6600ρ6

5000000
√
5ρ11

λ3.

(43)

We apply the same technique to verify the existence of equilibrium points of type E−.
They correspond to the zeros of a function S−(G; a) equal to

S−(G; a) = 32G8 + (−160ρ2 − 35 λ
)
G6 − 24G5λ + (

350 λ ρ2 + 49 λ
)
G4

+ 192G3λ ρ2 + (−315 λ ρ4 − 378 λ ρ2)G2 − 360G λ ρ4 − 55 λ ρ4.

We have S−(G; a) = 0 for ρ2 = ρ2
E−1,2

, with

ρ2
E−1,2

= −G2

5λ

A− ± 4
√
B−

C−
, (44)

A− = (−175G2 − 96G + 189
)
λ + 80G4,

B− = 1

16
(A2− + 5λC−D−),

C− = 63G2 + 72G + 11,

D− = (32G4 − 35G2λ − 24Gλ + 49λ.

∀G ∈ (0, 1] and ∀λ ∈ (0, 1) we have C− > 0 and

D− > (32G4 − 35G2 − 24G + 49)λ > 0.

Thus, ρ2
E−1

< 0 and is not an admissible solution. Instead, ρ2
E−2

> 0; as 5λC− + A− > 0
and

16B− − (5λC− + A−)2 = −320λC−(2G4 + 3Gλ + 6λ) < 0,

we have ρ2
E−2

< G2: ρ2
E−2

is admissible ∀G ∈ (0, 1] and ∀λ ∈ (0, 1). For G = 1,

ρ2
E−2

= ρ2−; it can also be proved that

dρ2
E−2

dG
> 0, ∀λ ∈ (0, 1), (45)

see Appendix. As a consequence, also in this case we obtain that there exists one equilibrium
point of type E− for any |ρ| ≤ ρ−. We call it E4. For |ρ| = ρ−, it coincides with E2. The
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solution of S−(G; a) = 0 can be approximated in analogy with what seen above. At third
order in λ, we find

G− = √
5ρ + 9 − 35ρ2

100
√
5ρ3

λ − 1305 − 108
√
5ρ − 7910ρ2 + 420

√
5ρ3 + 11025ρ4

100000
√
5ρ7

λ2

+ 267309 − 31320
√
5ρ − 2226905ρ2 + 189840

√
5ρ3 + 5775175ρ4 − 264600

√
5ρ5 − 4501875ρ6

100000000
√
5ρ11

λ3.

(46)

For ρ− < |ρ| < ρ+, the equilibrium E3 is stable as a consequence of the Poincaré–Hopf
theorem. By applying this last theorem,we also obtain that for 0 < |ρ| < ρ−, one equilibrium
point between E3 and E4 is stable, while the other is unstable. Since E3 does not undergo
any bifurcation at |ρ| = ρ−, it is stable, while E4 is unstable.

4.1.4 About the existence of Ē1 and Ē2

The coordinates X̄ and Z̄ of the equilibrium points Ē1 and Ē2 are

X̄ = −1

3
ρ2
(
−144

√
15|ρ| − 2835ρ2 + 307

)
− 18000

ρ6

λ
, Z̄ = 29ρ2 − 1

2
.

In order to have Z̄ ∈ [−E, E], it is necessary that |ρ| < 1/
√
15. Let us call Y the square of

Y coordinates of the equilibrium points, Ȳ1,2. It holds

Y = − ρ4

27λ2

(
− 10800ρ4

√
15 + 441λρ2

√
15 − 53λ

√
15 + 432λ|ρ|

)

(
− 54000ρ4

√
15& + 3465λρ2

√
15 − 349λ

√
15 + 2160λ|ρ|

)
.

We have to verify whether there exist values of |ρ| < 1/
√
15 such that Y ≥ 0. Since

λ ∈ (0, 1), we have

− 10800ρ4
√
15 + 441λρ2

√
15 − 53λ

√
15 + 432λ|ρ| < λ

(− 10800ρ4
√
15 + 441ρ2

√
15

− 53
√
15 + 432|ρ|) < 0,

and

− 54000ρ4
√
15 + 3465λρ2

√
15 − 349λ

√
15 + 2160λ|ρ| < λ

(− 54000ρ4
√
15 + 3465ρ2

√
15

− 349
√
15 + 2160|ρ|) < 0.

It follows that Y < 0, ∀ρ ∈ (0, 1/
√
15) and ∀λ ∈ (0, 1). Thus, the equilibrium points Ē1

and Ē2 never exist for the J2-problem.

4.1.5 Summary and comparison with previous works

Here, we summarise the results for the J2-problem, and we compare them with those previ-
ously obtained by Coffey et al. (1986) and Palacián (2007).

At |ρ| = ρ+ and |ρ| = ρ−, with ρ+ and ρ− defined in (37) and (38), there are two
pitchfork bifurcations. In particular, we have that

• for ρ+ < |ρ| < 1 there exist only the equilibrium points E1 and E2 and they are stable;
• at |ρ| = ρ+ there is a bifurcation: E2 is degenerate and coincides with E3, while E1 is

still stable; E3 is an equilibrium point of type E+;
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Fig. 1 Level curves for the J2-problem. Here, ρ = 0.2 and λ = 0.001. On the left, they are shown in the
(Z , X) plane. The black line represents the contour C of the lemon space. The blue line represents the level
curve tangent to C at the stable equilibrium point E3, while the red one represents the level curve tangent to C
at the unstable E4. The dashed black line corresponds to Z = Z̄ , for which the level curves have a singularity.
On the right, the level curves are shown in an enlargement of the (g,G) plane surrounding the equilibrium
points. The blue dots are the stable equilibrium points corresponding to E3; the red curve is the separatrix of
the equilibrium points at g = ±π

2 corresponding to E4

• for ρ− ≤ |ρ| < ρ+ there exist the equilibrium points E1, E3, which are stable, and E2

which is unstable;
• at |ρ| = ρ− there is a bifurcation: E2 is degenerate and coincides with E4 of type E−,

while E1 and E3 are still stable;
• for |ρ| < ρ− there exist the equilibrium points E1, E2 and E3, which are stable, and E4,

which is unstable.

In Fig. 1 (left panel), we show the level curves of the closed form in the (Z , X) plane when
|ρ| < ρ−. The blue and red lines are tangent to the contour C of the lemon space, respectively,
at the equilibrium points E3 and E4. Note that the blue line has a concavity larger than that
of C at their tangency point as E3 is stable (see 30). Also the concavity of the red line is
larger than that of C at their tangency point, which in this case implies that E4 is unstable as
follows from (31). In the right panel of Fig. 1, we show the level curves in an enlargement
of the (G, g) plane containing the equilibrium points. Here, E3 corresponds to the stable
equilibrium points at g = 0, π (blue dots). Instead, E4 corresponds to the two unstable
equilibrium points at g = ±π/2: the separatrix is in red. By using (43) and (46), we are able
to compute the approximated values of G± of the equilibrium points: G+ = 0.4424 and
G− = 0.4512.

We remind that ρ = H/L . Through a transformation of variables and units, we can
determine the values of |H | at which the bifurcations occur in the original dimensional
system. Let us call them H+ and H−. From (39) and (40), we obtain

H+ ∼ L√
5

(
1 + 1

10

J2μ2R2
P

L4 − 7

200

J 22 μ4R4
P

L8 − 7

800

J 32 μ6R6
P

L12 + O
(
J 42 μ8R8

P

L16

))
,

H− ∼ L√
5

(
1 − 1

10

J2μ2R2
P

L4 + 3

40

J 22 μ4R4
P

L8 − 299

4000

J 32 μ6R6
P

L12 + O
(
J 42 μ8R8

P

L16

))
.

With the same transformation, by using (43) and (46), the values G±(L, H) for the two
bifurcated families can be expressed as series in J2. In conclusion, by exploiting the (X , Y , Z)

123



Bifurcation of frozen orbits in a gravity field with zonal… Page 19 of 46 49

variable and the geometrical approach we have recovered the results found in (Coffey et al.
1986) and in (Palacián 2007).

4.2 The J4-problem

We study now the zonal problem containing both the J2 and the J4 terms. From (7), (8), (9)
and (10), the closed form is

KJ4 = − μ2

2L2 + μ4 J2R2
P (G2 − 3H2)

4G5L3
+ 3μ6 J 22 R

4
P

128L5G11

[− 5G6 − 4G5L

+ 24G3H2L − 36GH4L − 35H4L2 + G4(18H2 + 5L2)

− 5G2(H4 + 2H2L2) + 2(G2 − 15H2)(G2 − L2)(G2 − H2) cos 2g
]

+ 3μ6 J4R4
P

128L5G11

[
(3G4 − 30G2H2 + 35H4)(5L2 − 3G2)

− 10(G2 − 7H2)(L2 − G2)(G2 − H2) cos 2g
]
.

Let us set

j4 = − J4
J 22

.

After introducing it in the Hamiltonian, we adopt the same adimensional system and perform
the same transformations described in Sect. 4.1. Also for this problem, we obtain a secular
Hamiltonian in closed form with the structure of K in (18), with

g(Z , a) = −5ρ2 + 2Z + 1
√
2
(
ρ2 + 2Z + 1

) 5
2

− 3λ

16
√
2
(
ρ2 + 2Z + 1

) 11
2

(
40Z3 + (−84ρ2 + 20

)
Z2

+ (−74ρ4 − 44ρ2 − 10
)
Z − 11ρ6 + 273ρ4 − ρ2 − 5

+ 4
√
2 ρ2 + 4Z + 2

(−5ρ2 + 2Z + 1
)2 )+ 3λ j4

16
√
2
(
ρ2 + 2Z + 1

) 11
2

(
− 72Z3

+ 12
(
51ρ2+1

)
Z2+3

(−58ρ4−156ρ2+22
)
Z−249ρ6+743ρ4−387ρ2+21

)
,

f (Z , a) = −3

2
λ

(−29 ρ2 + 2 Z + 1
)

√
2
(
ρ2 + 2 Z + 1

) 11
2

+ 15

2
λ j4

(−13ρ2 + 2Z + 1
)

√
2
(
ρ2 + 2Z + 1

) 11
2

,

and a = (ρ; λ, j4).
In the following, we discuss the dynamical behaviour of the problem for |ρ| ∈ (0, 1) and
j4 ∈ [−6, 6]. This range of j4 is coherent with the book-keeping scheme used for the
computation of the normalised Hamiltonian in Sect. 2 and its extent allows us to include
Earth andMars. Our results are both the outcomes of analytical considerations and numerical
studies. In this case, to simplify the analysis, we fix the value of λ, taking λ = 0.001. We
expect the main features of the dynamics to be qualitatively similar also for other values of
λ sufficiently small.

First, we analyse the stability of the equilibrium points E1 and E2. Then, we discuss
the existence of the equilibrium points of type E+ and E− and the existence of Ē1 and
Ē2. Finally, we discuss their stability, and we trace a bifurcation diagram. We find out that
the stability of E1 depends on both j4 and ρ. In particular, there are ranges of j4 in which
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pitchfork bifurcations occur: they affect the stability of E1 and can give rise to either a
stable equilibrium point of type E− or an unstable equilibrium point of type E+. For each
j4 ∈ [−6, 6], we also have pitchfork bifurcations affecting the stability of E2. We determine
the values ρ+ and ρ− of |ρ| at which they occur. As in the J2 problem, E2 is unstable if the
value of |ρ| lies between ρ− and ρ+, otherwise it is stable. Following the pitchfork bifurcation
occurring at |ρ| = ρ+, an equilibrium point of type E+ is generated; similarly, for |ρ| < ρ−
there exists an equilibrium point of type E−. The stability of these points depends on both
j4 and ρ. An interesting result is that there are ranges of j4 where their stability changes as a
consequence of further pitchfork bifurcations, which affect the existence of the equilibrium
points Ē1 and Ē2. We show that, when existing, these last ones are always unstable. Finally,
we find out that for some j4 saddle-node bifurcations also occur. They can give rise to either a
pair of equilibrium points of type E+ or a pair of equilibrium points of type E−. Independent
of the type, one of the points of the pair is stable, while the other is unstable.

We recall once again that for the selected planet and the fixed value of the semi-major
axis (i.e. for the given j4 and λ), the values of ρ and G of one considered equilibrium point
allow us to determine the eccentricity and the inclination of the family of orbits represented
by the equilibrium point itself. In the following, we perform a general analysis not taking
into account some physical limitations, for example, the fact that the orbits corresponding to
a given equilibrium point may be collisional.

4.2.1 Stability of E1

The stability of E1 depends on the sign of the product s+(−E, a)s−(−E, a). For the J4-
problem, we have

s+(−E, a) = 2
8ρ4 + λ

(
31 + 12|ρ| − 7ρ2 − 5 j4(3ρ2 − 7)

)

λ(15 j4 − 7)
,

and

s−(−E, a) = 4
4ρ4 + λ

(
6(2 + |ρ|) − 5 j4(3ρ2 − 5)

)

λ(15 j4 − 7)
.

For j4 ≥ −31/35, function s+(−E, a) has no real zeros; instead, for j4 < −31/35 there
exists a real value of |ρ|, |ρ| = ρ�, solving equation s+(−E, a) = 0. Similarly, if j4 <

−12/25 there exists one real value of |ρ|, |ρ| = ρ�, which is a zero of s−(−E, a). Thus, if
j4 ≥ −12/25 E1 is always stable. Instead, if −31/35 ≤ j4 < −12/25,

• for ρ� < |ρ| < 1, E1 is stable;
• for |ρ| < ρ�, E1 is unstable.

Finally, if j4 < −31/35, it holds ρ� > ρ� so that

• for ρ� < |ρ| < 1 and 0 < |ρ| < ρ�, E1 is stable;
• for ρ� < |ρ| < ρ�, E1 is unstable.

At |ρ| = ρ�, the degenerate E1 coincides with an equilibrium point of type E+. At |ρ| = ρ�,
it coincides with an equilibrium point of type E−. In the following, we call j4bif6 = −12/25
and j4bif9 = −31/35.
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4.2.2 Stability of E2

The stability of E2 depends on the solutions of equation (29). We have

s+(E, a) = −1

2

16 − 80ρ2 − λ
(
(420 j4 + 425)ρ4 − (280 j4 + 146)ρ2 + 20 j4 + 9

)

λ
(
(35 j4 − 15)ρ2 − 5 j4 + 1

) ,

and

s−(E, a) = −1

2

16 − 80ρ2 − λ
(
(560 j4 + 365)ρ4 − (440 j4 + 82)ρ2 + 40 j4 + 5

)

λ
(
(35 j4 − 15)ρ2 − 5 j4 + 1

) .

For λ sufficiently small, ∀ j4 ∈ [−6, 6] s+(E, a) possesses two real zeros at ρ = ±ρ+ with

ρ+ =

√√√√1

5

λ(140 j4 + 73) − 40 + 4
√
2
√
50 + (30 − 140 j4)λ + (47 + 255 j4 + 350 j24 )λ2

(84 j4 + 85)λ
,

(47)
and s−(E, a) possesses two real zeros at ρ = ±ρ− with

ρ− =

√√√√1

5

λ(220 j4 + 41) − 40 + 4
√
100 + (160 − 540 j4)λ − (9 − 40 j4 − 1625 j24 )λ2

(112 j4 + 73)λ
.

(48)
More manageable expressions are given by the series expansions

ρ+ = 1√
5

(
1 + 1 + 6 j4

10
λ − 7 + 20 j4 − 132 j24

200
λ2

)
+ O

(
λ3
)
,

and

ρ− = 1√
5

(
1 − 1 − 8 j4

10
λ + 15 − 166 j4 + 368 j24

200
λ2

)
+ O

(
λ3
)
.

At first order, they coincide with those found by Coffey et al. (1994). For j4 = j4bif1 , with

j4bif1 = 1 − 14

5
λ + 1239

50
λ2 + O

(
λ3
)
, (49)

it holds ρ+ = ρ−; if j4 > j4bif1 , ρ− > ρ+, while for j4 < j4bif1 , ρ− < ρ+. As in the
J2-problem, when the value of |ρ| is between ρ− and ρ+ E2 is unstable; at either |ρ| = ρ+
or |ρ| = ρ−, it is degenerate and coincides, respectively, with an equilibrium point of type
E+ and E−. For all the other values of |ρ|, E2 is stable.

4.2.3 Existence of the equilibrium points of type E+ and E−

We use here the same strategy applied for the J2-problem. After the change of variables
Z �→ G, we obtain

s+
(
G2 − 1 + ρ2

2
; a
)

= Ŝ+(G; a)
4G2λ(5G2 j4 − 35 j4ρ2 − G2 + 15ρ2)

,

with

Ŝ+ = (315G2 j4 + 225G2 − 360G − 1155 j4 − 715)λρ4 − 2G2(80G4 + λ(35G2 j4

+ 49G2 − 96G − 315 j4 − 99)
)
ρ2 + G4(32G4 + λ(−5G2 j4 − 15G2 − 24G − 35 j4 + 21)

)
.
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We have that Ŝ+ = 0 for ρ2 = ρ̂2
E+1,2

, where

ρ̂2
E+1,2

= G2

5λ

Â+ ±
√
B̂+

Ĉ+
,

Â+ = 80G4 + λ
(
(35G2 − 315) j4 + 49G2 − 96G − 99

)
,

B̂+ = Â2+ − 5λĈ+ D̂+
16

,

Ĉ+ = (63G2 − 231) j4 + 45G2 − 72G − 143,

D̂+ = 32G4 + λ
(
(−5G2 − 35) j4 − 15G2 − 24G + 21

)
.

For λ sufficiently small, it turns out that 0 < ρ̂2
E+2

< G2, ∀G ∈ (0, 1] and ∀ j4 ∈ [−6, 6].
For G = 1 it holds ρ̂2

E+2
= ρ+. Moreover, we numerically verified that ρ̂2

E+2
is increasing

with respect to G. Consequently, for each |ρ| ∈ (0, ρ+) there exists one equilibrium point,
E3, which coincides with E2 for |ρ| = ρ+. By applying the same perturbation method used
in Sect. 4.1.3, we can determine the value of G corresponding to E3. At third order in λ, we
obtain

G+ = √
5ρ + −5 − 7 j4 + 20ρ2 + 5 j4ρ2

50
√
5ρ3

λ + 1

25000
√
5ρ7

(
70 − 384 j4 − 392 j24 − 30

√
5ρ

− 42
√
5 j4ρ + 405ρ2 + 1215 j4ρ

2 + 70 j24 ρ2 + 120
√
5ρ3 + 30

√
5 j4ρ

3 − 500ρ4

+ 475 j4ρ
4 + 150 j24 ρ4)λ2 + 1

25000000
√
5ρ11

(
1765 − 16569 j4 − 70021 j24 − 60711 j34

− 1680
√
5ρ − 9072

√
5 j4ρ − 9408

√
5 j24 ρ − 20385ρ2 + 86215 j4ρ

2 + 189665 j24 ρ2

− 20335 j34 ρ2 + 9720
√
5ρ3 + 29160

√
5 j4ρ

3 + 1680
√
5 j24 ρ3 + 61550ρ4 − 19900 j4ρ

4

+ 265125 j24 ρ4 + 53375 j34 ρ4 − 12000
√
5ρ5 + 11400

√
5 j4ρ

5 + 3600
√
5 j24 ρ5 − 33000ρ6

− 316750 j4ρ
6 − 99625 j24 ρ6 − 5625 j34 ρ6)λ3.

The other solution ρ̂2
E+1

is only admissible for some values of j4. The analysis of the ρ̂2
E+1

is complex, and we are forced to fix the value of λ at 0.001. Anyway, we expect similar
outcomes for all values of λ sufficiently small. For j4 > j4bif2 , where j4bif2 ∼ 0.5695, there
exists a range of values of G such that 0 < ρ̂2

E+1
< G2. The function ρ̂2

E+1
is not monotone

with respect to G. Let us set

ρ� =
√
max
G

ρ̂2
E+1

(G; j4). (50)

For |ρ| = ρ�, there exists one equilibrium point E5 of type E+. Instead, for |ρ| < ρ�, there
are multiple equilibrium points of type E+; they are typically two and we call them E7 and
E9. Also for j4 < j4bif9 , it holds ρ̂2

E+1
> 0; through a numerical study, we observed that the

function is increasing with G and that ρ̂2
E+1

≤ G2 up to a certain value of G lower than 1, for

which it holds ρ̂2
E+1

= ρ2
�. Thus, for j4 < j4bif9 and |ρ| ∈ (0, ρ�) there exists an equilibrium

point E11, which coincides with E1 for |ρ| = ρ�.
Concerning the equilibrium points of type E−, we have

s−(G2 − 1 + ρ2

2
; a) = Ŝ−(G; a)

4G2λ(5G2 j4 − 35 j4ρ2 − G2 + 15ρ2)
,
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with

Ŝ− = (1575G2 j4 − 315G2 − 360G − 2695 j4 − 55)λρ4 − 2G2(80G4 + λ(595G2 j4

− 175G2 − 96G − 1035 j4 + 189))ρ2

+ G4(32G4 + λ(95G2 j4 − 35G2 − 24G − 175 j4 + 49)).

Ŝ− = 0 for ρ2 = ρ̂2
E−1,2

= G2

5λ

Â − ±4
√
B̂−

Ĉ−
, where

Â− = 80G4 + λ
(
(595G2 − 1035) j4 − 175G2 − 96G + 189

)
,

B̂− = Â2− − 5λĈ− D̂−
16

,

Ĉ− = (315G2 − 539) j4 − 63G2 − 72G − 11,

D̂− = 32G4 + λ
(
(95G2 − 175) j4 − 35G2 − 24G + 49

)
.

For λ sufficiently small, solution ρ̂2
E−2

is admissible ∀G ∈ (0, 1] and ∀ j4 ∈ [−6, 6]. For
G = 1 we have ρ̂2

E−2
= ρ−. Moreover, we numerically verified that ∂ρ̂2

E−2
/∂G > 0. Thus,

for each |ρ| ∈ (0, ρ−) there exists the equilibrium point E4 which coincides with E2 for
|ρ| = ρ− and whose value is

G− = √
5ρ + 125 j4ρ2 − 41 j4 − 35ρ2 + 9

100
√
5ρ3

λ + 1

100000
√
5ρ7

(
− 103125 j24 ρ4

+ 90450 j24 ρ2 − 18573 j4
2 + 68250 j4ρ

4 + 1500
√
5 j4ρ

3 − 54320 j4ρ
2 − 492

√
5 j4ρ

+ 10022 j4 − 11025ρ4 − 420
√
5ρ3 + 7910ρ2 + 108

√
5ρ − 1305

)
λ2

− 1

100000000
√
5ρ11

(
− 106171875 j34ρ6 + 113728125 j24 ρ6 + 2475000

√
5 j24 ρ5

+ 168643125 j34ρ4 − 168503125 j44 − 2170800
√
5 j24 ρ3

− 80521425 j34ρ2 + 75097235 j24 ρ2 + 445752
√
5 j24 ρ + 12014271 j34

− 10434331 j24 − 39598125 j4ρ
6 − 1638000

√
5 j4ρ

5 + 54647375 j4ρ
4

+ 1303680
√
5 j4ρ

3 − 22678075 j4ρ
2 − 240528

√
5 j4ρ + 2929289 j4 + 4501875ρ6

+ 264600
√
5ρ5 − 5775175ρ4 − 189840

√
5ρ3 + 2226905ρ2

+ 31320
√
5ρ − 267309

)
λ3.

Concerning the other solution ρ̂2
E−1

, its admissibility depends on j4. Here too, we set

λ = 0.001. Through an analysis similar to the one done for ρ̂2
E+1

, we reach the following
conclusions:

• for j4 > j4bif5 , with j4bif5 ∼ 0.2755, at |ρ| = ρ� there exists one equilibrium solution E6

of type E−, while for |ρ| < ρ� there exist typically two equilibrium solutions of type
E− which we call E8 and E10; here,

ρ� =
√
max
G

ρ̂2
E−1

(G; j4); (51)

123



49 Page 24 of 46 I. Cavallari, G. Pucacco

• for j4 < j4bif6 and for |ρ| < ρ� there exists an equilibrium point E12, which coincides
with E1 for |ρ| = ρ�.

4.2.4 About the existence of Ē1 and Ē2

If existing, the equilibrium points Ē1 and Ē2 have coordinates (X̄ , Ȳ1,2, Z̄), Ȳ 2
1 = Ȳ 2

2 = Y ,
where

X̄ = − ρ2

λ
(
4375 j54 − 5375 j44 + 2550 j34 − 590 j24 + 67 j4 − 3

)
(

− 2000ρ4( j4 − 1)(7 j4 − 3)3

+λ
(
(5 j4 − 1)(55125 j44 ρ2 − 28700 j34ρ2 − 14875 j44 − 23130 j24 ρ2 + 3350 j34

+17460 j4ρ
2 + 7000 j24 − 2835ρ2 − 2950 j4 + 307)

+48

√
7 j4 − 3

5 j4 − 1

√
5|ρ|(125 j44 − 250 j34 + 160 j24 − 38 j4 + 3)

))
,

Z̄ = 65 j4ρ2 − 29ρ2 − 5 j4 + 1

5 j4 − 1
, Y = (−Z̄2 + E2)2 − X̄2.

Ē1 and Ē2 exist if

Z̄ ∈ [−E, E], (52)

Y ≥ 0. (53)

Let us remark that when Ȳ1 = Ȳ2 = 0 and X̄ = X̂(Z̄; E), Ē1 and Ē2 coincide with an
equilibrium point of type E+, i.e. they correspond to zeros of s+(Z; a) defined in (25). We
call ρ�, ρ�,bis the values of |ρ| for which this occurs. Similarly, when Ȳ1 = Ȳ2 = 0 and
X̄ = −X̂(Z̄; E) Ē1 and Ē2 coincide with an equilibrium point of type E−. In this case, we
call ρ�,, ρ�,bis the corresponding values of |ρ|.

Let us set λ = 0.001. If either j4 ∈ [ j4bif1 , j4bif4), with j4bif4 ∼ 0.546 or j4 ≤ j4bif7 , with
j4bif7 ∼ −0.4840, there exists an interval of values of |ρ| <

5 j4−1
7 j4−3 for which both conditions

(52) and (53) are fulfilled. In particular, through a numerical study, we obtain that

• in the range j4bif3 < j4 ≤ j4bif1 , with j4bif3 ∼ 0.552, Ē1 and Ē2 exist for |ρ| ∈ [ρ�, ρ�];
• for j4bif4 < j4 ≤ j4bif2 Ē1 and Ē2 exist for |ρ| ∈ (0, ρ�];
• in the range j4bif8 < j4 ≤ j4bif7 , with j4bif8 ∼ −0.4886, Ē1 and Ē2 exist for |ρ| ∈

[ρ�,bis, ρ�];
• for j4bif10 < j4 ≤ j4bif7 , with j4bif10 ∼ −1.3454, Ē1 and Ē2 exist for |ρ| ∈ (0, ρ�];
• in the range j4bif11 < j4 ≤ j4bif10 , with j4bif11 ∼ −1.3533, Ē1 and Ē2 exist for |ρ| ∈

[ρ�, ρ�] and for |ρ| ∈ (0, ρ�,bis];
• for j4 ≤ j4bif11 Ē1 and Ē2 exist for |ρ| ∈ [ρ�, ρ�].

We numerically verified that the equilibrium point of type E+ coinciding with Ē1 and Ē2 at
|ρ| = ρ� and |ρ| = ρ�,bis is E3. Similarly, we also verified that at |ρ| = ρ� and |ρ| = ρ�,bis
Ē1 and Ē2 coincide with E4. Thus, ρ� < ρ+ and ρ� < ρ−.

4.2.5 Stability analysis and bifurcation diagram

In the following, we discuss the evolution of the dynamics. We set λ = 0.001, but we expect
similar outcomes for all values of λ sufficiently small.
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Weshow inFig. 2 the bifurcation diagram,where the colour lines represent the values of |ρ|
for which a bifurcation occurs. Some enlargements of interesting regions of the diagram are
given in Fig. 3. In Table 1, we summarise the bifurcations sequence and list the existing points
for different ranges of j4 ∈ [−6, 6]. Through a stability analysis based on the Poincaré–Hopf
theorem, we obtain that

• |ρ| = ρ− and |ρ| = ρ+ are pitchfork bifurcations which cause a variation of stability of
E2 and affect the existence and the stability of the equilibrium points E3 and E4;

• |ρ| = ρ�, |ρ| = ρ�,bis,|ρ| = ρ� and |ρ| = ρ�,bis are pitchfork bifurcations, influencing
the stability of E3 and E4 and the existence of Ē1 and Ē2: when Ē1 and Ē2 exist, they
are unstable, while E3 and E4 are stable;

• |ρ| = ρ� and |ρ| = ρ� are pitchfork bifurcations affecting the stability of E1 and the
existence and stability of E11 and E12;

• |ρ| = ρ� and |ρ| = ρ� are saddle-node bifurcations; they have no consequence on the
stability of existing equilibrium solutions, but give rise to an even number of equilibrium
points of type E+ and E−, half of which are stable, while the other half is unstable.

To explain how to read the bifurcation diagram, let us fix a value of j4 in the range ( j4bif1 , 6),
which is of interest for the Earth ( j4 ∼ 1.3) andMars ( j4 ∼ 4). It holdsρ− > ρ+ > ρ� > ρ�.
For each |ρ| E1 is stable. Moreover,

• for |ρ| > ρ−, E2 is stable;
• at |ρ| = ρ−, there is a bifurcation: E2 is degenerate and E4 coincides with E2;
• for ρ+ < |ρ| < ρ−, E2 is unstable and E4 is stable;
• at |ρ| = ρ+, there is a bifurcation: E2 is degenerate and coincides with E3; E4 is stable;
• for ρ� < |ρ| < ρ+, E2 and E4 are stable, while E3 is unstable;
• for |ρ| = ρ�, E2 and E4 are stable and E3 is unstable; there also exists the equilibrium

point E6 which is degenerate;
• for ρ� < |ρ| < ρ�, E2 and E4 are stable and E3 is unstable; there exist the equilibrium

points E8 and E10: one of them is stable, the other is unstable;
• for |ρ| = ρ�, E2 and E4 are stable; E3 is stable; one between E8 and E10 is stable, while

the other is unstable; there also exists the equilibrium point E5 which is degenerate;
• |ρ| < ρ�, E2 and E4 are stable; E3 is stable; one between E8 and E10 is stable, while

the other is unstable; there exist the equilibrium points E7 and E9: one of them is stable,
the other is unstable.

In Fig. 4, we show the level curves in a neighbourhood of the bifurcations |ρ| = ρ− and
|ρ| = ρ+. It is interesting to compare the phase portrait in Fig. 4d with the one shown in
Fig. 1 for the J2-problem: the concavities of the colour curves tangent to the contour of the
lemon space are opposite. Indeed, in this case, E3 is unstable and E4 is stable. In Fig. 5, we
show the level curves in a neighbourhood of the two bifurcations |ρ| = ρ� and |ρ| = ρ�.

Another significant range of values of j4 is ( j4bif2 , j4bif1). Here, it holds ρ+ > ρ− > ρ� >

ρ� > ρ� > ρ�. When |ρ| > ρ�, the dynamical evolution is similar to that occurring in the
J2-problem. Instead, for |ρ| < ρ�, it has the same features of the one obtained for j4 > j4bif1
when |ρ| < ρ+. The link between these two situations is established by the bifurcations
|ρ| = ρ� and |ρ| = ρ�, which cause a variation in the stability of the equilibrium points E3

and E4:

• for ρ� < |ρ| < ρ−, E2 and E3 are stable, while E4 is unstable;
• for |ρ| = ρ�, E2 and E3 are stable; the equilibrium points Ē1 and Ē2 coincide with E4

and are degenerate;
• for ρ� < |ρ| < ρ� E2, E3 are stable; Ē1 and Ē2 are unstable, while E4 is stable;
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Fig. 2 In the upper panel, we
show the bifurcation diagram for
the J4-problem with λ = 0.001.
The lower panels show two
enlargements of the diagram.
Further enlargements of
interesting regions are shown in
Fig.3. The blue and the orange
lines represent, respectively, ρ+
defined in (47) and ρ− defined in
(48); the purple and the yellow
line represent, respectively, ρ�
and ρ�, defined in Sect. 4.2.1;
the light-blue line and the pink
line represent, respectively, ρ�,
defined in (50), and ρ�, defined
in (51); finally the green line, the
dark-red line, the light-green line
and the red line represent,
respectively, ρ�, ρ�, ρ�,bis and
ρ�,bis, defined in Sect. 4.2.4
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Fig. 3 We show some enlargements of interesting regions of the bifurcation diagram in Fig. 2

• for |ρ| = ρ� E2 and E4 are stable; Ē1 and Ē2 coincide with E3 and are degenerate;
• for ρ� < |ρ| < ρ�, E2 and E4 are stable and E3 is unstable.

In Fig. 6, we show the levels curves in a neighbourhood of the bifurcations |ρ| = ρ�, and
|ρ| = ρ�. At the bifurcation |ρ| = ρ�, in the (Z , X) plane there is a level curve intersecting
the contour of the lemon space at Z = Z̄ : the intersection point is E4, coinciding with Ē1

and Ē2. In all the range of values of |ρ| such that Ē1 and Ē2 exist, there is a level curve for
which Z = Z̄ is not a singularity. When |ρ| = ρ� the intersection point is E3.

Note that for values of j4 lower and higher than j4bif1 , the stability of E3 and E4 is different
when they appear after the occurrence of the bifurcations |ρ| = ρ+ and |ρ| = ρ−. A similar
result was also found by Coffey et al. (1994). Here, the authors argued that this change of
stability occurs at j4 = 1, i.e. when we deal with the so called Vinti problem. Instead, we
observe that the variation of the stability occurs at j4bif1 given by (49), which depends on λ.

To conclude, let us remark once again that the above analysis is general and it does not care
about particular physical limitations. For example, one can notice that for low |ρ|, the value
ofG characterising the equilibrium points is typically small. This implies a large eccentricity.
There is then the risk that the resulting distance of the pericentre is smaller than the central
body’s radius. In such a case, the resulting equilibrium cannot physically exist. For example, if
we consider the case ofMars, the equilibrium points resulting from the bifurcations |ρ| = ρ�
and |ρ| = ρ� do not exist for λ = 0.001.

4.3 The J2-problemwith relativistic terms

We study now the zonal problem containing both the J2 and the relativistic terms. From (7),
(8), (9) and (10), the closed form is

Kc = − μ2

2L2 + μ4 J2R2
P (G2 − 3H2)

4G5L3
+ μ4

c2L4G
(5G − 8L) + 3μ6 J 22 R

4
P

128L5G11

[− 5G6 − 4G5L

+ 24G3H2L − 36GH4L − 35H4L2 + G4(18H2 + 5L2)

− 5G2(H4 + 2H2L2) + 2(G2 − 15H2)(G2 − L2)(G2 − H2) cos 2g
]

+ μ6 J2R2
P

8c2L5G7

[
(G2 − 3H2)(6L2 − 5G2) − 6(G2 − 3H2)(4G2 − 3GL − 5L2)

− 9(L2 − G2)(G2 − H2) cos 2g
]
.

We neglect here the J4 terms to make evident the effects of the relativistic contribution.
We adopt the same non-dimensional system described in Sect. 4.1. Let us set

jC = 1

λc2
,
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(a)

(b)

(c)

(d)

Fig. 4 Level curves for the J4-problem with j4 = 1.3 for four different values of |ρ|. On the left, the levels
curve are represented on the (Z , X) plane. Enlargements of the regions containing the equilibrium points are
performed. The black line represents the contour C of the lemon space. The dashed black line corresponds to
Z = Z̄ , at which the level curves have a singularity. The coloured line is the level curves tangent to C at the
equilibrium points: they are green if the equilibrium point is degenerate, red if it is unstable and blue if it is
stable. On the right, the level curves are shown on corresponding enlargements in the (g,G) plane
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(a)

(b)

(c)

(d)

Fig. 5 Level curves for the J4-problem with j4 = 1.3 for four different values of |ρ| in the (Z , X) and the
(g,G) planes. Enlargements of the regions containing the equilibrium points are performed. The same colour
code employed in Fig. 4 is used
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(a)

(b)

(c)

(d)

Fig. 6 Level curves for the J4-problem with j4 = 0.95 for four different values of |ρ| in the neighbourhood
of the bifurcations |ρ| = ρ� and |ρ| = ρ� on the (Z , X) and the (g,G) planes. Enlargements of the regions
containing the equilibrium points are performed. The same colour code employed in Fig. 4 is used
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with λ defined in (32). We recall that λwas considered of the same order as the book-keeping
parameter ε. Since the normalisation of the initial Hamiltonian was performed by assuming
c−2 of order ε as well (see Sect. 2), jC should have a value in the neighbourhood of 1 or
lower. If this was not the case, the book-keeping scheme used to compute the closed form
would not be suitable anymore. Let us also remark that in the adimensional system the value
of c and, thus, that of jC depend on the units of length and time, i.e. on the semi-major axis
of the orbit of interest.

We introduce λ and jC in the Hamiltonian. Then, we neglect the constant terms and
we perform the time transformation (33). Also for this problem the resulting normalised
Hamiltonian has the same structure of (18), with

g(Z , a) = −5ρ2 + 2Z + 1
√
2
(
ρ2 + 2Z + 1

) 5
2

+ jC
3

8

5
√
2ρ2 + 4Z + 2 − 16√
2ρ2 + 4Z + 2

− 3λ

16
√
2
(
ρ2 + 2Z + 1

) 11
2

(
40Z3

+ (−84ρ2 + 20
)
Z2 + (−74ρ4 − 44ρ2 − 10

)
Z − 11ρ6 + 273ρ4 − ρ2

− 5& + 4
√
2 ρ2 + 4Z + 2

(−5ρ2 + 2Z + 1
)2 )+ jCλ(−5ρ2 + 2Z + 1)

2
√
2
(
ρ2 + 2Z + 1

) 7
2

(−29ρ2

+ 18
√
2ρ2 + 4Z + 2 − 58Z + 43),

f (Z , a) = − 3

2
λ

(−29 ρ2 + 2 Z + 1
)

√
2
(
ρ2 + 2 Z + 1

) 11
2

− 18λ jC√
2
(
ρ2 + 2Z + 1

) 7
2

,

and a = (ρ; λ, jC ). Ifweneglect the termsof first order inλ, wefind twopotential equilibrium
solutions at

Z = 1

8

−4 jCρ2 − 4 jC + 1 ±√−80 jCρ2 + 1

jC
, ∀X , Y . (54)

In the following, wemake some considerations about the problem considering λ ∈ (0, 1). For
this problem, we perform a qualitative analysis. We find out that for jC � 1, the sequence
of bifurcations is the same as in the J2 problem. On the contrary for higher values of jC , the
dynamical evolution is more complex and depends on the values of λ and jC . The existence
of a pair of equilibrium points of type E+, one stable and the other unstable, is triggered
by a saddle-node bifurcation. The unstable point can become stable following a pitchfork
bifurcation, which affects the existence of the equilibrium points Ē1 and Ē2. The stable one
can disappear following a pitchfork bifurcation,which changes the stability of the equilibrium
point E2. A similar sequence of bifurcations occurs also concerning the equilibrium points
of type E−. If none of the bifurcations affecting the stability of E2 occur, this point is always
stable. The equilibrium point E1 is always stable.

4.3.1 About the stability of E1

We have

s+(−E; a) = (8ρ6 − 110λρ4 + 84|ρ|3λ + 186λρ2) jC + 8ρ4 − 7λρ2 + 12λ|ρ| + 31λ

λ(12 jCρ2 − 7)
,

(55)
and

s−(−E; a) = (4ρ6 − 61λρ4 + 42|ρ|3λ + 99λρ2) jC + 4ρ4 + 6λ|ρ| + 12λ

λ(12 jCρ2 − 7)
. (56)
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It holds

ρ2(−110ρ2 + 84|ρ| + 186) > 0 ∀ρ ∈ (0, 1),

and

ρ2(−61ρ2 + 42|ρ| + 99) > 0, ∀ρ ∈ (0, 1).

Thus, if ρ2 > 7/12 jC , both s+(−E; a) and s−(−E; a) are positive; instead, if ρ2 < 7/12 jC
they are both negative. From (28), we can conclude that E1 is always stable. Moreover, E1

never coincides with an equilibrium point of either type E+ or E−.

4.3.2 About the stability of E2

We have

s+(E; a) = 425λρ4 + (1672 jCλ − 146λ + 80)ρ2 − 392 jCλ + 64 jC + 9λ − 16

2(−15ρ2 + 24 jC + 1)λ
. (57)

It holds s+(E; p) = 0 for |ρ| = ρ̃+, with

ρ̃2+ =
−836 jCλ + 73λ − 40 + 4

√
43681 j2Cλ2 + 2784 jCλ2 + 2480 jCλ + 94λ2 + 60λ + 100

425λ
,

(58)
which is positive, thus admissible, if either λ ≥ 8

49 or λ < 8
49 and jC < 16−9λ

64−392λ . We also
have

s−(E; a) = 365λρ4 + (1768 jCλ − 82λ + 80)ρ2 − 488 jCλ + 64 jC + 5λ − 16

2(−15ρ2 + 24 jC + 1)λ
, (59)

and s−(E; a) = 0 for |ρ| = ρ̃−, with

ρ̃2− =
−884 jCλ + 41λ − 40 + 4

√
48841 j2Cλ2 + 6602 jCλ2 + 2960 jCλ − 9λ2 + 160λ + 100

365λ
;

(60)
ρ̃2− > 0 if either λ ≥ 8

61 or λ < 8
61 and jC < 16−5λ

64−488λ . Let us remark that for λ < 8
61 it holds

16−5λ
64−488λ > 16−9λ

64−392λ . Thus, if ρ̃+ > 0 is an admissible solutions, also ρ̃− is admissible.

For each λ and jC such that both ρ̃− and ρ̃+ are admissible zeros of s+(E, a) and s−(E, a),
it holds ρ̃− > ρ̃+ if jC > j̃C , with

j̃C = 397λ − 180 + √
142321λ2 − 1800λ + 32400

λ
.

Let us now consider equation (29). If λ and jC are such that neither ρ̃− and ρ̃+ are admissible
zeros, then E2 is always stable. Also for jC = j̃C , E2 is always stable, except when |ρ| =
ρ̃+ = ρ̃−: in this case, it is degenerate. If λ and jC are such that ρ̃− is an admissible solution,
while ρ̃2+ ≤ 0, E2 is stable for |ρ| > ρ̃−, it is degenerate at |ρ| = ρ̃− and is unstable for
|ρ| < ρ̃−. Finally, if both ρ̃− and ρ̃+ are admissible solutions, E2 is unstable when the value
of |ρ| lies between ρ̃− and ρ̃+, it is degenerate if either |ρ| = ρ̃− or |ρ| = ρ̃+ and it is stable
for all the other values of |ρ|. When |ρ| = ρ̃+, E2 coincides with an equilibrium point of
type E+. When |ρ| = ρ̃− it coincides with an equilibrium point of type E−.
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4.3.3 About the existence of the equilibrium points of type E+ and E−

To discuss the existence of equilibrium points of type E+ and E−, we use here the same
strategy adopted for the problems previously analysed.

We have

s+
(
G2 − 1 + ρ2

2
; a
)

= S̃+(G; a)
4G2λ(24G4 jC + G2 − 15ρ2)

,

with

S̃+(G; a) = (−225G2λ + 360Gλ + 715λ)ρ4 + (−2080G6 jCλ + 1728G5 jCλ

+ 160G6 + 3696G4 jCλ + 98G4λ − 192G3λ − 198G2λ)ρ2

+ 128G10 jC + 320G8 jCλ − 384G7 jCλ − 32G8 − 720G6 jCλ

+ 15G6λ + 24G5λ − 21G4λ.

We obtain S̃+(G; a) = 0 for ρ2 = ρ̃2
E+1,2

, with

ρ̃2
E+1,2

= G2

5λ

Ã+ ± 4
√
B̃+

C̃+
, (61)

Ã+ = −(−1040G4 jC + 864G3 jC + 1848G2 jC + 49G2 − 96G − 99)λ − 80G4,

B̃+ = Ã2+ + 5λC̃+ D̃+
16

, C̃+ = −45G2 + 72G + 143,

D̃+ = (−320G4 jC+384G3 jC+720G2 jC−15G2−24G+21)λ−128G6 jC + 32G4.

Note that for G2 < 1/4 jC , D̃+ > 0; instead, for G2 > 1/4 jC , Ã+ < 0. Thus, ∀λ, ∀ jC , ∀G,
ρ̃2
E+2

< 0 and it is not admissible as solution. While ρ̃2
E+1

> 0 if G, λ and jC are such that

D̃+ > 0. Since 5λC̃+ − Ã+ > 0 and 16B̃+ − (5λC̃+ − Ã+)2 < 0, it holds ρ̃2
E+1

< G2.

When admissible, ρ̃2
E+1

is generally not monotone with respect to G. However, for jC = 0

it is equal to the same solution found for the J2-problem, i.e. ρ̃2
E+1

= ρ2
E+2

(see Sect. 4.1.3).

As a consequence, we expect that for sufficiently small values of jC , ρ̃2
E+1

is an increasing

function of G in the range of interest, i.e. G ∈ (0, 1]. In this case, for |ρ| < ρ̃+, there exists
only one equilibrium point of type E+. Instead, for higher values of jC , such that ρ̃2

E+1
is not

monotone, the outcome is different. Let us call ρ� the value of |ρ| such that

ρ� =
√
max
G

ρ̃2
E+1

.

We have that

• for |ρ| > ρ�, there is no equilibrium point of type E+;
• for |ρ| = ρ�, we have one equilibrium solution, which we call E13;
• for |ρ| < ρ� there exist multiple equilibrium solutions, typically two which we call E15

and E17.

Let us suppose that the Z coordinate of E17 is larger than that of E15. When λ ≥ 8
49 or when

λ < 8
49 and jC < 16−9λ

64−392λ , E2 coincides with E17 for |ρ| = ρ̃+. Thus, for |ρ| < ρ̃+, the
number of equilibrium solutions reduces to one: there will exist only E15.
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In conclusion,we can infer that reducing the value of jC , the valueG = G�, corresponding
to the maximum point of |ρ̃2

E+1
|, increases. For a fixed λ, it exists a value of jC such that

G� = 1, i.e. for which ρ� = ρ̃+. Thus, for lower values of jC , the bifurcation |ρ| = ρ�
disappears and the only existing equilibrium point of type E+ is E15 for |ρ| < ρ̃+.

As far as the equilibrium points of type E−, we have

s−
(
G2 − 1 + ρ2

2
; a
)

= S̃−(G; a)
4G2λ(24G4 jC + G2 − 15ρ2)

,

with

S̃−(G; a) = (315G2λ + 360Gλ + 55λ)ρ4 + (−2560G6 jCλ + 1728G5 jCλ + 160G6

+ 4368G4 jCλ − 350G4λ − 192G3λ + 378G2λ)ρ2 + 128G10 jC

+ 608G8 jCλ − 384G7 jCλ − 32G8 − 1200G6 jCλ + 35G6λ

+ 24G5λ − 49G4λ.

It holds S̃−(G; p) = 0 if ρ2 = ρ̃2
E−1,2

, with

ρ2 = ρ̃2
E−1,2

= G2

5λ

Ã− ± 4
√
B̃−

C̃−
, (62)

Ã− = (1280G4 jC − 864G3 jC − 2184G2 jC + 175G2 + 96G − 189)λ − 80G4,

B̃+ = Ã2− + 5λC̃− D̃−
16

, C̃− = 63G2 + 72G + 11,

D̃− = (−608G4 jC + 384G3 jC + 1200G2 jC − 35G2 − 24G + 49)λ − 128G6 jC + 32G4.

One can observe that for G2 < 1/4 jC , D̃− > 0 and that for G2 ≥ 1/4 jC , Ã− < 0. Thus,
∀λ, ∀ jC and ∀G, ρ̃2

E−2
< 0. Instead, for G, jC and λ such that D̃− > 0, ρ̃2

E−1
> 0. Since

5λC̃+ − Ã+ > 0 and 16B̃+ − (5λC̃+ − Ã+)2 < 0, it also holds ρ̃2
E−1

< G2. Thus, there

exist values of G, jC and λ such that ρ̃2
E−1

is an admissible solution. As ρ̃2
E+1

, in general

the function ρ̃2
E−1

is not monotone with respect to G. We find an outcome similar to the one
obtained for the equilibrium points of type E+. Let us consider sufficiently high values of
jC such that ρ̃2

E−1
is not monotone and let us set

ρ� =
√
max
G

ρ̃2
E−1

.

We have that

• for |ρ| > ρ�, there is no equilibrium point of the type of E−;
• for |ρ| = ρ�, we have one equilibrium solution, which we call E14;
• for |ρ| < ρ� there exist multiple equilibrium solutions, typically two which we call E16

and E18.

Suppose that E18 has a larger Z coordinate than E16. When λ ≥ 8
61 or when λ < 8

61 and
jC < 16−5λ

64−488λ , at |ρ| = ρ̃− E18 coincides with E2 and for |ρ| < ρ̃− it disappears. For a
fixed λ, by considering decreasing values of jC the value of G, G = G�, corresponding
to the maximum point of ρ̃2

E−1
, increases. Below the value of jC for which ρ� = ρ̃−, G�

does not belong to the admissible range of values for G. In these cases, there only exists the
equilibrium point E16 for |ρ| < ρ̃−.
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4.3.4 About the existence of Ē1 and Ē2

The coordinates X̄ and Z̄ of the two equilibrium points of type E+ are

Z̄ = 1

48

−24 jCρ2 +√
1440 jCρ2 + 1 − 24 jC − 1

jC
,

and

X̄ = 1

20736

1

j3Cλ
(
(720 jCρ2 + 1)

√
1440 jCρ2 + 1 − 1440 jCρ2 − 1

)

(
+ 144

√
3 j2Cλ

(
(103680 j2Cρ4 + 3312 jCρ2 + 5)

√
1440 jCρ2 + 1

− 1192320 j2Cρ4 − 6912 jCρ2 − 5
)
√√

1440 jCρ2 + 1 − 1

jC
+ (361428480 j4Cλρ4

+ 27552960 j3Cλρ4 + 3903552 j3Cλρ2 − 3369600 j2Cρ4 + 19584 j2Cλρ2

+ 1080 j2Cλ − 17280 jCρ2 − 51 jCλ − 14)
√
1440 jCρ2 + 1 − 5244134400 j4Cλρ6

− 2892049920 j4Cλρ4 + 559872000 j3Cρ6 − 54872640 j3Cλρ4 − 4681152 j3Cλρ2

+ 12182400 j2Cρ4 + 17136 j2Cλρ2 − 1080 j2Cλ + 27360 jCρ2 + 51 jCλ + 14

)
.

To have Z̄ ∈ [E, E], ρ2 < min
(
24 jC+1

15 , 7
12 jC

)
. Let us set Y = Ȳ 2

1,2. In general, for given

jC and λ, it can exists a subset of values of ρ such that Y > 0, i.e. such that Ē1 and Ē2

exist. The endpoints of this range are values of ρ for which Ē1 and Ē2 coincide with either
an equilibrium point of type E+ or E−. Let us call ρ� the value of |ρ| such that Ē1 and
Ē2 coincide with an equilibrium point of type E+ and ρ� the value of |ρ| such that they
coincide with an equilibrium point of type E−. We can conclude that necessarily ρ� < ρ�
and ρ� < ρ�. For jC → 0 we obtain instead the same outcome found for the J2-problem:
for sufficiently small values of jC , there does not exist any value of ρ for which Ē1 and Ē2

exist.

4.3.5 About the stability of the equilibrium points of type E+ and E− and of Ē1 and Ē2

Let us consider value of jC sufficiently high, such that E15, E16, E17 and E18 exist. We
can assume that these equilibrium points are close to the equilibrium solutions (54) of the
problem at order zero in λ. With this hypothesis, we can estimate their stability. To this aim,
we need to assume jCρ2 < 1/80. At order zero in λ, we obtain the same equations for the
equilibrium points E15 and E16, i.e.

d2 X̃

d Z2 ± d2 X̂

d Z2 ∼ 16
√

−80 jCρ2 + 1
(

− 144000 j3Cρ6 + 28400 j2Cρ4 − 880 jCρ2 + 7 +
√

−80 jCρ2 + 1(10000 j2Cρ4 − 600 jCρ2 + 7)
)
.

The same holds for E17 and E18:
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d2 X̃

d Z2 ± d2 X̂

d Z2 ∼ 16
√

−80 jCρ2 + 1
(
144000 j3Cρ6 − 28400 j2Cρ4 + 880 jCρ2 − 7 +

√
−80 jCρ2 + 1(10000 j2Cρ4 − 600 jCρ2 + 7)

)
;

From the equations, we obtain that for 7/810 < jCρ2 ≤ 1/80, E15 and E18 are unstable,
while E16 and E17 are stable; instead for jCρ2 < 7/810, E15 and E17 are both stable,
while E16 and E18 are both unstable. From this zero-order analysis and by applying the
Poincaré–Hopf theorem, we can infer the actual dynamical evolution:

• for |ρ| = ρ�, there exists one equilibrium solution E13 which is degenerate;
• for ρ� < |ρ| < ρ�, there exist E15, which is unstable and E17, which is stable;
• for |ρ| = ρ�, E15 coincides with Ē1 and Ē2 and it is degenerate; E17 is stable;
• for |ρ| < ρ�, both E15 and E17 are stable.

Something similar occurs concerning the equilibrium points E16 and E18:

• for |ρ| = ρ�, there is one equilibrium solution E14 which is degenerate;
• for ρ� < |ρ| < ρ�, there exist the two equilibrium solutions E16 which is stable and

E18 which is unstable;
• for |ρ| = ρ�, E16 coincides with Ē1 and Ē2 and it is degenerate; E18 is unstable;
• for |ρ| < ρ�, both E17 and E18 are unstable.

If ρ� < ρ�, Ē1 and Ē2 are unstable. On the contrary if ρ� > ρ� Ē1 and Ē2 are stable.
Finally, if λ ≥ 8

49 or if λ < 8
49 and jC < 16−9λ

64−392λ , for |ρ| < ρ̃+ E17 disappears, while the

stability of E15 remains unaltered. Similarly, if λ ≥ 8
61 or if λ < 8

61 and jC < 16−5λ
64−488λ , for|ρ| < ρ̃− E18 disappears, while the stability of E16 does not change.

In conclusion, we have that

• |ρ| = ρ� and |ρ| = ρ� are saddle-node bifurcations, affecting the existence of the equi-
librium points E15, E17, E16 and E18; for |ρ| > max(ρ�, ρ�) no equilibrium solution
exist;

• |ρ| = ρ� and |ρ| = ρ� are pitchfork bifurcation affecting the stability of the equilibrium
points E15 and E16 and the existence of Ē1 and Ē2;

• if existing, |ρ| = ρ̃+ and |ρ| = ρ̃− are pitchfork bifurcations affecting the stability of
E2 and the existence of E17 and E18.

We give an example of the dynamical evolution setting λ = 0.001 and jC = 0.2. This last
value is not realistic, but allows us to clearly illustrate the phenomenology just described. It
holds ρ� > ρ� > ρ� > ρ� > ρ̃− > ρ̃+. After the saddle-node bifurcation at |ρ| = ρ�
(Fig. 7a), for ρ� < |ρ| < ρ� there exist the unstable equilibrium point E18 and the stable
E16 (Fig. 7b). After the second bifurcation (Fig. 7c), for ρ� < |ρ| < ρ� there exist also E17,
which is stable, and E15 which is unstable (Fig. 7d). At |ρ| = ρ� E15 coincide with Ē1 and
Ē2 and it is degenerate (Fig. 8a). For = ρ� < |ρ| < ρ�, E15 is stable and Ē1 and Ē2 exist
and are unstable (Fig. 8b). At |ρ| = ρ�, E17 coincides with Ē1 and Ē2 and it is degenerate
(Fig. 8c). After this last bifurcation, for ρ̃− < |ρ| < ρ�, Ē1 and Ē2 do not exist, E15 and E17

are stable, and E16 and E18 are unstable (Fig. 8d). After the last two bifurcations at |ρ| = ρ̃−
and |ρ| = ρ̃+, there only exist the equilibrium point E15, which is stable, and E16 which is
unstable (Fig. 9).

If jC � 1, such that only the equilibriumpoints E16 and E15 exist, the dynamical evolution
has no significant variation in comparison with the one of the J2-problem. It is the case of
the Earth problem, since the values of jC are typically very small (of the order of 10−6).
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(a)

(b)

(c)

(d)

Fig. 7 Level curves for the J2-problem with relativistic term with jC = 0.2 and λ = 0.001, for four different
values of |ρ| ∈ (ρ�, ρ�]. On the left, the levels curve are represented on the (Z , X) plane. Enlargements
of the regions containing the equilibrium points are performed. On the right, the level curves are shown on
corresponding enlargements in the (g,G) plane. The same colour code used in Fig. 4 is employed
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(a)

(b)

(c)

(d)

Fig. 8 Level curves for the J2-problem with relativistic term with jC = 0.2 and λ = 0.001, for four different
values of |ρ| ∈ (ρ̃−, ρ�]. On the left, the levels curve are represented on the (Z , X) plane. Enlargements
of the regions containing the equilibrium points are performed. On the right, the level curves are shown on
corresponding enlargements in the (g,G) plane. The same colour code used in Fig. 4 is employed

123



Bifurcation of frozen orbits in a gravity field with zonal… Page 41 of 46 49

Fig. 9 Level curves for the J2-problem with relativistic term with jC = 0.2 and λ = 0.001 and for a value of
|ρ| < ρ̃+. Enlargements of the regions containing the equilibrium points are performed. On the right, the level
curves are shown on corresponding enlargements in the (g,G) plane. The same colour code used in Fig. 4 is
employed

Considering that ρ�, ρ� ∼ 1√
80 jC

and ρ�, ρ� ∼
√

7
810 jC

in first approximation, our results

are consistent with the outcomes of Jupp and Brumberg (1991).

5 Conclusions

We have described the existence and stability of frozen orbits in a gravity field expanded in
even zonal terms. Themain focus has been given on the power of the geometric analysis of the
reduced dynamics to highlight themain features of these systems as they are determined by the
presence of stable andunstable families. In this respect, the studyhas been limited to the J2 and
J4 problems and to the relativistic corrections, showing the ability of the geometric invariant
method to easily reproduce known results and predict new features of higher-order terms.
The atlas of possible perturbations is wide, and several other terms could be added. For many
of them, this approach requires very few changes and immediate results. For example, low-
order tesseral terms, averaged in order to preserve Brouwer structure, can be easily analysed
(Palacián 2007) without qualitative new results. Additional efforts are required for more
complex perturbations. Higher-degree zonal terms (J2k with k ≥ 3) are the most promising
since the symmetry of the problem is preserved. Preliminary results like those presented in
Coffey et al. (1994) can be extended with a little effort. More general cases (odd zonal terms,
higher-order tesserals, third-body effects, etc.) require a stronger commitment. However, in
these cases, it is quite probable that difficulties arise more from the implementation of the
closed-form normalisation (Palacián 2002; Cavallari and Efthymiopoulos 2022) than from
the use of the reduction method.
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Appendix: Proof of inequalities (42) and (45)

We start by proving relation (42). We have

dρ2
E+2

dG
= 1

5λ

G

C2+
√
B+

(
− D+

√
B+ + λE+

√
B+ + F+

)
,

where

D+ = −14400G6 + 28800G5 + 68640G4,

E+ = 4410G4 − 14904G3 − 14204G2 + 48312G + 28314,

F+ = 20G2D+ + λ
(− 21600G8 + 154080G7 − 285920G6 − 237600G5 + 1006720G4)

+ λ2(−129960G6 + 470664G5 + 679088G4 − 2114832G3

− 2381760G2 + 1287528G + 1774344),

and where B+ is defined in (41). It holds dρ2
E+2

/dG > 0 if

−D+
√
B+ + λE+

√
B+ + F+ > 0.

It is straightforward that D+ > 0 and E+ > 0. Moreover,

F+ >
(

− 288000G10 + 576000G9 + 1351200G8 + 154080G7 − 415880G6 + 233064G5

+ 1685808G4 − 2114832G3 − 2381760G2 + 1287528G + 1774344
)
λ2 > 0.

Thus, we need to verify whether

(
λE+

√
B+ + F+

)2 − D2+B+ > 0.

Since B+ ≥ (400G8 + 240G4λ + 376λ2) > (20G4 + 6λ)2, we have

(
λE+

√
B+ + F+

)2 − D2+B+ > M+,

123

http://creativecommons.org/licenses/by/4.0/


Bifurcation of frozen orbits in a gravity field with zonal… Page 43 of 46 49

with

M+ = λ2E2+B+ + F2+ + 2λE+F+(20G4 + 6λ) − D2+B+
= M (4)

+ λ4 + M (3)
+ λ3 + M (2)

+ λ2 + M (1)
+ λ,

where

M (4)
+ = 23910365700G12 − 181225103760G11 + 120523638672G10

+ 1700153452368G9 − 1988897297356G8 − 7508533086240G7

+ 6377312862144G6 + 19130049303840G5 − 4594353603924G4

− 23486016392784G3 − 4409791599312G2

+ 10749794943888G + 4994571648924,

M (3)
+ = −160G4(103329675G10 − 563720310G9 − 911841039G8 + 7739401536G7

+ 2782008506G6 − 39130317372G5 − 12624306282G4 + 84930202896G3

+ 49983903915G2 − 50940897150G − 39230486295),

M (2)
+ = 1600G8(2772225G8 − 11651040G7 − 19496340G6 + 86266224G5

+ 106893822G4

− 176211648G3 − 404205252G2 − 24689808G + 315589417),

M (1)
+ = 768000G12(−30G2 + 60G + 143)(45G2 − 72G − 143)2.

We have M (1)
+ > 0, M (1)

+ + M (2)
+ > 0, M (1)

+ + M (2)
+ + M (3)

+ > 0 and M (4)
+ > 0 ∀G; thus,

using λ < 1, it holds

M+ > (M (4)
+ + M (3)

+ + M (2)
+ + M (1)

+ )λ4 > 0.

Now, we prove relation (45). We have

dρ2
E−2

dG
= 1

5λ

G

C2−
√
B−

(
− D−

√
B− + λE−

√
B− + F−

)
,

where

D− = 20160G6 + 28800G5 + 5280G4,

E− = 22050G4 + 43848G3 + 21524G2 − 10440G − 4158

F− = 20G2D−(G) + λ
(− 846720G8 − 1441440G7 + 519680G6 + 1680480G5

+ 352000G4)+ λ2(617400G6 + 1375920G5 + 392G4

− 1902192G3 − 968664G2 + 554208G + 211288),

and B− is defined in (44). It holds dρ2
E−2

/dG > 0 if

−D−
√
B− + λE−

√
B− + F− > 0.

It is straightforward that D− > 0 and

F− >
(

− 1693440G8 − 2882880G7 + 1656760G6 + 4736880G5

+ 704392G4 − 1902192G3 − 968664G2 + 554208G + 211288
)
λ2 > 0.

123



49 Page 44 of 46 I. Cavallari, G. Pucacco

Instead E− > 0 ∀G ≥ 0.5, while its sign changes if G < 0.5. Let us consider G ∈ (0, 0.5];
we need to verify whether

F2− − (−D− + λE−)2B− > 0.

It holds

F2− − (−D− + λE−)2B− = P(4)
− λ4 + P(3)

− λ3 + P(2)
− λ2 + P(1)

− λ,

with

P(4)
− = 205663657500G12 + 1286808541200G11 + 2740720809456G10

+ 1509967832688G9 − 2841942124116G8 − 4558328657760G7

− 1319583449472G6 + 1104354441696G5 + 231876171316G4

− 430214668464G3 − 18111422832G2 + 89372757936G + 17827435780,

P(3)
− = −160G4(4650179625G10 + 21853893474G9 + 31457092779G8 − 4333755960G7

− 49586843494G6 − 32290996788G5 + 11675441446G4 + 12857914248G3

− 2955589987G2 − 3112286430G − 456484721),

P(2)
− = 1600G8(568229823G8 + 2010142008G7 + 1564140924G6 − 2245174056G5

− 3853671558G4 − 789759288G3 + 1195807132G2 + 548335656G + 61908319),

P(1)
− = −768000G12(42G2 + 60G + 11)(10647G4 + 11808G3

− 22398G2 − 29664G − 5269).

For G < 0.5, we have P(1)
− > 0, P(2)

− > 0, P(3)
− > 0 and P(3)

− + P(4)
− > 0; thus,

F2− − (−D− + λE−)2B− > λ4(P(3)
− + P(4)

− ) + P(2)
− λ2 + P(1)

− λ > 0.

Let us now consider G ∈ [0.5, 1]. In this case, we need to verify whether
(
λE−

√
B− + F−

)2 − D2−B− > 0.

Since B− > 400G8,
(
λE−

√
B− + F−

)2 − D2−B− > M−,

with

M− = λ2E2−B− + F2− + 40λE−F−G4 − D2−B− = M (4)
− λ4 + M (3)

− λ3 + M (2)
− λ2 + M (1)

− λ,

where

M (4)
− = 976780822500G12 + 4476174696000G11 + 5453865257400G10

− 5086142681760G9 − 16601363592772G8 − 7099182483456G7

+ 11816572141456G6 + 11183433731136G5 − 1358260437988G4

− 4012690481472G3 − 434866063560G2 + 421070887776G + 86153421508,

M (3)
− = −320G4(3267280800G10 + 12799767015G9 + 9651811113G8 − 23608483416G7

− 41966083012G6 − 5277158466G5 + 28856284782G4 + 14899437888G3
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− 4161615732G2 − 3404287293G − 463072687),

M (2)
− = 1600G8(102880449G8 + 321838272G7 + 208527732G6 − 295032528G5

− 233557962G4 + 563365728G3 + 780379476G2 + 285203952G + 31226833),

M (1)
− = 768000G12(42G2 + 60G + 11)(63G2 + 72G + 11)2.

For 0.5 ≤ G ≤ 1, we haveM (1)
+ > 0,M (2)

+ > 0,M (2)
+ +M (3)

+ > 0 andM (2)
+ +M (3)

+ +M (4)
+ >

0; thus,

M− > (M (4)
+ + M (3)

+ + M (2)
+ )λ4 + M (1)

+ λ > 0.
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