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Abstract

We propose a methodology to study the bifurcation sequences of frozen orbits when the
second-order fundamental model of the satellite problem is augmented with the contribution
of octupolar terms and relativistic corrections. The method is based on the analysis of twice-
reduced closed normal forms expressed in terms of suitable combinations of the invariants
of the Kepler problem, able to provide a clear geometric view of the problem.

Keywords Geometric reduction of the perturbed Kepler problem - Gravity field with zonal
harmonics - Frozen orbits

1 Introduction

Among the manifold versions of the perturbed Kepler problem, the investigation of the gravity
field expanded in multipole terms has traditionally received great attention for its relevance
in applications. Therefore, several analytical tools have been developed to highlight the
most important phenomena. Perturbation theory with the construction of normal forms is the
standard method since the first pioneering studies (Brouwer 1959; Kozai 1962). The case in
which only zonal terms are included in one of the settings in which we can obtain explicit
approximations of the regular dynamics since the normal form is integrable. However, the
presence of several parameters, both dynamical (or ‘distinguished’ in the language of the
theory of integrable systems) and physical like the multipole coefficients, hinders a global
description of the dynamics. More efficient geometric and group-theoretic tools have been
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exploited to study the bifurcation of invariant objects when these parameters are varied
(Cushman 1983; Coffey et al. 1986, 1994; Palacidn 2007).

Here, we study the bifurcation sequences of frozen orbits when the second-order funda-
mental model of the satellite problem is augmented with further features of a typical planetary
gravity field. We consider the contribution of the octupolar term (Vinti 1963; Coffey et al.
1994) and the relativistic correction due to the quadrupolar term (Heimberger et al. 1990). We
implement a twice-reduced normal form (Cushman 1988; Pucacco and Marchesiello 2014;
Pucacco 2019) which allows us to obtain in an efficient way the conditions for relative equi-
libria corresponding to the family of periodic orbits with fixed eccentricity and inclination.
The method is tested in the second-order J>-problem in which known results are reproduced
(Palacian 2007) and then applied to the above-mentioned perturbations. For the J4-problem,
interesting features around the parameter values of the ‘Vinti problem’ are highlighted with
an additional family of stable frozen orbits. For the relativistic J>-correction, the treatment
extends and completes several results obtained by Jupp and Brumberg (1991).

The plan of the paper is as follows: In Sect. 2, we recall the model problem based on the
normal from obtained after averaging with respect to the mean anomaly; in Sect. 3, we review
the reduction methods adapted to the symmetries of the present model, discuss the version
adopted here to cope with the structure of the Brouwer class of Hamiltonians and show how
it works in locating relative equilibria; in Sect. 4, we illustrate the results in concrete cases;
in Sect. 5, we conclude with some hint for possible developments and future works.

2 The model in closed normal form

We are discussing some aspects of the general problem described by a Hamiltonian of the
form:

oo
H(L,H,G,t,g,h) =) e/Hj(L,H,G,{gh), ey
j=0
where H) is the Kepler Hamiltonian and the canonical Delaunay variables have the following
expression in terms of the standard Keplerian elements (a, e, i, £, w, 2)

L=./pa, G=navl—e?, H=.,/uay1—e?cosi, 2)

(=M, g=o, h=Q. A3)

In the above equation, € is a formal parameter, called book-keeping parameter, suitably
chosen to order the hierarchy of perturbing terms (see Efthymiopoulos 2012). Therefore, we
have a perturbed Kepler problem.

Specifically, in the even zonal artificial satellite problem, we assume to start with the
‘original Hamiltonian’

1 1 (p* V2
H(g. p) = 5p" +Veor = ( col

3 2
— ===V 4
A > SveGrp ) (4)
in standard Cartesian form, where ¢ = {x,y,z}, p = {X, 5,2}, p = |pl, Vcgr is the
classical gravity field and c is the speed of light. We include the classical gravity field Vegr
expanded in terms of the zonal harmonics of even degree!

I In this work, we focus on the even zonal problem. Thus, only the even zonal harmonics are considered
in the expansion of the gravitational potential. The complete expansion, including also tesseral terms, can be
found in (Kaula 1966).

@ Springer



Bifurcation of frozen orbits in a gravity field with zonal... Page3of46 49

p -, RY

V =——|1- — i

cor =" >k Pa(sin6) | )
k=1

where © = GMp is the product of Newton constant and the mass of the ‘planet’, Rp is its

radius and the Py are the Legendre polynomials with

sinf = E, r=4/x2 4+ y2 4+ 2.
r

We also add the first-order relativistic corrections following, for example, Weinberg (1972).

To simplify the structure of the Hamiltonian, we then perform a closed-form normalisation
like in (Coffey et al. 1994) and (Heimberger et al. 1990). This method, inspired by works
of Deprit (1981, 1982), has the advantage of avoiding expansions in the eccentricity and
inclination (Palacidan 2002; Cavallari and Efthymiopoulos 2022). The model in (4) is rich
enough to convey several interesting dynamical features keeping the closed-form structure
at the lowest level of complexity. In fact, after the Delaunay reduction and the elimination
of the ascending node, we deal with a secular Hamiltonian in closed form which depends on
only one degree of freedom, corresponding to the pair G and g (the argument of the perigee):

K(L,H,G,g) =) €KL, H,G,eg), (6)
J

with L and H formal integrals of the motion. The zero-order term is clearly

2
Ko="Ho=—3. ™
The first-order term is
- SRRNG 2ty oL 18] ®
4G3L3 LA TG 8 |

The second-order term X, consists of two contributions:
Ko =T + (Ha).

The first is related to the propagation at second order of the J, term in the normalising
transformation (Deprit 1969; Efthymiopoulos 2012),

6 12 p4

_ 3uJ5Rp

128L5G!!

+G*(18H? +5L%) — 5G*(H* +2H*L?)

> x [ —5G% —4G°L +24G3H?*L — 36GH*L — 35H"*L?

+2(G* — 15H?)(G?* — L*)(G* — H?) cos Zg]

3uShRy o, s ) T,
~215g7 WG° = 3HHMG” —3GL = 5L + (L° = G)(G” — H")cos 2g].
©

The second is associated directly with the average of the H, term:

2

1
— Hod?
2 0 :

WOIR) (o 2y (612 2 2 v g2
=W[(G —3H?)(6L* —5G*) —3(L* — G*)(G* — H?) cos 2g]|
C

(H2)
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3/\L6.I4R;‘,
128L35G !
—10(G* = TH*)(L* — G*)(G* — H?) cos 2g]. (10)

[3G* —30G*H? + 35H*)(SL* — 3G?)

In this work, we do not consider terms of order higher than j = 2. Hamiltonians of
this type are generally denoted as ‘Brouwer’s’ ones (Brouwer 1959; Cushman 1983). They
are characterised by the independence on the mean anomaly ¢ and the longitude of the
node & (with corresponding conservation of the actions L and H), whereas the argument of
perigee appears only with the harmonic cos 2g. These symmetries will all be exploited in the
geometric approach described in the following.

The two relativistic terms proportional to J»/c? appearing in (9) and (10) have the same
structure. However, in the literature (Heimberger et al. 1990; Schanner and Soffel 2018),
they are usually kept separate and are, respectively, referred to as the indirect and direct term
related to the non-trivial relativistic contribution of the quadrupole of the gravity field of the
central body. The ordering of the perturbing terms is performed by assuming (with a certain
degree of arbitrariness) the J, and ¢~2 terms to be of order € and the J4 term of order €2,
like the 122 and J, x ¢~ 2 terms.

We remark that with a slight abuse of notation, we have denoted with the same symbols
the Delaunay variables appearing in (1) and (6). We have to recall that actually they are,
respectively, the original and the new variables related by the normalising transformation.
In the present work, we are not interested in the explicit construction of particular solutions.
Therefore, we will not detail the back-transformation from the new to the original coordinates.
Moreover, we are not going to investigate any issue connected with the convergence of the
expansions. We rely on the asymptotic properties of these series and their ability to provide
reliable approximations, especially in the cases of Earth-like gravity fields.

For the sake of completeness, the different parts of the normalised Hamiltonian K =
Ko+ K€+ (T + (Ha)) €2, expressed in terms of the orbital elements (a, e, i, ®), are given
by

Ko = —%,

Ki= % 'ua];;% (1- 300521') — g Cl;:z (% —5> ,

T = m [— (5n* + 3671 +35)sin*i + 8 (—n* + 61 + 10) sin® i
+8 (n* =21 —5) x 2sin?i (1 —n?) (1 — 15¢cosi) cosZw]
_m[ (4n* =35 —5) (1 — 3cos?i) + sin?i(l — n2)00s2w],

(Ha) = gczzilﬁ [(6 —5p*)(1 —3cos?i) — 3sini(1 — n?) cos2w]
?‘2‘;;‘51?; [(5—3n*)(35sin*i — 40sin’i + 8)
—10sin?i(1 — n?)(1 — 7 cos® i) cos 2] ,
with n = V1=e2
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3 Geometric reduction

The secular Hamiltonian in closed form in (6), while computed with an ingenious combination
of tools based on the Lie transform method (Deprit 1969; Efthymiopoulos 2012) and the
elimination of the parallax (Deprit 1981), is nonetheless standard in being essentially an
average with respect to the mean anomaly (Deprit 1982; Palacidn 2002). However, it is
liable to be treated with a group theoretically approach. It can be interpreted as a suitable
combination of the invariants generating the SO (3) symmetry of the Kepler problem. In
fact, the dynamics ensues from the reduction of the Hamiltonian defined on the space of the
trajectories having, for the unperturbed Kepler problem with negative energy, the structure
of the direct product of two spheres. The additional symmetries of the closed form of the
perturbed problem are exploited to identify a regular reduced phase space with the topology of
the 2-sphere. In practice, we will use a further transformation leading to a singular reduction on
asurface with equivalent topology, which produces a clearer geometric view of the bifurcation
sequence of frozen orbits. Here, we provide a quick reminder of the invariant theory of the
Kepler problem and then apply the reduction process to perturbed Kepler problems described
by Brouwer’s Hamiltonians.

3.1 Invariants of the Kepler problem

Let us call G the angular momentum and A the Laplace-Runge—Lenz vector, given by

sini sinh G2 cos gcosh — sin g sinhcosi
G =G| —sinicosh |, A= 1_ﬁ cos gsinh +singcoshcosi |,
cos i sin g sin i

with i = arccos (H/G) the orbital inclination. By defining
x=G+LA, y=G-1LA, (11)
we get the Poisson structure of the generators of SO (3)
{x1,x3} =x2, {x3, 02} =x1, {x2,x1} = x3,
{yi,y3} =y2, {yz. 2} =y, {y2, b =3,
and phase-space defined by the direct product of the two 2-spheres
Xf+x3 +x3=L% yi+ys+y3=L% (12)

It can therefore be imagined as the invariant space of the states characterised by given eccen-
tricity, inclination, and arguments of perigee and node, but nonetheless equivalent for what
pertains to the mean anomaly. In the unperturbed problem, the state is a given still point of
the invariant space. The state point is kept moving on it by the action of the perturbation.

3.2 Reduction of the axial symmetry

Perturbed Kepler problems described by Hamiltonians of the form (6) are characterised by
axial symmetry with H as formal third integral. In Cushman (1983) and Coffey et al. (1986),
it is shown that if 0 < |H| < L, the two-dimensional phase space of such problems is still
diffeomorphic to a sphere. Two different sets of variables, both functions of the Keplerian
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invariants xg, yx (k = 1,2,3) and suitable to analyse the dynamics, are proposed. The
variables (771, 72, 3) are defined as: (Cushman 1983),

1
T =5(X3 —-») =LAk,

) =x1y2 —x2y1 = 2L(A x G) - k,

w3 =x1y1 +x2y2 = |G x k> — L?|A x k|?,

where k = (0,0, DT. The phase-space is then
P={(m,m,m) eR: my + 75 = (L +m)” — HHL —m)* = HH}.  (13)
Instead, in Coffey et al. (1986), the variables (&1, &, &3) are introduced, defined as:
§1=L(GxA)-k, &=LIG|(A-k), &= % (IG x k|* — L*|A[%)

or, in terms of Delaunay variables,

£ =v(G2 — HY)(L?* — G?)cos g,

52 =V(G? — HY)(L? — GY)sing, (14)
L+ H?
=G> - ——.
&3 >
In this case, the phase-space is the sphere of radius (L> — H?)/2:
(L2 _ H2)2
8={<sl,ez,sa>eﬂ%:s%+s§+s§=f : (15)

The relation between the 7 and the & is

V28
) =,
V2&3+ L2+ H?
= — 281,
287
= e T

The advantage of both these sets of variables with respect to the Delaunay variables is
well explained in Coffey et al. (1986) with an imaginative metaphor. In simpler words, we
can say that the Kepler reduction allows us to translate the closed-form dynamics in terms
of the invariants of the unperturbed problem (formal conservation of L) and the further
reduction generated by the invariants & is readily apt to account for the axial symmetry
associated with the formal conservation of H. Recalling the description of the states of the
space defined in (12), we now have that the states of (15), given a value of H, are characterised
by the eccentricity and the perigee but are nonetheless equivalent for what concerns /. The
dynamical evolution of the system is then determined by the intersections of the reduced
phase-space S with the Hamiltonian expressed in terms of the invariants, e.g. K(&1, &, &3).

Whenever one uses the (G, g) chart to analyse the dynamics of the closed form for given
values of L and H, one excludes circular and equatorial orbits. Indeed, when either the orbital
eccentricity or the orbital inclination is zero, the argument of the perigee g is not defined; thus,
the Delaunay variables result unsuitable to evaluate the stability of such orbits, if they are
periodic as typically happens in the artificial satellite problem. Following Cushman (1983),
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in Ifiarrea et al. (2004) it is shown that when K possesses independent symmetries of the
type

Ri1 :(my, 2, m3) — (=71, W2, 73),
Ry :(my, M2, w3) — (701, — 72, 703),

R3 (w1, m2, 3) — (=71, —TM2, 73),

the phase-space can be further reduced, and the variables o7, 07, defined as:

\/L2+H2—7112+n3
= 7 ,

are introduced, where oo = G. We propose here to exploit a further set of variables, which
is particularly suitable when the normalised Hamiltonian possesses symmetries of the type

o1 =(L—H) -7}, o

Ry :(§1,62,83) — (61,62, 83),
Ry :(§1, 62, 83) — (&1, =62, 83), (16)
R3 :(§1, 62, 83) — (=&1, =62, 83).

We introduce the variables (X, Y, Z) defined as:

X =t - £3,
Y =2&1&, (17)
Z =§&3,

which turn the spherical phase space S into a lemon space:

L?— H?

E:{(X,Y,Z)eR:X2+Y2:(—Z2+52)2}, £=="=

This kind of reduction was proposed for the first time by Hanmann and Sommer (2001).
It is an example of singular reduction (Cushman and Bates 1997) as opposed to the regular
setting generated by the invariants &. This occurs here due to the appearance of cusps in
the reduced phase-space £ contrary to the smoothness of the 2-sphere S. However, as it will
appear clear in the following, this fact does not pose any practical issue in the induction
process implemented hereafter.

Even though the phase-space is still three-dimensional, we see that in the case in which
symmetries (16) are fulfilled (such as in the problem of the geo-potential when only even
zonal harmonics are retained), the transformed closed form does not depend on the variable
Y: K = K(X, Z). In particular, in the case of the Brouwer’s Hamiltonian (6), /C depends
linearly on X, i.e. it is of the form:

K(X,Z;a)=g(Z;a)+ f(Z;0)X, (18)

where a is the set of parameters characterising the problem, including the ‘distinguished
parameter’ £. For such a problem, the analysis of the intersection of the reduced phase-space
L with the function (18) is simplified by the extra symmetry of the Brouwer’s Hamiltonian
since, rather than working in the full 3D-space, all significant information can be obtained by
projection on the (Z, X) plane... As a matter of fact, when expressed in Delaunay variables,
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49 Page8of46 I. Cavallari, G. Pucacco

(X,Y, Z) are equal to
X =(G*> — H*)(L* — G?)cos2g,

Y =(G? — H*)(L? — G%)sin2g,
L?>+ H?
7
and, considering the structure of the normalised Hamiltonian presented in the previous sec-
tion, the possibility of using the general form (18) appears immediately justified.

(19)
Z =G*

3.3 Equilibrium points

Relative equilibria of the reduced systems correspond to periodic orbits of the original closed
form in (6), which in turn are approximations of the periodic orbits of the model problem
in (1). Our main concern refers to frozen orbits which play a major role in shaping the
phase-space structure of the system. They can be identified by locating ‘contacts’ between
the surfaces defined by the Hamiltonian function (18) and the lemon space £ (Pucacco
and Marchesiello 2014) or in some peculiar case we will encounter in what follows if the
Hamiltonian possesses a one-dimensional level set whose intersection with the phase-space
produces additional (unstable) critical points. In the present subsection, we describe the
general procedure to locate equilibria, postponing to the next section the details of each case.

Considering G as a function of Z, G = \/Z + (L? + H?)/2, the Poisson structure of the
(X, Y, Z) variables is

(X,Y) =8GZyX2+7Y2,
(X, Z)=—4GY,
(Y, Z) =4GY.

Henceforth, given a Hamiltonian of the form £ in (18), the equations of motion are

dx K

— ={X,K} = —4GY —,

dr { ) 0Z

dy K K
— =Y, K} =4G | 2ZV X2+ Y2 — +X— ),
dr { } ( + 0X + az)
dz K

— ={Z,K} =4GY —.

dr X

Since we are typically interested in elliptic trajectories, which implies G # 0, there exist
equilibrium points whenever

Y =0
- , 20
{ X (22 %sign(X) + 25) =0, 20)
or
IK K
IO 1)
9Z ~ aX

The variables X, Y, Z are particularly useful in the first case when conditions (20) are fulfilled.
On the (X, Z) plane, the contour of the lemon space £ is C = C+ | JC_, with

Cy = [(X,Z) eR?: |Z| <€ X = +X(Z; 5)],
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where A
X(Z,6=-2>+¢&% (22)

For any values of the parameters @, condition (20) is fulfilled if X = 0. Thus, the normalised
Hamiltonian /C always possesses the equilibrium points

Ey=(0,0,-8), Er»=(0,0,8).

From (19), Z = —€ implies G = H;; thus, the equilibrium point E; represents the family
of equatorial orbits. Instead, Z = £ implies G = L: the equilibrium point E; represents the
family of circular orbits. Condition (20) is also fulfilled whenever a level curve X(Z:a, k)
is tangent to the contour C, with k a given level set of the Hamiltonian /C(X, Z; a@). We can
therefore have an equilibrium point of coordinates ()? (Z4+;€),0,Zy) if thereexists Z = Z
such that

& (Zia k) =% (248, 03
X(Zia, k)= X(Z4: ),
where k (Z: )
S _k—g(Z;a
X(Z;a, k) = T Za 24)

is defined by recalling (18). From (23) and (24), we obtain that Z is a zero of the function
s4+(Z; a) equal to
1 K

S = a7 Ix=kze)

+2Z. (25)
Function s4(Z; p) can have multiple zeros corresponding to acceptable equilibrium solu-
tions. In the following, we will refer to them as equilibrium points of type E_. On the other
hand, we can have an equilibrium point of coordinates (—X(Z_; £), 0, Z_), if there exists
Z = Z_ such that

$Zsa k== 20, 26)
X(Z_sak)=—-X(Z_;&).
In this case, Z_ results to be a zero of the function s_(Z; a) given by
1 K
s (Z;a)=————— o —2Z. 27

f(Z:a) 9z X=X

Similarly as before, equation s_(Z; @) = 0 can have multiple acceptable solutions. In this
case, we are going to talk about equilibrium points of type E_. From the first of (19), we
have that equilibrium points of type E correspond to the families of periodic orbits with
g =0, 7, while those of type E_ correspond to the families of periodic orbits with ¢ = £7.

In the second case of (21), if there exist X € Rand Z € R fulfilling these condmons
one must verify whether the two resulting equilibrium points E, = (X,Y,,2Z) and E, =
(X, Y, Z), with

le\/(—zz-i-gz)z—)_(z, Y, =Y,
belong to i.e. whether Y, Y» € R.Itis interesting to notice that for every Y the level curves of

the Hamiltonian, {K = k}, given by (24), have a singularity at Z = Z as a (Z) f(Z:a) =
0. The value Z = Z gives a vertical asymptote that is a vertical plane in the 3D space X, ¥, Z.
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49 Page 10 of 46 I. Cavallari, G. Pucacco

The condition

K o , _ _ _gl(z)
7= g )+ ()X =0, namely X = 2

gives an oblique asymptote, a tilted surface in the 3D space X, Y, Z. The two surfaces cross
in a straight line, orthogonal to the (Z, X) plane, which ‘pierces’ the lemon in the symmetric
fixed points Eq, E».

Remark 1 Each equilibrium point E; 2 in X, Y, Z, corresponds to one equilibrium in the
variables (&1, &, &3), respectively, equal to

5 =(0,0,—-¢&), £P2=1(0,0,6).

Instead, each equilibrium point of type E+ and of type Ej > corresponds to two equilibria.
We have the following list of correspondences:

U= EVX(Z4:6),0.20) &y, = 0.5/X(Z-:6), Z-);

_ % . _ 2 ) —X + X2+ 1}

o (Lstz) dho(Banz), o 0OE
2 2

12 = 5 51’2 = 52 = )

3.4 Stability of the equilibria

To study the stability of the equilibrium points, it is more convenient to come back to the
variables &1, &, &3 (Coffey et al. 1994). The transformed closed form is

K=g(E:a)+ f&:a) (5] — &) .
Let us set £ = (&1, &, £&3)7. We have

£ =F(@), F(E)ZZG(£XE>

We recall that G = G(&) = /& + # Let us call £z an equilibrium point and

86 = & — & a small displacement from it. The linearised system around the equilibrium is

8 = DF|g—¢, 8¢,

where
DF(§)
~23 g6 — (& +2r5 -23L63) —&(—5 2f +23L &)
=20 | (& -2re+25Le) —28 615 a(dg 2f - 23&53)
418 418 agtae

Since the § € S, the solution of the previous differential system must identically satisfy the
constraint

E1881 + 52862 + £3853 = 0.
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Thus, we obtain the reduced system

&7 _ _ 58
o= pre=en |5 ]

with

DFg(§)

=26 %(%Jrzf) i2<7:2( ) (3 +2785 ~4i583)
(déz 2f§3+465351) Elx (agZ 2f> S& <as2 Zf)

To evaluate the stability of the equilibrium point, we have to compute the eigenvalues o
of DFg(&E), by solving the characteristic equation

o® —TrDFr(Ep)a +detDFr(£g) =0,
with Tr DFg(§ ) and detD Fg (& ) the trace and the determinant of D Fg(§ ). By using

transformation (17), we obtain that the characteristic equation for the equilibrium point £
is
a® +4H? 2 (=€ a)s_(—E; a)sy (—E;a) =0, (28)
while the one for E> is
a® +4L% 2 (& a)s_(&; a)s(E;a) =0, (29)

with s (Z; a) and s_(Z; a) given in (25) and (27). Note that whenever the parameters a are
such that an equilibrium point of either type E4 or E_ coincides with E| (i.e. Z = =€ is
a zero of either s (Z; a) or s_(Z; a)) E1 becomes degenerate. The same holds true for E5.
For an equilibrium point of type E of coordinates (X (Z4; £), 0, Z4 ), it can be proved that
the characteristic equation is

2 2 2 . v . dzi . 25\( .
o +16G° (2 )R (243 6) | 5 (Zeiake) = (23 6) ) =0, (30)

with k. the value of the Hamiltonian such that }~(A(Z+; a, k)= X (Z4; €). Similarly, for an
equilibrium point of type E_ of coordinates (—X(Z_; &), 0, Z_) we have

a? —16G*f(Z_;a)’X(Z_; &) ﬂ(Z ca,k )+@(z & )=0 @3
- - dz2 " Ty ) T

with k_ such that X(Z_;a,k_) = —X(Z_; €). Since for Z # +&, X(Z;E) > 0, the
stability of the equilibrium points of type E4 and E_ can be determined by comparing the
concavities of the level curve X (Z; a, k) and of the contour C of £ at their point of tangency.
Finally, the characteristic equations for E, and E; are

2
« +4G2 2 (2K%, - 16/37%) =0,
with
, 2K - - . Af - - L2 + H2
Kzz = — (X, Z; p), =—(Z;p), G= -
77 322( p) fz AR 2+ 5
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49 Page 12 of 46 I. Cavallari, G. Pucacco

As )712 = )_’22, the two characteristic equations coincide: E| and E, have the same stability.
When E; and E; coincide since Y1 = Y2 = 0, the resulting equilibrium point is degenerate.

Remark 2 To evaluate the stability, we can also exploit the Poincaré—Hopf index theorem:

Let M be a compact manifold and w a smooth vector field on M with isolated zeros. The
sum Y_ t of the indices of the zeros of w is equal to the Euler characteristic of M (Milnor
1965).

As the phase space is a sphere in the coordinates (&1, &2, &3), its Euler characteristic is
equal to 2. Whenever E; and E, are Lyapunov stable, in the linearised reduced system
they are centres; thus, their indexes ¢ are both equal to +1. Instead, when one of them is
Lyapunov unstable, it corresponds to a saddle with ¢« = —1. Each equilibrium point of type
E . corresponds to two equilibrium pointsin (&1, &, £3) (see Remark 1), both either Lyapunov
stable or unstable. The bifurcation of a first stable pair implies a stability/instability transition
of one of the cusps so that the indexes are (+1 — 1 4+ 1 + 1). The bifurcation of a second
unstable pair implies that the cusp regains stability and the indexes are (+14+14+1+1—1—1).
Due generalisation applies in the case of the points of type E 1,2-

4 Applications
4.1 The Jy-problem

We are going to apply the variables X, Y, Z to analyse a classical and well-known problem in
the framework of the artificial satellite theory: the study of the secular Hamiltonian in which
only the second zonal harmonic of the gravitational potential is retained, i.e. the J> terms.
From (7), (8), (9) and (10), the resulting closed form is

_;i wthR%(G? —3H?)  3uSJiR;
212 4G5L3 128L5G 1!
+24G3H?L — 36GH*L — 35H*L? + G*(18H? + 5L?%)

K, = [—5G6—4GSL

—5G*(H* +2H?L?) + 2(G* — 15H*)(G? — L*)(G* — H?) cos 2g:|.

To simplify its analysis, we make the system dimensionless by performing the following
choice of units: we take the orbital semi-major axis a as unit of length and the unit of time
such that © = 1. Let us call p = H/L. In the adimensional system, the Delaunay actions L
and H become

L=1, H=p,

where p = G cosi, with i the orbital inclination. Moreover, the action G coincides with
n = /1 — €2, being e the orbital eccentricity. Since in the adimensional system the planet’s
radius Rp < 1, let us set

A= hR%; (32)

A plays here the role of small parameter, of the same order as the book-keeping parameter €.
We drop the constant Keplerian term and we perform a transformation of the time variable
t — 1, defined as:

ot
— =
at (33)
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Thus, the secular Hamiltonian in closed form becomes

(G* —3p?) N 3
4G5 128G 11

Ky, = [—5G6—4G5+24G3p2 —36Gp* —35p* + G*(18p> +5)

—5G?(p* +2p%) + 2(G? = 15p*)(G?* = 1)(G? = p?) cos Zg].

In these units, the X, Y, Z variables are

1+ p?
2

and we also have £ = (1 — p?) /2. The introduction of the variables X, Y, Z leads to a closed
form with the same structure of /C in (18), with

X = (G?=pH)(1-=G*)cos2g, Y = (G*’—p>)(1-G?)sin2g, Z=G*— , (34)

—5p2 +2Z +1 3A
g(Z,a)= P

11

V22 +2Z+1)F  16V2(p2 +2Z +1)7

+ (=74p* — 44p* — 10) Z — 11p° + 273p*

—p2—5&+4,/2p2+4z+2(—5p2+2z+1)2),
—29p242Z+1

f(Z,a)=—%k( pr2Zrl)

V2(p2+2Z+1)7

and a = (p; A). Note that if the terms proportional to A are neglected, the problem has one
equilibrium solution for

(402° + (8402 + 20) 22

’

902 —1
7 = ’)2 VXY, (35)

which implies
G=G.=+5p. (36)

Since p = G cos i, the orbithas then a stationary pericentre at the so-called critical inclination:

i, = arccos N
In the following, we study the J,-problem for |p| € (0, 1) and A € (0, 1): we discuss the
existence and the stability of frozen orbits by analysing the corresponding properties of the
equilibrium points of the reduced system.

First of all, we show that the equilibrium point E, representative of the family of equa-
torial orbits, is always stable. Then, we analyse the stability of the equilibrium point Ej,
representative of the family of circular orbits. In particular, we determine the values p and
p— of |p| at which pitchfork bifurcations occur: for |p| between p_ and p; E» is unsta-
ble, otherwise it is stable; moreover, there exist a stable equilibrium point of type E for
|p| < p+ and an unstable equilibrium point of type E_ for [p| < p_. At last, we show that
the equilibrium points £ and E» do not exist for any p and A.

For the J> problem and the other problems analysed in the following, all the equilibrium
points of type E. are indicated with an odd integer number larger than 1 as a subscript;
similarly, the subscript of the equilibrium points of type E_ is an even integer number larger
than 2.

We recall that p = Gcosi and G = +/1 — e2. In the procedure we follow, we select
a planet and we fix the value of the semi-major axis, on which A depends through the
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dimensionless R p. Suppose to select a value of p such that an equilibrium point of type E
exists and to compute the value of the action G of such equilibrium point; from the selected
p and the value of G we can obtain the orbital eccentricity and inclination of the family
of orbits represented by the equilibrium point itself. The same holds for all the equilibrium
points. In the same way, since the eccentricity of the orbits represented by E is equal to zero,
from p4 and p_ we can compute the values of the orbital inclination at which the stability
of the circular orbits changes.

4.1.1 Stability of E;

From (28), it results that the stability of the equilibrium point E; depends on the sign of

s+(—E&;a) and s_(—E&; a). We have

2 8p* + A (=7p% + 12]p| + 31) 8 2p% + 3A|p| + 61

sy(=&a)=—= —_
7 A 7 A

It is straightforward that s (—&; a) < Oand s_(—&,a) < OVA € (0, 1) and V|p| € (0, 1).

Thus, the equilibrium point E is stable, and it does never coincide with equilibrium points
of either type E4 or E_.

, s_(=&,a) =

4.1.2 Stability of E;

In analogy to E, from (29) we obtain that the stability of E, depends on the sign of s (€; a)
and s_(&; a). We have

1 425xp% — 1461p% + 80 p> +91 — 16

s+ (& a) =

A(15p% = 1) ’
and 4 2 2
—82 -1
s_(E;a):—l (36510* — 821p% + 80 p* + 5 6).
2 A(15p% = 1)

The function s (€; a) has two real zeros p = +p., where

1 —4(3r+10) + 48522 + (31 + 10)2
P+ = + .

- 37
5 425 (37
Similarly, s_ (€; a) possesses two real zeros p = £p_, with
1 —48r+10) 4+ 4/ —=7312 + (81 + 10)2
- / 1, = ) +4/ ( 2 @8)
5 365A

It holds that p4 > p_, ¥A € (0, 1). Thus,

e for p; < |p| < landfor0 < |p| < p—, E; is stable;
e for p_ < |p| < p+, E7 is unstable.

Moreover, at |p| = p4 the degenerate E; coincides with an equilibrium point of type E,
while at |p| = p_ it coincides with an equilibrium point of type E_.
If we approximate p and p_ as series in A, we obtain
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! (1+ LW S A3+O(k4)) (39)
P50 T 10" T 2000 T 800 ’
1 1. 3., 299 A
e (1= = 22— 2253 1 004). 40
p ﬁ( 10" T 20" ~ 3000™ T )) (40)

Thus, the bifurcations occur nearby the zero-order solution (35) when Z = €.

4.1.3 Existence and stability of the equilibrium points of type E; and E_

The equilibrium points of type E, correspond to the zeros of s4(Z; a). Performing the
change of variable Z — G using (34), we obtain

, 147 S+(G; a)
s+ | G° — sa ) =
2 161G (2802 + 2G)

with

S.(G;a) = 32G® + (—160p> — 150)G® — 24G 1 + (—98ip% + 210)G* + 192G Ap?
+ (22500 + 198402 G? — 360G Ap* — T151p%.

2
The zeros of s+(G2 — H'Tp; a) are the zeros of S;+(G; a). This is a polynomial function
of degree 8 in G. Thus, finding its zeros is not straightforward. However, some pieces of
information can be inferred by inverting the roles of G and p: we consider G as a parameter
and p becomes the independent variable of the problem. We obtain S;(G;a) = 0 for
2 _ 2 ith
P™=PE wit

»  _ GPAL+4B;
PEs12 = SA ol ’

Ap = (49G* —96G — 99) 1 + 80 G*,

(41)

1
By = 1. (A3 —51C.Dy),

Cy =45G> —72G — 143,
Dy = 32G* —15G%1 — 24Gx + 21A.

The solutions are admissible if 0 < p%ﬂ , < G2. Since G € (0, 1]and & € (0, 1), itis easy
to verify that Cy < 0 and '

Dy > (32G* —15G* — 24G + 21 > 0,
which implies By > A%/16. Thus, p%+1 < 0 and is not an admissible solution. Instead,
,0125” > 0. Since it also holds Ay — 5AC4+ > 0 and
16By — (A4 — 50C4)? = 80AC4(8G* —7G*A + 12GA +314) < 0

we have :012€+2 < G2. 1t follows that p%ﬂ is admissible VA € (0, 1) and VG € (0, 1]. For
G = 1 we obtain ,0125+2 = p4; furthermore, it can be proved that
2

dp
% ~0 VG e (0,11, ¥Yre(0,1), 42)
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see Appendix. It follows that for each |p| < p, there exists only one value of G solving
S+(G; a) = 0. Thus, for each |p| < p4 there exists only one equilibrium point of type E,
which we call E3 and which coincides with E» for |p| = p4.

The value of the only meaningful solution of S;(G; @) = 0 can be approximated with a
perturbation method. We observe that the solution of the ‘unperturbed’ problem with A = 0
is just the critical value (36). Then, we can look for a solution of the form:

G+ = \/5,0 + Zak)nk.
k>1

At third order in A, we find

—1 +4p? 14 + 6+/5p — 81p2 — 24/5p3 + 100p*
Gy =op+ T2, +6v50 ~81p V50 + 1000 5
104503 5000+/5p7
N 353 — 336+/5p — 4077 p% + 1944/5p% + 12310p* — 2400/5p° — 6600p6A3

5000000+/5p11
(43)

We apply the same technique to verify the existence of equilibrium points of type E_.
They correspond to the zeros of a function S_(G; a) equal to

S_(G;a) = 32G® + (—160p* — 351) G® — 24G + (350 1 p* + 49 1) G*
+ 192G p? + (=315 p* — 3781 p?) G* — 360 G 1 p* — 554 p*.
We have S_(G; a) = 0 for p? = ,012571 5 with
) _G*A_+4B-
PE12 = 75T o
A_=(-175G* - 96G + 189) L + 80 G*,

(44)

! (A2 +5,C_D_)
16~ o
C_ =63G*+72G + 11,
D_ = (32G* — 35G*\ — 24GA + 49x.
VG € (0,1]and VA € (0, 1) we have C_ > 0 and
D_ > (32G* —35G?* — 24G +49)) > 0.

Thus, p%_l < 0 and is not an admissible solution. Instead, p%_z >0;as5AC_+A_ >0
and

16B_ — (5.C_ + A_)? = —320AC_(2G* +3GA + 61) < 0,

we have p%:_z < G*% p%_z is admissible VG € (0,1] and VA € (0,1). For G = 1,
,0%7 , = p2; it can also be proved that

d,o%i2
dG

see Appendix. As a consequence, also in this case we obtain that there exists one equilibrium
point of type E_ for any |p| < p_. We call it E4. For |p| = p_, it coincides with E;. The

>0, Vie(0,1), (45)
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solution of S_(G; a) = 0 can be approximated in analogy with what seen above. At third
order in A, we find

9 —35p2 1305 — 108+/50 — 791002 + 420+/503 + 11025p*
6 =B+ P V5p 02 +420+/5p3 + Pt

100+/53 100000+/57
N 267309 — 313204/5p — 2226905p> + 189840+/5p3 + 5775175p* — 2646004/5p° — 4501875° I
100000000+/511 )

(46)

For p_ < |p| < p4+, the equilibrium E3 is stable as a consequence of the Poincaré—Hopf
theorem. By applying this last theorem, we also obtain thatfor0 < |p| < p—, one equilibrium
point between E3 and E4 is stable, while the other is unstable. Since E3 does not undergo
any bifurcation at |p| = p_, it is stable, while E4 is unstable.

4.1.4 About the existence of E; and E,

The coordinates X and Z of the equilibrium points E and E; are

- 1 6 - 29p%—1
X=—3p (—144«/15|,0| — 28352 +3o7) - 18000’07, 7= %.

In order to have Z € [=€&,&], itis necessary that |p| < 1/4/15. Let us call ) the square of
Y coordinates of the equilibrium points, Y7 ». It holds

s

272

( — 540000*v/15& + 3465102 +/15 — 3494415 + 2160A|p|).

V= ( — 108000*V/15 + 44110215 — 532715 + 432)L|,0|)

We have to verify whether there exist values of |p| < 1/4/15 such that Y > 0. Since
A € (0, 1), we have

— 10800p*v/15 + 4413,p2V/15 — 53215 + 4322 p| < A(— 10800p*V/15 + 441pV/15
— 5315 +432|p|) <0,
and

— 54000p*v/15 + 346510° /15 — 34947/15 + 21604| p| < A( — 54000p*/15 + 34650°v/15
—349V/15 + 2160 p|) < 0.

It follows that Y < 0, Vp € (0, 1/+/15) and VA € (0, 1). Thus, the equilibrium points E,
and E; never exist for the J-problem.

4.1.5 Summary and comparison with previous works

Here, we summarise the results for the J>-problem, and we compare them with those previ-
ously obtained by Coffey et al. (1986) and Palacian (2007).

At |p| = p4 and |p| = p—, with p; and p_ defined in (37) and (38), there are two
pitchfork bifurcations. In particular, we have that

e for p4 < |p| < 1 there exist only the equilibrium points E| and E; and they are stable;
e at |p| = p4 there is a bifurcation: E; is degenerate and coincides with E3, while E is
still stable; E3 is an equilibrium point of type E;

@ Springer



49 Page 18 of 46 I. Cavallari, G. Pucacco

A

Fig. 1 Level curves for the J>-problem. Here, p = 0.2 and A = 0.001. On the left, they are shown in the
(Z, X) plane. The black line represents the contour C of the lemon space. The blue line represents the level
curve tangent to C at the stable equilibrium point E3, while the red one represents the level curve tangent to C
at the unstable E4. The dashed black line corresponds to Z = Z, for which the level curves have a singularity.
On the right, the level curves are shown in an enlargement of the (g, G) plane surrounding the equilibrium
points. The blue dots are the stable equilibrium points corresponding to E3; the red curve is the separatrix of
the equilibrium points at g = :l:% corresponding to E4

e for p_ < |p| < p4 there exist the equilibrium points E;, E3, which are stable, and E»
which is unstable;

e at |p| = p_ there is a bifurcation: E; is degenerate and coincides with E4 of type E_,
while E and E3 are still stable;

e for |p| < p— there exist the equilibrium points E, E> and E3, which are stable, and Ejy,
which is unstable.

In Fig. 1 (left panel), we show the level curves of the closed form in the (Z, X) plane when
|p| < p—.Theblue and red lines are tangent to the contour C of the lemon space, respectively,
at the equilibrium points E3 and E4. Note that the blue line has a concavity larger than that
of C at their tangency point as E3 is stable (see 30). Also the concavity of the red line is
larger than that of C at their tangency point, which in this case implies that E4 is unstable as
follows from (31). In the right panel of Fig. 1, we show the level curves in an enlargement
of the (G, g) plane containing the equilibrium points. Here, E3 corresponds to the stable
equilibrium points at g = 0, 7 (blue dots). Instead, E4 corresponds to the two unstable
equilibrium points at g = 4 /2: the separatrix is in red. By using (43) and (46), we are able
to compute the approximated values of G+ of the equilibrium points: G+ = 0.4424 and
G_ =0.4512.

We remind that p = H/L. Through a transformation of variables and units, we can
determine the values of |H| at which the bifurcations occur in the original dimensional
system. Let us call them H and H_. From (39) and (40), we obtain

L 1 Lhu?R% 7 J3u*Ry 7 J3uCRS JF 8RS
Hy ~— (14— - — T o :

V5 10 L* 200 LS 800 L!2 L16
L huPR: 3 Ju*RY 299 J3ulRS o J3 8RS
s 10 L4 40 L8 4000 L2 L6

With the same transformation, by using (43) and (46), the values G+ (L, H) for the two
bifurcated families can be expressed as series in J,. In conclusion, by exploiting the (X, Y, Z)
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variable and the geometrical approach we have recovered the results found in (Coffey et al.
1986) and in (Palacian 2007).

4.2 The J4-problem

We study now the zonal problem containing both the J; and the J4 terms. From (7), (8), (9)
and (10), the closed form is

_LZ w*hR%(G* —3H?)  3ubJiR}
212 4G5 L3 128L5G 1
+ 24G*H?’L —36GH*L —35H*L? + G*(18H? + 5L?)

— 5G*(H* +2H?L?) + 2(G* — 15H*)(G* — L*)(G* — H*) cos 2g]
6 4
3u®J4Rp
128L5G11

— 10(G* — TH*)(L* — G*)(G* — H?) cos 2g].

Ky =

[-5G°-4G°L

[3G* —30G*H? + 35H*)(SL* — 3G?)

Let us set

After introducing it in the Hamiltonian, we adopt the same adimensional system and perform
the same transformations described in Sect. 4.1. Also for this problem, we obtain a secular
Hamiltonian in closed form with the structure of C in (18), with

—5p>+2Z +1 32

gZ,a)=

11

V2(p2+2Z+ 1)% 1682 (02 +2Z+1)7
+ (=74p* — 4dp* —10) Z — 11p° +273p* — p* -5
+4\/2,02+4Z+2(—5p2+22+1)2)+ 3Ja . (—7223
1682 (0 +2Z+1)2
+12(51p%+1) Z2+3 (=580 — 156> +22) Z—249p6+743,04—387,02+21>,

(4027 + (=840 +20) 22

3 (=29p24+2Z+1 15 —13p2 +2Z +1
PR Pl L 1)1+7A.( P )

J4
V2(p2+2Z+1)7 2 (o +2z+1)2

and a = (p; A, ja).

In the following, we discuss the dynamical behaviour of the problem for |p| € (0, 1) and
ja € [—6,6]. This range of js is coherent with the book-keeping scheme used for the
computation of the normalised Hamiltonian in Sect. 2 and its extent allows us to include
Earth and Mars. Our results are both the outcomes of analytical considerations and numerical
studies. In this case, to simplify the analysis, we fix the value of A, taking A = 0.001. We
expect the main features of the dynamics to be qualitatively similar also for other values of
A sufficiently small.

First, we analyse the stability of the equilibrium points E; and E>. Then, we discuss
the existence of the equilibrium points of type E4 and E_ and the existence of E| and
E,. Finally, we discuss their stability, and we trace a bifurcation diagram. We find out that
the stability of £; depends on both js and p. In particular, there are ranges of j4 in which
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pitchfork bifurcations occur: they affect the stability of E| and can give rise to either a
stable equilibrium point of type E_ or an unstable equilibrium point of type E. For each
Ja € [—6, 6], we also have pitchfork bifurcations affecting the stability of E,. We determine
the values p4 and p_ of |p| at which they occur. As in the J; problem, E» is unstable if the
value of | p| lies between p_ and p., otherwise it is stable. Following the pitchfork bifurcation
occurring at |p| = p4, an equilibrium point of type E is generated; similarly, for |p| < p_
there exists an equilibrium point of type E_. The stability of these points depends on both
Jja and p. An interesting result is that there are ranges of j4 where their stability changes as a
consequence of further pitchfork bifurcations, which affect the existence of the equilibrium
points £y and E,. We show that, when existing, these last ones are always unstable. Finally,
we find out that for some j4 saddle-node bifurcations also occur. They can give rise to either a
pair of equilibrium points of type E . or a pair of equilibrium points of type E_. Independent
of the type, one of the points of the pair is stable, while the other is unstable.

We recall once again that for the selected planet and the fixed value of the semi-major
axis (i.e. for the given j4 and 1), the values of p and G of one considered equilibrium point
allow us to determine the eccentricity and the inclination of the family of orbits represented
by the equilibrium point itself. In the following, we perform a general analysis not taking
into account some physical limitations, for example, the fact that the orbits corresponding to
a given equilibrium point may be collisional.

4.2.1 Stability of E;

The stability of E; depends on the sign of the product s (—&, a)s_(—E&, a). For the Js-
problem, we have

8p* + 1 (31 + 12]p] — 7p* = 5ja(3p* — 7))
A(15j5 — 1)

sp(—&,a)=2

’

and

4p* + 2 (62 + IpD) —5j4(3p° = 5))

seee =t ASjs )

For j4 > —31/35, function s+ (—&, @) has no real zeros; instead, for j4 < —31/35 there
exists a real value of |p|, |p| = pa, solving equation s (—&, a) = 0. Similarly, if js <
—12/25 there exists one real value of |p|, |p| = pv, which is a zero of s_(—¢&, a). Thus, if
Jja > —12/25 E is always stable. Instead, if —31/35 < ju < —12/25,

e for py < |p| < 1, E| is stable;
e for |p| < pv, E; is unstable.

Finally, if j4 < —31/35, it holds py > pa so that

e for py < |p| < 1and 0 < |p| < pa, E| is stable;
e for pp < |p| < pv, E| is unstable.

At|p| = pa,the degenerate E| coincides with an equilibrium point of type E. At |p| = pv,
it coincides with an equilibrium point of type E_. In the following, we call ja,,,, = —12/25
and j,0 = —31/35.
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4.2.2 Stability of E;

The stability of E> depends on the solutions of equation (29). We have

E.a) 1 16 — 80p? — X (4204 + 425)p* — (2804 + 146)p* + 204 + 9)
s4(&,a) = ——
i 2 3 ((35ja —15)p> = 5js + 1)

’

and

€. 1 16 — 80p? — A (5604 + 365)p* — (4404 + 82)p? + 40j4 + 5)

s_(&,a) =—= .
2 A((35)js—15)p2 —5js+ 1)

For A sufficiently small, V js € [—6, 6] s (&, a) possesses two real zeros at p = +p with

1 A(140js 4 73) — 40 + 4[2\/50 + (30 — 140j5)A + (47 4 255 j4 + 350,2)12

5 (844 + 85)A ’
47

Py =

and s_ (&, a) possesses two real zeros at p = +p_ with

| (2204 4 41) — 40 + 4\/100 + (160 — 5403)% — (9 — 404 — 16252)22

P==\5 (112ja + 73)
(48)
More manageable expressions are given by the series expansions
1 1+6js.  7+20j,—132j7 , ;
=— 11 A— A O (A7),
=7 ( 0 200 o)
and
1 1—8js.  15—166js + 3687 , 3
_=—11- A A o).
~=7 ( 0 ~" 200 +O()
At first order, they coincide with those found by Coffey et al. (1994). For js = ja;,, with
14 1239
Jag =1 — ?)‘ + 50 A +0 ()‘3) s 49)

it holds py = p—;if js > jayy, p— > py, while for ja < ja. o~ < p+. As in the
Jo-problem, when the value of |p| is between p_ and p4 E» is unstable; at either |p| = p
or |[p| = p_, it is degenerate and coincides, respectively, with an equilibrium point of type
E and E_. For all the other values of |p|, E> is stable.

4.2.3 Existence of the equilibrium points of type E; and E_

We use here the same strategy applied for the J>-problem. After the change of variables
Z — G, we obtain

5 14 p? S.(G;a)
s+ 67— a4 )= 2 ] 2 N
2 4G20(5G2jy — 35j4p> — G2 + 15p2)

with
S4 = (315G ju + 225G — 360G — 1155j5 — T15)ap* — 2G*(80G* + 1(35G? js
+ 49G? — 96G — 3154 — 99)) p* + G*(32G* + A(=5G? ju — 15G* — 24G — 35 j4 +21)).
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We have that §, = 0 for p? = ﬁé , where
1,2

G2 A+ + é+
E+172 = 57 é+

)

At =80G* + A ((35G* — 315) ju + 49G? — 96G — 99) ,
. A2 —5.0.D4
B =+ "%
16
C. = (63G* —231)j4 +45G* — 712G — 143,

Dy =32G* + 1 ((—=5G? = 35) ju — 15G* — 24G +21).

A

For A sufficiently small, it turns out that 0 < p%ﬂ < G%,¥G € (0,1] and Vj; € [—6, 6].

For G = 1 it holds /612E+2 = p4+. Moreover, we numerically verified that '6129+2 is increasing

with respect to G. Consequently, for each |p| € (0, p4) there exists one equilibrium point,
E3, which coincides with E; for |p| = p4. By applying the same perturbation method used
in Sect. 4.1.3, we can determine the value of G corresponding to E3. At third order in X, we
obtain

—5 — Tjs 4 20p% + 5 j4p> 1
504/5p3 25000~/5p7
— 423/5j4p + 40507 + 1215 jup? 4 70,7 p? 4+ 1208/50% + 307/5j4 0> — 500"

Gy =50+ (70 — 384y — 3927 — 30+/5p

+ 475j4p" + 1507 p*)A% + (1765 — 16569 4 — 700217 — 60711 j;

1
25000000+/5p!1
— 1680V/5p — 90725 jup — 9408+/5 j2 p — 20385p% + 86215 jyp* + 189665 7 p*

— 203353 p% 4 97207/50% 4 29160V/5j4p> + 1680752 p* 4 61550p* — 19900 4 p*
+ 2651252 p* + 533753 p* — 120008/50° + 1140075 40> + 3600757 0> — 33000,0°
— 316750j40° — 996257 p® — 5625 j3 p®)2>.

The other solution ,6%+ is only admissible for some values of j4. The analysis of the ﬁ%ﬂ

is complex, and we are forced to fix the value of A at 0.001. Anyway, we expect similar
outcomes for all values of A sufficiently small. For j4 > ja,,, Where j4,,, ~ 0.5695, there
exists a range of values of G such that 0 < ﬁéﬂ < G2. The function ﬁ%ﬂ is not monotone

oa = /mGaX ﬁgﬂ (G; ja). (50)

For |p| = pa, there exists one equilibrium point E5 of type E . Instead, for [p| < pa, there
are multiple equilibrium points of type E; they are typically two and we call them E7 and
Eyg. Also for j4 < ja, it holds ,5125+1 > (; through a numerical study, we observed that the

with respect to G. Let us set

function is increasing with G and that ,6%+1 < G2 up to a certain value of G lower than 1, for
which it holds ﬁ%ﬂ = pi. Thus, for j4 < ja,m and [p| € (0, pp) there exists an equilibrium

point E11, which coincides with E for |p| = pa.
Concerning the equilibrium points of type E_, we have

1+ p2 S_(G;a)
ja) = - - )
2 4G2)(5G2jy — 35j4p% — G2 + 15p2)

s_(G?* —
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with
S_ = (1575G? js — 315G? — 360G — 2695 j;, — 55)Ap* — 2G%(80G* + A(595G? j,
— 175G* — 96G — 1035 j4 + 189))p>
+ G*(32G* 4+ A(95G? j4 — 35G?* — 24G — 175 j4 + 49)).

S_ =0forp? = ,6%712 = —————, where

A_ = 80G* + 1 ((595G* — 1035) js — 175G* — 96G + 189) ,
. A2 —5saC_D_
Bo=" """,
16
C_ = (315G? —539) j, — 63G* — 72G — 11,

D_ = 32G* + 1 ((95G? — 175) js — 35G* — 24G +49) .

For A sufficiently small, solution ﬁ%_z is admissible VG € (0, 1] and Vjs € [—6, 6]. For

G =1 we have /6%72 = p_. Moreover, we numerically verified that 9,5 E, /0G > 0. Thus,

for each |p| € (0, p—) there exists the equilibrium point E4 which coincides with E, for
|p| = p— and whose value is

G = 3o+ 125j4,02—41j4—35,02+9)\+ 1

100+/53 100000+/57
+ 904502 p> — 18573 j4 + 68250 j4p* 4 1500v/5 jy 0> — 5432040 — 492+/5 jup
+ 100224 — 11025p% — 420+/5p° +7910p% + 108+/5p — 1305)x2

1

100000000+/3p!1
+ 1686431253 p* — 168503125} — 2170800+/5 2 p°
— 80521425 p? 4 75097235 j2 p? + 445752+/5 j2 p + 12014271 3
— 104343317 — 39598125 j4,0% — 1638000+/5j4p> + 54647375 ju p*
+ 13036805 j4p° — 22678075 jap> — 240528+/5 jap + 2929289 j4 + 4501875 p°
+ 2646007/50° — 5775175p% — 189840+/5p° + 2226905 p>

+ 313204/5p — 267309)k3.

(— 1031252p%

( — 1061718753 p° + 1137281252 p° + 24750005 j7 p°

Concerning the other solution ,5%571, its admissibility depends on j;. Here too, we set
A = 0.001. Through an analysis similar to the one done for ﬁéﬂ , we reach the following

conclusions:

o fOr j4 > jays, With ja.c ~ 0.2755, at |p| = py there exists one equilibrium solution E¢
of type E_, while for |p| < py there exist typically two equilibrium solutions of type
E_ which we call Eg and E|q; here,

py = /mgXﬁéfl(G;jat); (51
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e for js < ja, and for [p| < py there exists an equilibrium point E12, which coincides
with E for |p| = py.

4.2.4 About the existence of E; and E,

If existing, the equilibrium points £ and E; have coordinates (X, Y12, Z), Y2 = Y3 = ),
where

2
= P 4. . 3
%= — 2000 —1D)(Tjs -3
A(4375jf—5375j;‘+2550]'3—590j}+67j4—3)( PG ja=3)
+2((5ja — 1)(55125 i p* — 287003 p* — 14875 — 23130f p* + 33503
+17460j4p° + 70007 — 2835p% — 29504 + 307)
Tjs—3
148 5;4 =V/5101(125f — 25077 + 1607 — 384 + 3))),
Y

_ 65)4p* —29p% —5j4 + 1 . _
5 _ DJap 4 J4 + L Y= (—Z2+ 2%

S5ja—1
E| and E; exist if

Z e [=&, &) (52)
Y =>0. (53)

Let us remark that when ¥; = ¥, = O and X = )A((Z; ), E; and E, coincide with an
equilibrium point of type E, i.e. they correspond to zeros of s (Z; a) defined in (25). We
call po, po.bis the values of |p| for which this occurs. Similarly, when ¥; = ¥, = 0 and
X=-X (Z 1 E) E; and E, coincide with an equilibrium point of type E_. In this case, we
call p,, o bis the corresponding values of |p].

Let us set A = 0.001. If either js4 € [Jayy > Japip)> With Jay ~ 0.546 or js < ja,, with
Jaim ~ —0.4840, there exists an interval of values of |p| < ;ﬁ:; for which both conditions
(52) and (53) are fulfilled. In particular, through a numerical study, we obtain that

o in the range jay < Jj4 < jayp, With jam ~ 0.552, E; and E; exist for |p| € [po, pOl;

o for ju, < js < jayp E1and E, exist for [p| € (0, pOl; ) B

o in the range ja < Jj4 = Jjaym, With ja,e ~ —0.4886, E; and E; exist for [p| €
Loo,bis» ,OL: . .

o fOr jaypg < Ja < Jayr» With ja, ~ —1.3454, Ej and E; exist for |p| € (0, pgl;

e in the range ju ., < Jjs < Jayng» With jaye, ~ —1.3533, Ey and E; exist for |p| €
[oo, po] and for |p] € (0, po bis];

o for j4 < ja,, E1 and E; exist for |p| € [po, pOl.

We numerically verified that the equilibrium point of type £ coinciding with £ and E; at
|pl = po and |p| = po bis is E3. Similarly, we also verified that at |p| = pg and [p| = p0,pis
E1 and E; coincide with E4. Thus, p, < p+ and p < p—.

4.2.5 Stability analysis and bifurcation diagram

In the following, we discuss the evolution of the dynamics. We set A = 0.001, but we expect
similar outcomes for all values of A sufficiently small.
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We show in Fig. 2 the bifurcation diagram, where the colour lines represent the values of | p|
for which a bifurcation occurs. Some enlargements of interesting regions of the diagram are
given in Fig. 3. In Table 1, we summarise the bifurcations sequence and list the existing points
for different ranges of j4 € [—6, 6]. Through a stability analysis based on the Poincaré—Hopf
theorem, we obtain that

e |p| = p— and |p| = p4 are pitchfork bifurcations which cause a variation of stability of
E» and affect the existence and the stability of the equilibrium points E3 and Ey;

o |p| = po, |p| = popisslpl = po and |p| = p s are pitchfork bifurcations, influencing
the stability of E3 and E4 and the existence of E) and E,: when E; and E» exist, they
are unstable, while E3 and E4 are stable;

e |p| = pa and |p| = py are pitchfork bifurcations affecting the stability of £ and the
existence and stability of E1; and Ej3;

e |p| = pa and |p| = py are saddle-node bifurcations; they have no consequence on the
stability of existing equilibrium solutions, but give rise to an even number of equilibrium
points of type E and E_, half of which are stable, while the other half is unstable.

To explain how to read the bifurcation diagram, let us fix a value of j in the range (ja;, » 6),
which is of interest for the Earth (j4 ~ 1.3) and Mars (js ~ 4).Itholds p— > p4 > py > pa.
For each |p| E is stable. Moreover,

for |p| > p—, Ey is stable;

at |p| = p—, there is a bifurcation: E» is degenerate and E4 coincides with Ej;

for p+ < |p| < p—, E» is unstable and Ej is stable;

at |p| = p4, there is a bifurcation: E; is degenerate and coincides with E3; Ey is stable;

for py < |p| < p+, E2 and E4 are stable, while E3 is unstable;

for |p| = pvy, E> and E4 are stable and E3 is unstable; there also exists the equilibrium

point E¢ which is degenerate;

e for py < |p| < pvy, E2 and E4 are stable and E3 is unstable; there exist the equilibrium
points Eg and E1o: one of them is stable, the other is unstable;

e for |p| = pa, E7 and E4 are stable; E3 is stable; one between Eg and E | is stable, while
the other is unstable; there also exists the equilibrium point E5 which is degenerate;

e |p| < pa, E> and E4 are stable; E3 is stable; one between Eg and E g is stable, while

the other is unstable; there exist the equilibrium points £7 and Eg: one of them is stable,

the other is unstable.

In Fig. 4, we show the level curves in a neighbourhood of the bifurcations |p| = p_ and
|p| = p4. It is interesting to compare the phase portrait in Fig. 4d with the one shown in
Fig. 1 for the Jp-problem: the concavities of the colour curves tangent to the contour of the
lemon space are opposite. Indeed, in this case, E3 is unstable and E4 is stable. In Fig. 5, we
show the level curves in a neighbourhood of the two bifurcations |p| = py and |p| = pa.

Another significant range of values of j4 iS (jay,, jaye )- Here, itholds py > p_ > p >
Po > py > pa. When |p| > p, the dynamical evolution is similar to that occurring in the
Jo-problem. Instead, for |p| < p., it has the same features of the one obtained for j4 > jap;f
when |[p| < p4. The link between these two situations is established by the bifurcations
|p| = po and |p| = p,, which cause a variation in the stability of the equilibrium points E3
and Ejy4:

e for p < |p| < p—, E2 and Ej3 are stable, while E4 is unstable;

e for |p| = p, E2 and E; are stable; the equilibrium points E1 and E, coincide with Ey4
and are degenerate;

e for p, < |p| < pO E2, E3 are stable; E| and E, are unstable, while Ey4 is stable;
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Fig.2 In the upper panel, we
show the bifurcation diagram for
the J4-problem with A = 0.001.
The lower panels show two
enlargements of the diagram.
Further enlargements of
interesting regions are shown in
Fig.3. The blue and the orange
lines represent, respectively, p4
defined in (47) and p— defined in
(48); the purple and the yellow
line represent, respectively, pa
and py, defined in Sect. 4.2.1;
the light-blue line and the pink
line represent, respectively, pa ,
defined in (50), and py, defined
in (51); finally the green line, the
dark-red line, the light-green line
and the red line represent,
respectively, po, o7, Po,bis and
P bis» defined in Sect. 4.2.4
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Fig.3 We show some enlargements of interesting regions of the bifurcation diagram in Fig. 2

e for |p| = po E7 and E4 are stable; E; and E, coincide with E3 and are degenerate;
e for py < |p| < po, E2 and E4 are stable and E3 is unstable.

In Fig. 6, we show the levels curves in a neighbourhood of the bifurcations |p| = p, and
|p] = po. At the bifurcation |p| = pp, in the (Z, X) plane there is a level curve intersecting
the contour of the lemon space at Z = Z: the intersection point is Ey4, coinciding with E|
and E,. In all the range of values of |p| such that E; and E, exist, there is a level curve for
which Z = Z isnot a singularity. When |p| = p, the intersection point is E3.

Note that for values of j4 lower and higher than ja,,, , the stability of E3 and E4 is different
when they appear after the occurrence of the bifurcations |p| = p4 and |p| = p—. A similar
result was also found by Coffey et al. (1994). Here, the authors argued that this change of
stability occurs at j4 = 1, i.e. when we deal with the so called Vinti problem. Instead, we
observe that the variation of the stability occurs at ja,;, given by (49), which depends on A.

To conclude, let us remark once again that the above analysis is general and it does not care
about particular physical limitations. For example, one can notice that for low |p|, the value
of G characterising the equilibrium points is typically small. This implies a large eccentricity.
There is then the risk that the resulting distance of the pericentre is smaller than the central
body’s radius. In such a case, the resulting equilibrium cannot physically exist. For example, if
we consider the case of Mars, the equilibrium points resulting from the bifurcations |p| = py
and |p| = pa do not exist for A = 0.001.

4.3 The J,-problem with relativistic terms

We study now the zonal problem containing both the J; and the relativistic terms. From (7),
(8), (9) and (10), the closed form is
w | phRL(G? - 3H?) w? 5G — 8Ly + 3ubJ3R},
212 4G5L3 2LAG 128L5G!!
+24G*H?L —36GH*L —35H*L* + G*(18H? + 5L?%)
—5G*(H* +2H?L?) + 2(G* — 15H%)(G?* — L*)(G* — H?) cos 2g|
,u612R%
8c2L>G7
—9(L* — G*)(G? — H?) cos 2g].

Ke=— [-5G°-4G°L

+ [(G* = 3H*)(6L* — 5G*) — 6(G* — 3H*)(4G* — 3GL — 5L?)

We neglect here the J4 terms to make evident the effects of the relativistic contribution.
We adopt the same non-dimensional system described in Sect. 4.1. Let us set
1

]C:m,
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Fig. 4 Level curves for the J4-problem with j4 = 1.3 for four different values of |p|. On the left, the levels
curve are represented on the (Z, X) plane. Enlargements of the regions containing the equilibrium points are
performed. The black line represents the contour C of the lemon space. The dashed black line corresponds to
Z = Z, at which the level curves have a singularity. The coloured line is the level curves tangent to C at the
equilibrium points: they are green if the equilibrium point is degenerate, red if it is unstable and blue if it is
stable. On the right, the level curves are shown on corresponding enlargements in the (g, G) plane
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Fig. 5 Level curves for the J4-problem with j4 = 1.3 for four different values of |p| in the (Z, X) and the
(g, G) planes. Enlargements of the regions containing the equilibrium points are performed. The same colour
code employed in Fig. 4 is used
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Fig. 6 Level curves for the J4-problem with j4 = 0.95 for four different values of |p| in the neighbourhood
of the bifurcations |p| = p and |p| = po on the (Z, X) and the (g, G) planes. Enlargements of the regions
containing the equilibrium points are performed. The same colour code employed in Fig. 4 is used
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with A defined in (32). We recall that A was considered of the same order as the book-keeping
parameter €. Since the normalisation of the initial Hamiltonian was performed by assuming
¢ 2 of order € as well (see Sect. 2), jc should have a value in the neighbourhood of 1 or
lower. If this was not the case, the book-keeping scheme used to compute the closed form
would not be suitable anymore. Let us also remark that in the adimensional system the value
of ¢ and, thus, that of jc depend on the units of length and time, i.e. on the semi-major axis
of the orbit of interest.

We introduce A and jc in the Hamiltonian. Then, we neglect the constant terms and
we perform the time transformation (33). Also for this problem the resulting normalised
Hamiltonian has the same structure of (18), with

—5p2+27Z +1 35/2 4Z+2-16 3A
g(Z,a)=——2 P2 s +icy potaz+2 7 (407?

\/E(,O +22+1)2 V202 +4Z 42 16\/5(/)2+2Z+1)2

+ (—84p% +20) Z? + (=74p* — 44p* —10) Z — 11p° +273p* —
(=5 27 +1

—S&+ 4207 +4Z +2(=5p2 +2Z +1) )+’C (5742241 (g0
2V/2 (p? +2z+1)f

+ 18v/2p2 +4Z +2 — 58Z + 43),

3 +2z+1 184j

2 V(2 42Z+1)7  VA(p+2Z+1)

anda = (p; A, jc). If we neglect the terms of first order in A, we find two potential equilibrium

solutions at )
1 —4j —4j 14+/—-80jcp?+1
7= Jjcp Jc + : Jjcp + ! vX.Y. (54)
Jc

oo

In the following, we make some considerations about the problem considering A € (0, 1). For
this problem, we perform a qualitative analysis. We find out that for jc <« 1, the sequence
of bifurcations is the same as in the J, problem. On the contrary for higher values of jc, the
dynamical evolution is more complex and depends on the values of A and jc. The existence
of a pair of equilibrium points of type E, one stable and the other unstable, is triggered
by a saddle-node bifurcation. The unstable point can become stable following a pitchfork
bifurcation, which affects the existence of the equilibrium points E1 and E». The stable one
can disappear following a pitchfork bifurcation, which changes the stability of the equilibrium
point E>. A similar sequence of bifurcations occurs also concerning the equilibrium points
of type E_. If none of the bifurcations affecting the stability of E, occur, this point is always
stable. The equilibrium point E| is always stable.

4.3.1 About the stability of E;

We have
(8p% — 1101p* + 84|p|3 1 + 186102) jc + 8p* — Tap? +12A|p|+3u
si(=€&;a) =
r(12jcp? =1T)
(55)
and
4p% — 612, 42|pPx + 99202 4 6 m
s (—E1a) = (4p® p* +42|pPk + 994p%) je + 4p* + 61|p| + (56)

r(12jcp* —1T)
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It holds
0% (—=110p> + 84|p| 4+ 186) > 0 Vp € (0, 1),
and
p?(—61p* +42|p| +99) > 0, Vp € (0,1).
Thus, if p% > 7/12jc, both s, (—&; a) and s_(—&; a) are positive; instead, if p> < 7/12jc

they are both negative. From (28), we can conclude that E; is always stable. Moreover, E
never coincides with an equilibrium point of either type E4 or E_.

4.3.2 About the stability of E;

We have

Ea) o 42500% + (1672jch — 146 + 80)p® — 392jch + 64jc + 9% — 16 -
S+ 2(—15p2 + 24jc + DA '

It holds s (&; p) = 0 for |p| = p4, with

—836jcr + 731 — 40 + 4\/43681]‘%12 + 2784 jc )2 + 2480jch + 9422 4 60X + 100

o= 4255, ’
(58)
which is positive, thus admissible, if either A > 4% ori < % and jc < 64 392A We also
have
365 1768 jcr — 82X\ + 80)p~ — 488 jcA + 64 5)1—16
5 (6 a) = p* + (1768 j¢ + 80)p2 Jch +64jc + (59)

2(—15p% + 24jc + DA ’

and s_(&; a) = 0 for |p| = p—, with

—884 ) + 414 — 404—4v@884112A24—6602jCA24—2960ch——9A2—+160A—+100
3651

P2 =

(60)
52 > 0Oif either A > 681 orx < 68] and jc < 6467188/\ Let us remark that for & < 61 it holds

16—5 16—95
gi-a38r > =302 - Lhus, if o4 > 0 is an admissible solutions, also p_ is admissible.

For each X and j¢ such tpat both p_ and p are admissible zeros of s (€, a) and s_ (€, a),
itholds p— > p4 if jc > jc, with

~ 3971 — 180 + /14232112 — 18004 + 32400
Jc = .
A

Let us now consider equation (29). If » and jc are such that neither o_ and p are admissible
zeros, then E; is always stable. Also for jc = fc, E, is always stable, except when |p| =
p+ = p—:inthis case, it is degenerate. If A and j¢ are such that p_ is an admissible solution,
while ,53_ < 0, E; is stable for |p| > p_, it is degenerate at |p| = p_ and is unstable for
|p| < p—. Finally, if both p_ and p are admissible solutions, E3 is unstable when the value
of |p| lies between p_ and p, it is degenerate if either |p| = p_ or |p| = p4 and it is stable
for all the other values of |p|. When |p| = p4, E» coincides with an equilibrium point of
type E4. When |p| = p— it coincides with an equilibrium point of type E_.
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4.3.3 About the existence of the equilibrium points of type E; and E_

To discuss the existence of equilibrium points of type E; and E_, we use here the same
strategy adopted for the problems previously analysed.

We have
5 14p? S+(G; a)
sy | G7 — ;a) = - )
2 4G20(24G*jc + G — 15p?)

with
S:(G; a) = (=225G>A + 360G A + T151) p* + (=2080G® jc i + 1728G> jea
+ 160G +3696G* jc i + 98G*A — 192G31 — 198G21) p?
+ 128G "9 j¢ + 320G jcr — 384G jer — 32G® — 720G0 joa
+ 15G%x +24G° 1 — 21G*.

We obtain S, (G; a) = 0 for p? = 1512E+1 ) with

G2 Ay £4,/B,
IOE+|_2 = 5 C~r+

AL = —(—1040G" jc + 864G jc + 1848G? jc +49G? — 96G — 99) — 80G*,
_ AZ +5.C.Dy 5

By= T G- —45G* +72G + 143,

Dy = (=320G*jc+384G> jc +720G% jc —15G* —24G +21)A—128G® j¢c + 32G*.

; (61)

Note that for G* < 1/4jc, Dy > 0 instead, for G2 > 1/4jc, A} < 0. Thus, VA, Vjc, VG,
[)%Jr2 < 0 and it is not admissible as solution. While /512:”+1 > 0if G, A and j¢ are such that
Dy > 0. Since 50C4 — Ay > 0 and 16B, — (5,Cy — AL)? < 0, it holds ,5,25+] < G~
When admissible, ﬁ,zsﬂ is generally not monotone with respect to G. However, for jo = 0
it is equal to the same solution found for the J>-problem, i.e. ﬁéﬂ = '012€+2 (see Sect. 4.1.3).
As a consequence, we expect that for sufficiently small values of jc, ,5%5+ is an increasing

function of G in the range of interest, i.e. G € (0, 1]. In this case, for |p| < p, there exists
only one equilibrium point of type E_ . Instead, for higher values of jc, such that ﬁfiﬂ is not

monotone, the outcome is different. Let us call pg the value of |p| such that
pe = |/max ;3122 .
G +1

e for [p| > p¢, there is no equilibrium point of type E;

e for [p| = p¢, we have one equilibrium solution, which we call E3;

e for |p| < pe there exist multiple equilibrium solutions, typically two which we call E5
and E17.

‘We have that

Let us suppose that the Z coordinate of E7 is larger than that of Ej5. When A > 4—89 or when
A< % and jo < %, E; coincides with Eq7 for |p| = p4+. Thus, for |p| < p4, the
number of equilibrium solutions reduces to one: there will exist only Es.
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In conclusion, we can infer that reducing the value of jc,the value G = G ¢, corresponding
to the maximum point of |/5129+] |, increases. For a fixed A, it exists a value of jc such that
G¢ = 1, i.e. for which py = p4. Thus, for lower values of jc, the bifurcation |p| = pe
disappears and the only existing equilibrium point of type E; is E5 for |[p| < p4.

As far as the equilibrium points of type E_, we have

IR LA 5_(G;a)
- 2 4G2r(24Gjc + GZ — 15p2)

with
S_(G:a) = 315G*A + 360G + 550) p* 4+ (—2560G° jc A 4 1728G? je i + 160GS
+ 4368G* jeh — 350G A — 192G A + 378G?1)p? + 128G jc
+ 608G jca — 384G jer —32G® — 1200G jea + 35GOA
+ 24G>) — 49G*A.

It holds S_(G; p) = 0if p? = ,5,2?71 - with

y G2A_+4/B_
= laE =
-1,2 SA C_
A_ = (1280G*jc — 864G? jc — 2184G? j¢ + 175G + 96G — 189)1 — 80G*,
A2 +5.C_D_

B, = — C_ =63G* +72G + 11,

(—608G* jc + 384G jc + 1200G?% jc — 35G? — 24G + 49)A — 128G jc + 32G*.

One can observe that for G2 < 1/4jc, D_ > 0 and that for G2 = 1/4jc, A_ <. Thus,
VA, Yjc and YG, 5,25_2 < 0. Instead, for G, jc and A such that D_ > 0, ,5,%:_1 > 0. Since
50Cy — Ay > 0and 16B4 — (5ACy — A4)? < 0, it also holds 5%_1 < G2. Thus, there

exist values of G, jc and A such that ,5,25 is an admissible solution. As ,6%+ , in general
~1 1

) , (62)

D_

the function 52 is not monotone with respect to G. We find an outcome similar to the one

obtained for the equilibrium points of type E. Let us consider sufficiently high values of
Jjc such that ,5% is not monotone and let us set
—1

— ~2
OE = /mca;lxpEil.

e for |p| > pm, there is no equilibrium point of the type of E_;

e for [p| = pm, we have one equilibrium solution, which we call E4;

e for |p| < pm there exist multiple equilibrium solutions, typically two which we call E1¢
and Eqg.

Suppose that Eg has a larger Z coordinate than E1s. When A > 6% or when A < 6% and

‘We have that

jc < 6‘1‘6_7%, at |p| = p— Ejg coincides with E; and for |p| < p_ it disappears. For a
fixed XA, by considering decreasing values of jc the value of G, G = Gg, corresponding
to the maximum point of ﬁé , increases. Below the value of jc for which pg = p—, Gm
does not belong to the admissible range of values for G. In these cases, there only exists the
equilibrium point E ¢ for [p| < p—.
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4.3.4 About the existence of E; and E»

The coordinates X and Z of the two equilibrium points of type £ are

51 —24jcp® +/1440jcp +1—24jc — 1
T 48 jc ’

and

1 1
20736 125, ((720jep? + 1/ 1480jcp? + 1~ 1440jcp? 1)

<+ 144+/3 j22((103680,j& p* + 3312jc p* + 5)y/ 1440 p2 + 1
)\/,/1440jcp2+ 1—-1
Jc

)_(:

— 11923202 p* — 6912jcp — 5 + (361428480 3p*
+ 27552960 j2 10" + 39035522 Ap? — 3369600 j& p* 4 19584 j21p?

+ 108021 — 17280c p* — S1jca — 14),/1440jc p? + 1 — 5244134400 ¢ p°
— 2892049920 j¢2p* + 5598720002 p° — 54872640 j2 p* — 4681152 j3 1p>

+ 121824002 p* + 1713622.p% — 108021 + 27360 jc p* + 51 jch + 14).

» 12jc

jc and A, it can exists a subset of values of p such that J > 0, i.e. such that El and Ez
exist. The endpoints of this range are values of p for which E| and E» coincide with either
an equilibrium point of type E; or E_. Let us call p, the value of |p| such that Eq and
E; coincide with an equilibrium point of type E. and p the value of |p| such that they
coincide with an equilibrium point of type E_. We can conclude that necessarily p, < p¢
and po < pm- For jc — 0 we obtain instead the same outcome found for the J,-problem:
for sufficiently small values of jc, there does not exist any value of p for which E, and E
exist.

To have Z € [€, €], p2 < min (24]%“ 7 ) Letus set ) = )712,2' In general, for given

4.3.5 About the stability of the equilibrium points of type £, and E_ and of E; and E,

Let us consider value of jc sufficiently high, such that Es, E16, E17 and E1g exist. We
can assume that these equilibrium points are close to the equilibrium solutions (54) of the
problem at order zero in A. With this hypothesis, we can estimate their stability. To this aim,

we need to assume jcp? < 1/80. At order zero in A, we obtain the same equations for the
equilibrium points E;5 and Eg, i.e.

2% 2%
d*X d°X . 3 6 2 4 )
—t — ~ 16,/—80]cp2+1(—144000jc,0 +28400jzp" — 880jcp” + 7+

dz? dz?
—80jc p? + 1(100002 p* — 600 jc p* + 7)),

The same holds for E{7 and Eg:
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dziidz ~ 16,/ —80; +1(144000 28400 & p* + 880jcp> — 7 +
2 Eon jcp jer® jc jep

J=80jcp? + 1(10000,2p* — 600 jcp* + 7));

From the equations, we obtain that for 7/810 < jc¢ p2 < 1/80, E15 and Eg are unstable,
while Ej¢ and E7 are stable; instead for jc,o2 < 7/810, E15 and E17 are both stable,
while Ej¢ and E1g are both unstable. From this zero-order analysis and by applying the
Poincaré—Hopf theorem, we can infer the actual dynamical evolution:

for |p| = p¢, there exists one equilibrium solution E13 which is degenerate;
for po < |p| < pe. there exist E15, which is unstable and E7, which is stable;
for |p| = po, E15 coincides with E; and E; and it is degenerate; E7 is stable;
for |p| < po, both E5 and E;7 are stable.

Something similar occurs concerning the equilibrium points E1¢ and E1g:

e for |p| = pm, there is one equilibrium solution E14 which is degenerate;

e for po < |p| < pm, there exist the two equilibrium solutions E¢ which is stable and
E1g which is unstable;

e for |p| = pO, E16 coincides with E; and E; and it is degenerate; Eg is unstable;

e for |p| < pm, both Ey7 and E ;g are unstable.

If po < po, E; and E, are unstable. On the contrary if pq > po E; and E, are stable.
Finally, if » > 4% orif A < 4% and jc < %, for |p| < p4+ Ej7 disappears, while the
stabilitzz of Eis ‘remains unalt.ered. Similia.rly, if A > % orif A < 6% and jc < %, for
|p| < p— Eg disappears, while the stability of E1¢ does not change.

In conclusion, we have that

e |p| = pm and |p| = p¢ are saddle-node bifurcations, affecting the existence of the equi-
librium points Es, E17, Ej6 and E1g; for |p| > max(om, p¢) no equilibrium solution
exist;

e |p| = po and |p| = pp are pitchfork bifurcation affecting the stability of the equilibrium
points E15 and E¢ and the existence of E; and E»;

e if existing, |p| = p+ and |p| = p— are pitchfork bifurcations affecting the stability of
E; and the existence of E7 and Eg.

We give an example of the dynamical evolution setting . = 0.001 and jc = 0.2. This last
value is not realistic, but allows us to clearly illustrate the phenomenology just described. It
holds pm > pe¢ > po > pO > p— > p4. After the saddle-node bifurcation at |p| = pm
(Fig. 7a), for p¢ < |p| < pm there exist the unstable equilibrium point Eg and the stable
E16 (Fig. 7b). After the second bifurcation (Fig. 7c), for p, < |p| < pe there exist also E7,
which is stable, and E|5 which is unstable (Fig. 7d). At |p| = ps E15 coincide with E; and
E> and it is degenerate (Fig. 8a). For = pg < |p| < po, E15 is stable and Ey and E» exist
and are unstable (Fig. 8b). At |p| = pO, E17 coincides with E| and E, and it is degenerate
(Fig. 8c). After this last bifurcation, for p_ < |p| < pO, E| and E> donotexist, E1s and E17
are stable, and E¢ and E1g are unstable (Fig. 8d). After the last two bifurcations at |p| = p_
and |p| = p4, there only exist the equilibrium point E1s, which is stable, and E¢ which is
unstable (Fig. 9).

If jc < 1,suchthatonly the equilibrium points E16 and E5 exist, the dynamical evolution
has no significant variation in comparison with the one of the J>-problem. It is the case of
the Earth problem, since the values of j¢ are typically very small (of the order of 107°).
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Fig.7 Level curves for the J,-problem with relativistic term with jc = 0.2 and A = 0.001, for four different
values of |p| € (po, om]- On the left, the levels curve are represented on the (Z, X) plane. Enlargements
of the regions containing the equilibrium points are performed. On the right, the level curves are shown on
corresponding enlargements in the (g, G) plane. The same colour code used in Fig. 4 is employed
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Fig.8 Level curves for the J,-problem with relativistic term with jc = 0.2 and A = 0.001, for four different
values of [p| € (p—, pol. On the left, the levels curve are represented on the (Z, X) plane. Enlargements
of the regions containing the equilibrium points are performed. On the right, the level curves are shown on
corresponding enlargements in the (g, G) plane. The same colour code used in Fig. 4 is employed

@ Springer



Bifurcation of frozen orbits in a gravity field with zonal... Page410of46 49

Fig.9 Level curves for the J,-problem with relativistic term with jo = 0.2 and A = 0.001 and for a value of
|p| < p+.Enlargements of the regions containing the equilibrium points are performed. On the right, the level
curves are shown on corresponding enlargements in the (g, G) plane. The same colour code used in Fig. 4 is
employed

Considering that pm, p¢ ~ ﬁ and p, p ~ /ﬁ in first approximation, our results

are consistent with the outcomes of Jupp and Brumberg (1991).

5 Conclusions

We have described the existence and stability of frozen orbits in a gravity field expanded in
even zonal terms. The main focus has been given on the power of the geometric analysis of the
reduced dynamics to highlight the main features of these systems as they are determined by the
presence of stable and unstable families. In this respect, the study has been limited to the J> and
J4 problems and to the relativistic corrections, showing the ability of the geometric invariant
method to easily reproduce known results and predict new features of higher-order terms.
The atlas of possible perturbations is wide, and several other terms could be added. For many
of them, this approach requires very few changes and immediate results. For example, low-
order tesseral terms, averaged in order to preserve Brouwer structure, can be easily analysed
(Palacian 2007) without qualitative new results. Additional efforts are required for more
complex perturbations. Higher-degree zonal terms (Jp; with k > 3) are the most promising
since the symmetry of the problem is preserved. Preliminary results like those presented in
Coftey et al. (1994) can be extended with a little effort. More general cases (odd zonal terms,
higher-order tesserals, third-body effects, etc.) require a stronger commitment. However, in
these cases, it is quite probable that difficulties arise more from the implementation of the
closed-form normalisation (Palacidn 2002; Cavallari and Efthymiopoulos 2022) than from
the use of the reduction method.
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Appendix: Proof of inequalities (42) and (45)
We start by proving relation (42). We have

dop,, 1 G
- (—D+,/B++)\E+\/B++F+),

dG 5L C2JB;

where

D, = —14400G® + 28800G> + 68640G*,

E, =4410G* — 14904G> — 14204G> + 48312G + 28314,

Fi =20G*Dy + A( — 21600G® + 154080G7 — 285920G° — 237600G> + 1006720G*)
+ A2(—=129960G° + 470664G> + 679088G* — 2114832G>
— 2381760G> + 1287528G + 1774344),

and where By is defined in (41). It holds dp%:ﬂ/dG > 0 if

—D+\/ B+ + )\.E.},—\/ B+ + F+ > 0.

It is straightforward that D, > 0 and E > 0. Moreover,

Fy > ( — 288000G'? 4 576000G° + 1351200G® + 154080G” — 415880 G® + 233064 G°

+ 1685808G* — 2114832 G> — 2381760 G* + 1287528 G + 1774344)/\2 > 0.
Thus, we need to verify whether
(AE+\/H+ F+)2 —D2B, > 0.
Since B, > (400G3 4 240G*x + 37612%) > (20G* + 61)2, we have
(AE+\/E+ F+)2 —D2B, > My,
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with
My = *EXBy + F7 4+ 20EL FL(20G* + 6)) — D3 B,
@44 2,03),3 @2 M
=M+ M3+ M0+ m,
where

MY = 23910365700 G'2 — 181225103760 G + 120523638672 G '°
+ 1700153452368 G° — 1988897297356 G® — 7508533086240 G’
+ 6377312862144 G + 19130049303840 G° — 4594353603924 G*
— 23486016392784 G* — 4409791599312 G
+ 10749794943888 G + 4994571648924,
MY = —160G*(103329675G'0 — 563720310G° — 911841039G*® + 7739401536G”
+ 2782008506GS — 39130317372G> — 12624306282G* + 84930202896G>
+ 49983903915G2 — 50940897150G — 39230486295),
MP = 1600G®(2772225G® — 11651040G7 — 19496340G® + 86266224G>
+ 106893822G*
— 176211648G*> — 404205252G* — 24689808G + 315589417),
M"Y = 768000G'2(—30G? + 60G + 143)(45G> — 712G — 143)>.
We have Mj_l) > 0, Mj_l) + M_(,_Z) > 0, M_(‘_l) + M_(E) + M_(B) > 0 and Mf) > 0 VG; thus,
using A < 1, it holds
My > MP + M+ MP + M4 > 0.

Now, we prove relation (45). We have

dp?
£y _1_G (-D-VB- +1E_ VB +F.),

dG ~ SAC:.J/B_

where

D_ =20160G® + 28800G° + 5280G*,

E_ =22050G* 4 43848G" 4 21524G? — 10440G — 4158

F_ =20G*D_(G) + A( — 846720 G® — 1441440 G” + 519680 G°® + 1680480 G°
+ 352000 G*) + 2?(617400 G° + 1375920 G + 392 G*
— 1902192 G* — 968664 G + 554208 G + 211288),

and B_ is defined in (44). It holds dp%_z/dG > 0if

~D_/B_ +AE_\/B_+ F_>0.

It is straightforward that D_ > 0 and
F_ > ( — 1693440 G3 — 2882880 G” + 1656760 G® + 4736880 G’

+ 704392 G* — 1902192 G? — 968664 G* + 554208 G + 211288)A2 > 0.
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Instead E_ > 0 VG > 0.5, while its sign changes if G < 0.5. Let us consider G € (0, 0.5];
we need to verify whether

F? —(=D_+AE_)*B_ > 0.
It holds
F? —(=D_ +xE_)*B_ = P34 4 P93 4 @32 4 P,
with
PY = 205663657500 G'? + 1286808541200 G'! + 2740720809456 G '°
+ 1509967832688 G° — 2841942124116 G® — 4558328657760 G’
— 1319583449472 G® + 1104354441696 G° + 231876171316 G*
— 430214668464 G> — 18111422832 G2 + 89372757936 G + 17827435780,
PY = —160G*(4650179625G'0 + 21853893474G° + 31457092779G® — 4333755960G”
— 49586843494G° — 32290996788G" + 11675441446G* + 12857914248G*
— 2955589987G> — 3112286430G — 456484721),
P2 = 1600G*(568229823G® + 2010142008G” + 1564140924G° — 2245174056G°
— 3853671558G* — 789759288G> + 1195807132G? + 548335656G + 61908319),
P = —768000G'2(42G? + 60G + 11)(10647G* + 11808G>
— 22398G? — 29664G — 5269).

For G < 0.5, we have Pfl) > 0, Piz) > 0, PES) > 0 and P£3) + P£4) > 0; thus,
F2 —(=D_ +2E_)*B_ > 3*(P® + PDy 4+ p@32 1 pWy > 0.

Let us now consider G € [0.5, 1]. In this case, we need to verify whether

2
(AE_,/B_ + F_) —D2B_>0.

Since B_ > 400G3,

(AE_JE+ F_)2 ~D*B_> M.,

with
M_=)*E>B_ + F2 +40AE_F_G* = D>B_ = M“* + MO + M2 + MV,
where
MY = 976780822500 G'2 + 4476174696000 G'! + 5453865257400 G'°

— 5086142681760 G° — 16601363592772 G® — 7099182483456 G’

+ 11816572141456 G° + 11183433731136 G° — 1358260437988 G*

— 4012690481472 G° — 434866063560 G + 421070887776 G + 86153421508,
M® = —320G*(3267280800G'0 + 12799767015G° + 9651811113G® — 23608483416G

— 41966083012G® — 5277158466G" + 28856284782G* + 14899437888G"
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— 4161615732G? — 3404287293G — 463072687),
M® = 1600G®(102880449G® + 321838272G” + 208527732G° — 295032528G"°

— 233557962G* + 563365728G> + 780379476G? + 285203952G + 31226833),
MY = 768000G'2(42G? + 60G + 11)(63G> + 72G + 11)2.

For0.5 <G < l,wehave M\" > 0,M? > 0,MP + M > 0and MP +MP + M >
0; thus,

M- > M + MY + MPt+uPi o
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