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Abstract
Poincaré maps are regularly used to facilitate rapid and informed trajectory design within
multi-body systems. However, maps that capture a general set of spatial trajectories are
often higher-dimensional and, as a result, challenging for a human to analyze. This paper
addresses this challenge by employing techniques from data mining. Specifically, distributed
clustering, dimension reduction and classification are used in combination to construct a data-
driven approach to autonomously group higher-dimensional crossings on a Poincaré map
according to the geometry of the associated trajectories generated over a short time interval.
This procedure is demonstrated using a periapsis map that captures spatial trajectories at
a single energy level in the Sun-Earth circular restricted three-body problem. Arcs along
hyperbolic invariant manifolds associated with families of tori in the L1 and L2 gateways
are also projected onto this clustering result to rapidly extract their fundamental geometries.
Together, these examples demonstrate the potential for the presented data-driven approach
to facilitate analysis of a complex solution space reflected on a higher-dimensional Poincaré
map.

Keywords Circular restricted three-body problem · Higher-dimensional Poincaré maps ·
Clustering · Dimension reduction

1 Introduction

Poincaré maps are used in astrodynamics and celestial mechanics to analyze the complex
solution space in a multi-body system. A Poincaré map displays the intersections of a set of
trajectories with a surface of section, reducing continuous solutions to sequences of states
and decreasing the dimensionality of the problem (Perko 1996). This technique has been used
to study trajectories that admit a large number of returns to the surface of section, enabling
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analysis of the local neighborhood of a periodic orbit and the identification of fundamental
solutions via patterns on the map (Perko 1996; Koon et al. 2011; Contopoulos 2002; Davis
2011). Poincaré maps are also commonly used in astrodynamics to examine only a small
number of returns to the surface of section for trajectories that: lie on a segment of a global
stable or unstablemanifold of a periodic orbit or torus (Koon et al. 2011); escape the vicinity of
a celestial bodywithin several revolutions (Villac and Scheeres 2003; Paskowitz and Scheeres
2006; Haapala 2014; Davis 2011); and possess specific geometries or characteristics over
short time intervals (Bosanac et al. 2018; Davis 2011). In fact, Poincaré maps have become a
fundamental component of rapid trajectory design strategies applied to multi-body systems
(Davis et al. 2018; Gómez et al. 2004; Haapala 2014; Koon et al. 2011; Bosanac et al. 2018).

For spatial trajectories in the circular restricted three-body problem (CR3BP), each
intersection with a surface of section possesses a multi-dimensional description. Previous
researchers have developed approaches to visualize and analyze the resulting higher-
dimensional Poincaré maps during the trajectory design process. For instance, Haapala
used multivariate representations of the map crossings, while Gómez et. al used additional
constraints to filter the data represented on a lower-dimensional projection (Haapala 2014;
Gómez et al. 2004). These techniques have supported using higher-dimensional Poincaré
maps capturing spatial hyperbolic invariant manifolds in the CR3BP during transfer design
and analysis. However, if a higher-dimensional Poincaré map is more complex, denser or
associated with a nonautonomous dynamical model, data obscuration or a loss of information
may still occur. Furthermore, it is challenging to extract from the map additional information
about the geometries admitted by the associated trajectories due to the absence of generaliz-
able descriptions of the geometry of nonlinear paths throughout a chaotic system; yet, such
information is often valuable to a trajectory designer (Bosanac et al. 2018; Davis 2011). In
this paper, data mining techniques are used to organize spatial trajectories by their geometry
to facilitate analysis of a higher-dimensional Poincarémap generated in the CR3BP (Bosanac
2020; Bonasera and Bosanac 2020a, b).

Two well-known data mining techniques, clustering and dimension reduction, have been
successfully applied to awide variety of complex datasets to facilitate analysis and knowledge
discovery. Clustering is used to discover groupings within a dataset without any predefined
labeling criteria, while dimension reduction projects higher-dimensional data onto a lower-
dimensional space that corresponds to either a fundamental geometrical structure or a set
of latent features. Applying these techniques to complex datasets has guided knowledge
discovery in a variety of scientific applications including visualizing proteins in single cell
biology as well as pattern and outlier identification in time series data (Cao et al. 2019; Ali
et al. 2019). Recent use in astrodynamics and appliedmathematics includes locating coherent
structures in nonlinear flows, detecting regions of stability near distant retrograde orbits via
a Poincaré map, grouping periodic orbits, and extracting motion primitive sets from families
of trajectories (Hadjighasem et al. 2016; Nakhjiri and Villac 2015; Villac et al. 2016; Smith
and Bosanac 2019).

Recently,Bosanac has applied clustering to planar perigeemaps bygrouping the associated
trajectories, at a fixed value of the Jacobi constant in the Sun-Earth CR3BP, by their geometry
(Bosanac 2020). Specifically, each trajectory within a large set is described by a finite-
dimensional feature vector that encodes information about several subsequent returns to
an apsis surface of section. Then, the similarity in geometry between two trajectories is
assessed using the Euclidean distance between their feature vectors. A dataset composed of
the feature vectors for all trajectories in the set are input to the hierarchical density-based
spatial clustering of applications with noise (HDBSCAN) clustering algorithm to organize
the solution space into clusters of geometrically similar trajectories. A two-dimensional map

123



Applying data mining techniques to higher-dimensional… Page 3 of 32 51

is then used to visualize the initial perigees of these trajectories, colored by their cluster
assignment and, therefore, their distinct geometry.

Building upon Bosanac’s proof-of-concept, this paper uses data miningmethods to reduce
the complexity of analyzing a higher-dimensional prograde perigee map capturing spatial
trajectories at a single energy level in the Sun-Earth CR3BP. First, a large set of trajectories
are generated from prograde perigees, sampled near the Earth, for several returns to an apsis
surface of section. Similar to the approach presented by Bosanac, a finite-dimensional feature
vector is used to summarize a trajectory, while the Euclidean distance between two feature
vectors is used to assess geometric similarity (Bosanac 2020). This paper then presents a
new approach to grouping the trajectories according to their geometry in a computationally
manageable process. Inspired by distributed clustering, the trajectories are first clustered in
smaller partitions using their feature vectors as inputs to HDBSCAN. The clustering results
from each partition are then sampled and combined using a cluster aggregation procedure
that successively uses both clustering and dimension reduction in a binary tree structure
to produce a global cluster summary. From this grouping, representative members of each
cluster are used to summarize the geometries of trajectories across the entire dataset. A three-
dimensional projection of the perigee map is also constructed to display the initial perigees of
each trajectory, colored by their cluster assignment, in the configuration space. Tomitigate the
impact of data obscuration, an analyst may view only selected clusters of data on the higher-
dimensional map focusing on solutions with a similar geometry as opposed to filtering with
pre-defined analytical criteria. Furthermore, coloring each perigee by the geometry of their
trajectories enhances the map while also reflecting the regions of existence of solutions with
each type of geometry. This data-driven approach mitigates the burden on a human analyst
who may otherwise manually construct such a summary or analyze a higher-dimensional
map when identifying and assembling arcs of interest during trajectory design.

An additional application of a global summary of the solution space is demonstrated in
this paper via a comparison with the hyperbolic invariant manifolds of spatial tori in the L1

and L2 gateways. Although these stable and unstable manifolds are known to govern natural
transport within multi-body systems, it is currently difficult to visualize or assess their influ-
ence on the solution space, even when using Poincaré maps. Thus, a useful application of
the presented data-driven approach emerges: arcs along these four-dimensional hyperbolic
invariant manifolds are projected directly onto the previously generated clustering result at
the same energy level using a classifier. This projection enables rapid extraction and visual-
ization of the fundamental geometries of arcs along the manifolds as well as analysis of their
connection to the characteristics of the solution space. This procedure, as well as the insights
it enables, may eventually support further examination of natural transport mechanisms and
trajectory design within multi-body systems.

2 Dynamical model

The CR3BP is used to describe the dynamics governing the motion of a spacecraft due to
the point mass gravitational influence of two primary bodies. In this model, two primaries,
P1 and P2, are assumed to follow circular orbits about their mutual barycenter. The third
body, e.g., a spacecraft, is assumed to possess a negligible mass relative to the two primaries
(Szebehely 1967). Three characteristic quantities are used to nondimensionalize mass, length
and time quantities, respectively: m∗, equal to the sum of the masses of the primaries; l∗,
equal to the constant distance between the two primaries; and t∗ to set the mean motion
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of the primaries to unity. This nondimensionalization scheme also enables definition of the
parameter μ as the ratio between the mass of the smaller primary and the system mass. In
the Sun-Earth system, the mass ratio is μ ≈ 3.00348064× 10−6. Then, the nondimensional
state of the spacecraft is expressed in an orthogonal reference frame (x̂, ŷ, ẑ) that rotates with
the two primaries: the x̂-axis is directed from the larger to the smaller primary, the ẑ-axis
is aligned with the orbital angular momentum of the primaries, while the ŷ-axis completes
the right-handed triad. The nondimensional state of the spacecraft is defined in this frame
relative to the system barycenter as x = [x, y, z, ẋ, ẏ, ż]T . Using these definitions, the
nondimensional equations of motion for a spacecraft in the CR3BP are expressed as

ẍ − 2 ẏ = ∂U

∂x
, ÿ + 2ẋ = ∂U

∂ y
, z̈ = ∂U

∂z
, (1)

whereU = (x2+y2)/2+(1−μ)/r1+μ/r2 is the pseudo-potential function, and the distances
of the spacecraft from the two primaries are, respectively, r1 = √

(x + μ)2 + y2 + z2 and
r2 = √

(x − 1 + μ)2 + y2 + z2 (Szebehely 1967). The CR3BP, which is autonomous when
formulated in the rotating frame, admits an integral of motion, labeled the Jacobi constant and
equal to CJ = 2U − ẋ2 − ẏ2 − ż2 (Szebehely 1967). At a single value of the Jacobi constant,
trajectories are bound by zero velocity surfaces (ZVS), separating allowable and forbidden
regions of motion. Within the ZVS, a wide variety of solutions exist including: equilibrium
points, labeled Li for integers i = [1, 5]; periodic orbits; quasi-periodic trajectories; and
chaos (Szebehely 1967; Koon et al. 2011).

3 Poincarémapping

In dynamical systems theory, Poincaré maps reduce the complexity of analyzing a set of
trajectories. First, a surface of section is defined transverse to the flow (Perko 1996). Useful
definitions for a surface of section include: hyperplanes defined by a specific value of a
coordinate or a function; hyperspheres centered at one primary; stroboscopic sampling; and
apses or other trajectory events (Verhulst 1996; Paskowitz and Scheeres 2006; Gómez and
Mondelo 2001). Then, a continuous trajectory is reduced to a finite sequence of states via its
intersections with the surface of section. The intersections are recorded to form the Poincaré
map that is typically visualized via a lower-dimensional representation (Contopoulos 2002).
Depending on the problem definition, the selected hyperplane and the map configuration, a
set of map crossings may supply insight into the characteristics of the underlying solution
space and facilitate identification of the dynamical mechanisms governing the associated
flow (Contopoulos 2002).

This paper focuses on a periapsis map capturing spatial trajectories with initially prograde
perigees in the Sun-Earth CR3BP at a single value of the Jacobi constant. In this scenario,
a complete description of each initial perigee is four-dimensional. Consequently, a two- or
three-dimensional projection does not supply a bijective representation of the mapping and
results in data obscuration (Haapala 2014). Thus, visualization and analysis may be challeng-
ing and cumbersome for an astrodynamicist, impeding a rapid and thorough investigation of
the solution space. Applying existing approaches to analyzing higher-dimensional Poincaré
maps may require a priori insight into the structure of the solution space, result in the loss of
information, or require a high analytical workload. However, data mining techniques offer a
potential approach for addressing these challenges and effectively reducing the complexity
of analyzing higher-dimensional Poincaré maps.
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4 Clustering

Clustering techniques group the members of a dataset such that data in the same cluster are
considered similar, while data in separate clusters are considered dissimilar (Han andKamber
2006). In this paper, the hierarchical density-based spatial clustering of applications with
noise (HDBSCAN) algorithm, developed by Campello, Moulavi and Sander, is leveraged
for cluster assignment following the approach presented by Bosanac (Campello et al. 2013;
McInnes et al. 2017; Bosanac 2020). As Bosanac notes, this algorithm is appropriate for
clustering the crossings on a Poincaré map according to the geometry of the associated
trajectories in the CR3BP since it accommodates clusters of arbitrary shape and density;
labels data that is not assigned to a cluster as noise; does not require a priori knowledge of
the number of clusters; and accommodates an unknown or variable distance between data in
a cluster (Bosanac 2020; Campello et al. 2013). To reduce the computational complexity of
clustering a large dataset, techniques from distributed clustering are leveraged. This section
presents a brief overview of HDBSCAN, followed by a discussion of a relevant approach to
distributed clustering.

4.1 HDBSCAN

HDBSCAN is a density-based and hierarchical clustering algorithm developed by Campello,
Moulavi and Sander (Campello et al. 2013). This algorithm takes as an input the dataset
[T i ] = {t1, t2, . . . , tN }, composed of N members, each described by an M-dimensional
feature vector t . Then, HDBSCAN groups data in sufficiently dense regions of the multi-
dimensional space into clusters. Two input parameters govern this clustering algorithm:
mpts and mclSize. The first input parameter enables calculation of the core distance, dcore,
which is the distance of a member from its (mpts − 1)-th nearest neighbor in the M-
dimensional feature vector space. The second parameter, mclSize, sets the minimum number
of members in a single cluster. Using these input parameters, HDBSCAN populates a
distance matrix with the distance between the i-th and j-th data points calculated as
dreach(t i , t j ) = max

{
dcore(t i ), dcore(t j ), d(t i , t j )

}
where d(t i , t j ) is simply the distance

between the two points. The quantity dreach(t i , t j ) is labeled the mutual reachability distance
and requires specifying a distance metric, e.g., the Euclidean norm, L∞-norm or Hausdorff
distance. A minimum spanning tree (MST) is then constructed by leveraging the computed
mutual reachability distances as the weights of the edges between each pair of members of
the dataset. A self-loop representing the core distance of each member is added at each node
to generate an extendedMST. HDBSCAN then condenses theMST to produce a dendrogram
that supports cluster assignment: clusters are identified as those that both possess at least a
minimum number of members and are considered sufficiently stable across the dendrogram.
During the clustering process, each member of the dataset is either assigned to a cluster or
considered noise (Campello et al. 2013). A schematic overview of the underlying algorithm
for HDBSCAN appears in Algorithm 1 of Campello et al. (2013). As presented by Campello,
Moulavi and Sander, the HDBSCAN algorithm is ∼ O(MN 2) in time and ∼ O(MN ) in
memory storage, when the clustering is performed on an (N × M)-dimensional dataset
(Campello et al. 2013). In this paper, the HDBSCAN algorithm is accessed via the hdbscan
library in Python, which admits a computational complexity that approaches∼ O(N log(N ))

under certain conditions (McInnes et al. 2017).
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4.2 Distributed clustering

Distributed clustering focuses on developing strategies to efficiently and accurately cluster
a large dataset that may be distributed across multiple computational machines and time.
These approaches tend to be composed of four fundamental steps (Aggarwal and Reddy
2018). First, a dataset is split into multiple partitions: each partition is clustered to produce
a local clustering result. Then, each local clustering result is reduced to a representative
subset; these subsets are designed to support rapid data sharing, low storage requirements
and sufficient representation of the structure of the data in the partition. In the third step,
these representative solutions from the local clusters are aggregated to construct a global
clustering result for the entire dataset. Then, this global model may be returned to each local
partition to facilitate labeling any data that does not appear in the global clustering result.
Bendechache, Le-Khac and Kechadi demonstrate that this approach effectively minimizes
communication between partitions of a dataset, scales well when the dataset size increases
and may outperform centralized clustering algorithms in both result quality and execution
time (Bendechache et al. 2016).

5 Dimension reduction

Dimension reduction is used to project a higher-dimensional dataset onto a lower-dimensional
space (Wenskovitch et al. 2018). One class of dimension reduction algorithms is manifold
learning, which discovers a lower-dimensional manifold on which the data is assumed to lie
(McInnes et al. 2018). When this embedding sufficiently captures the structure of the dataset,
it may be leveraged for processing a dataset prior to clustering or visualization (Wenskovitch
et al. 2018; Han and Kamber 2006). In this paper, the uniform manifold approximation and
projection (UMAP) algorithm is used for nonlinear dimension reduction (McInnes et al.
2018). This algorithm is selected due to its demonstrated success in capturing the structure
of complex datasets via lower-dimensional representations in a variety of disciplines (Becht
et al. 2019; Li et al. 2019).

UMAP is a nonlinear dimension reduction technique that leverages concepts from alge-
braic and fuzzy topology (McInnes et al. 2018). A high-dimensional dataset that is input to
UMAP is assumed to be uniformly distributed on a Riemannian manifold that is locally con-
nected; UMAP approximates this manifold to identify a lower-dimensional representation
of the data. First, UMAP forms a topological representation of the high-dimensional dataset.
This process begins by constructing a local Riemannianmetric in the vicinity of eachmember
of the dataset, with the local neighborhood defined using the nn-nearest neighbors. The fuzzy
union of these local metric spaces is used to form a fuzzy simplicial set that is represented
by an nn-neighbor graph. This graph is constructed with a specified distance metric and
represented via a force-directed layout to supply a fuzzy topological representation of the
high-dimensional dataset. Then, stochastic gradient descent is used to identify an embed-
ding onto a lower-dimensional Euclidean space with a similar fuzzy topological structure
to the actual dataset. UMAP initializes this low-dimensional representation through spectral
embedding. Then, the embedding is refined by minimizing the cross-entropy between the
fuzzy topological structures of the original dataset and lower-dimensional representation. A
schematic overview of the underlying algorithm forUMAP appears in Section 4.1 ofMcInnes
et al. (2018). The overall computational complexity of UMAP is driven by the nn-neighbor
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search, empirically approximated as ∼ O(N 1.14), and the stochastic gradient descent step,
∼ O(nnN ) (McInnes et al. 2018).

This work leverages three input parameters to influence the low-dimensional projection
generated by UMAP (McInnes et al. 2018). First, nn governs the size of the local neighbor-
hood used to construct theweighted nn-neighbor graph.A small integer value of nn prioritizes
the local structures across the manifold, while a higher integer value focuses on the global
structure. Then, mdist specifies the minimum allowable distance between any two points
in the lower-dimensional space; as a result, this parameter also influences the topological
structure of the data in the learned representation. Finally, nc defines the dimension of the
lower-dimensional embedding of the original dataset. In this paper, the UMAP algorithm is
accessed via the umap-learn library in Python (McInnes et al. 2018).

6 Classification

Classification is a form of supervised learning that assigns unlabeled data to classes via a
classifier constructed using already labeled data (Han and Kamber 2006). In general, the
classification process is divided into two components: classifier training or construction, and
testing (Han and Kamber 2006). First, a subset of members of a labeled dataset are used to
construct a classifier that converts a feature vector into a predicted label. Then, during the
testing phase, this classifier is used to assign the remaining members of the dataset to a class,
thereby testing the classifier. Although there are a wide variety of classification algorithms,
this paper employs one of the most foundational methods to support a proof-of-concept:
weighted k-nearest neighbor classification. This classification scheme has been employed
in various disciplines including, for example, processing large datasets in astronomy and
celestial mechanics (Ivezić et al. 2019; Mommert et al. 2020). The incorporation of more
complex or computationally efficient classifiers serves as an avenue for future work.

The weighted k-nearest neighbor classification algorithm assigns classes to unlabeled
data using a straightforward k-nearest neighbor search applied to the labeled dataset (Han
and Kamber 2006). Given a member of an unlabeled dataset, the algorithm searches for the
k-nearest neighbors in the labeled dataset where k is a user-specified integer. This search
is performed using a specified similarity metric; in this paper, selected as the Euclidean
distance between the feature vectors of two members. Each of the k-nearest neighbors in the
labeled dataset are assigned a weight; in this paper, equal to the inverse square of the distance
from the unlabeled member in the higher-dimensional feature space. Among these k-nearest
neighbors, the class that possesses the largest cumulative weight supplies the prediction for
the class of the unlabeled member. This algorithm possesses a computational complexity
∼ O(kNCMC ) where NC is the number of members in the training dataset and MC is the
dimension of the input feature vector (Han et al. 2014). In this paper, the weighted k-nearest
neighbor classification algorithm is accessed via MATLAB® (MathWorks 2020).

7 General procedure for processing higher-dimensional Poincarémap
data

This paper presents a framework for analyzing higher-dimensional Poincaré maps in the
spatial CR3BP using techniques from data mining. This section presents a general outline
of this procedure in the context of a prograde perigee map at a single Jacobi constant in the
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Fig. 1 Graphical overviewof framework for analyzing higher-dimensional Poincarémaps in the spatialCR3BP
using techniques from data mining

Sun-Earth CR3BP. A graphical summary of this framework appears in Fig. 1, with each step
explained in detail in this section.
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7.1 Step 1: constructing partitions of initial conditions

The complete set of initial conditions used to construct a periapsis map is seeded as prograde
perigees near the Earth, within the ZVS at a selected value of CJ . First, a periapsis surface
of section is defined relative to the Earth (Villac and Scheeres 2004). Each perigee satisfies
the following two conditions in the rotating frame of the Sun-Earth CR3BP:

(x − 1 + μ) ẋ + y ẏ + zż = 0 ∪ (x − 1 + μ) ẍ + y ÿ + zz̈ + ẋ2 + ẏ2 + ż2 > 0. (2)

Candidate initial position coordinates are selected using a grid defined by Nx equally spaced
values of x within the range [xmin, xmax], Ny equally spaced values of y within the range
[ymin, ymax] and Nz equally spaced values of z within the range [zmin, zmax]. For each
candidate position vector, the speed at perigee is calculated from the Jacobi constant as
v = √

2U − CJ . If v possesses a real value, the position coordinates x, y, z lie within the
ZVS. Then, an associated velocity unit vector is calculated via a linear combination of two
basis vectors defining the plane that is perpendicular to the position vector measured relative
to the Earth. These basis vectors are defined as the following two vectors that lie in the two-
dimensional nullspace of the vector [x − 1 + μ, y, z]: û1 possesses a z-component equal to
zero and is directed to produce an instantaneous angular momentum vector with a positive
z-component when the velocity vector is parallel to û1; and û2 is perpendicular to û1, with
a positive z-component. An initial velocity vector, v0, is then calculated from these basis
vectors using a specified angle θ as

v0 = v

(
cos(θ)û1 + sin(θ)û2

|| cos(θ)û1 + sin(θ)û2||
)

. (3)

If the resulting state vector satisfies the perigee conditions in Eq. (2), it is used to define a
feasible initial condition.

The complete set of initial conditions is partitioned into p groups of prograde perigees
near the Earth. In this work, perigees in the i-th partition possess the same value of the
z-coordinate and θ . Note that for distinct values of the z-coordinate, the perigees that lie
within the ZVS may encompass distinct ranges of values in the x and y coordinates. Thus,
the number of initial conditions within each partition are not necessarily equivalent using
this discretization approach.

7.2 Step 2: generating a dataset for each partition

The trajectories associated with the initial conditions in the i-th partition are generated in
the Sun-Earth CR3BP. Specifically, each initial condition is propagated forward in time until
satisfying any of the following termination conditions: completing Nret subsequent returns
to the surface of section defined by Eq. 2; passing within a nondimensional distance of 10−6

from the Earth; passing through either the L1 or L2 gateways, as determined by the trajectory
extending beyond the locations of the equilibrium points with x ≤ 0.989 and x ≥ 1.011,
respectively; or a perigee occurring within the L1 or L2 gateways rather than within the
region encompassed by perigees near the Earth where 0.993 ≤ x ≤ 1.007. Note that the
final condition is only introduced to facilitate a clear comparison with the stable manifolds
associated with libration point orbits in later sections.

Each trajectory that admits at least one additional perigee prior to satisfying any of the
termination conditions is summarized via an M-dimensional feature vector that supports a
straightforward assessment of geometric similarity between two trajectories. Although there
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are a variety of existing approaches, this paper specifically focuses on assessing geometric
similarity between two trajectories as the Euclidean distance between two finite-dimensional
feature vectors that encode a summary of each trajectory (Zheng and Zhou 2011). Although
this approach requires the definition of a single feature vector of fixed length across all mem-
bers of the dataset, it is computationally efficient when applied to large datasets. Furthermore,
Bosanac has demonstrated that this approach supports the successful differentiation of planar
trajectories in the CR3BP by their geometry (Bosanac 2020). Alternative and well-known
approaches to assess the similarity between two trajectories, such as dynamic time warping,
may offer a more robust comparison between two sequences of spatiotemporal data of dis-
similar lengths (Zheng and Zhou 2011). However, the definition of this trajectory similarity
measure may result in a significant increase in data storage requirements and computational
time when applying HDBSCAN and UMAP. A thorough examination of these alternative
trajectory similarity measures in the context of the presented framework may, however, offer
a valuable avenue of future work as the complexity or time horizon of the trajectories of
interest increases.

Similar to the approach presented by Bosanac, each trajectory is summarized using a
finite-dimensional feature vector that encodes information about several returns to an apsis
surface of section (Bosanac 2020). Specifically, the j-th trajectory is represented by the
unique feature vector t j = [

s j,0, s j,1, . . . , s j,2Nret+1
]T , where s j,k describes the k-th apsis

along the j-th trajectory relative to the Earth (Bosanac 2020). An apsis, defined relative to
the Earth, is calculated as a state along a trajectory that satisfies only the first condition in Eq.
2. Each apsis is then summarized to reflect its state as well as the time since the beginning
of the trajectory via the vector s j,k , defined as

s j,k =
[
t̃ j,k, x̃ j,k, ỹ j,k, z̃ j,k, 0.5

(
ĥ j,k · ẑ + sign

(
ĥ j,k · ẑ

))]T
, (4)

where the tilde indicates the use of normalization, mitigating poor conditioning between
components of the feature vector. Specifically, t̃ j,k is the time at which the k-th apsis occurs,
measured from zero at the initial condition and normalized by the total propagation time along
the j-th trajectory. Then, x̃ j,k, ỹ j,k, z̃ j,k are the position components of the state at the k-th
apsis in the rotating frame, normalized by the nondimensional distance between the Earth and
L2. The final term in s j,k is calculated using the z-component of the instantaneous angular
momentum vector. This function is designed to: introduce separation between prograde and
retrograde apses via the discrete-valued quantity sign(ĥ j,k · ẑ); produce a continuous range
of values for states with the same direction of motion; and output values within the range
[−1, 1]. Due to the apsis constraints, this feature vector reflects the direction of motion and
the orientation of the orbital plane relative to the ẑ-axis. If the trajectory terminates prior to
the k-th apsis, each vector s j,k , with k ≤ 2Nret + 1, is assigned a placeholder value, equal to
[tt , 10, 0, 0, 0] where tt = 1 for the first apsis after termination and tt = 0 for all remaining
apses. This placeholder vector is designed to introduce a sufficient separation from members
of the dataset that do not terminate early (Bosanac 2020). Then, the dataset [T i ] is populated
with the M-dimensional feature vectors associated with each trajectory in the i-th partition.

7.3 Step 3: cluster each individual partition

In the application explored within this paper, there is limited a priori knowledge of an appro-
priate division of the dataset; thus, relative cluster validation is used when selecting the
parameters governing HDBSCAN. Following the work of Bosanac, the density-based clus-
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tering validation (DBCV) index introduced by Moulavi et al. is used in this paper as a scalar
representation of the quality of a clustering result, relative to alternative configurations of
the clustering procedure applied to the same dataset (Moulavi et al. 2014; Bosanac 2020). To
calculate the DBCV index, Moulavi et al. defined two more quantities: DSC(C j ), the density
sparseness of a cluster and DSPC(C j , Ck), the density separation of clustersC j andCk . The
validity index VC (C j ) of the j-th cluster is then calculated as

VC (C j ) = mink∈{0,...,li−1}, j �=k(DSPC(C j ,Ck)) − DSC(C j )

max
[
mink∈{0,...,li−1}, j �=k(DSPC(C j ,Ck)),DSC(C j )

] , (5)

where li is the total number of clusters for dataset [T i ]. Then, the DBCV index, which
summarizes the quality of the entire set of clusters, is computed as

DBCV =
li∑

j=1

|C j |
|Ti | VC (C j ) (6)

From this definition, −1 < DBCV < 1, with positive values indicating a good clustering
result. Computationally efficient approximations of the DBCV and validity indices, available
in the hdbscan library in Python, are leveraged in this analysis for input parameter selection
(McInnes et al. 2017).

The input parameters that govern the HDBSCAN algorithm to cluster each individual
partition are selected through an iterative exploration for one single partition. The values of
mpts and mclSize are selected to: obtain a positive value of the DBCV index; generate a low
percentage of datapoints identified as noise; and avoid either an excessively large or negligibly
small number of clusters. A demonstration of this input parameter selection process appears
in the work of Bosanac (2020). To reduce the burden on a human analyst as the number
of partitions increases and to ensure consistency across the dataset, the same combination
of mpts and mclSize is used for all clustering steps and produces reasonable results in the
application analyzed in this paper.

Clustering is performed independently on the data in each of the p partitions using the
selected values for mpts and mclSize and the specified similarity measure. When applied to
[T i ], HDBSCAN produces li ∈ N clusters along with one set of noise points. Each cluster
contains trajectories that are geometrically similar, as assessed using the Euclidean distance
between feature vectors that encode information about several returns of each trajectory to
an apsis surface of section. Trajectories associated with two distinct clusters are, as a result
of the selected similarity measure and the parameters governing HDBSCAN, considered
geometrically dissimilar. Following application to all p partitions, a total of

∑p
i=1 li clusters,

each localized to a single partition of the dataset, and p sets of noise are identified.

7.4 Step 4: cluster aggregation

The clusters associated with each partition of the dataset are used to identify a mini-
mal set of unique clusters for the entire dataset in this cluster aggregation step. The goal
is to identify clusters of similar solutions that exist across multiple partitions in a com-
putationally feasible and robust manner that requires little intervention from a human
analyst. To implement this procedure, an approach from the discipline of distributed
clustering, as described in Sect. 4.2, is employed. Specifically, the independent cluster-
ing of data within an individual partition is considered a local clustering result, or local
model. The collection of p local clustering results are then gradually aggregated to form a
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global clustering result for the entire dataset. Pseudocode for the cluster aggregation pro-
cess is presented in Alg. 1 to supplement the detailed description within this subsection.
Algorithm 1 Cluster aggregation process.
Require: array of datasets DB, HDBSCAN parameters: mpts , mclSize, UMAP parameters:

nn, mdist and Nint, Nnoise
while length(DB) > 1 do

p ← length(DB)
DBn ← [ ]
for i = 0 → p − 1 do

if i < p or i is even then
l ← HDBSCAN(DB[i], mpts, mclSize ).get lb() � get lb(): label data by cluster
db ← [ ]
for j = min(l) → max(l) do

lclustj ← where(l == j) � where(l == j): find data in cluster j
if j == label for noise then

m ← �length(lclustj)/Nnoise� � �x�: floor of x
else

m ← Nint
end if
if length(lclustj) > m then

lsamp = lclustj .esamp(m) � esamp(m): evenly sample up to m members
dbl ← DB[i][lsamp]

else
dbl ← DB[i][lclustj ]

end if
db.append(dbl) � x.append(y): append y to x

end for
DBn[�i/2�] ← db

else
DBn[�(p − 1)/2�] ← DB[p]

end if
end for
DB ← DBn

end while
DBr ← UMAP(DB, nn, mdist ) � DB has 1 dataset
lG ← HDBSCAN(DBr, mpts, mclSize).get lb() � lG labels data in global summary

To enable a computationally efficient aggregation process, each cluster in each partition
is summarized by a reduced set of members. In this paper, these representative members of
a cluster are selected as follows: for clusters of up to Nint members, all members form the
representative set; for clusters of more than Nint members, the members are evenly sampled
based on ordering in the dataset to produce an intermediate summary of the cluster, possessing
up to Nint members. Each set of noise points is sampled to contribute every Nnoise-th member.

Cluster aggregation is performed sequentially using abinary tree approach.At thefirst level
of this binary tree, cluster aggregation is performed on unique pairs of neighboring partitions
to produce p1 intermediate cluster summaries, where p1 = �p/2
. At the next level of the
binary tree, cluster aggregation is performed on unique pairs of these p1 intermediate cluster
summaries. When there is an odd number of partitions or intermediate clustering summaries
at a single level of the binary tree, the last result is not clustered again; rather, its clusters are
moved to the next level of the binary tree structure. At each aggregation step, HDBSCAN is
used to produce a new set of clusters for each intermediate cluster summary. In this paper,
the same values of the input parameters are used when individually clustering each partition
and during cluster aggregation steps; this approach is observed to produce suitable results,
while reducing the complexity of the input parameter selection process. At the final step
of this cluster aggregation procedure, where only one intermediate cluster summary is used

123



Applying data mining techniques to higher-dimensional… Page 13 of 32 51

to produce the final global clustering result, a modification to the clustering approach is
employed.

UMAP is used during the final step of cluster aggregation to project the intermediate cluster
summaries onto a lower-dimensional space prior to clustering. When a dataset is described
by a high-dimensional feature vector, using dimension reduction to identify a smaller set of
fundamental variables that sufficiently captures the characteristics of the original information
offers numerous benefits during subsequent clustering steps, such as: reducing the potential
for overfitting due to the curse of dimensionality (Aggarwal and Reddy 2018); reducing the
computational resources required for storage and processing; and reducing the percentage of
members in a dataset that are classified as noise when clustering with HDBSCAN. Advances
in the discipline of clustering may reveal alternative algorithms which may not experience
such issues; in that case, the use of UMAP for preprocessing at the final step of cluster
aggregation may become unnecessary.

Care must be taken when applying dimension reduction methods such as UMAP to a
dataset prior to clustering (Wenskovitch et al. 2018). Specifically, dimension reduction tech-
niques may not preserve the density of a dataset; rather, only the structure of the dataset.
In this paper, applying clustering to a projection of the dataset onto a lower-dimensional
space calculated via UMAP produces a smaller percentage of members labeled as noise and
a relative ease in selecting the input parameters, with only a small increase in the number of
clusters compared with performing this final clustering step in the original M-dimensional
space. Furthermore, this paper applies UMAP only at the final step because it requires a
computational time of up to a few minutes for larger datasets, as opposed to a computational
time on the order of seconds for clustering the same high-dimensional dataset via HDBSCAN
on a computer with a 4 GHz Intel Core i7 processor.

When UMAP is used in the final step of cluster aggregation, the UMAP input parameters,
nn andmdist, are set equal to a fixed set of values. These values are selected via iterative explo-
ration to sufficiently separate distinct groups and create compact clusters. Once clustering
has been applied to the dimensionally reduced dataset in the final step of cluster aggrega-
tion, a global clustering result is generated; the result is L unique clusters of map crossings
associated with a summary of the dataset and one group of noise points.

7.5 Step 5: calculate global cluster representatives

To aid visualization and analysis, a single representative trajectory is generated using the
medoid of each of the L clusters associated with the global clustering result; consistent
with the approach used by Bosanac (2020). The medoid is defined as the member of a
cluster that is most similar to the other members of the cluster (Cichosz 2015). For cluster
C j = {t( j)1 , t( j)2 , . . . , t( j)Mj

}, with cluster cardinality |C j | = Mj ∈ N, the medoid of the j-th
cluster is calculated as

t( j)med = argmin
t( j)k ∈C j

M j∑

i=1, i �=k

d
(
t( j)i , t( j)k

)
, (7)

where d (·, ·) is a distance metric, selected as the Euclidean distance in this paper.
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7.6 Step 6: classification of the complete dataset

Weighted k-nearest neighbor classification is used to assign each member of the original
dataset to a cluster, given information supplied by the global clustering result. Specifically,
theM-dimensional feature vectors of eachmember of theL unique clusters of the final global
clustering result supply predictor information, while the integer cluster assignment labels are
used as the response information. Of course, this approach assumes that each perigee must
lie in one of the recovered classes. Then, the classifier is configured to compare each member
of an unlabeled dataset to its ten nearest neighbors, calculated using the Euclidean norm and
weighted by the inverse square of the distance. Five-fold cross-validation of the classifier is
applied to the labeled dataset. If the classifier possesses a high estimated accuracy, it is used
to assign each map crossing in the original dataset to one of theL unique groups in the global
clustering result.

8 Application: prograde perigeemap in the Sun-Earth CR3BP

The presented data-driven approach to analyze higher-dimensional map crossings and the
geometry of their associated trajectories is demonstrated for a prograde perigee map in the
Sun-Earth CR3BP; this map displays the initial perigees of spatial trajectories at a Jacobi
constant of CJ = 3.00088 with various initial values of the z-component of velocity. At this
Jacobi constant, both the L1 and L2 gateways are open, producing a complex solution space.A
subset of the solution space with an initial value of ż = 0 only possesses a three-dimensional
description due to the additional constraint on ż. Accordingly, this subset of spatial perigees
supports an initial analysis and verification of the resulting global cluster summary of the
solution space. Then, for various initial values of the z-component of velocity, each initial
perigee that is seeded from the map possesses a description that is four-dimensional. As a
result, visualization of awide variety ofmap crossings on a single Poincarémap is challenging
due to both data obscuration and a loss of information when the map is displayed in the three-
dimensional configuration space. It is in a scenario such as this that a data-driven approach
may significantly reduce the workload required of a human analyst examining the solution
space.

8.1 Generating a global cluster summary

Prograde perigees are sampled in the vicinity of the Earth at a Jacobi constant of CJ =
3.00088. The initial perigees in the i-th partition are constructed from up to 200 evenly
sampled values of x in the range [0.993, 1.007], up to 200 values of y within the range
[−0.0043, 0.0043] and a single value of z in the sequence of 64 evenly sampled z-coordinates
within the range [−0.0033, 0.0033], in nondimensional units. All perigees in the i-th par-
tition possess a velocity vector with a value of θ that is equal to one value in the set
[−89◦,−80◦,−70◦, . . . , 0◦, . . . , 70◦, 80◦, 89◦]. The initial conditions within each partition
are then propagated forward in time for up to three subsequent perigees to generate the asso-
ciated trajectories. These trajectories, with up to seven apses relative to the Earth, are then
described using 35-dimensional feature vectors, as defined in Sect. 7.2, to produce the dataset
[T i ] for the i-th partition, containing between 402 and 25,204 members.

The input parameters used by HBSCAN at each instance of clustering are selected via
iterative exploration in the context of the partition with the lowest positive value of z and
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Fig. 2 Local clustering results for selected partitions of the prograde perigee map in the Sun-Earth CR3BP at
CJ = 3.00088 with ż = 0, colored in shades of red and blue according to the cluster in individual partitions

ż = 0. The values mpts = 100 and mclSize = 100 are selected to produce a clustering
result for this partition with a relatively high positive value of the DBCV index, equal to
0.527, and a low percentage of noise, equal to 6.7%. However, this combination of input
parameters may not produce similarly low levels of noise across all partitions. Aggregating
clusters via a binary tree approach and including a sample of the noise points at each step
mitigates the impact of any substandard results across a single partition using these values of
the input parameters. In addition, note that alternate combinations of these input parameters
may produce either similar or distinct clustering results.

HDBSCAN is used to independently cluster the map crossings within each partition of
the dataset. An example of the results of independently clustering each partition is shown
in Fig. 2 for the partitions where ż = θ = 0. The center of this figure displays in gray the
feasible initial conditions across this subset of the data in the configuration space in the Sun-
Earth rotating frame. In this center figure, the L1 and L2 equilibrium points are displayed as
magenta diamonds, while the light blue region indicates the zero velocity curves that lie in the
plane of the primaries at CJ = 3.00088. The black curves indicate the external boundaries
of four partitions that correspond to the insets of this figure, each displaying the results of
individually clustering each partition. In these insets, initial conditions are colored in distinct
shades of red and blue that reflect the local cluster assignments. While some colors may
be repeated across each inset figure to ensure sufficient visual differentiation, the clusters
associated with each partition are, at this step, independent and distinct. Within each inset
figure, there are some black crossings: these initial conditions are initially classified as noise,
typically due to the associated members not meeting the minimum cluster size threshold.

Cluster aggregation is first implemented for each of the partitions that possess the same
value of θ . This particular segmentation of the cluster aggregation procedure is employed to
limit the computational load required during this proof of concept. First, each cluster from
each dataset at a single level of the binary tree is represented by up to 400 members using
the strategy described in Sect. 7.4. Next, HDBSCAN is applied to intermediate datasets
withmpts = 100 andmclSize = 100, continuing until one final intermediate summary dataset
remains for each value of θ . Then, UMAP is used to project the data onto a three-dimensional
space, consistent with the dimension of the description of each initial perigee at fixed values
of CJ and θ . During this step, the input parameters mdist = 0 and nn = 500 are used to
produce compact clusters that preserve global structure, while limiting the computational
time associated with computing the distance to nn nearest neighbors. Then, HDBSCAN is
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applied to the dataset using the embedding constructed by UMAP. The result is 19 sets of
clustering results, each summarizing the solution space of perigees at a fixed Jacobi constant
and a fixed value of θ that constrains the initial velocity vector.

Cluster aggregation is then applied to the 19 groups of clusters, each corresponding to
fixed values of θ , to produce one global cluster summary, with three differences in the selected
parameters. Each cluster in the intermediate summaries is constrained to possess up to 800
members and, in the final dimension reduction and clustering step, up to 200 members. This
parameter selection balances summarizing each cluster via a sufficient number of members
with reducing computational time and memory requirements for this larger dataset during
the final steps of aggregation. In addition, the embedding constructed by UMAP in the final
step is defined as four-dimensional, consistent with the dimension of the description of an
initial perigee at a fixed Jacobi constant with an unconstrained value of θ . Finally, nn is
set equal to 250, consistent with the smaller number of members used to represent each
cluster. Following this final cluster aggregation step, the global cluster summary consists
of 166 clusters, containing a total of 44,377 perigees that exist across all partitions of the
dataset, and one noise set, composed of 566 perigees. For information about the global
clustering result, “Appendix 1” displays the representative trajectories for all 166 clusters in
the configuration space.

To facilitate a detailed visualization and analysis, each member of the complete dataset
is projected onto the global cluster summary. The weighted k-nearest neighbor classification
scheme is used to assign the unlabeled data to one of the 166 clusters associated with the
global clustering result; the classifier is estimated by MATLAB to possess an accuracy of
99.9%. Of course, this approach assumes that all trajectories in the complete dataset possess
a geometry associated with one of the recovered clusters and, therefore, may result in some
incorrect labels for trajectories that exist in groups that are too small to have been incorporated
into the global cluster summary. It is observed through analysis of the data, however, that
these cases comprise a negligibly small fraction of the periapses in the entire dataset. The
result of this classification procedure is a large set of spatial perigees with an unconstrained
value of ż in the Sun-Earth CR3BP at CJ = 3.00088 that are clustered by the geometry of
the associated trajectories.

8.2 Analyzing a subset of the solution space with ż = 0 at CJ = 3.00088

Analysis of a subset of the solution space corresponding to initially prograde perigees at
CJ = 3.00088 with θ = ż = 0 facilitates verification of the results in a scenario where
the map crossings only possess a three-dimensional description. As a result, the associated
map representation does not suffer from a loss of information when displayed in the three-
dimensional configuration space; rather, the only issue is data obscuration, which may be
mitigated by displaying only subsets of clusters. Figure 3 displays only the initial perigees
with θ = ż = 0 in the three-dimensional configuration space for a subset of the clusters that
intersect the plane of the primaries. Note that visualizing only the initial conditions of specific
sets of trajectories on a Poincaré map and, in some cases, using color to reflect additional
useful information is an approach that has been used by several researchers studying short-
term trajectories that admit a small number of returns to a surface of section (Davis 2011;
Koon et al. 2011; Bosanac et al. 2018; Villac and Scheeres 2003). Overlaid in Fig. 3 using
semi-transparent markers are map crossings with z = ż = 0 that are assigned to clusters
using the classifier. Each map crossing in Fig. 3 is colored by the assigned cluster using
distinct shades of red and blue. At the boundaries of the figure, the representative trajectories
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Fig. 3 Selected clusters of prograde perigees near the plane of the primaries in the Sun-Earth CR3BP at
CJ = 3.00088 with ż = 0. Clusters are assigned based on geometric similarity of the associated trajectories
and colored in distinct shades of red and blue. Representative trajectories of selected perigees in each cluster
appear in the insets

Fig. 4 Selected clusters of prograde perigeeswith large z-excursions in the Sun-EarthCR3BPatCJ = 3.00088
with ż = 0. Clusters are assigned based on geometric similarity of the associated trajectories and colored in
distinct shades of red and blue. Representative trajectories of selected perigees in each cluster appear in the
insets

for selected clusters are displayed. Some members of these clusters extend out of the plane
of the primaries; the maximum z-extension of any perigee in these clusters is approximately
0.001938. Similar information is shown in Fig. 4 for selected clusters of trajectories with a
large z-excursion; trajectories that are assigned to these clusters possess initial perigees with
a maximum z-extension of 0.0033.

Examination of Figs. 3 and 4 as well as the representative trajectories of clusters that
possess members within the ż = θ = 0 partition reveals that the data-driven approach
successfully differentiates trajectories by their geometry. In fact, these clusters separate:
transiting and non-transiting trajectories, bounded and nonbounded trajectories over the short
time horizon of up to three revolutions, trajectories with a different direction of motion
at subsequent apoapses, trajectories that begin within distinct regions of the configuration
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Fig. 5 Selected trajectories associated with prograde perigees within six clusters in the Sun-Earth CR3BP at
CJ = 3.00088 with ż = 0, colored in distinct shades of red and blue according to the cluster

space, as well as trajectories with different apsis locations and apsidal rotations. In addition,
trajectories with similar geometries are successfully grouped within the same cluster. Figure
5 displays 15 randomly selected trajectories within each of six clusters in the Sun-Earth
rotating frame. Each trajectory is colored according to their cluster assignment and consistent
with Figs. 3 and 4. Overlaid on these subfigures are the initial perigees associated with the
entire cluster of interest, visualized using transparent markers, and the initial perigees of
the selected trajectories, indicated with black circles. The trajectories across each of the six
clusters in Fig. 5 are geometrically similar, i.e., they exhibit a similar shape as well as apsis
location and apsidal rotations across each subsequent revolution around the Earth. Thus, the
presented framework successfully organizes a large set of trajectories into clusters of distinct
geometries, while grouping trajectories of similar geometry.

Partial visualization of the clusters, as shown in Figs. 3 and 4, also supports an initial
verification of the global clustering result. The clusters that pass through z = 0 are close
to symmetric about the plane of the primaries, consistent with the known symmetry in the
CR3BP about the xy plane. Only negligibly small differences exist between the positive and
negative z extensions of some clusters due to the data-driven nature of the presented frame-
work, which leverages a global summary of a larger dataset, a classifier, and an assumption
that all trajectories are associated with one of the 166 recovered clusters. In the CR3BP,
these deviations could be eliminated entirely by only clustering trajectories associated with
initial perigees that possess a positive z-component and exploiting the symmetry to analyti-
cally extend the clusters to initial perigees with a negative z-component. However, such an
approach is not used in data generation to facilitate verification.

8.3 Analyzing the broader solution space at CJ = 3.00088

The global clustering result is examined across the entire dataset, which includes initial
perigees with various values of θ at a fixed value of the Jacobi constant, CJ = 3.00088.
A subset of clusters is selected from those that appear in Figs. 3 and 4. Figure 6 displays
for each of seven clusters, organized along the horizontal axis: a) a representative trajectory,
evaluated as the medoid of the associated members that exist at each value of θ , labeled on
the vertical axis; and b) the region of existence for the cluster in the configuration space. If
a cluster does not possess members at a specific value of θ , the associated cell in Fig. 6 is
shaded in dark gray. In Fig. 6b, the selected map crossings are plotted in the same shades of
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Fig. 6 Existence of selected clusters of prograde perigees atCJ = 3.00088 that produce geometrically similar
trajectories across partitions described by specific values of θ : a representative trajectories generated from
selected perigees in those partitions, and b the associated region of existence of the initial perigees colored in
distinct shades of red and blue according to the cluster

red and blue that appear in Figs. 3 and 4 to indicate the cluster assignment. Overlaid in Fig.
6b in semi-transparent markers are perigees with z = 0 and an initial value of ż calculated
via the specified value of θ ; these perigees are colored in shades of gray according to their
cluster, assigned by the classifier, for visual clarity.

Analysis of Fig. 6 reveals insights into the regions of existence of perigees associated with
each type of trajectory across the selected values of θ . First, the cluster that is summarized in
the first column of Fig. 6 captures trajectories that complete two revolutions around the Earth
with a small apsidal rotation. The trajectories in the second column exhibit a larger apsidal
rotation over two and a half revolutions around the Earth. While the associated medoids of
these clusters, as shown in Fig. 6a, evolve as θ increases, the general shape of the clusters of
initial perigees, as shown in Fig. 6b in the configuration space, does not evolve significantly
across the constructed partitions. Furthermore, these clusters do not exist at all high values
of θ . The middle three columns correspond to clusters that exist across all values of θ that
are represented in Fig. 6. For the clusters in the third and fourth columns, the regions of
existence of the initial perigees evolve away from the Earth with a significantly different
geometry that spans more out-of-plane members than in-plane members as θ increases. The
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cluster of trajectories with a significant out-of-plane component in the fifth column evolves
to encompass a wider array of initial perigees as θ increases. In fact, at θ = 80◦, the cluster
encompasses a large array of initial perigees with positive and negative z-components. As the
value of θ decreases toward zero, the regions of perigees contained within the cluster above
and below the xy-plane shrink to form two distinct groupings. Finally, the trajectories that
correspond to transits through the L2 gateway before completing three revolutions around
the Earth appear in the final two columns of this figure. These transits only occur for perigees
close to the xy-plane and at low values of θ ; their regions of existence shrink significantly as θ

increases. A similar, straightforward analysis may be performed for other clusters associated
with trajectories admitting geometries of interest.

The presented unsupervised organization of a large, higher-dimensional set of perigees
by the geometry of the associated trajectories supports examination of a complex solution
space. The global clustering result offers a summary of the fundamental geometries of arcs
within the set via the representative trajectories for each cluster. This summary is constructed
without burdening an analyst to manually group trajectories based on direct observations; a
task that may become quite time-consuming for large sets of trajectories. In addition, this
approach does not rely on predefined separation criteria that are often challenging to define
in a generalizable manner for trajectories in regions of distinct sensitivities within a multi-
body system. In addition, a map displaying only initial perigees, colored by their cluster
assignment, supplies the analyst with valuable information about the type of trajectories
associated with each map crossing; information that is otherwise challenging to extract from
a Poincaré map. This visualization also enables the analyst to view only selected clusters that
reflect trajectories with specific geometries, therebymitigating the impact of data obscuration
that occurs when projecting four-dimensional data onto a three-dimensional map.

9 Application: examining fundamental transport mechanisms

At a Jacobi constant ofCJ = 3.00088 in the Sun-Earth CR3BP, trajectories that lie within the
boundaries of the global stable and unstable manifolds of periodic orbits and tori near L1 and
L2 transit through the L1 and L2 gateways, respectively (Delshams et al. 2016; Koon et al.
2011). As a result, these manifolds contribute valuable insight into the global structure of
the phase space and natural transport between distinct regions of a multi-body system. Arcs
along these stable and unstable manifolds that are generated for shorter time intervals than
needed to transit through the L1 and L2 gateways also supply insight into themechanisms that
influence the geometries admitted by the solution space in the Sun-Earth CR3BP at the same
energy level. Correspondingly, arcs along these manifolds are also often used to construct
complex transfers in a multi-body system (Koon et al. 2011). Despite their importance, these
complex four-dimensional manifolds are challenging to visualize either in the configuration
space or via a Poincaré map. Such challenges in visualization and analysis may be mitigated
by grouping arcs that lie along these manifolds according to their geometry.

This section focuses on leveraging the global cluster summary to rapidly organize arcs
along the global stable and unstable manifolds associated with tori near L1 and L2 at a Jacobi
constant of CJ = 3.00088 into groups according to their geometry. Specifically, these arcs
are projected onto the global clustering result using the classifier constructed in Sect. 8. The
resulting groupings are examined in this section in the context of two examples: 1) rapidly
associating the arcs along the higher-dimensional stable manifold with the trajectories that
they influence in the solution space over short time intervals; and 2) visualizing the geometry
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of arcs that lie along the higher-dimensional unstable manifold. These examples demonstrate
additional applications of the global cluster summary that is constructed via a data-driven
approach in Sect. 8. The resulting insight into the fundamental geometries of arcs within
these complex sets may eventually support initial guess construction for trajectory design
and analysis of the dynamical mechanisms governing natural transport; both goals are the
focus of ongoing work.

9.1 Projecting stable and unstable manifold arcs onto the global cluster summary

The first step in constructing the datasets used in this section is to generate the simply
periodic orbits that exist near L1 and L2 in the Sun-Earth CR3BP. At a fixed value of the
Jacobi constant, CJ = 3.00088, and in each of the L1 and L2 gateways, periodic Lyapunov
and vertical orbits exist; at this Jacobi constant, neither the halo nor axial orbits exist in
this system. These Lyapunov and vertical orbits are computed using a multiple-shooting
scheme, formulated with constraints to enforce periodicity and the associated value of the
Jacobi constant (Bosanac 2016). A stability analysis of each periodic orbit is performed by
studying the eigenvalues of the monodromymatrix associated with a single fixed point (Koon
et al. 2011). Each periodic orbit admits one set of stable and unstable modes and one set of
oscillatory modes, indicating the existence of stable and unstable manifolds as well as nearby
quasi-periodic orbits that trace out the surface of invariant tori. The initial conditions, orbit
period and stable and unstable eigenvalues of the monodromy matrix for the Lyapunov and
vertical orbits in each of the L1 and L2 gateways are listed in “Appendix 2.”

The one-parameter family of tori that connect the Lyapunov and vertical orbits in each of
the L1 and L2 gateways at CJ = 3.00088 are then generated using an approach presented by
Olikara and Scheeres (Olikara and Scheeres 2012; Gómez et al. 2003). This approach, which
leverages previous work by Jorba and Gómez and Mondelo, focuses on directly computing
the underlying torus that is traced out by a quasi-periodic orbit (Jorba 2001; Gómez and
Mondelo 2001; Olikara and Scheeres 2012). At the specified Jacobi constant, a single torus
is computed near each of the L1 and L2 Lyapunov orbits via a multiple-shooting formulation
of this algorithm. Additional tori that exist at the same Jacobi constant along each family
are computed using pseudo-arclength continuation until reaching the nearby vertical orbits
(Olikara and Scheeres 2012). These two families of 2-tori in each of the L1 and L2 gateways
are then subsampled to retain only 50members. A subset of the 50 tori in each family is shown
in Fig. 7 in the Sun-Earth rotating frame with each torus colored to reflect its z-amplitude:
black tori lie close to the Lyapunov orbits, while copper tori resemble the vertical orbits.
In this figure, segments of the zero velocity surfaces are overlaid in blue for dimensional
perspective.

The procedure presented by Olikara and Scheeres also enables a stability analysis of each
torus, consistent with an approach previously presented by Jorba (Jorba 2001; Olikara and
Scheeres 2012). Stability analysis of these tori near L1 and L2 reveals that they admit stable
and unstable manifolds. As a result, segments of the three-dimensional stable and unstable
manifolds associated with each of these 2-tori are generated to construct sets of trajectories
that lie on the four-dimensional stable and unstable manifolds associated with the family of
tori at this single energy level.

Segments of the global stable and unstable manifolds are generated for each of the tori
computed near L1 and L2. To generate an approximation of the global stable manifold
associated with each torus, the stable eigenvector associated with the differential of the
invariance condition used in Olikara and Scheeres’ algorithm is calculated for 12,525 states
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Fig. 7 Families of tori connecting the Lyapunov and vertical orbits near a L1 and b L2 in the Sun-Earth
CR3BP at CJ = 3.00088

distributed over the entire torus. A state that lies on a torus is perturbed along the eigenvector
associated with the stable mode and propagated backward in time for up to four subsequent
perigees in the Earth vicinity to generate a trajectory in the global stable manifold. The
perigees along a single trajectory admit velocity vectors that are described by values of θ that
increase with each subsequent revolution around the Earth, all lying within the approximate
range [−22.2◦, 22.6◦] over the specified number of subsequent perigees. These perigees
supply distinct initial conditions for arcs that lie along the stable manifold; when propagated
forward in time, some arcs reach the L1 or L2 gateways before completing three revolutions
around the Earth, while some arcs remain within the Earth vicinity over this time interval
(Conley 1968). Each of these arcs that is seeded from a single trajectory along the global
stable manifold associated with a torus is described by a 35-dimensional feature vector,
constructed as defined in Sect. 7.2, when propagated forward in time. A similar procedure
is used to generate the unstable manifold from the eigenvectors associated with the unstable
mode and propagating forward in time.

The datasets capturing trajectories that lie along the global stable and unstablemanifolds of
the computed tori within each of the L1 and L2 gateways are projected onto the global cluster
summary constructed in Sect. 8 by applying the classifier. The result is a set of labels for
each arc, indicating the cluster of trajectories with a similar geometry. Manually performing
a similar association between two large sets of trajectories via four-dimensional perigee
maps would be time-consuming and challenging for a human analyst. Thus, the following
subsections leverage the presented data-driven framework to study both the geometry of arcs
along the hyperbolic invariant manifolds of tori in the L1 and L2 gateways and the nearby
trajectories that they influence over a short time interval.

9.2 Analyzing the stable manifolds of tori near L1 and L2

Trajectories that lie along the computed stable manifolds and reach the L1 and L2 gateways
within less than three revolutions are analyzed to support verification of both the association
process and the constructed clusters. Figure 8 displays this subset of the initial perigees
associated with arcs along the stable manifolds of tori near L1 and L2 that are assigned to
clusters of trajectories with a similar geometry. The center of this figure displays the specific
clusters that these perigees are assigned to using the global cluster summary constructed in
Sect. 8. Each of the perigees is projected onto the three-dimensional configuration space and
colored in unique shades of red and blue, consistent with the color scheme used in Figs.
3 and 4 to reflect their cluster assignment; overlaid on this figure using semi-transparent
markers are the clustered map crossings with ż = z = 0. The insets of this figure then supply
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Fig. 8 Selected perigees along the global stable manifolds of tori near L1 and L2 in the Sun-Earth CR3BP at
CJ = 3.00088, producing trajectories that reach the gateways before completing three revolutions around the
Earth. The center of the figure projects these perigees onto the global clustering result with clusters colored
in distinct shades of red and blue. The insets depict the perigees and geometry of the associated arcs, colored
by the tori they asymptotically approach

additional information about each subset of perigees along the global stable manifolds of
tori in either the L1 or L2 gateways that possess a similar geometry to each of the indicated
clusters. Each inset is labeled using the convention S

Li
r ,q : S indicates the perigees lie along

the stable manifold, the superscript indicates that this manifold is associated with tori near
the Li equilibrium point, r records the number of returns to the perigee surface of section
before reaching the torus, and q is used to differentiate the subsets of perigees for each return
number r that are associated to distinct clusters. The perigees displayed in each inset are also
projected onto the configuration space and colored with the copper to black color scheme
used in Fig. 7 to indicate the torus that the associated trajectories approach in forward time;
these tori are also plotted in the L1 or L2 gateways using the same color scheme. Then, one
representative arc, generated by propagating a single perigee forward in time, is plotted using
this copper to black color scheme for visualization of its geometry.Overlaid on these insets are
representative trajectories of the associated clusters, evaluated as the medoid of trajectories
that lie in the ż = θ = 0 partition, and colored by the assigned cluster using distinct shades
of red and blue. Finally, the Earth is plotted within this figure as a gray circle and segments
of the zero velocity surfaces are displayed in light blue for dimensional perspective.

The results shown in Fig. 8 are consistent with the expected association between segments
of the stable manifolds that reach the L1 and L2 gateways within less than three revolutions
and clusters of short-term transit trajectories. The perigees displayed in the top and bottom
insets of Fig. 8 correspond to the first and second returns of the stable manifolds associated
with tori near L1 and L2, respectively, to the perigee map in backward time. Each set of
perigees encompasses a similar region in the configuration space as short-term transit trajec-
tories within the global cluster summary that possess a similar geometry, with a consistent
range of values for θ . These observations are consistent with existing knowledge that trajec-
tories within the stable manifolds of the tori near L1 and L2 transit through the gateways
(Koon et al. 2011; Davis 2011). However, in this paper, this association is recovered in a
data-driven approach.

Segments of the stable manifolds of tori in the L1 and L2 gateways are also examined to
determine their association with trajectories that remain within the Earth vicinity for three
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Fig. 9 Selected perigees along the global stable manifolds of tori near L1 and L2 in the Sun-Earth CR3BP at
CJ = 3.00088, producing trajectories that remain within the Earth vicinity for three revolutions. The center
of the figure projects these perigees onto the global clustering result with clusters colored in distinct shades
of red and blue. The insets depict the perigees and geometry of the associated arcs, colored by the tori they
eventually asymptotically approach

revolutions. Accordingly, Fig. 9 displays the initial perigees of these arcs along the computed
stable manifolds that are associated with clusters of trajectories with a similar geometry.
This figure possesses a configuration that is consistent with Fig. 8. However, the selected
trajectories in the inset figures that lie along the computed stable manifolds are extended until
reaching the associated torus in the L1 and L2 gateways; these additional arcs are colored in
gray.

Trajectories that lie along the stable manifold of tori in the L1 and L2 gateways at the
selected Jacobi constant appear to influence the geometry of a subset of temporarily captured
trajectories near the Earth. Each set of perigees encompasses a subset of the region of the
configuration space spanned by these clusters of temporarily captured trajectories. Only a
subset of each cluster lies directlywithin the stablemanifolds andwill eventually pass through
the L1 or L2 gateway when propagated for more subsequent perigees than used to construct
the dataset in Sect. 8. However, over the short time interval that is considered in this dataset,
the trajectories that are associated with additional nearby perigees inherit the geometry of
the associated segments of the spatial stable manifolds of tori in the L1 and L2 gateways;
exhibiting a distinct evolution of the location and distance of the subsequent apses across
distinct clusters (Davis 2011). This example demonstrates the capability to project additional
data onto the global cluster summary and, potentially, study the natural transport mechanisms
that influence the characteristics of the wider solution space in a chaotic dynamical system—
without requiring specification of any generalizable separation criteria or heavily burdening
a human analyst. This example also supports future analyses focused on: 1) comparing a
wider variety of fundamental solutions (e.g., various periodic orbits or tori and their stable
or unstable manifolds) to clusters of geometrically similar trajectories with initial perigees
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Fig. 10 Selected perigees along
the global unstable manifolds of
tori near L1 and L2 in the
Sun-Earth CR3BP at
CJ = 3.00088, producing
trajectories that remain within the
Earth vicinity for up to three
revolutions. These perigees are
projected onto the global
clustering result, with each lobe
labeled by the crossing number
and clusters colored in distinct
shades of red and blue

across the full six-dimensional phase space and 2) associating fundamental solutions that
exist in low-fidelity models such as the CR3BP to the characteristics of the solution space in
higher-fidelity models.

9.3 Analyzing the unstable manifolds of tori near L1 and L2

Unstable and stable manifolds of periodic orbits and tori are often used to design initial
guesses for complex trajectories within multi-body systems. During this process, analysis
of the fundamental geometries of arcs along these stable and unstable manifolds supports:
construction of end-to-end trajectories with fundamentally different geometries, heuristic
analysis of the region of existence of those arcs, aswell as a comparison to relevant constraints
(Koon et al. 2011; Davis 2011; Haapala 2014). However, when studying the four-dimensional
global stable or unstable manifolds of a family of tori in the six-dimensional phase space,
visualization and analysis of trajectories within this set are challenging for the human analyst;
this challenge motivates the example presented in this subsection.

Segments of the unstable manifold of tori in the L1 and L2 gateways are projected onto
the precomputed global clustering result to rapidly extract their geometries. For this example,
consider only trajectories associated with the first three perigees occurring in the Earth vicin-
ity. Figure 10 displays a projection of these perigees onto the configuration space, colored
in shades of red and blue according to their cluster assignment and consistent with Figs. 3
and 4. These initial perigees are displayed and labeled using a similar convention as in Fig.
8, except with the letter U indicating the perigees lie along the unstable manifold. Each lobe,
associated with a single crossing of one of the unstable manifolds of tori in the L1 and L2

gateways, is composed of initial perigees of arcs with a variety of distinct geometries, as
indicated by the nonuniform coloring.

Projecting arcs along the unstable manifolds of tori in the L1 and L2 gateways onto
the global cluster summary supplies a rapidly generated geometric grouping that facilitates
visualization and analysis. To demonstrate this application of the precomputed global cluster
summary, consider an alternative representation of each segment of the unstable manifolds
of tori in the L1 and L2 gateways: one that summarizes the subsets of arcs associated with
perigees within each lobe of the map in Fig. 10 based on their assignments to distinct clusters.
This information is shown in Figs. 11 and 12 for the unstable manifolds of tori in the L1 and
L2 gateways, respectively. The first rows of these figures display the medoid of each subset of
perigees, colored in distinct shades of red and blue according to the cluster assignment. Each
column in these figures focuses on the trajectories associated with perigees in a single lobe
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Fig. 11 Sample trajectories associated with the first three perigees of the unstable manifold of the family of
tori near L1 in the Sun-Earth CR3BP at CJ = 3.00088. The first row displays the distinct types of trajectories
associatedwith each return to the perigeemap colored in distinct shades of red and blue according to the cluster.
The remaining rows display a subset of the trajectories with selected geometries colored by the associated tori

of the unstable manifold. The finite number of medoids displayed in the first rows of Figs.
11 and 12 supports visualization of the finite geometries admitted by arcs along the unstable
manifold of tori in the L1 and L2 gateways. The remaining rows of Figs. 11 and 12 display
a sample of the trajectories within selected subsets of each lobe. These trajectories, which
are assigned to the same cluster, are colored in shades of black to copper, consistent with the
color scheme in Fig. 7 that reflects the associated torus that they approach in backward time.
The initial condition along each trajectory is indicated by a black circle, while the earlier
arcs emanating from the associated tori are depicted in gray, and a black arrow indicates
direction of motion. The subset of tori associated with trajectories of a specific geometry are
also displayed using the same black to copper color scheme. Note that groups of trajectories
in the same row but different columns do not necessarily correspond to the same cluster or
geometry.

The data-driven grouping of perigees along the unstable manifold, as performed by pro-
jecting the associated data onto the global cluster summary, supplies valuable insight into:
the array of geometries associated with arcs along the unstable manifold, their regions of
existence in the configuration space, and their existence as a function of the originating tori.
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Fig. 12 Sample trajectories associated with the first three perigees of the unstable manifold of the family of
tori near L2 in the Sun-Earth CR3BP at CJ = 3.00088. The first row displays the distinct types of trajectories
associatedwith each return to the perigeemap colored in distinct shades of red and blue according to the cluster.
The remaining rows display a subset of the trajectories with selected geometries colored by the associated tori

For instance, trajectories in the clusters in the second rows of Figs. 11 and 12 are associated
with unstable manifolds emanating from the complete array of tori within each of the L1 and
L2 gateways, respectively; this observation is a consequence of the array of copper to black
trajectories that appear. However, the subsets of trajectories in the final rows of Figs. 11 and
12 are associated with the unstable manifolds of tori with a limited range of low z-amplitudes
in the L1 and L2 gateways; this observation is a consequence of the appearance of only dark
brown to black trajectories. Of course, an interactive visualization environment may further
simplify visualization and analysis of these results as a human interactively examines repre-
sentative trajectories and selects specific subsets of perigees and their associated trajectories
for further analysis. Nevertheless, the static representations in this paper sufficiently demon-
strate the value of the global cluster summary in facilitating a data-driven extraction of the
fundamental geometries exhibited bymembers of unseen, complex datasets; in this case, arcs
associated with natural transport mechanisms.
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10 Conclusions

Datamining techniques are used to group the crossings on a higher-dimensional Poincarémap
according to the geometry of the associated trajectories. Thegoal of the resulting unsupervised
organization and summarization of a complex solution space is to facilitate analysis and
support trajectory design tasks. This data-driven approach is developed in the context of
a perigee map in the spatial CR3BP, extending previous work by Bosanac in the planar
CR3BP (Bosanac 2020). First, a large dataset of initial conditions associated with spatial
perigees is generated and partitioned. The trajectory associated with each initial condition
is propagated for a specified number of subsequent perigees and summarized by a finite-
dimensional feature vector; the difference between two feature vectors is used to assess
geometric similarity between two trajectories. The map crossings within each individual
partition are then clustered using HDBSCAN. Inspired by the field of distributed clustering,
these local clustering results are input to a cluster aggregation procedure. Specifically, the
clusters associated with each partition are successively summarized and combined in a binary
tree structure using both HDBSCAN for clustering and UMAP for dimension reduction.
Cluster aggregation produces a global summary of the geometries admitted by trajectories
associated with perigees that exist across the entire dataset.

The presented data-driven approach to higher-dimensional Poincarémaps is demonstrated
in the context of a spatial, prograde perigee map, constructed at a single value of the Jacobi
constant in the Sun-EarthCR3BP. Following the approach presented in this paper, the perigees
are successfully grouped according to the geometry of the associated spatial trajectories in an
unsupervised manner. The outputs of this procedure include: 1) maps with selected clusters
indicated by distinct colors, and each cluster sufficiently capturing solutions of similar geom-
etry; 2) a set of representative trajectories that summarize the distinct geometries admitted by
the solution space; and 3) a weighted k-nearest neighbor classifier that may be used to assign
either members of the original dataset that do not appear in the final summary or unseen
data to each cluster. As a result, the presented data-driven approach to higher-dimensional
Poincaré maps may facilitate analysis of a complex solution space with a reduced burden on
a human analyst, as well as support for the trajectory designer assembling arcs of specific
geometries to construct an initial guess for a complex trajectory in the spatial CR3BP.

The constructed global cluster summary is also used to facilitate analysis and visualization
of the arcs associated with hyperbolic invariant manifolds of families of tori in the L1 and
L2 gateways. The stable and unstable manifolds associated with bounded motions near the
collinear libration points serve as natural transport mechanisms within multi-body systems.
Studying their characteristics and influence on the solution space is a significant analytical
task that also supports trajectory design; both of these activities are typically performed by
a human analyst. However, projection onto the precomputed global clustering result rapidly
produces a summary of the geometries of arcs along the stable and unstable manifolds of tori
in the L1 and L2 gateways. This example is used to demonstrate: 1) a data-driven association
between the spatial and higher-dimensional stable manifolds of these families of tori and
the trajectories that they influence within the solution space; and 2) visualization of the
fundamental geometries of arcs along the spatial and higher-dimensional unstable manifolds
of these families of tori.
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11 Appendix 1

See Figs. 13 and 14.

Fig. 13 Subset of representatives for global clustering result summarizing trajectories associatedwith prograde
perigees and generated for up to three returns to a perigee map in the Sun-Earth CR3BP at CJ = 3.00088, with
the libration points displayed as magenta diamonds
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Fig. 14 Subset of representatives for global clustering result summarizing trajectories associatedwith prograde
perigees and generated for up to three returns to a perigee map in the Sun-Earth CR3BP at CJ = 3.00088, with
the libration points displayed as magenta diamonds

12 Appendix 2

See Table 1.

Table 1 Truncated period, initial state and stable and unstable eigenvalues, λS and λU , respectively, of the
monodromymatrix for theLyapunov and vertical orbits at L1 and L2 in the Sun-EarthCR3BPatCJ = 3.00088

Orbit Period [nondim] x0 [nondim] Eigenvalue

L1 Lyapunov 3.0189495 [0.9895177, 0, 0, 0, 0.0036028, 0] λS = 5.00 × 10−4, λU = 2004

Vertical 3.1247260 [0.9900629, 0, 0, 0, 0.0000726,
0.0032712]

λS = 3.81 × 10−4, λU = 2626

L2 Lyapunov 3.0588881 [1.0095682, 0, 0, 0, 0.0029462, 0] λS = 5.14 × 10−4, λU = 1946

Vertical 3.1691039 [1.0100107, 0, 0, 0, −0.0000473,
0.0025868]

λS = 3.90 × 10−4, λU = 2563
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