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Abstract
Rapid trajectory design in multi-body systems often leverages individual arcs along natural
dynamical structures that exist in an approximate dynamical model. To reduce the complexity
of this analysis in a chaotic gravitational environment, a motion primitive set is constructed to
represent the finite geometric, stability, and/or energetic characteristics exhibited by a set of
trajectories and, therefore, support the construction of initial guesses for complex trajectories.
In the absence of generalizable analytical criteria for extracting these representative solutions,
a data-driven procedure is presented. Specifically, k-means and agglomerative clustering are
used in conjunction with weighted evidence accumulation clustering, a form of consensus
clustering, to construct sets of motion primitives in an unsupervised manner. This data-driven
procedure is used to construct motion primitive sets that summarize a variety of periodic orbit
families and natural trajectories along hyperbolic invariant manifolds in the Earth–Moon
circular restricted three-body problem.

Keywords Multi-body systems · Clustering · Motion primitives · Dynamical systems theory

1 Introduction

Human exploration of the lunar surface through a cislunar waypoint, robotic exploration of
asteroids and planetary systems, and the use of advanced space telescopes all require the oper-
ation of spacecraft in chaotic, multi-body gravitational environments (Bosanac et al. 2019;
Restrepo et al. 2018; Whitley et al. 2018). These types of missions necessitate a rapid and
intuitive trajectory design process that enables the design of complex trajectories during con-
cept development and, potentially, post-launch. In multi-body systems, one current approach
to rapid trajectory design begins with generating a large database of solutions discretized

B Thomas R. Smith
thomas.smith-1@colorado.edu

Natasha Bosanac
natasha.bosanac@colorado.edu

1 Colorado Center for Astrodynamics Research, Smead Department of Aerospace Engineering Sciences,
University of Colorado Boulder, 3775 Discovery Dr., Boulder, CO 80303, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10569-022-10063-x&domain=pdf
http://orcid.org/0000-0001-8866-8686
https://orcid.org/0000-0002-7821-9171


7 Page 2 of 33 T. R. Smith, N. Bosanac

along families of fundamental solutions such as periodic and quasi-periodic orbits (Folta
et al. 2015; Parker et al. 2010). Similarly, analysis of the natural transport of celestial bodies
throughout a multi-body system leverages the generation of stable and unstable manifolds of
periodic and quasi-periodic orbits (Koon et al. 2011). Specialized design tools then support
the exploration and analysis of these families of solutions to identify arcs that are assembled
to form an initial guess for a trajectory (Guzzetti et al. 2016). However, searching over a
large and complex design space may impede analysis because it requires significant time and
resources from a human-in-the-loop. Accordingly, strategies for simplifying the analysis of
the design space support effectively exploring and leveraging natural motion for increasingly
complex mission concepts, mission extensions, and real-time operations as well as the study
of natural transport in a multi-body system.

To support continued advancement in trajectory design, the concept of amotion primitive is
used in this paper to summarize sets of trajectories in amulti-body system.Amotion primitive
may be described as an average representation of a range of similar solutions. This concept
has been explored extensively in robotic motion planning, transportation applications, and
human body gesture analysis (Frazzoli 2001; Jenkins and Mataric 2002; Paranjape et al.
2015; Reng et al. 2005; Wang et al. 2018). In each of these fields, motion primitives are
used to decompose complex actions or paths into a finite set of representative components,
either via analytical or data-driven techniques. This paper focuses on applying this concept
to the analysis of multi-body systems by constructing a motion primitive set that summarizes
the characteristics of a set of trajectories seeded from a family of fundamental solutions;
this definition is motivated by the eventual goal of reducing the complexity of analysis for a
human analyst or in autonomous path planning.

In this paper,motion primitives are used to summarize trajectorieswithin amulti-body sys-
tem and in amanner that does not place a significant burden on a human analyst. Often used in
preliminary trajectory design or the analysis of natural transport within multi-body systems,
the circular restricted three-body problem (CR3BP) admits a solution space that exhibits
distinctly different sensitivities in various regions and energy levels (Szebehely 1967). How-
ever, families of fundamental solutions supply a useful representation of the solution space
(Guzzetti et al. 2016; Haapala et al. 2015; Koon et al. 2011). Thus, as a proof of concept,
motion primitives are constructed to summarize families of periodic orbits and hyperbolic
invariant manifolds in the CR3BP. In contrast to traditional applications in robotics, solutions
with the same characteristics as amotion primitive in a specific systemmodeled by theCR3BP
only exist within a limited region of the phase space; yet, the terminology motion primitive
still applies as the associated representative trajectory summarizes similar solutions and may
support initial guess construction during the trajectory design process. One challenge, how-
ever, in extracting a set of motion primitives in the CR3BP is that generalizable and exact
analytical criteria for grouping solutions along a family according to both qualitative and
quantitative characteristics do not currently exist. Thus, clustering, an unsupervised learning
process, is employed to group similar solutions. From each cluster, a single representative
member serves as the associated motion primitive.

The utility of clustering algorithms in grouping solutions to nonlinear dynamical sys-
tems has been demonstrated by a variety of researchers. For instance, spectral clustering
has been employed by Hadjighasem, Karrasch, Teramoto, and Haller to identify coherent
Lagrangian vortices within a dynamical system (Hadjighasem et al. 2016). In astrodynamics,
the partition-based clustering algorithm, k-means, has been used by Nakhjiri and Villac to
identify bounded motions in a specific region of a Poincaré map and by Villac, Anderson,
and Pini to group periodic orbit solutions based on the locations of apses and orbital period
in the augmented Hill three-body problem (Nakhjiri and Villac 2015; Villac et al. 2016). In
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addition, Bosanac and Bonasera and Bosanac have applied hierarchical density-based clus-
tering methods to Poincaré maps in the CR3BP to group trajectories with similar geometries
to facilitate analysis in the trajectory design process (Bonasera and Bosanac 2021; Bosanac
2020). These applications of clustering all demonstrate the value of a data-driven approach
to grouping members of a family or set of trajectories in a chaotic dynamical system based
on a defined set of features.

The focus of this paper is to present and demonstrate a systematic motion primitive con-
struction process to summarize dynamical structures in theCR3BP.Generating a set ofmotion
primitives to summarize families of periodic orbits and hyperbolic invariant manifolds sup-
ports analysis of the natural transport mechanisms that are often used in trajectory design
and govern the natural motion of small celestial bodies (Davis et al. 2010; Gómez et al.
2004; Lo 2002). This paper presents an automated approach for motion primitive construc-
tion that limits the burden on a human analyst and may be applied to a variety of periodic
and nonperiodic trajectories in the CR3BP. Specifically, the motion primitive construction
process leverages k-means (a partition-based method), agglomerative clustering (a hierar-
chical method), and Weighted Evidence Accumulation Clustering (WEAC) (a consensus
method) to extract motion primitives from a set of trajectories based on common trajec-
tory design parameters such as geometry, stability, and energy. The procedure is outlined
and demonstrated in detail by constructing motion primitives for the distant prograde orbit
(DPO) family, the northern L1 halo orbit family, and trajectories along the unstable mani-
fold associated with an L1 Lyapunov orbit in the Earth–Moon CR3BP. Then, this procedure
is extended to a wide variety of planar and spatial periodic orbit families throughout the
Earth–Moon CR3BP. Based on these results, this paper offers two contributions: (i) a data-
driven procedure for constructing a set of motion primitives that summarizes a family or set
of trajectories in an unsupervised manner, and (ii) a demonstration of this procedure in the
context of a variety of natural motions throughout the Earth–Moon CR3BP. These contribu-
tions may, potentially, contribute to summarizing and reducing the complexity of exploring
the solution space admitted by a multi-body system, reducing the analytical workload of
a trajectory designer, and facilitating further advancement in rapid and informed trajectory
design procedures; demonstrating the use of the constructed motion primitives in the initial
guess construction process is the focus of ongoing work.

2 Background: dynamical model and fundamental solutions

The CR3BP is used to approximate the motion of a spacecraft (or small celestial body)
under the point mass gravitational influences of the Earth and Moon, each assumed to travel
along circular orbits. The spacecraft is assumed to possess a negligible mass compared to
the larger primary, the Earth, with constant mass M1 and the smaller primary, the Moon,
with constant mass M2 (Szebehely 1967). Following application of these assumptions, a
rotating reference frame is defined using the system barycenter as the origin and axes x̂ ŷ ẑ:
x̂ is directed from the Earth to the Moon, ẑ is aligned with the orbital angular momentum of
the primary system, and ŷ completes the right-handed triad (Szebehely 1967). Then, length,
mass, and time quantities are nondimensionalized using the characteristic parameters l∗,
m∗, and t∗, respectively (Szebehely 1967). Typically, l∗ is set equal to the distance between
the Earth and Moon, m∗ corresponds to the total mass of the system, and t∗ is defined
such that the nondimensional period of the primary system is equal to 2π (Koon et al.
2011). The state of the spacecraft is then written in the rotating frame as a nondimensional
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vector x = [x, y, z, ẋ, ẏ, ż]T relative to the barycenter of the system. Accordingly, the
nondimensional equations of motion for the spacecraft in the CR3BP are written in the
rotating frame as

ẍ = 2 ẏ + x − (1 − μ)(x + μ)

r31
− μ(x − 1 + μ)

r32

ÿ = −2ẋ + y − (1 − μ)y

r31
− μy

r32
,

z̈ = − (1 − μ)z

r31
− μz

r32

(1)

where μ = M2/(M1 + M2) is the mass ratio, while r1 = √
(x + μ)2 + y2 + z2 and r2 =√

(x − 1 + μ)2 + y2 + z2 are the distances between the spacecraft and the Earth and Moon,
respectively. In this dynamical system, an integral of motion, labeled the Jacobi constant,
exists and is equal to

CJ = (x2 + y2) + 2(1 − μ)

r1
+ 2μ

r2
− ẋ2 − ẏ2 − ż2. (2)

At a single Jacobi constant, a variety of fundamental solutions exist throughout the phase
space, including equilibrium points, periodic orbits, quasi-periodic orbits, and hyperbolic
invariant manifolds (Koon et al. 2011; Szebehely 1967).

In the CR3BP, periodic orbits exist within continuous families and contribute to an under-
lying dynamical structure that influences natural transport within a multi-body system (Koon
et al. 2011; Szebehely 1967). Periodic orbits correspond to trajectories that precisely repeat
in the rotating frame, with the minimal time interval for repetition labeled the orbit period.
Families of periodic orbits exist throughout the phase space and are often labeled using the
location of somemembers relative to primaries and/or libration points, bifurcations that occur
along the family, orbital resonance admitted by selected members, or direction of motion.
The direction of motion is typically described in the rotating frame: a state that is labeled as
prograde (or retrograde) with respect to a selected reference location produces an instanta-
neous orbital angular momentum vector of the spacecraft with respect to the reference that
possesses a positive (or negative) z component.

Each family of periodic orbits used in this paper is computed numerically using multiple
shooting in conjunction with pseudo-arclength continuation. To compute a single periodic
orbit, an initial guess is constructed using either a stability analysis of a libration point,
Poincaré mapping, resonance analysis in the two-body problem, or bifurcation analysis of
another periodic orbit family (Bosanac 2016; Hadjidemetriou 1993; Koon et al. 2011; Sze-
behely 1967). The initial guess is then discretized into multiple arcs with equal integration
times. The states at the beginning of all arcs along with the common integration time along
all arcs are considered free variables. These free variables are adjusted iteratively using New-
ton’s method to ensure continuity between all neighboring arcs and, therefore, periodicity
to within a specified tolerance of 10−12 (Bosanac 2016; Koon et al. 2011). Then, pseudo-
arclength continuation is used to compute additional members along the periodic orbit family
until one of several termination criteria are satisfied: a maximum number of members have
been calculated, members pass within a specified minimum threshold on the distance from a
primary, the entire family is computed, or the numerical corrections process fails to compute
additional members (Bosanac 2016; Keller 1977). Upon completion of the corrections and
continuation process, the computed segment of a family of periodic orbits is characterized
and analyzed.
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The stability of a periodic orbit offers preliminary insights into the solution space in its
local neighborhood and the existence of associated dynamical structures. First, a monodromy
matrix is calculated by propagating the state transition matrix from a selected point along
the periodic orbit for precisely one orbital period (Koon et al. 2011). Then, the monodromy
matrix is decomposed into a set of six eigenvalues and associated eigenvectors. In the CR3BP,
the eigenvalues exist in reciprocal or complex conjugate pairs: one trivial pair corresponds to
unity eigenvalues, while the two nontrivial pairs of eigenvalues are used to assess the stability
of the periodic orbit. This stability information is often summarized using the stability indices,
s1 and s2 (Howell 1984). Each of these indices is computed in this paper as the following
sum of a pair of nontrivial eigenvalues, λ j and λk , of the monodromy matrix associated with
the periodic orbit:

si = λ j + λk (3)

for i = 1, 2. A value of the stability index between -2 and 2 indicates the existence of
an oscillatory mode and, therefore, a center eigenspace that includes nearby quasi-periodic
orbits. An index possessing a magnitude greater than 2, however, indicates the existence
of stable and unstable eigenspaces that govern natural motion into and away from the orbit,
respectively (Koon et al. 2011).When the order of magnitude of the stability index associated
with stable and unstable modes is low, nearby trajectories exciting these modes are relatively
slow to arrive into or depart from the orbit.

Global stable and unstable invariant manifolds govern the natural flow of trajectories
that asymptotically approach and depart an unstable periodic orbit, respectively (Koon et al.
2011). In the CR3BP, global stable and unstable manifolds are computed numerically (Koon
et al. 2011). First, the unstable periodic orbit is discretized into NPO points, equally spaced
in time. Then, a single point is perturbed by a small step along the eigenvector associated
with either the stable or unstable mode to produce an approximation of a state that lies in
the stable or unstable eigenspace, respectively. This state is then used to produce a trajectory
that lies in the global stable or unstable manifold by integrating backward or forward in time,
respectively, until any termination criteria are satisfied. These termination criteriamay include
a maximum integration time, maximum number of apses, crossing a specified boundary in
the configuration space, or impacting a primary body. This procedure is repeated for all NPO

points to produce a set of trajectories that span the computed segment of the stable or unstable
manifold associated with the unstable periodic orbit.

3 Background: extractingmotion primitives via clustering

Motion primitives have been used in various disciplines to construct a reduced basis set of path
segments, actions, configurations, or behaviors that reflects the characteristics of a solution
space; however, the exact definition of a motion primitive depends on the field of application
(Frazzoli 2001; Jenkins and Mataric 2002; Paranjape et al. 2015; Reng et al. 2005; Wang
et al. 2018). In robotic motion planning, motion primitives may be defined as sets of control
inputs that result in a common desired behavior, such as a circular path or an aggressive
turn (Paranjape et al. 2015). Similarly, in transportation applications, motion primitives may
be defined as steering and velocity profiles that result in different basic driving tasks such
as a lane change or lane keeping (Wang et al. 2018). A set of Euler angles may be used in
human body gesture analysis to define motion primitives as fundamental limb configurations
(Reng et al. 2005). Frazzoli defines trajectory primitives in the context of autonomous vehicle
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motion planning as a set of path segments that capture the characteristics of the solution space,
support complex path construction, and support extraction of key state description parameters
(Frazzoli 2001). Based on these examples, a motion primitive set is defined in this paper as a
set of arcs that capture the characteristics of a larger set of trajectories and support assembly
of an initial guess for a more complex path in a multi-body system.

Although motion primitives may be extracted analytically or by a human analyst in sim-
ple environments, their extraction is significantly more challenging and time-consuming in
complex and higher-dimensional dynamical systems (Jenkins and Mataric 2002; Jiang et al.
2016; Wang et al. 2018). In complex dynamical environments, data are often sampled or
observed from the environment and then data mining techniques such as feature selection,
dimensionality reduction, and clustering are employed to uncover the fundamental primitives
in the system. Due to the complexity of the solution space in a multi-body system, this paper
leverages clustering to group solutions that possess a similar set of characteristics; these
characteristics of interest are defined using domain knowledge. A representative member
from each cluster is then designated as a motion primitive (Bosanac 2020; Han et al. 2012;
Jiang et al. 2016). Together, the reduced set of trajectories that form a motion primitive set
summarize a larger set of arcs of trajectories that exist in a multi-body system.

Clustering is an unsupervised learning method for separating the members of a dataset
into a finite number of groups based on a defined set of features (Han et al. 2012). Data in
the same cluster possess similar properties, while data in different clusters possess dissimilar
properties in a prescribed feature space. Each of the n members of a dataset is described
by an m-dimensional feature vector f . A clustering algorithm is then applied to the (n ×
m)−dimensional dataset to construct groupings of the members within the set. Note that
sufficiently sampling the data source and constructing an appropriate feature space to produce
a useful set of clustering results is determined by the human analyst. For the selected dataset,
the resulting clusters are influenced by various factors including: the dataset supplied to
the clustering algorithm, the type of clustering method and associated algorithm, the input
parameters governing the algorithm, and the selected feature space description (Aggarwal
and Reddy 2014). In addition, it is often challenging to select an appropriate algorithm and
input parameters for a desired application because the structure of the dataset is typically not
known a priori.

To facilitate parameter and algorithm selection in the clustering process, consensus cluster-
ing is employed: using an ensemble of individual clustering results to form a single clustering
solution (Aggarwal and Reddy 2014; Fred and Jain 2005). This paper leverages the WEAC
algorithm to perform consensus clustering due to its capacity to produce clusters of arbitrary
shapes, sizes, and densities (Fred and Jain 2005; Huang et al. 2015). As an input to the
WEAC algorithm, individual clustering results are constructed using k-means, a partition-
based method, and agglomerative clustering, a hierarchical method, each governed by a
variety of input parameters. The k-means algorithm is used due to its iterative nature and
computational efficiency, while agglomerative clustering is used due to its deterministic
nature and the useful insights gained from the resulting dendrogram. Furthermore, both of
these clustering algorithms have been successfully used in shape-based time-series cluster-
ing applications (Aggarwal and Reddy 2014). This section supplies an overview of these
clustering algorithms.
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3.1 K-means

The k-means algorithm is a partition-based clustering method that groups members of a
dataset according to their distance from k centroids. The centroid of a cluster is defined
using the mean feature vector of the members assigned to the cluster (Han et al. 2012). The
algorithm requires the number of clusters, k, as an input; then, the centroids are initialized
by randomly selecting k members of the dataset (Han et al. 2012). Clusters are then formed
by associating each member to the closest centroid using the l2-norm as a distance metric.
After assigning each member to a cluster, the centroid of each cluster is recomputed and the
members are reassigned to their new closest centroids to form new clusters. This process is
repeated iteratively with the goal of minimizing the sum of the squared Euclidean distances
between the centroid of each cluster and the associated members. The algorithm terminates
either when the clusters remain unchanged from one iteration to the next or a maximum
number of iterations are exceeded. If k-means clustering converges on a clustering result
prior to reaching the specified maximum number of iterations, the algorithm recovers a
local minimum that depends on the selection of the initial centroids (Pedregosa et al. 2011).
Furthermore, the primary limitation of k-means is selecting the desired number of clusters
when the structure of the dataset is not known or understood a priori. However, using k-means
within the consensus clustering process offers one approach to selecting an appropriate value
of k without a priori knowledge of the dataset or significant reliance on a human-in-the-loop
when applied to a variety of distinct datasets.

To increase the stability and robustness of using k-means clustering, the algorithm is
often applied multiple times to the same dataset but with different initial centroids (Han
et al. 2012; Pedregosa et al. 2011). Then, the clustering result with the lowest inertia, E ,
is selected; minimizing the inertia indicates the computation of more compact clusters that
minimize the sum of the squared Euclidean distances between the centroid of each cluster
and the associated members. The inertia is a metric that is defined as

E =
k∑

i=1

∑

f∈Ci

|| f − ci ||2, (4)

where Ci is the i th cluster, f is the feature vector of a member in the i th cluster, and ci is the
centroid of the i th cluster (Han et al. 2012; Pedregosa et al. 2011). By selecting the clustering
result with the lowest inertia, the algorithm becomes more stable and less dependent on the
selection of the initial centroids.

3.2 Agglomerative clustering

Agglomerative clustering uses a bottom-up approach to hierarchically represent a dataset as
a tree with each node corresponding to a cluster. For a dataset composed of n members, the
tree has n leaves, each initially corresponding to a separate cluster (Han et al. 2012). At each
step of the algorithm, the distances between all of the current clusters are computed and the
pair of clusters with the smallest inter-cluster distance is combined. This process continues
until all members are grouped into a single cluster. The resulting tree of clusters is often
summarized by a dendrogram that reflects the structure of the dataset at various inter-cluster
distances (Han et al. 2012). The dendrogram also captures the lifetime of a specified number
of clusters, defined as the range of inter-cluster distances at which those clusters are present
and constant (Fred and Jain 2005); long lifetimes in the dendrogram often indicate natural
groupings of the dataset. To generate the final clustering result, the dendrogram is cut at a
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specified inter-cluster distance and the corresponding clusters in the hierarchy are obtained.
A suitable value of the inter-cluster distance may be selected either: manually, automatically
as the midpoint of the inter-cluster distance range with the longest lifetime, or automatically
as the midpoint of the inter-cluster distance range corresponding to a desired number of
clusters.

The method used to compute the inter-cluster distance, known as the linkage type, fun-
damentally influences the underlying tree structure produced by agglomerative clustering.
Common linkage types include single, complete, average, and Ward linkage (Aggarwal and
Reddy 2014; Han et al. 2012). Single linkage measures the inter-cluster distance as the dis-
tance between the closest two members in the two clusters, whereas complete linkage uses
the farthest two members. Average linkage measures the inter-cluster distance as the average
of the distances between all of the members of the two clusters. Ward linkage, however,
captures the increase in the sum of squared distances between each member of two clusters
and its associated centroid due to merging the clusters. Mathematically, Ward linkage defines
the inter-cluster distance between clusters Ci and C j as

d(Ci ,C j ) =
√

2|Ci ||C j |
|Ci | + |C j | ||ci − c j ||, (5)

where |Ci | and |C j | are the number of members in the i th and j th clusters, respectively, and
ci and c j are the centroids of the i th and j th clusters, respectively (Kaufman and Rousseeuw
2005). By minimizing the increase in the sum of squared distances of the merged clusters at
each step of the algorithm,Ward linkage tends to produce compact andwell-separated clusters
while considering the overall structure of each cluster. Average linkage is also useful for
considering the overall structure of clusters throughout the merging process. However, single
and complete linkage only focus on the local and global structure of clusters, respectively,
during themerging process and aremore sensitive to noise and outliers in a dataset (Aggarwal
andReddy 2014). Distinctly different tree structures and, subsequently, clustering resultsmay
be produced using different definitions of inter-cluster distance.

3.3 Weighted evidence accumulation clustering

WEAC generates a consensus clustering result from an ensemble of base clustering results.
A significant benefit of using consensus clustering is the capacity to produce better quality
and more robust results than a single clustering solution for a variety of datasets, while also
supporting automated input parameter selection (Aggarwal and Reddy 2014; Fred and Jain
2005; Huang et al. 2015). The WEAC algorithm requires an ensemble of NC base clustering
results as an input, defined as the set P. Each base clustering result, P i for i = [1, NC ], is
the set of cluster labels assigned to the members of a dataset. These base clustering results
may be generated in any manner. For example, the ensemble may be generated by a single
algorithm with varying input parameters and/or a variety of clustering algorithms (Fred and
Jain 2005; Huang et al. 2015). In this paper, both k-means and agglomerative clustering
with Ward linkage are used to generate an ensemble of clustering solutions, each for several
distinct values of k within a specified range. Each base clustering solution is considered a
piece of independent evidence for the natural groupings within the dataset that is used in
generating a consensus result from the ensemble of accumulated evidence.

Given an ensemble of base clustering results, WEAC assumes two members of a dataset
naturally belong to the same cluster if they are consistently co-located in the base clustering
results. This characteristic is quantified by a weighted ensemble co-association matrix. First,
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a co-association matrix, Si , is computed for each base clustering result. Each matrix is a
n × n similarity matrix in which Si (a, b) = 1 if members a and b are grouped in the same
cluster and Si (a, b) = 0 if members a and b are grouped in different clusters within a single
base clustering result. Then, a weight, wi , is computed for each base clustering result using
its normalized crowd agreement index (NCAI) (Huang et al. 2015). To compute each weight,
the crowd agreement index (CAI) for each base clustering is defined as

CAI(P i ) = 1

NC − 1

NC∑

P j∈P,i �= j

Sim(P i , P j ), (6)

where Sim(P i , P j ) measures the similarity between two base clustering results as the max-
imal normalized mutual information shared between the two solutions as defined by Strehl
and Ghosh (Strehl and Ghosh 2002). Therefore, CAI(P i ) quantifies the average amount of
information that P i shares with the ensemble and is normalized as

NCAI(P i ) = CAI(P i )

maxP j∈P CAI(P j )
(7)

The NCAI of each base clustering result ranges from 0 to 1 and is used to calculate the
weight, wi , for the co-association matrix of each clustering result P i as

wi = INCAI(P i )
∑NC

j=1 INCAI(P j )
, (8)

where INCAI(P i ) = (NCAI(P i ))
β and β is selected to adjust the influence of the NCAI

weighting. Based on the parameter analysis conducted by Huang et al. (2015) on a variety of
datasets, a value of β = 2 is used in this paper. Finally, the weighted ensemble co-association
matrix, A, is computed as

A =
NC∑

i=1

wi Si . (9)

Then, agglomerative clustering with average linkage is applied to the dataset using A as a
precomputed similarity matrix to generate a consensus clustering result; average linkage is
selected due to its capacity to support a general similarity metric and capture the average
characteristics of entire clusters. Each element of A is a measure of the similarity between
two members of the dataset and approximately reflects the percentage of results in which
the members are co-located in the same cluster throughout the clustering ensemble. Conse-
quently, the distance between two members of the dataset, a and b, is equal to 1 − A(a, b).
The final number of clusters is then selected by sampling the resulting dendrogram at themid-
point of the inter-cluster distance range with the longest lifetime above a specified threshold
(Fred and Jain 2005; Huang et al. 2015). By introducing an alternative measure of similar-
ity between members of a dataset, WEAC leverages the evidence accumulated by a large
ensemble of clustering solutions to generate a single consensus result. As a result, WEAC
reduces the sensitivity to and complexity of parameter and algorithm selection.

3.4 Motion primitive extraction

A motion primitive is extracted as the most representative member of a cluster of similar
trajectories. In the data-driven approach employed in this paper, the medoid of a cluster is
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the member of the cluster that is most similar to all other members in the cluster within the
prescribed feature space; as a guaranteed member of the cluster, this definition is particularly
advantageous for arbitrarily shaped clusters (Han et al. 2012). Using the definition of a
medoid, the motion primitive associated with the i th cluster is identified as

fMotionPrimi
= argmin

f∈Ci

|Ci |∑

j=1

|| f − f j ||, (10)

where fMotionPrimi
is the feature vector of the motion primitive of the i th cluster, Ci ; |Ci | is

the number of members of the i th cluster; and f j is the feature vector of the j th member in
the i th cluster (Van der Laan et al. 2003).

4 Translating trajectory characteristics into a feature vector

The results of a clustering approach depend on the feature space encoding that translates
domain knowledge into a quantitative description of the dataset (Aggarwal and Reddy 2014).
Selecting a feature vector is member-specific because the available features depend on the
type of members in the dataset, but it is also application-specific because the features should
be selected to recover a useful summary of the dataset for the desired application. During
the early stages of trajectory design and the study of natural motion in complex gravitational
environments, human analysts tend to examine the geometry, stability, and energy of funda-
mental dynamical structures (Guzzetti et al. 2016; Haapala et al. 2015; Koon et al. 2011).
This section outlines the feature vectors formulated to reflect one approach to encoding these
characteristics for periodic orbits and nonperiodic trajectories that lie along stable or unstable
manifolds in the CR3BP to support the motion primitive extraction process presented in this
paper.

4.1 Describing trajectory geometry

The geometry of a trajectory is quantitatively described by discretizing the solution into a
sequence of states (Zheng 2015). Sampling a trajectory at equally spaced times may capture
small geometric variations along the path. However, selecting a single time distribution or
number of states that sufficiently represent a general set of trajectories in a chaotic dynamical
system is challenging. Rather, this work uses a generalizable and curve-based approach to
produce a lower-dimensional description: sampling a trajectory at apses relative to a specified
reference point, such as a primary body or equilibrium point (Bosanac 2020; Zheng 2015);
each apsis corresponds to either a local minimum or maximum distance from the reference
point along the trajectory.

The state information at each apsis along a trajectory is scaled to prevent unintended feature
biases during clustering (Han et al. 2012). Relative position components of the state at each
apsis are normalized between -1 and 1 by dividing each position component by the global
maximum distance of an apsis relative to the specified reference point along all members of
the selected family or set of trajectories. Then, the velocity unit vector v̂ = ˙̃x x̂ + ˙̃y ŷ + ˙̃z ẑ
reflects the direction of motion at each apsis with components possessing values between -1
and 1; note that the tilde notation indicates a normalized quantity. With these definitions, the
geometric component of a feature vector, f g , describing a trajectory in the CR3BP is defined
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in this paper as

f g =
[
x̃1 ỹ1 z̃1 ˙̃x1 ˙̃y1 ˙̃z1 · · · x̃l ỹl z̃l ˙̃xl ˙̃yl ˙̃zl

]
, (11)

where l is the number of apses that occur along the trajectory and all features are in the
range [−1, 1]. This geometric component of a feature vector possesses a dimension of 1 ×
6lmax where lmax is the maximum number of apses that occur along any member of a set of
trajectories. If the number of apses is not constant across all members of a set of trajectories,
placeholder vectors are included in the remaining elements of f g (Bosanac 2020). When
placeholders are employed, they are set equal to the zero vector to ensure that they are
distinct from the vectors describing actual apses. Using these definitions, this component
of the feature vector supplies a straightforward geometric description of an orbit that is
computationally efficient to construct, limits unintended feature bias, may be generalized
across various trajectories, and, when applied to the sets examined in this paper, does not
produce an excessively high-dimensional description.

4.2 Describing orbital stability

A function is defined to incorporate stability indices into the feature vector for a periodic orbit.
This function is designed to reduce unintended feature bias when the maximum value along
the family possesses a large order of magnitude, offer a continuous stability description to
avoid a loss of information, and mitigate excessive compression between the critical values
of -2 and 2. To appropriately characterize the stability properties along a periodic orbit
family, it may be desirable to capture complex variations of the stability indices within the
oscillatory mode regime, differentiate between a pair of oscillatory or stable and unstable
modes, and avoid an artificial separation between strictly oscillatory modes and the pairs
of eigenvalues that possess magnitudes that are close to unity. Furthermore, it may not be
essential to distinguish between stability indices with large magnitudes. To achieve these
goals in characterizing a periodic orbit in the CR3BP, the stability component of a feature
vector, f s , is defined using a hyperbolic tangent function, which retains continuity and
produces values between -1 and 1. Mathematically, the stability component of the feature
vector is written as

f s =
[
tanh

( s1
2

)
tanh

( s2
2

)]
. (12)

For a planar periodic orbit, s1 and s2 are calculated using the in-plane and out-of-plane
modes, respectively. However, for a spatial periodic orbit, s1 and s2 each reflect the evolution
of a single pair of eigenvalues along the family, ensuring continuity in the stability indices.
Through the definition in Eq. 12, stability indices within the range [−2, 2] produce a feature
vector component within the approximate range [−0.7616, 0.7616] to maintain significant
resolution in the stability component of the feature vector. Due to continuity in the hyperbolic
tangent function, there is also no artificial separation between a stability index with a magni-
tude that is strictly below 2 and one that is only slightly above. In addition, the asymptotes of
the hyperbolic tangent function limit the differentiation between stability indices with large
magnitudes.
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4.3 Describing orbital energy

Orbital energy is often used to supply preliminary insight into accessible regions of motion
and heuristics formaneuver planning. In theCR3BP, the Jacobi constant, as defined inEq. 2, is
inversely proportional to the energy of the system (Koon et al. 2011): an increase in the Jacobi
constant corresponds to a decrease in the energy of the system, and vice versa. Therefore,
the energy component of a feature vector, fe, for a trajectory in the CR3BP is defined as

fe = C̃J , (13)

where C̃J is the Jacobi constant normalized to within the range [−1, 1] using the minimum
and maximum values of CJ along the computed set of trajectories. This component of the
feature vector supplies a single parameter to describe the energetic properties of eachmember
of a set of trajectories in the CR3BP.

4.4 Defining feature vectors

Leveraging the geometric, stability, and energetic properties of a trajectory in the CR3BP,
feature vector definitions are formulated separately for periodic orbits and trajectories along
a stable or unstable manifold. The feature vector f PO is constructed to describe a periodic
orbit and simultaneously capture a variety of considerations of interest to a trajectory designer
during initial guess construction. This parametric feature vector is defined as

f PO = [ f g f s fe] (14)

and possesses a length ofm = 6lmax+3. For a planar periodic orbit, the out-of-plane position
and velocity features are omitted, resulting in a feature vector with a length ofm = 4lmax+3.
Similarly, the feature vector fMani is constructed to describe the geometry of a trajectory
along either a stable or unstable manifold associated with an unstable periodic orbit. This
feature vector is defined as

fMani = [ f g �t̃1 · · · �t̃l−1], (15)

where f g contains the states associated with apses along the trajectory with respect to a
specified reference point and�t̃i is the nondimensional time between two consecutive apses,
normalized by the total integration time of the trajectory. Note, the terminal state of the
trajectory is included in f g , which may or may not correspond to a desired apsis. The
additional normalized time features are included in fMani to capture the variations in transit
time along a nonperiodic trajectory. Similar to the use of placeholder vectors in f g , values
of zero are used for the remaining normalized time features in fMani when l < lmax for
a trajectory. Furthermore, fe is not included in the feature vector because in this paper all
of the manifold trajectories in a given dataset are associated with one periodic orbit and,
therefore, possess the same value of the Jacobi constant. Therefore, fMani possesses a length
ofm = 7lmax−1 for a spatialmanifold, orm = 5lmax−1 in the planar case, and quantitatively
summarizes the geometry of a trajectory along a stable or unstable manifold. Both feature
vector definitions supply a finite, quantitative description of trajectories along a family to
create an (n × m)−dimensional dataset that is input to a clustering algorithm for motion
primitive extraction.
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5 Summarizing periodic orbit families

The motion primitive construction process is defined for periodic orbits in the CR3BP and
demonstrated in detail via application to the planar DPO and spatial northern L1 halo periodic
orbit families in theEarth–MoonCR3BP.Each of these periodic orbit families exhibits several
changes in geometry, stability, and energy along the family. Some of these changes may be
identified through analytical separation criteria capturing a change in the number of apses or
locating when a critical value or turning point occurs for a parameter calculated along the
family. These analytically identifiable changes supply a straightforward verification of some
of the groupings within the clustering results. However, the clustering process should be able
to produce additional differentiation between periodic orbits that a human may be able to
visually identify but may not be described by an associated set of generalizable and clear
analytical criteria formulated as a function of the feature space description. Thus, both of
these families of periodic orbits serve as a suitable example for demonstrating the procedure
for extracting motion primitives that summarize the finite set of geometric, stability, and
energetic characteristics admitted by its members. Following a detailed demonstration in the
context of these two families, the motion primitive extraction process is applied to a wider
variety of periodic orbit families throughout the Earth–Moon CR3BP.

5.1 Motion primitive construction process for periodic orbits

For a family of periodic orbits, the motion primitive construction procedure consists of the
following steps:

1. Compute a family of periodic orbits in the desired system in the CR3BP.
2. For n orbits sampled along the family, compute the full state at each apsis along the orbit

with respect to a specified reference point, the stability indices, and the Jacobi constant.
3. Construct an (n × m)−dimensional dataset containing the m-dimensional feature vector

f PO of each orbit, as defined in Eq. 14, to reflect the geometry, stability, and energy of
each periodic orbit.

4. Generate an ensemble of NC base clustering results by applying k-means and agglomer-
ative clustering with Ward linkage to the dataset, each for NC/2 values of k in a specified
range.

5. Specify an inter-cluster distance threshold, t , ranging from 0 to 1 and apply WEAC to
the ensemble of base clustering results computed in Step 4. The clustering result selected
using WEAC possesses a number of clusters with the largest lifetime above t .

6. Extract a set of motion primitives as the medoids of clusters in the final consensus clus-
tering result to summarize the periodic orbit family.

Once the desired set of trajectories is computed, this procedure only requires selection of the
range of values of k to form the base clustering results and the value of t used within WEAC
to select the final clustering result. In applying this procedure to the DPO and northern L1

halo orbit families in the Earth–Moon system, the following values are selected: k ∈ [3, 18]
to produce NC = 2 × 16 = 32 base clustering results that are input to WEAC, and t = 0.4.
The range of selected k values is a wide range that encompasses a reasonable number of
expected distinct characteristics along each family. The threshold value of t = 0.4 (i.e., a
similarity value of 0.6) is selected because it ensures that clusters with members that are
co-located more than approximately 60% of the time on average remain clustered together
in the final consensus-derived result. The final “cut” of the dendrogram is above t = 0.4 and
therefore identifies a natural cluster boundary where the additional merging of two smaller
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clusters no longer results in a cluster whose members are frequently co-located. Finally, all
clustering results are produced using the Scikit-Learn v0.23.1module available in Python and
the components of theWEACalgorithm that do not involve clustering have been implemented
by the authors in MATLAB® (MathWorks 2020; Pedregosa et al. 2011). The computation
time for this clustering procedure to generate motion primitives summarizing a periodic orbit
family is on the order of 100 seconds for each example in this section.

5.2 Summarizing the distant prograde orbit family

The DPO family is composed of members that exhibit multiple distinct geometric and stabil-
ity properties while encircling the Moon (Broucke 1968; Lara and Russell 2006). Figure 1
displays a subset of the DPO family, computed in the Earth–Moon CR3BP using a multi-
ple shooting algorithm for corrections and pseudo-arclength continuation. Each orbit in the
computed segment of the family is plotted in the rotating frame with the arrows indicating
direction ofmotion. The equilibrium points are displayed using red diamondswhile theMoon
is plotted, not to scale, using a gray circle. Additionally, the in-plane (s1) and out-of-plane (s2)
stability indices along this segment of the DPO family are displayed in Fig. 2 as a function
of the Jacobi constant. Note that the stability indices are scaled in Fig. 2 using the function
2 sinh−1(si )/ sinh−1(2) to improve visualization. A stability index associated with oscilla-
tory modes produces a value of this function within the range [−2, 2], while a stability index
associated with a stable and unstable mode pair produces a function value that is greater than
2 in magnitude; note that the sign of the stability index is preserved through this normaliza-
tion. In addition, four orbits, each denoted with a distinct color, are highlighted in Fig. 1 and
their associated parameters are plotted in Fig. 2 to facilitate a clear description of the family.
These two figures reveal distinct changes in geometry, stability, and energy along the DPO
family: some changes may be described via quantitative separation criteria, whereas other
changes are challenging to define in an analytical and generalizable manner. These complex
variations render the planar DPO family a useful first scenario for demonstrating the motion
primitive construction process.

To support verification of the recovered motion primitives, the geometry and stability of
members of the DPO family are characterized. At one end of the computed segment of the
family near CJ ≈ 3.1487, denoted in purple in Figs. 1 and 2, the orbits possess stable and
unstable in-plane modes and oscillatory out-of-plane modes. In addition, motion along these
orbits is generally prograde in the rotating frame: there are two prograde perilunes, with
one occurring close to the Moon and one located close to L2, and two retrograde apolunes
that occur near L2 and symmetrically about the x-axis. As the Jacobi constant increases, the
magnitude of the velocity vector at the two apolunes decreases. After reaching a magnitude
of zero in the rotating frame, the velocity vector changes direction and the associated orbit
possesses two prograde apolunes. These prograde apolunes approach the x-axis as the Jacobi
constant continues to increase. Eventually, the orbits evolve to possess only one perilune and
one apolune; both apses relative to the Moon are prograde and located on the x-axis. This
evolution of the geometry is accompanied by a change in the in-plane stability such that
these members of the DPO family do not possess any stable or unstable modes. As the Jacobi
constant increases further, the perilune distance increases and the apolune distance decreases
until the orbit resembles an oval. Eventually, the orbits possess two prograde perilunes on
the x-axis and two prograde apolunes symmetrically located about the x-axis. As the Jacobi
constant reaches a maximum, denoted in red in Figs. 1 and 2, another change in the stability
occurs and the associated members of the DPO family possess stable and unstable in-plane
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Fig. 1 Computed segment of the
DPO family in the Earth–Moon
CR3BP, displayed in the rotating
frame

Fig. 2 Stability indices, s1 and
s2, along the computed segment
of the DPO family in the
Earth–Moon CR3BP

modes. With a decreasing Jacobi constant, the apolunes occur at increasing values of y and
decreasing values of x , with a speed that decreases. After the velocity magnitude passes
through zero, denoted in light blue in Figs. 1 and 2 and at low values of the Jacobi constant,
orbits along theDPOfamily possess lowprogradeperilunes andhigh retrograde apolunes.The
out-of-plane stability also changes, resulting in these members of the DPO family possessing
only stable and unstable modes through the end of the computed segment of the family, as
indicated in light brown in Figs. 1 and 2.
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Table 1 Dominant geometric and stability changes along the DPO family; prograde is abbreviated as ‘pro.’
and retrograde is abbreviated as ‘retro.’ to describe direction of motion

Label Before Change After Change Approx. CJ

Apses Stability Apses Stability

G1 2 retro. apolune s1 < −2 2 pro. apolune – 3.1610

2 pro. perilune −2 < s2 < 2 – –

G2/S1 2 pro. apolune s1 < −2 1 pro. apolune −2 < s1 < 2 3.1698 (G2)

2 pro. perilune −2 < s2 < 2 1 pro. perilune – 3.1700 (S1)

G3/S2 1 pro. apolune −2 < s1 < 2 2 pro. apolune s1 > 2 3.1822 (G3)

1 pro. perilune −2 < s2 < 2 2 pro. perilune – 3.1827 (S2)

G4 2 pro. apolune s1 > 2 2 retro. apolune – 3.0859

2 pro. perilune −2 < s2 < 2 – –

S3 2 retro. apolune s1 > 2 – – 3.0264

2 pro. perilune −2 < s2 < 2 – s2 > 2

The observed distinct changes in geometry and stability are summarized to facilitate
verification of the results. Table 1 lists these changes using labels beginning with “G” to
indicate a change in the geometry, assessed via the number and direction of motion at each
apsis, and a prefix “S” indicating a qualitative change in stability; the numbers in each label
are assigned to changes that occur as the family is traversed from a Jacobi constant starting
at CJ ≈ 3.1487, reaching a maximum at CJ ≈ 3.1827, and ending at CJ ≈ 2.9511. A
horizontal bar in Table 1 indicates that a change did not occur in a specific property. These
distinct changes in the geometry and stability support verifying some of the cluster-based
differentiation between orbits during the motion primitive construction process. Specifically,
the final clustering result should at least separate solutions of distinct geometries, as listed
in Table 1, while also admitting additional differentiation for geometric changes that are
challenging to describe in an analytical and generalizable manner. Due to the form of the
stability component of the feature vector for a periodic orbit, the stability changes listed in
Table 1 may potentially, but not necessarily, lie close to the boundaries of some clusters.

Consensus clustering is used to differentiate periodic orbits within the DPO family. First,
the parametric feature vector defined in Eq. 14 is used to represent the geometric, stability,
and energetic properties of 400 members of the family, computed using multiple shooting for
corrections and pseudo-arclength continuation. The geometry of each orbit is represented as
a sequence of apses relative to theMoon. Furthermore, the out-of-plane position and velocity
features of each apsis are omitted because all members of the DPO family lie in the plane of
the primaries. The feature vectors of the selected members of this family are used to form
a (400 × 19)−dimensional dataset. Then, k-means and agglomerative clustering with Ward
linkage are applied to the dataset, each for 16 values of k ranging from 3 to 18, to produce
32 base clustering results. The resulting dendrogram formed when WEAC is applied to this
ensemble of clustering results is displayed in Fig. 3. Each vertical blue line represents a
cluster, and each horizontal blue line represents the merging of two clusters at various values
of the inter-cluster distance, displayed on the vertical axis. Values on the horizontal axis are
not labeled because they indicate the cluster identification numbers, which are arbitrarily set
by the algorithm as new clusters are formed with new values of inter-cluster distance. The
solid black line indicates the specified inter-cluster distance threshold of t = 0.4. Analyzing
the dendrogram, the number of clusters with the largest lifetime above this threshold is k = 9,
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Fig. 3 Dendrogram constructed
via WEAC to determine clusters
of periodic orbits in the DPO
family

Fig. 4 Motion primitives
constructed for the DPO family
in the Earth–Moon CR3BP,
displayed with respect to the
corresponding clusters in the
rotating frame; clusters and
motion primitives are split across
two subfigures for visual clarity

as indicated by the bounding dashed red lines. Other potential natural cluster boundaries in
the dataset occur for k = 6 and k = 7 as evident in the dendrogram based on the size of each
cluster lifetime. However, k = 9 is selected consistent with possessing the largest lifetime
above the threshold. Motion primitives are extracted from this clustering result as the medoid
of each cluster.

The motion primitives and associated clusters are depicted in the configuration space and
as a function of Jacobi constant to support further analysis. First, the nine clusters of periodic
orbits are displayed in Fig. 4 in the configuration space using unique colors, with the black
arrows indicating direction of motion relative to the Moon. Within each cluster, the periodic
orbit selected as the motion primitive is highlighted in bold, while additional members lie
within the region of the same color. To support further analyzing these results, these clusters
and motion primitives are also displayed on the left of Fig. 5 as a function of CJ . DPOs at
various values of CJ are displayed on the right of Fig. 5 for reference; the selected orbits
correspond to those highlighted in Fig. 1. Each cluster in Fig. 5 is colored consistent with
Fig. 4, and each motion primitive is located by a black diamond. Furthermore, the four
dominant geometry changes (G1,G2,G3,G4) and the three dominant stability changes (S1,
S2, S3) summarized in Table 1 are denoted with dashed black and gray lines, respectively.

Analysis of the clustering results in Figs. 4 and 5 reveals that the motion primitive set
successfully captures variations in geometry and stability of members along the DPO family:
including those identified in Table 1 and more subtle changes that are challenging to describe
in an analytical and generalizable manner. The presented procedure successfully identifies, at
a minimum, all four distinct changes in geometry via changes in the number of and direction
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Fig. 5 Clustering result and
motion primitives for the DPO
family in the Earth–Moon
CR3BP as a function of CJ ;
dominant changes in geometry
and stability are labeled on left of
the figure

of motion at the apses. Additional clusters capture more subtle changes in Jacobi constant,
stability, and geometry. For example, as CJ decreases after the change in geometry at G4,
WEAC identifies three different clusters of orbits with two high retrograde apolunes and two
low prograde perilunes due to the variations in CJ and stability. In fact, the third stability
change, S3, is identified by the clustering approach but not exactly at the boundary due to
the continuous feature description used to capture orbital stability. The distinct geometric
differences between each of these clusters is visible in Fig. 4a: although members of these
clusters admit a similar general shape, regions along each orbit with a different direction of
motion possess a distinctly different relative size in the configuration space. Another example
of successful geometric differentiation is visible in Fig. 4b: the gray cluster possessing mem-
bers with the largest y-extension admit a significantly different geometry and evolution of
the location of apses compared with members in the neighboring maroon cluster. This exam-
ple demonstrates the capacity to use clustering to extract a small set of motion primitives
representing a family of planar periodic orbits.

5.3 Summarizing the northern L1 halo orbit family

The L1 halo orbits comprise a spatial family that emerges from a bifurcation along the L1

Lyapunov orbit family (Breakwell and Brown 1979; Zagouras and Kazantzis 1979). Figure 6
displays in black a subset of the northern L1 halo family computed in the Earth–Moon
CR3BPwith selectedmembers highlighted in distinct colors; note, only the northern orbits are
analyzed due to their symmetry with the southern halo orbits about the plane of the primaries.
At one end of the computed segment of the northern L1 halo family, denoted in light brown
in Fig. 6, members intersect the L1 planar Lyapunov orbit family and revolve in a clockwise
manner about L1. At the other end of the computed segment of the family, denoted in purple
in Fig. 6, members possess large z-extensions above the plane of the primaries and a low
perilune. Analysis of Fig. 6 reveals a variation in the shape and three-dimensional geometry
along this spatial family. However, unlike the previous example with the DPO family, these
geometric changes cannot be straightforwardly identified or analytically separated because
the number of apses and the direction of motion at each apsis relative to the Moon are
constant along the family. There are some changes in the number of apses relative to L1, but
the direction of motion at these apses also remains constant along the family. With geometry
changes that are visually identifiable but challenging to locate analytically, the northern
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Fig. 6 Subset of the northern L1
halo orbit family in the
Earth–Moon CR3BP, displayed
in the rotating frame

Fig. 7 Stability indices, s1 and
s2, of the northern L1 halo orbits
in the Earth–Moon CR3BP

L1 halo orbit family offers a suitable second demonstration case for the motion primitive
construction process.

The stability indices of the computed segment of the northern L1 halo family also admit
multiple qualitative changes. Figure 7 displays the stability indices, s1 and s2, scaled using
the same normalization function as Fig. 2 and plotted as a function of the Jacobi constant; the
parameters associated with the highlighted orbits in Fig. 6 are indicated using the same color
scheme. The qualitative changes in the orbital stability along the family are summarized
in Table 2, using the same configuration as Table 1. There are five primary changes in
stability along the computed segment of the family. The s1 index exhibits three changes in
stability, occurring in regions of the family where the halo orbits possess a large inclination
and low perilune. For members of the family that approach the L1 equilibrium point with a
Jacobi constant that is above CJ = 3.0, s1 possesses a large positive value, corresponding
to the existence of stable and unstable modes governing fast arrival into or departure from
the periodic orbit. Conversely, s2 indicates two changes in stability: the value of s2 passes
through the critical value of -2 near Jacobi constants of CJ ≈ 2.9435 and CJ ≈ 2.9986.
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Table 2 Dominant stability
changes along the northern L1
halo orbit family

Label Before Change After Change Approx. CJ

S1 −2 < s1 < 2 – 2.9435

−2 < s2 < 2 s2 < −2

S2 −2 < s1 < 2 s1 > 2 2.9470

s2 < −2 –

S3 s1 > 2 −2 < s1 < 2 3.0040

s2 < −2 –

S4 −2 < s1 < 2 – 2.9986

s2 < −2 −2 < s2 < 2

S5 −2 < s1 < 2 s1 > 2 2.9978

−2 < s2 < 2 –

However, for members that possess a high inclination, low perilune, and values of the Jacobi
constant that are less than CJ = 3.0, the magnitude of the stability index is on the order of
100. As a result, natural arrival into and departure from the vicinity of these members via
these stable and unstable modes is relatively slow.

Using the geometric, stability, and energetic properties of members along the northern L1

halo orbit family, an associated set of motion primitives is constructed. Similar to the DPO
example,multiple shooting and pseudo-arclength continuation are used to compute 498 orbits
along the northern halo orbit family. Then, the feature space encoding is constructed using
Eq. 14. The reference point used to compute the apses and relative position vectors along
each halo orbit is selected as theMoon, consistent with the evolution of this family toward the
Moon. Together, these orbits and feature vectors produce a (498× 15)-dimensional dataset.
K -means and agglomerative clusteringwithWard linkage are then applied to the dataset, each
for 16 values of k ranging from 3 to 18, to generate the ensemble of base clustering results.
WEAC is then applied to this ensemble with an inter-cluster distance threshold of t = 0.4.
Figure 8 displays the dendrogram produced by WEAC for this family of halo orbits. As
denoted in Fig. 8 with dashed red lines, the clusters produced using k = 11 possess the largest
lifetime.The associated clusters, denotedbyunique colors, and themotionprimitives, denoted
with black diamonds, are displayed in Fig. 9a as a function of the discretized orbit number
along the family; although this quantity does not possess a physical significance, it enables a
clear and unique initial visualization of the results. Furthermore, the five dominant stability
changes (S1, S2, S3, S4, S5) summarized in Table 2 are denoted with dashed gray lines.
Figure 9b displays the members of each cluster in configuration space; the motion primitives
are highlighted in bold and the corresponding clusters capture the region of existence of each
primitive in the system.

Despite the absence of distinct or hard boundaries between members within the 15-
dimensional feature space, the motion primitive set successfully captures the variety of
geometric and stability characteristics exhibited by the northern L1 halo orbit family. Fig-
ure 9a reveals that members are differentiated into separate clusters in the vicinity of, but not
exactly at the location of, each qualitative change in orbital stability; such a result is not unex-
pected due to the definition of the stability component of the feature vector as a continuous
function. S1, S2, S3, and S4 each describe stability changes where the two nontrivial pairs
of eigenvalues of the monodromy matrix remain close to the unit circle in the complex plane
and, therefore, the values of the stability component of the feature vector are similar on either
side of each soft boundary. On the other hand, S5 is more closely captured by the clustering
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Fig. 8 Dendrogram constructed
via WEAC to determine clusters
of periodic orbits in the northern
L1 halo family

Fig. 9 Clustering result and
motion primitives for the
northern L1 halo orbits in the
Earth–Moon CR3BP; dominant
stability changes are labeled on
left of the figure

approach because it marks a more distinct change in stability as the magnitude of s1 increases
significantly away from the critical value of 2. The remaining clusters along the family above
the dashed line for S5 in Fig. 9a primarily reflect changes in geometry. In fact, analysis of
Fig. 9b reveals that these clusters capture the evolution of the eccentricity, inclination, shape,
and location of members along this family as they evolve toward the plane of the primaries
near L1 and away from the Moon. The reduced set of motion primitives effectively captures
the characteristics of the computed members of the northern L1 halo orbit family, thereby
supplying a simplified representation of the continuous family of spatial periodic orbits for
future use in rapid and informed trajectory design strategies.

5.4 Summarizing periodic orbit families throughout the Earth–Moon system

To further demonstrate the utility of summarizing a subset of the solution space of a multi-
body system, the motion primitive construction process is applied to a variety of planar and
spatial periodic orbit families throughout the Earth–Moon CR3BP. Each family of orbits is
summarized based on its geometric, stability, and energetic properties following the proce-
dure outlined in Sect. 5.1. Figure 10 displays the set of motion primitives constructed to
summarize a variety of planar periodic orbit families in the Earth–Moon system including:
the low prograde orbits (LoPOs); distant retrograde orbits (DROs); L1, L2, and L3 Lyapunov
orbits; L5 short and long period orbits; and 3:1 resonant orbits. The black arrows indicate
direction of motion, while each color indicates a distinct cluster and the associated motion
primitive is highlighted in bold. The corresponding cluster for each motion primitive also
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Fig. 10 Motion primitives
summarizing planar periodic
orbit families in the Earth–Moon
CR3BP, displayed with respect to
the corresponding clusters in the
rotating frame

reflects the region of existence of the primitive in the configuration space of the Earth–Moon
system. Note that although colors are frequently repeated across distinct families for visual
clarity, each cluster is localized to a single family of periodic orbits. Using a similar config-
uration to Figs. 10, 11 displays the motion primitives generated to summarize the northern
L2 and L3 halo orbits; the L1, L2, and L3 axial orbits; and the L1, L2, and L3 vertical
orbits. These orbit families are diverse in terms of their geometric, stability, and energetic
properties as well as their locations in the configuration space of the Earth–Moon system.
Despite the diversity and complexity exhibited by each family of periodic orbits, the general
motion primitive construction process presented in Sect. 5.1 is applied to each family in
the same manner. This automated, unsupervised approach successfully constructs groupings
that capture the fundamental characteristics of members along each family. As a result, these
examples indicate the capacity for a data-driven procedure to extract smaller sets of motion
primitives that summarize the wide variety of periodic orbits that influence the solution space
within a multi-body system. This simpler representation of periodic orbit families may be
used to reduce the complexity of constructing an initial guess for a complex trajectory; such
use of the constructed motion primitives is the focus of ongoing work.
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Fig. 11 Motion primitives
summarizing spatial periodic
orbit families in the Earth–Moon
CR3BP, displayed with respect to
the corresponding clusters in the
rotating frame

6 Summarizing hyperbolic invariant manifolds

The role of hyperbolic invariant manifolds in governing natural transport throughout a multi-
body system has resulted in trajectory designers analyzing the geometry of arcs of finite
duration along stable and unstablemanifolds and assembling them to construct initial guesses
for complex transfers (Koon et al. 2011). In this section, the motion primitive construction
process is defined and demonstrated by summarizing these arcs along the unstable manifold
associated with a single L1 Lyapunov orbit in the Earth–Moon CR3BP. This procedure is
similar to the process presented in Sect. 5.1 for periodic orbit families with some modifica-
tions, primarily in the computation and description of the nonperiodic trajectories comprising
the dataset and additional cluster refinement.

6.1 Constructingmotion primitive sets for hyperbolic invariant manifolds

To construct a set of motion primitives summarizing arcs along a hyperbolic invariant mani-
fold, the clustering procedure is defined as follows:

1. Select an unstable periodic orbit and discretize the orbit into NPO states, equally spaced in
time. Then, generate the stable or unstable manifold by propagating each nearby state that
lies in the approximation of the manifold backward or forward in time, respectively, until
any termination criteria are satisfied. In this section, each trajectory along the unstable
manifold of the selected periodic orbit is propagated until either 15 subsequent apses
occur relative to the Moon, an impact with the Moon occurs, or the trajectory departs the
lunar vicinity either through the L1 or L2 gateways.
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2. Discretize each trajectory into multiple smaller arcs based on an apsis window, where
each apsis is defined relative to a specified reference point. In this section, up to the first
12 apses that occur along each trajectory along the unstable manifold of the selected
periodic orbit are used to define smaller arcs each composed of a total of 4 apses relative
to the Moon. Along a given trajectory, the first arc is defined from the first apsis event
of the trajectory propagated until the fourth apsis event, the second arc is defined from
the second apsis event propagated until the fifth apsis event, and so forth until the final
computed arc terminates at the final recorded apsis of the trajectory. If the apsis window is
larger than the total number of apses along the trajectory, then the trajectory is considered
a single arc.

3. Compute the feature vector fMani defined by Eq. 15 for each arc constructed in Step
2. In this feature vector, the time between apses along an arc is normalized by the total
integration time of the corresponding arc. Additionally, the terminal state of an arc is
included in fMani if the associated trajectory contains fewer apses than the specified apsis
window.

4. Construct an (n × m)−dimensional dataset containing the feature vectors computed in
Step 3.

5. Generate an ensemble of NC base clustering solutions by applying k-means and agglom-
erative clusteringwithWard linkage to the dataset, each for NC/2 values of k in a specified
range.

6. Specify an inter-cluster distance threshold, t , ranging from 0 to 1 and apply WEAC to the
ensemble of base clustering solutions computed in Step 5. The clustering result selected
using WEAC possesses a number of clusters with the largest lifetime above t .

7. If necessary, refine the clusters produced by WEAC. For each cluster with more than 10
members, construct a c-nearest neighbor graph from the members in the cluster using a
specified value of c and compute the number of connected components in the graph. If there
is more than one connected component, then split the original cluster into multiple sub-
clusters that each contain one connected component in the graph. However, for clusters
with 10 members or less, a c-nearest neighbor graph is well-connected for even small
values of c due to its size. Therefore, the similarity values computed inWEAC are directly
leveraged to refine small clusters and ensure the members have a high degree of similarity.
Specifically, for clusters with 10 members or less, members in the cluster with similarity
values greater than or equal to 0.75 are grouped; this value tends to split a small cluster
of insufficiently similar members into multiple sub-clusters, each composed of members
with a high degree of similarity.

8. Extract a set of motion primitives as the medoids of clusters in the final consensus clus-
tering result to summarize the set of trajectories along the selected stable or unstable
manifold.

Given a desired set of trajectories, this motion primitive construction process is an automated
procedure that only requires selecting the range of k, specifying t , and, if applicable, speci-
fying c. In applying this process to the unstable manifold associated with an L1 Lyapunov
orbit in the Earth–Moon system, the inter-cluster distance threshold is set at t = 0.4. Fur-
thermore, the range of k values used to generate the cluster ensemble is selected based on
the size of the dataset as k ∈ [3, 61] (Fred and Jain 2005; Huang et al. 2015). This range
is selected to ensure the evidence supplied to WEAC in the form of base clustering results
encompasses both a small number of clusters, which tends to raise the average similarity
values between members in the matrix A, and a large number of clusters that tends to lower
the average similarity values in A; as a result, a wide range of k values tends to balance out
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these effects to more clearly reflect the natural structure of this complex dataset (Fred and
Jain 2005; Huang et al. 2015). Finally, all clustering results are produced using the Scikit-
Learn v0.23.1 module available in Python and the components of the WEAC algorithm that
do not involve clustering have been implemented by the authors in MATLAB® (MathWorks
2020; Pedregosa et al. 2011). The computation time for this clustering procedure to generate
motion primitives summarizing the arcs along a hyperbolic invariant manifold is on the order
of 101 seconds for the example in this section.

An additional step for cluster refinement is included in the motion primitive construction
procedure due to the potential sparsity of arcs computed along a hyperbolic invariantmanifold
and for cases when related, yet visually distinct arcs are incorrectly clustered together; such
issues may occur in high-dimensional feature spaces due to the curse of dimensionality
(Aggarwal and Reddy 2014). Inspired by a previous use of graph theory for more complex
cluster refinement in hierarchical clustering (Karypis et al. 1999), a c-nearest neighbor graph
is a simple and powerful tool to autonomously determine if a cluster should be further
split into smaller groups. For example, a homogeneous cluster will likely only contain one
connected component in a c-nearest neighbor graph, while a cluster consisting of several
smaller and separated sub-clusters may contain multiple connected components depending
on the selected value of c. When c = 1, a sparse graph is produced and may contain a
large number of connected components that each possess only two members, resulting in an
excessive fragmentation of an original cluster. However, c = 2 generates a better-connected
graph that avoids this issue and may preserve the structure of continuous, homogeneous
clusters. A large value of c naturally results in a well-connected graph because c dictates the
number of nearest neighbors each member is connected to in the graph (Han et al. 2012).
Therefore, c may be selected based on the desired scale of cluster refinement; in this section,
c is set equal to 2. This automated refinement process limits the burden on a human analyst
when additional refinement is deemed appropriate.

A sub-cluster that is comprised of only one or two members cannot be identified using
a c-nearest neighbor graph when c ≥ 2; these types of sub-clusters may be considered as
outliers. To address these edge cases and include outlier detection, two rules are formulated
to identify sub-clusters with only one or two members during the cluster refinement in Step 7
of the motion primitive construction process. A member of a cluster is identified as the sole
member of a sub-cluster when: (i) it is not a nearest neighbor of any other members in its
cluster, and (ii) its average similarity to its nearest neighbors is less than 0.75. By leveraging
this large similarity value threshold with the c-nearest neighbor graph, sub-clusters with only
onemember are automatically identified as outliers but onlywhen there is not a high degree of
similarity to the original cluster. Similarly, two members of a cluster form a sub-cluster when
both members are not a nearest neighbor of any other members in their cluster aside from
each other. These rules support outlier detection while also avoiding excessive fragmentation
during cluster refinement.

6.2 Summarizing an unstable half-manifold of an L1 Lyapunov orbit

A set of motion primitives is constructed to summarize segments of the global unstable
half-manifold associated with an L1 Lyapunov orbit and directed toward the Moon. The
global unstable half-manifold is generated for a motion primitive in the L1 Lyapunov orbit
family; specifically, at a Jacobi constant of 3.1670. The trajectories that lie along this unsta-
ble manifold exhibit many close approaches and revolutions around the Moon, while some
trajectories impact the Moon or leave the vicinity of the Moon through the L1 gateway. Fig-
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Fig. 12 Trajectories along the unstable manifold of an L1 Lyapunov orbit atCJ = 3.1670 and directed toward
the Moon along with the resulting apsis map relative to the Moon for up to 15 returns

ure 12a displays short segments, denoted in red, of trajectories computed along the unstable
half-manifold departing the L1 Lyapunov orbit, denoted in black, and directed toward the
Moon. The gray regions in Fig. 12 correspond to the forbidden regions and are bound by
zero-velocity curves. Furthermore, Fig. 12b displays a Poincaré map with an apsis surface of
section, defined with respect to the Moon, recording up to 15 perilunes and apolunes that lie
along this unstable half-manifold of the selected L1 Lyapunov orbit. Then, 500 trajectories
that lie on this unstable manifold are sampled to produce up to 12 smaller arcs along each
trajectory, each admitting 4 apses, unless impacting the Moon or passing through the L1 or
L2 gateways first. These arcs are used to form the dataset that describes the unstable man-
ifold and is summarized using the clustering procedure outlined in Sect. 6.1 for a general
hyperbolic invariant manifold. Using the feature vector fMani defined by Eq. 15, the result-
ing dataset is a (951 × 19)−dimensional dataset. Given the expected diverse and complex
geometric variations along manifold structures as well as the size of the dataset, a large range
of k ∈ [3, 61] is selected to encompass a reasonable number of distinct characteristics in
the dataset. WEAC is then applied to the resulting 118 base clustering results along with the
cluster refinement procedure, identifying 40 clusters and their associated motion primitives.

Trajectory arcs lying along the unstable half-manifold of an L1 Lyapunov orbit at CJ =
3.1670 exhibit a variety of distinct geometries in the lunar vicinity. Following application
of the presented procedure to this dataset, the resulting 40 clusters and motion primitives
are displayed in Figs. 13, 14, and 15. Each cluster and corresponding motion primitive is
labeled with the prefix “U” followed by a number to facilitate discussion of the results. In
these figures, the corresponding trajectories for each cluster are plotted in configuration space
with the motion primitives denoted in bold and unique colors assigned to distinct clusters.
Focusing initially on arcs admitting fewer than 4 apses, the clustering approach generates
five different clusters and motion primitives, U1–U5, as displayed in Fig. 13. Clusters that
contain only two members, such as U4, depict both members of the cluster with one member
arbitrarily selected as the motion primitive because either arc is suitable to summarize the
motion in the cluster. Analysis of this figure reveals that clusters U2–U4 effectively capture
several distinct geometries admitted by arcs that impact the Moon after departing the vicinity
of the L1 Lyapunov orbit. The motion primitives computed from clusters U1 and U5 capture
arcs that leave the lunar vicinity via the L1 gateway after a single revolution around theMoon,
but with distinct geometries. The remaining 35 different clusters, U6–U40, in Figs. 13, 14,
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Fig. 13 Subset of trajectory clusters U1–U16 along the unstable manifold directed toward the Moon for an
L1 Lyapunov orbit at CJ = 3.1670 with x plotted on the horizontal axis and y plotted on the vertical axis;
motion primitives are denoted in bold

and 15 producemotion primitives that represent arcs admitting 4 apses.Multiple fundamental
departure geometries from the initial L1 Lyapunov orbit are uncovered via clusters U25–U30
in Fig. 14. The remaining motion primitives effectively summarize the variety of geometries
admitted by subsequent arcs along the selected unstable manifold in the lunar vicinity: a
variety of arcs revolving around the Moon with varying close approaches are recovered as
well as the flow of trajectories toward the L2 gateway. Some of the arcs revolving around the
Moon possess segments that resemble known periodic orbits. For example, clusters U14–
U16 in Fig. 13 and clusters U17–U24 in Fig. 14 contain segments with similar geometries
to a member of the DPO family at CJ = 3.1670. This set of motion primitives supplies
a succinct summary of the trajectories along an unstable half-manifold that may be useful
when designing a transfer in cislunar space; incorporating this summary into the initial guess
construction process is the focus of ongoing work.

Due to the sparsity of the trajectories discretized along the unstable manifold and the
feature space definition, the original WEAC results may sometimes produce clusters that
appear to contain distinct smaller clusters. Before refining the clusters, the initial WEAC
result for the arcs computed along the unstable manifold associated with the L1 Lyapunov
orbit at CJ = 3.1670 identifies 25 distinct clusters; 13 of these clusters are refined. A
majority of these clusters consisted of one dense sub-cluster and one or more smaller sparse
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Fig. 14 Subset of trajectory clusters U17–U32 along the unstable manifold directed toward the Moon for an
L1 Lyapunov orbit at CJ = 3.1670 with x plotted on the horizontal axis and y plotted on the vertical axis;
motion primitives are denoted in bold

sub-clusters containing only a few outlier members, typically ranging from 1 to 6 outliers; a
total of 41 outliers are identified (approximately 4.3% of the total members of the dataset).
For example, the WEAC approach originally produced the cluster displayed in Fig. 16a that
appears to contain one dense sub-cluster and one smaller sparse sub-cluster consisting of
6 members; while there are some similarities in the general geometries of these clusters,
they are distinct. This cluster is automatically refined using the process outlined in Step 7 of
the motion primitive construction procedure for hyperbolic invariant manifolds, producing
the two distinct clusters displayed in Fig. 16b using distinct shades of purple. Additionally,
clusters composed of one or two members, such as U21–U24, are the result of splitting
several denser clusters, such as U18–U20, as displayed in Fig. 14. As previously discussed,
due to the sparsity of the dataset there may be clusters with only a few outlier members
that are incorrectly clustered with trajectories that are most similar to them in the prescribed
feature space. Therefore, the presented refinement process is able to successfully identify
and form these smaller sub-clusters to separate outliers with distinct geometries. Of course,
increasing the number of states sampled along the original periodic orbit and used to generate
the associated unstable half-manifold may reduce the need for such refinement. However,
in the absence of an iterative data generation and parameter selection procedure, driven by
a human analyst, the additional cluster refinement approach ensures that the final set of
motion primitives captures the variety of geometries admitted by arcs along the unstable
half-manifold.
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Fig. 15 Subset of trajectory clusters U33–U40 along the unstable manifold directed toward the Moon for an
L1 Lyapunov orbit at CJ = 3.1670 with x plotted on the horizontal axis and y plotted on the vertical axis;
motion primitives are denoted in bold

Fig. 16 Refinement of a single cluster, produced by WEAC, into two distinct clusters
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7 Discussion

Generated through a data-driven approach, motion primitives summarize arcs along families
of fundamental solutions that govern motion in a multi-body system. This process has been
constructed with the goal of eventually simplifying and supporting rapid and informed trajec-
tory design strategies. Specifically, ongoing work by the authors has focused on developing
and demonstrating a preliminary procedure for analyzing, selecting, and assembling motion
primitives to construct initial guesses of desired geometries for both natural and maneuver-
enabled transfers in the Earth–Moon system. Although this work is the focus of a separate
paper, Smith and Bosanac (2021), a brief summary is presented here to motivate the potential
utility of motion primitives in the trajectory design process.

Consider the fundamental example of designing planar transfers from an L1 Lyapunov
orbit to an L2 Lyapunov orbit in the Earth–Moon CR3BP. Two Lyapunov orbits are selected
and displayed in Fig. 17 in solid purple and light brown, respectively, and each correspond
to a motion primitive of their respective periodic orbit families; additional members of each
family that possess similar geometric, stability, and energetic properties and are assigned to
the same cluster lie within the associated transparent shaded regions. The selected L1 and
L2 Lyapunov orbits possess Jacobi constants of CJ = 3.1670 and CJ = 3.1666, respec-
tively. To assemble an initial guess for a maneuver-enabled transfer between two periodic
orbits that possess a similar geometry to the selected Lyapunov orbits, the unstable and sta-
ble manifolds of these representative periodic orbits are generated. Motion primitive sets are
then constructed to summarize the finite geometries of arcs that lie along these fundamental
solutions that govern motion in the lunar vicinity. Using this summary, an initial guess for a
transfer with a desired geometry is constructed by directly selecting and assembling motion
primitives; in this example, lying within the pink- and maroon-shaded regions and displayed
using dashed arcs. The selected motion primitives are then morphed within their associated
regions of existence to improve the quality of the initial guess. This morphed initial guess,
displayed using solid arcs, is input to a constrained optimization algorithm that uses collo-
cation to recover a maneuver-enabled transfer. The trajectory designer may then construct
additional transfers with distinct geometries by selecting a different number or combina-
tion of motion primitives. Through this procedure, motion primitives have the potential to:
reduce the complexity of analyzing arcs along the families of fundamental solutions that are
often used in trajectory design; offer additional insight into their distinct geometric, stabil-
ity, and/or energetic properties; and support initial guess construction for a wide variety of
complex trajectories throughout multi-body systems.

8 Conclusion

In this paper, the concept of a motion primitive is used to summarize fundamental dynamical
structures in a multi-body system with the goal of eventually reducing the complexity of
analysis required in current strategies for trajectory design and examination of natural trans-
port. Across a variety of disciplines, a motion primitive is a fundamental building block of
complex motion in a dynamical environment, representing a range of similar solutions. In
this paper, a motion primitive set is defined as a set of arcs that capture the characteristics of a
larger set of trajectories and support assembly of an initial guess for a more complex path in a
multi-body system. This paper presents a data-driven framework for autonomously extracting
these primitives from a set of trajectories, without the need for significant human interven-
tion or analytical separation criteria. A set of trajectories is first encoded in a feature space
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Fig. 17 Initial guess constructed
using motion primitives and their
corresponding regions of
existence for a transfer between
an L1 and L2 Lyapunov orbit in
the Earth–Moon CR3BP with a
single revolution around the
Moon

description that captures common design parameters of interest such as geometry, stability,
and energy. Then, an ensemble of clustering results is computed for the dataset using k-means
and agglomerative clustering evaluated for a variety of input parameters. WEAC, a consen-
sus clustering method, is leveraged to generate the final clustering result. A set of motion
primitives is then extracted as the medoids of the clusters. Utilizing a consensus cluster-
ing algorithm in conjunction with traditional clustering approaches produces results without
requiring significant intervention fromahuman; rather, this approach learns froman ensemble
of accumulated evidence to uncover the natural groupings within a set of trajectories.

Using the presented data-driven procedure, motion primitives are constructed to summa-
rize families of periodic orbits and hyperbolic invariantmanifolds in the Earth–MoonCR3BP.
A set of motion primitives is constructed for the planar family of distant prograde orbits, the
spatial family of northern L1 halo orbits, and a variety of other periodic orbit families; in
each case, the motion primitive sets capture the complex variations in geometry, stability, and
energy along each family. A similar clustering approach is also employed to summarize a set
of trajectories along an unstable half-manifold of an L1 Lyapunov orbit. Each trajectory along
the manifold is discretized into a series of smaller arcs based on an apsis window to identify
the fundamental variations in geometry of arcs along the manifold. This approach effectively
summarizes the departure geometries from the L1 Lyapunov orbit toward the Moon and L2,
motion around the Moon, and trajectories that either directly impact the Moon or leave the
lunar vicinity. For both the periodic orbit families and the manifold trajectories, the outputs
of the developed approach include: (i) a set of fundamental trajectories that summarize larger
sets of natural motions in a multi-body system, and (ii) a depiction of the regions in which the
motion primitives exist. These outputs serve as a key, fundamental step toward future work in
leveraging motion primitives for rapidly generating initial guesses for complex trajectories
within multi-body systems.
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