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Abstract
Close-in co-orbital planets (in a 1:1 mean-motion resonance) can experience strong tidal
interactions with the central star. Here, we develop an analytical model adapted to the study
of the tidal evolution of those systems.We use a Hamiltonian version of the constant time-lag
tidal model, which extends the Hamiltonian formalism developed for the point-mass case.
We show that co-orbital systems undergoing tidal dissipation favour either the Lagrange
or the anti-Lagrange configurations, depending on the system parameters. However, for all
range of parameters and initial conditions, both configurations become unstable, although
the timescale for the destruction of the system can be larger than the lifetime of the star. We
provide an easy-to-use criterion to determine whether an already known close-in exoplanet
may have an undetected co-orbital companion.

Keywords Mean-motion resonance · Co-orbital · Tides · Lagrange configuration ·
Three-body problem · Constant time-lag · Exoplanets

1 Introduction

In the framework of the three-body problem, planets in the co-orbital resonance correspond
to a system in a 1:1 mean-motion resonance. In other words, the planets have the same mean
orbital period, which means that the difference of their mean longitudes librates, generally
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around a value close to ± 60◦ or equal to 180◦. Beyond the famous collinear and equilateral
configurations described, respectively, by Euler (1764) and Lagrange (1772), other types of
orbits are possible in this resonance, making the co-orbital dynamics very rich. While the
Euler configurations, denoted by L1, L2 and L3 in the restricted three-body problem, are
unstable for all mass ranges, the Lagrange equilibria are linearly stable, provided that the
three masses satisfy the relation 27(m0m1+m0m2+m1m2) < (m0+m1+m2)

2 established
by Gascheau (1843) for circular orbits. More general criteria exist for equilateral eccentric
configurations (see Danby 1964; Roberts 2002; Nauenberg 2002). For the previous inequality
to be fulfilled, it is necessary that one of the masses is dominating. Thus, we denote by m0

the mass of the star, which is much larger than that of the planets m1 and m2. With these
notations, the Gascheau condition is satisfied when (m1 + m2)/m0 � 1/27. Therefore, in
the planar case and for small eccentricities, when the sum of the planetary masses is smaller
than about 1/27 of the stellar mass, tadpole orbits arise, allowing the difference in the mean
longitude to librate around ± 60◦, with a maximum amplitude that increases as the sum of
the planetary masses decreases. When (m1 +m2)/m0 � 3× 10−4, horseshoe-shaped orbits
can arise (see Laughlin and Chambers 2002). They librate around 180◦ with a very large
amplitude of at least 312◦. For moderate to large eccentricities, quasi-satellite orbits are also
possible, for which the planets appear to revolve around each other (see Giuppone et al. 2010;
Pousse et al. 2017), while many other exotic trajectories exist at high eccentricity (Leleu et al.
2018). The dynamics of the inclined problem is evenmore complex by allowing, among other
things, transitions between the different types of orbits mentioned above (Namouni 1999).

The solar systemcontains several examples of co-orbital subsystems, forwhich there exists
a very strong hierarchy between the masses of their components, as for the Jovian Trojans
(or more generally of the giant planets), which correspond to a triplet Sun/Jupiter/asteroid, or
the systems of the Trojan satellites of Saturn, like the subsystem Saturn/Helene/Dione. The
only exception is the triplet Saturn/Janus/Epimetheus, where the masses of the two satellites
differ only by a factor of three.

The detection of co-orbital exoplanets with current instrumentation is very challenging.
Moreover, as co-orbital planets are expected to haveneighbouring companions, their detection
from observational data is a highly degenerate problem. In order to observe these systems,
several techniques have been explored or developed, namely radial velocity (Leleu et al.
2015), transits (Janson 2013; Hippke and Angerhausen 2015), combinations of transit and
radial velocity (Ford and Gaudi 2006; Leleu et al. 2017) or transit timing variations of the
planet (Ford and Holman 2007; Madhusudhan and Winn 2009; Vokrouhlický and Nesvorný
2014). Nonetheless, despite several studies dedicated to this quest (Madhusudhan and Winn
2009; Janson 2013; Lillo-Box et al. 2018a, b), no co-orbital planets have been detected so far.

The theories of planetary formation do not prohibit the existence of co-orbital planets.
Indeed, Laughlin and Chambers (2002) introduced two possible processes that can form such
systems: planet–planet gravitational scattering and accretion in situ at the stable Lagrange
points of a primary. Depending on the physical characteristics of the gas disc, the first process
can lead to systems with a high diversity of mass ratios (Cresswell and Nelson 2008), but
also to equal mass co-orbitals (Giuppone et al. 2012). In the in situ scenario, different models
lead to various upper limits to the mass that can form at Lagrange’s equilibrium points of a
giant planet: a maximum mass of about 0.6 Earth mass for Beaugé et al. (2007), while Lyra
et al. (2009) obtained 5–15 Earth mass planets at the same locations.

Once formed in the disc, the stability of the co-orbital system is not necessarily guaranteed.
Beaugé et al. (2007) found that inward migration tends to slightly increase the libration
amplitude of the co-orbital system, and instability during the late migrating stages with
low gas friction may lead to the destruction of the system. Another study from Pierens and
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Raymond (2014) shows that equalmass co-orbitals (from super-Earths to Saturns) are heavily
disturbed during the gap-opening phase of their evolution. Recently, Leleu et al. (2019)
studied the dynamics of a pair of migrating co-orbital planets and showed that, depending
on the mass ratio, the eccentricities of the planets and the type of dissipative forces, the two
planets may evolve towards the stable Lagrangian points, or may scatter out of the system.

For systems with orbital periods Porb � 10days, the planets undergo strong tidal interac-
tions with the parent star (e.g. Correia et al. 2020), which arise from differential and inelastic
deformation of the planet. In the two-body problem, the ultimate stage for tidal evolution is
the synchronization of the rotation and orbital periods, alignment of the planet spin axis with
the normal to the orbit and the circularization of the orbit (e.g. Hut 1980; Adams and Bloch
2015). In the full N -body problem, Moeckel (2017) proved that a relative equilibrium (solid
rotation of the whole configuration) is never an energyminimiser of the space phase at a given
total angular momentum. Thus, applied to the three-body problem with tidal dissipation, this
result implies that the Lagrangian equilibria are made unstable by tides. However, we know
neither the timescale of such instability nor if the phenomenon expands to the whole space
phase, and we even less know what are the consequences to the dynamics of the co-orbital
configuration. Indeed, although the spin of close-in planets quickly evolves into an equilib-
rium configuration, the orbital evolution is much slower (e.g. Correia and Laskar 2010), and
so the co-orbital configuration may survive the whole age of the system. Rodríguez et al.
(2013) performed some numerical simulations in the case of two identical co-orbital planets,
but so far no analytical results have been provided to the consequences of tidal dissipation in
the co-orbital resonance.

The present work attempts to study the influence of tidal dissipation in the dynamics of
co-orbital planets. We develop an analytical model to account for tidal effects on the rotation,
eccentricities and libration amplitude of these bodies. We consider only the tidal effects
raised by the star on the planets, which dominate the tidal evolution. We thus obtain the
non-conservative effects that shape the long-term dynamics. In Sect. 2, we summarize the
main known results on the co-orbital unrestricted three-body problem in the planar case and
we introduce the elements useful to the following sections. In Sect. 3, we establish the tidal
formalism and we give analytic answers to the aforementioned questions in the vicinity of the
Lagrangian points. We also present a tool to help with the detection of co-orbital exoplanets
in Sect. 3.3. The results from Sect. 3 are expanded to the whole space phase in Sect. 4, where
the validity of Sect. 3 is also tested numerically. In Table 4 of “Appendix A”, we list all the
notations used throughout this paper.

2 The co-orbital resonance

2.1 The averaged Hamiltonian

In order to construct the Hamiltonian associated with the co-orbital resonance, we only
consider in this section the point mass planar planetary three-body problem. The case of
extended bodies is studied in Sect. 3. We start with two planets of masses m1 and m2 small
with respect to the mass m0 of the star around which they orbit. For both planets, we define
the quantities β j = m0m j/(m0 + m j ), μ j = G(m0 + m j ), where G is the gravitational
constant. We also introduce the small parameter ε = (m1 + m2)/m0. In order to define a
canonical coordinate system related to the elliptic elements (a j , e j , λ j ,� j ) (respectively,
the semi-major axis, the eccentricity, the mean longitude and longitude of the pericentre of
the planet j), we start from Poincaré heliocentric coordinates (λ j , x̃ j ,Λ j , x j ) where
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Λ j = β j
√
μ j a j , x j = √Λ j

√

1 −
√
1 − e2j exp(i� j ), x̃ j = −i x̄ j . (1)

In these coordinates, the Hamiltonian system derives from the symplectic form

Ω =
∑

j∈{1,2}

(
dλ j ∧ dΛ j + dx̃ j ∧ dx j

)
. (2)

Following Robutel and Pousse (2013), the planetary Hamiltonian can be written as

H = HK (Λ1,Λ2) + HP (Λ1,Λ2, λ1, λ2, x1, x2, x̃1, x̃2), (3)

where the Keplerian part HK , of order ε, takes the form

HK (Λ1,Λ2) = −
2∑

j=1

β3
jμ

2
j

2Λ2
j

. (4)

The perturbative part HP , due to planet–planet interactions, takes into account both direct
and indirect effects. It is a quantity of order ε2 and can be expanded, at least for small to
moderate eccentricities, in power series of (x j , x̃ j ) with coefficients that are trigonometric
polynomials in λ j depending on Λ j .

We assume that the system is in, or close to, the co-orbital resonance. In this case, the
angle λ1 − λ2 varies slowly with respect to the mean longitudes. We can therefore study
the dynamics of the averaged problem over a fast angle. Moreover, in the 1:1 mean-motion
resonance, the values of the semi-major axes are always close to the same constant quantity
denoted by ā. As a consequence, the action variables Λ j will remain close to �� defined as

�� = (Λ�
1,Λ

�
2), with Λ�

j = m j

√
μ0ā, where μ0 = Gm0. (5)

It follows that the mean motion of the planet j at Λ�
j satisfies

dλ j

dt
= ∂HK

∂Λ j
(��) = β3

j

m3
j

μ2
j

μ
3/2
0

ā−3/2 = η ( 1 + O(ε) ) , (6)

where the Kepler law reads

η =
√
μ0ā−3. (7)

Since we are only interested in a study of the problem in the vicinity of the resonance, we
expand the Hamiltonian in a neighbourhood of (Λ1,Λ2) = (Λ�

1,Λ
�
2) defined above. Then,

in order to average the Hamiltonian, we perform the following variable transformation

(Λ1,Λ2, λ1, λ2) �−→ (Z , Z2, φ, φ2)

= (Λ1 − Λ�
1, Λ1 + Λ2 − Λ�

1 − Λ�
2, λ1 − λ2, λ2). (8)

As described byNiederman et al. (2020), if we constrain theΛ j to belong to a neighbourhood
of �� of order ε1+ι with 1/2 ≥ ι > 1/3, the Keplerian part reads

HK (Λ1,Λ2) = ηZ2 − 3

2
η

(
Z2

Λ�
1

+ (Z2 − Z)2

Λ�
2

)

+ O
(
ει+2)

= ĤK (Z , Z2) + O
(
ει+2) , (9)

where the constant terms have been neglected.

123



An analytical model for tidal evolution in co-orbital systems… Page 5 of 30 37

Since the perturbation is of order ε2, a zero-order expansion in Λ j − Λ�
j generates a

remainder that has the same size as in (9). Thus, we will limit ourselves to

HP (Λ1,Λ2, λ1, λ2, x1, x2, x̃1, x̃2) = HP (Λ
�
1,Λ

�
2, λ1, λ2, x1, x2, x̃1, x̃2) + O

(
ει+2)

= ĤP (φ, φ2, x1, x2, x̃1, x̃2) + O
(
ει+2) .

(10)

In order to uncouple the variables associated with the different timescales, we perform
the following linear transformation

(Z , Z2, φ, φ2) �−→ (I , I2, ξ, ξ2) = (Z − δZ2, Z2, φ, δφ + φ2), with δ = m1

m1 + m2
,

(11)

where x j and x̃ j are unchanged. Thus, in the (I , I2) variables, the Keplerian part Ĥ takes
the following form

ĤK (Z , Z2) = ȞK (I , I2) = ηI2 − 3

2
η

I 22
Λ�

1 + Λ�
2

− 3

2
η
Λ�

1 + Λ�
2

Λ�
1Λ

�
2

I 2. (12)

This decoupling stresses the different dynamical timescales involved in the problem. Indeed,
as

ξ̇2 = ∂ ȞK

∂ I2
= η + O(ει) and ξ̇ = ∂ ȞK

∂ I
= −3η

Λ�
1 + Λ�

2

Λ�
1Λ

�
2

I = O(ει), (13)

a fastmotion related toη is associatedwith the orbital angle ξ2, a semi-fastmotion is associated
to the resonant angle ξ , while a slow (or secular) evolution corresponds to the evolution of
the variables x j (see below).

It is therefore legitimate to average the Hamiltonian over the fast angle ξ2. For details of
the averaging process, we refer to Robutel and Pousse (2013) and Niederman et al. (2020).
Simply remember that replacing the perturbation

ȞP (φ, φ2, x1, x2, x̃1, x̃2) = ĤP (ξ, ξ2, x1, x2, x̃1, x̃2) (14)

by its average over the fast angle ξ2 amounts to neglecting a remainder of order ει+2. This last
statement remains valid as long as the distance between the two planets does not go towards
zero with ε (see Robutel et al. 2016, for more details). Finally, we are left with the averaged
Hamiltonian

Ȟ(I , I2, ξ, x1, x2, x̃1, x̃2) = ȞK (I , I2) + 1

2π

∫ 2π

0
ȞP (ξ, ξ2, x1, x2, x̃1, x̃2)dξ2. (15)

Since ξ2 no longer appears in theHamiltonian, its conjugated action, I2 = Λ1+Λ2−Λ�
1−Λ�

2,
is an integral of the averaged Hamiltonian Ȟ .

Our last transformation consists in introducing dimensionless variables that are no longer
proportional to the planetary masses (or to their square root). We thus define the new coor-
dinates (J , J2, X1, X2, X̄1, X̄2) as

J = I

mā2η
, J2 = I2

mā2η
, X j =

√
2

m j ā2η
x j , X̄ j = i

√
2

m j ā2η
x̃ j , (16)

where m = √
m1m2. J and J2 are at most of order ε1/2 for tadpole orbits and ε1/3 for

horseshoe one (see Robutel and Pousse 2013), while X j is close to the eccentricity vector of
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the planet j , that is,

X j = e j exp(i� j )
(
1 + O (J ) + O (J2) + O(ε) + O

(
e2j

) )
. (17)

The semi-major axes a j are linked to the variables J and J2 by the relations

a j = āR2
j , (18)

with

R j = 1 + f j , f1 = m

m1 + m2
J2 + m

m1
J , f2 = m

m1 + m2
J2 − m

m2
J . (19)

In order to make the Hamiltonian equations as close as possible to their standard form, we
rescale both time and energy as

H = Ȟ

mā2η2
and τ = tη. (20)

The equations of the motion become

J̇ = −∂H
∂ξ

, J̇2 = − ∂H
∂ξ2

, ξ̇ = ∂H
∂ J

, ξ̇2 = ∂H
∂ J2

,

Ẋ j = −2i
m

m j

∂H
∂ X̄ j

, ˙̄X j = 2i
m

m j

∂H
∂X j

,

(21)

where the dot denotes the derivation with respect to τ . The Hamiltonian H now reads

H = HK + HP , with HK (J , J2) = −3

2

m1 + m2

m
J 2 − 3

2

m

m1 + m2
J 22 + J2. (22)

As mentioned above, the perturbation HP can be expanded in powers of the (X j , X̄ j ) as

HP =
∑

n≥0

H2n where H2n =
∑

| p|=2n

Ψ p

(
Δ−1, eiξ , e−iξ

)
X p1
1 X p2

2 X̄ p̄1
1 X̄ p̄2

2 . (23)

In the previous expression, p is the multi-index (p1, p2, p̄1, p̄2) ∈ N
4,Ψ p is a polynomial in(

Δ−1, eiξ , e−iξ
)
and Δ = √

2 − 2 cos ξ . The invariance by rotation of the system, which is
equivalent to the conservation of its total angular momentum, yields an additional constraint
on the multi-indexes p known as the D’Alembert rule

p1 + p2 = p̄1 + p̄2 . (24)

The expression of HP expanded up to degree 4 reads

H0 = m

m0

(
cos ξ − (2 − 2 cos ξ)−1/2) ,

H2 = 1

2

m

m0

{
Ah
(
X1 X̄1 + X2 X̄2

)+ Bh X1 X̄2 + B̄h X̄1X2
}
,

H4 = 1

4

m

m0

{
Dh
(
X2
1 X̄

2
1 + X2

2 X̄
2
2

)+ Eh X
2
1 X̄

2
2 + Ēh X

2
2 X̄

2
1

+ Fh
(
X1X2 X̄

2
1 + X̄1 X̄2X

2
2

)+ F̄h
(
X̄1 X̄2X

2
1 + X1X2 X̄

2
2

)+ GhX1X2 X̄1 X̄2
}
,

(25)
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with

Ah = 5 cos 2ξ − 13 + 8 cos ξ

4Δ5
− cos ξ, Bh = e−2iξ − e−3iξ + 16e−2iξ − 26e−iξ + 9eiξ

8Δ5
.

(26)

The coefficients Dh, Eh, Fh and Gh of the fourth degree are given in “Appendix B”.

2.2 The semi-fast dynamics

Since the Hamiltonian is even in the variables X j and X̄ j , the manifold X1 = X2 = 0 is
invariant by the flow of the averaged Hamiltonian H. In other words, the average problem
has solutions for which both orbits are circular, but not necessarily Keplerian. Indeed, along
such motions, the eccentricities remain equal to zero while the semi-major axes evolve. The
dynamics of these particular trajectories derives from theone-degree-of-freedomHamiltonian
HK + H0 whose phase portrait is plotted in Fig. 1. This Hamiltonian possesses three fixed
points located in (J = 0, ξ = π/3), (J = 0, ξ = 5π/3) and (J = 0, ξ = π) corresponding
to the famous Lagrangian equilibria. The two stable points that correspond to configurations
where the three bodies occupy the vertices of an equilateral triangle are labelled by L4 and
L5, while aligned Euler configuration is denoted by L3. The separatrices emanating from the
unstable equilibrium point L3 split the phase space in three distinct regions. The first two
areas contain the tadpole orbits inside the two lobs including, respectively, L4 and L5. These
trajectories, that surround the stable equilibria, are periodic with a frequency of order

√
ε

(and equal to
√
27ε/4 at L4 or L5). The third domain corresponds to the outer region where

the orbits called horseshoe surround the three fixed points. The L1 and L2 points are absent
from this phase portrait because of the zero-order truncation performed to the perturbation.
They are replaced, in this model, by the singular line ξ = 0 where the HamiltonianHK +H0

tends to minus infinity, regardless of the values of the action J . As a result, the model that we
consider here is not valid for very large amplitude horseshoe orbits (see Robutel and Pousse
2013). It is also worth mentioning that the libration frequency (semi-fast frequency) tends
towards infinity when approaching the singularity and the averaging process no longer makes
sense in the neighbourhood of the singularity.

2.3 The secular dynamics

As we will show in Sect. 3, tidal dissipations tend to circularize the orbits. Thus, in this
section, we will limit the study to the orbits with small eccentricities. For that purpose, it
is sufficient to truncate the Hamiltonian equations to the first order in the X j along the
circular orbits described above (Sect. 2.2), which is equivalent to considering the trajectories
associated with the Hamiltonian HK + H0 + H2.

According to (25), the variational equations are given by
(
Ẋ1

Ẋ2

)
= − i

m0

(
m2Ah(ξ(t)) m2 B̄h(ξ(t))
m1Bh(ξ(t)) m1Ah(ξ(t))

)(
X1

X2

)
, (27)

where (J (t), ξ(t)) is a solution of the semi-fast Hamiltonian system derived fromHK +H0.
Despite being linear, the differential equation (27) is, a priori, not integrable, except in
some special cases. Indeed, if one chooses a stationary solution corresponding to one of the
fixed points of the semi-fast system, the linear equation (27) is no longer time-dependent
and therefore becomes trivially integrable. This case is fully studied in Robutel and Pousse
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Fig. 1 Phase portrait of the Hamiltonian HK + H0 with m1 = 0.001m0 and m2 = 0.0004m0. The two
elliptic fixed points L4 and L5 are energy maximizers, while the hyperbolic fixed point L3 is on a saddle
point. Around L4,5 are the tadpoles orbits and outside of the separatrix emanating from L3 are the horseshoe
orbits. The Hamiltonian tends to minus infinity as the angular separation between the planets ξ moves towards
zero

(2013). Here, we just remind the main results that play an important role in the next sections.
We are not interested in the unstable configuration L3 and we restrict the study to the stable
equilibria L4 and L5. For symmetry reasons, the dynamical features of the two equilateral
configurations are the same; therefore, only the L4 configuration (ξ = π/3) is studied. In
this case, the linear system (27) has two purely imaginary eigenvalues

ig1 = i
27

8
ε, ig2 = 0, (28)

and the associated eigenvectors are given by

V1 =
(
m2ei

π
3

−m1

)
and V2 =

(
ei

π
3

1

)
. (29)

The physical meaning of these eigenvectors can be interpreted in the following. Along the
neutral direction, collinear to V2, the elliptic elements of both orbits satisfy the relations

X1

X2
= exp

(
i
π

3

)
, (30)

a configuration that corresponds to the Lagrange elliptic equilibrium, which is a stable fixed
point of the average problem. Along the other direction, collinear to V1, the two planets are
linked (at least for small eccentricities) by the relations

X1

X2
= m2

m1
exp

(
i
4π

3

)
. (31)

This corresponds to an infinitesimal version of the anti-Lagrange orbits found numerically
by Giuppone et al. (2010). These particular orbits are remarkable in the sense that, in the
average problem, a1, a2, e1, e2 and λ1 − λ2 are constant, while the two orbits precess with
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the same frequency equal to g1 in such a way that the angle �1 − �2 is constant and equal
to 4π/3.

If we now consider the neighbourhood of a purely periodic solution, as those plotted in
Fig. 1, the solutions of (27) can be approximated by averaging over the semi-fast variations.
Indeed, the frequency of the semi-fast motion is of order

√
ε, while the secular frequency is

of order ε [Eq. (28)]. Unfortunately, the averaged expression of the differential system (27)
cannot be given explicitly.1 In the horseshoe domain, some information can nevertheless
be obtained from geometrical considerations. Since Im (Bh(2π − ξ)) = −Im (Bh(ξ)) and
because horseshoe orbits are symmetric with respect to (J , ξ) = (0, π), the average of
Im (Bh) over the semi-fast variations vanishes. As a result, the coefficients of the averaged
variational equation are purely imaginary numbers. Taking into account the particular form of
the matrix, it results that the two eigenvectors correspond to pairs of orbits whose pericentres
are aligned for the Lagrange configuration (�1 − �2 = 0) and anti-aligned for the anti-
Lagrange configuration (�1 − �2 = π ) (“Appendix C” provides more details). Nothing
similar is valid for tadpole orbits where algebraic calculations are required.

3 Tidal effects

3.1 Tidal model

Tides arise from differential and inelastic deformations of a body j (e.g. the planet) due to
the gravitational effect of a perturbing body i (e.g. the star or the companion planet). Tidal
contributions to the orbital and spin evolution are based on a very general formulation of
the tidal potential, initiated by Darwin (1880). Since celestial bodies are not perfectly rigid,
there is a distortion that gives rise to a tidal bulge. This redistribution of mass modifies the
gravitational potential generated by the body j in any point of the space, r . The additional
amount of potential is known by the tidal potential (e.g. Kaula 1964)

V (r) = −κ2, j
Gmi

R j

(
R j

r

)3 ( R j

r�
i

)3

P2 (cos S) , (32)

where the index i refers to the body responsible for the tidal bulge (perturbing body), while
the index j stands for the body where the bulge is raised. r i is the position of the perturbing
body with respect to the barycentre of body j , R j is the radius of the body j , κ2, j is the

second Love number, P2 is the second Legendre polynomial, and S is the angle between r�
i

and r . For an interacting body with mass mk at the position rk , the amount of tidal potential
energy is then given by

Ui jk(rk) = mkV (rk) = −κ2, j
Gmkmi

R j

(
R j

rk

)3 ( R j

r�
i

)3

P2 (cos S) . (33)

A system of N bodies undergoing tidal forces is described by N (N − 1)2 tidal potentials.
For N = 3, this gives 12 contributions, but tides raised on a planet by another planet, as well
as tides raised by the central star on a planet and interacted with by the other planet can be
neglected due to their very small contribution. Only six contributions remain: four of these

1 Niederman et al. (2020) give an expression of the coefficients of this matrix in terms of integrals depending
on some parameters.
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are of order κ2,0(εm0)
2R5

0 and correspond to tides raised on the star and interacted with by
the planets, while the last two are of order κ2, jm2

0R
5
j and correspond to tides raised on a

planet by the star and interacted with by the star. For planets in the solar system, we usually
have κ2, j ≈ 0.5 (Yoder 1995), while for Sun-like stars we have κ2,0 ≈ 0.02 (Claret and

Cunha 1997). Assuming a constant density for all bodies, we have R j ∝ m1/3
j and thus

κ2,0(εm0)
2R5

0

κ2, jm2
0R

5
j

= κ2,0

κ2, j
ε1/3 � 1, (34)

that is, tides raised on the star can also be neglected. Therefore, in this work we consider only
the two terms corresponding to tides raised on each planet by the star and interacted with by
the star.

The dissipation of the mechanical energy inside the planet introduces a delay �t j and
hence a phase shift between the initial perturbation and the maximal tidal deformation. As a
consequence, the star exerts a torque on the tidal bulge which modifies the spin and the orbit
of the planet. In all the following, we use the notation

z�j (t) = z j
(
t − �t j

)
, (35)

z j being any quantity.
Tidal dissipation is usually modelled through the quality factor Q j , which measures the

amount of energy dissipated in a tidal cycle (e.g. Munk and MacDonald 1960). For a given
tidal frequency σ , the tidal dissipation can be related to this delay through (e.g. Efroimsky
2012)

Q−1
j (σ ) = sin(σ�t j (σ )) ≈ σ�t j (σ ). (36)

The exact dependence of �t j (σ ) on the tidal frequency is unknown. In order to take into
account tidal dissipation, we need to adopt a tidal model. A large variety of models exists, but
the most commonly used are the constant-Q (e.g. Munk and MacDonald 1960), the linear
model (e.g. Mignard 1979), the Maxwell model (e.g. Correia et al. 2014), and the Andrade
model (e.g. Efroimsky 2012). Some models appear to be better suited to certain situations,
but no model is globally accepted. Nevertheless, regardless of the tidal model adopted, the
qualitative conclusions are more or less unaffected, and the system always loses mechanical
energy.

In this work, we adopt a viscous linear model for tides (Singer 1968; Mignard 1979). In
this model, it is assumed that the time delay�t j is constant and independent of the frequency.
This tidalmodel iswidely used and provides very simple expressions for the tidal interactions.

3.2 The dynamical impact of tidal dissipations

3.2.1 Derivation of the equations of motion

Although tidal effects do not preserve the energy, it is possible to use the Hamiltonian for-
malism by considering the starred quantities as parameters (Mignard 1979).

The tidal Hamiltonian reads

Ht = H1
t + H2

t + T1 + T2, (37)
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where in the heliocentric reference frame

H j
t = −κ2, jGm2

0

R5
j

r3j r
�3
j

P2 (cos S) and Tj = Θ2
j

2C j
, (38)

with

S = λ j − λ
�
j −

(
θ j − θ

�
j

)
, (39)

where θ j is the angle of rotation of body j , Θ j = C jω j is the conjugated momentum of θ j ,
C j = α jm j R2

j is the moment of inertia of body j , ω j = dθ j/dt is its rotation rate and α j is
a dimensionless structure constant depending on the state equation of body j (α j = 2/5 for
an homogeneous ball).

We use the canonical Poincaré rectangular variables to express the tidal Hamiltonian Ht

(see Laskar and Robutel 1995) and perform the transformations given by Eqs. (8), (11) and
(16), as well as the transformation

Γ j = Θ j

mā2η
, (40)

in order to normalize the action variable associated with the angle θ j .
Contrary towhatwas done forHP in Sect. 2.1, it is not possible to truncate theHamiltonian

(38) at the order 0 in the variables J and J2 without losing relevant information on the tidal
dissipation. Indeed, the main tidal contribution results from the fact that the semi-major axes
are not constant but animated with semi-fast motions (see Sect. 2.2). As a consequence, we
keep exact expressions of H j

t in terms of J and J2 and obtain

H j
t = −q j

m0

m
R−6

j R�−6
j

{
A j
t + Ξ

j
2 + Ξ

j
4 + O

(∣∣X j
∣∣6
) }

,

T j = 1

2α j

m

m j

Γ 2
j

ϙ2j
= Tj

mā2η2
,

(41)

with

Ξ
j
2 = B j

t

(
R−1

j X j X̄ j + R�−1
j X�

j X̄�
j

)
+
(
R jR�

j

)−1/2 (
C j
t X j X̄

�
j + C̄ j

t X
�
j X̄ j

)
,

Ξ
j
4 = D j

t

(
R−2

j X2
j X̄

2
j + R�−2

j X�2
j X̄�2

j

)
+
(
R jR�

j

)−1 (
E j
t X

2
j X̄

�2
j + Ē j

t X
�2
j X̄2

j

)

+
(
R jR�

j

)−1
G j

t X j X
�
j X̄ j X̄

�
j + R−3/2

j R�−1/2
j

(
F j
t X j X

�
j X̄2

j + F̄ j
t X

2
j X̄ j X̄

�
j

)

+ R−1/2
j R�−3/2

j

(
F j
t X

�2
j X̄ j X̄

�
j + F̄ j

t X j X
�
j X̄�2

j

)
,

(42)

where we defined

q j = κ2, jϙ
5
j , ϙ j = R j

ā
, (43)

and

A j
t = 1

4
+ 3

4
cos 2

(
λ j − λ

�
j − θ j + θ

�
j

)
. (44)
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The coefficients B j
t through G j

t of the second and fourth order in eccentricity are given in
“Appendix B”. The equations ofmotions are derived from theHamiltonian leaving the starred
variables constant since they are only parameters, that is:

Ẋ j = −2i
m

m j

∂H
∂ X̄ j

∣∣∣
�=Cte

, ˙̄X j = 2i
m

m j

∂H
∂X j

∣∣∣
�=Cte

,

Ṗ = − ∂H
∂ Q

∣∣∣
�=Cte

, Q̇ = ∂H
∂ P

∣∣∣
�=Cte

,

(45)

where the upper dot denotes the derivation with respect to τ and

P = t (J , J2, Γ1, Γ2) , Q = t (ξ, ξ2, θ1, θ2) . (46)

The full Hamiltonian reads

H = HK + H0 + H2 + H4 +
∑

j∈{1,2}
H j

t +
∑

j∈{1,2}
T j . (47)

In the linear tidal model, once the equations of motion are obtained, the starred quantities
z�j are expressed as the first-order Taylor expansion in η�t j [Eq. (35)]

z�j = z j − η�t j ż j , (48)

where ż j is expressed usingEq. (45). To prevent an implicit relation for z�j , only theKeplerian
and kinetic part of the Hamiltonian is considered for ż j in Eq. (48). That is, we take

H = HK + T1 + T2, (49)

in Eq. (45) only for the dot appearing in Eq. (48). We redefine the quality factor of planet j
as [Eq. (36)]

Q j = 1

η�t j
. (50)

If we note ϑ j = 1 − ω j

η
, the complete set of equations of motion reads

ϑ̇ j = −3α−1
j

m0

m j
ϙ−2
j

q j

Q j
R−12

j

{
ϑ j + 3

(
1 − R j

)+ h j
2R

−1
j X j X̄ j + h j

4R
−2
j X2

j X̄
2
j

}
,

J̇ = −∂ (H0 + H2 + H4)

∂ξ
+ (1 − δ) J̇ 12 − δ J̇ 22 ,

J̇2 = J̇ 12 + J̇ 22 ,

ξ̇ = ∂HK

∂ J
+ 6q1

m0

m1
R−13

1 V2
(
R−1

1 X1 X̄1

)
− 6q2

m0

m2
R−13

2 V2
(
R−1

2 X2 X̄2

)
,

Ẋ j = −2i
m

m j

∂ (H2 + H4)

∂ X̄ j
− 3

q j

Q j

m0

m j
R−13

j X j

{

p j
2 − 5

2
i Q j + X j X̄ j

R j

(
p j
4 − 65

4
i Q j

) }

,

(51)
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where

J̇ j
2 = −3

q j

Q j

m0

m
R−12

j

{
ϑ j + 3

(
1 − R j

)+ k j
2R

−1
j X j X̄ j + k j

4R
−2
j X2

j X̄
2
j

}
,

h j
2 = 93

2
+ 15

2
ϑ j − 81

2
R j , h j

4 = 1989

8
+ 195

8
ϑ j − 819

4
R j ,

k j
2 = 157

2
+ 27

2
ϑ j − 69R j , k j

4 = 2515

4
+ 273

4
ϑ j − 2091

4
R j ,

p j
2 = 32 + 6ϑ j − 57

2
R j , p j

4 = 3041

8
+ 351

8
ϑ j − 318R j ,

V2 (Z) = 1 + 65

8
Z + 455

16
Z2.

(52)

In “Appendix D”, we show that this set of equations preserves the total angular momentum
of the system.

3.2.2 Fixed points and linearization of the system

Since system (51) is a perturbation of the Hamiltonian system derived from (22), its fixed
points are a perturbation of the Lagrangian equilibrium. We can thus find them using a
perturbative approach. Since system (51) was written at first order in ε−1 (q1 + q2), we
restrict to the first order to compute the position of the fixed points. We have, for j ∈ {1, 2},

ϑ j = 0,

ξ − π

3
= 0,

−3
m1 + m2

m
J + 6q1

m0

m1
− 6q2

m0

m2
= 0,

X j = 0.

(53)

Note that this choice for the fixed points does not make the right-hand side of system (51) to
be exactly zero but only a quantity of second order in ε−1 (q1 + q2). This choice guarantees
though that the fixed points correspond to a solid rotation of the whole system. We now fix
to 0 the value of ϑ̇ j in (51) and if we approximate a j = ā (that is R j = 1), the equilibrium
of the rotation rate of planet j at nonzero eccentricity reads

ω j

η
= 1 + 6e2j + 3

8
e4j + O

(
e6j

)
, (54)

which is known as the pseudo-synchronization (Correia andLaskar 2004). Indeed, this is not a
solid rotation, because the equilibrium is slightly super-synchronous at nonzero eccentricities.

Equations (53) only provide six independent equations for seven variables.2 In order to
have a unique fixed point in the neighbourhood ofwhich to linearize the system,we arbitrarily
choose

f1 + f2 = 0. (55)

Note that the linearized system depends on the choice of both Eqs. (53) and (55), but only
by a quantity of second order in ε−1 (q1 + q2), which we neglect.

2 The remaining degree of freedom is due to the conservation of the total angular momentum of the system.
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Let X0 = t (ϑ1,0, ϑ2,0, ξ0, J0, J2,0, X1,0, X2,0
)
be the unique solution of (53) + (55). In

order to study the dynamics of the system in the neighbourhood of the fixed point, we consider
the linearized system

Ẋ = (Q0 + Q1)X , (56)

where X = t (ϑ1, ϑ2, ξ, J , J2, X1, X2) − X0. The matrix Q0 derives from the conservative
Hamiltonian HK + H0 + H2 (the fourth order in eccentricity does not contribute to the
linearized system), while Q1 corresponds to the tidal contributions. The matrix Q0 + Q1

is block diagonal with a size 5 block corresponding to the circular dynamics and a size 2
block, corresponding to X1 and X2. This shows that the circular and eccentric dynamics are
uncoupled near L4,5. A detailed expression of these matrices is given in “Appendix F”. The
set of eigenvalues of Q0 is

{0, 0, 0, iν,−iν, ig1, ig2} , (57)

where

ν =
√
27ε

4
, g1 = 27ε

8
, g2 = 0. (58)

Among the three3 0 eigenvalues, two correspond to the constant rotation rate of the planets
and another to the conservation of the total angular momentum. The ±iν eigenvalues give
the frequency of the libration of the resonant angle ξ = λ1 − λ2 around L4,5 (see Sect. 2.2)
and the last two eigenvalues give the frequency of the precession of the pericentres in the
eigenmode anti-Lagrange for g1 and Lagrange for g2 (see Sect. 2.3). In particular, all seven
eigenvalues are pure imaginary and without the contribution of tides (Q1), the trajectories of
the linearized system are quasi-periodic.

Since Q1 is only a small perturbation of Q0, we expect that the spectrum of Q0 + Q1 is
close to (57). We compute it to the first order in ε−1 (q1 + q2) using results from “Appendix
E”. We find for the eigenvalues of Q0 + Q1

{
λ1, λ2, 0,ϡ, ϡ̄, λAL, λL

}
, (59)

with

λ j = −3α−1
j

q j

Q j
ϙ−2
j

m0

m j
+ 9ε−1 q j

Q j
< 0,

ϡ = 9

2
ε−1
(
m1

m2

q2
Q2

+ m2

m1

q1
Q1

)
+ iν

[
1 + 13ε−1

(
m1

m2
q2 + m2

m1
q1

)]
,

λAL = −21

2
ε−1

(
m1

m2

q2
Q2

+ m2

m1

q1
Q1

)
+ ig1

[
1 + 20

9
ε−2

(
m1

m2
q2 + m2

m1
q1

)]
,

λL = −21

2
ε−1

(
q1
Q1

+ q2
Q2

)
+ 15

2
iε−1 (q1 + q2) .

(60)

We note that the eigenvalues are no longer pure imaginary and we boxed the real parts for a
better visualization. The real parts are proportional to the quantities Q−1

j , while the perturba-
tions of the imaginary parts are not. As a consequence, elastic tides do not yield dissipation,
but only change slightly the fundamental frequencies of the system. Tides also slightly perturb

3 Four, with g2.
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the eigenvectors of the system and we show in “Appendix F” how the eigenmode Lagrange
and anti-Lagrange are modified by tides.

One of the eigenvalues of Q0 + Q1 is still zero, corresponding to the conservation of
the total angular momentum. As a result of tidal dissipation, the eigenvalues λAL and λL,
perturbations of ig1 and ig2, respectively, have nonzero negative real parts. Therefore, both
eccentric eigenmode Lagrange and anti-Lagrange are damped to zero. Similarly, the rotation
rates of both planets are also damped. On the contrary, the real parts ofϡ and ϡ̄, perturbations
of iν and −iν, are strictly positive, which leads to an exponential increase of the libration
amplitude when the system is around L4,5.

3.2.3 Characteristic timescales

We define here the characteristic timescale of a given proper mode of system (56) as the
time needed for its amplitude to be multiplied (or divided, if the corresponding real part is
negative) by a factor exp (1). According to the eigenvalues (60), these times are

τ
j
rot = 1

6π
α jϙ

2
j
m j

m0

Q j

q j

[
1 + 3m j

m1 + m2
ϙ2jα j

]
T ,

τL = ε

21π

(
q1
Q1

+ q2
Q2

)−1

T ,

τAL = ε

21π

(
m2

m1

q1
Q1

+ m1

m2

q2
Q2

)−1

T ,

τlib = 7

3
τAL,

(61)

where T = 2π/η is the orbital period. We note that the times τ j
rot are much smaller than the

three other characteristic times, due to the presence of the factor ϙ2j � 1. That is, regardless
of the parameters and initial conditions, the rotations of the planets are damped to their
equilibrium (54) in a timescale such that the eccentricities and the libration angle do not
undergo significant damping or excitation.

We know from the eigenvalues (60) that the two eccentric eigenmodes Lagrange and
anti-Lagrange are damped to zero, while the libration amplitude of the resonant angle ξ

exponentially increases. We now compare the timescales τAL, τL and τlib to determine which
proper mode amplitudes evolve faster. Even though both eccentric modes are damped, the
damping times may be different. By comparing them, we can find if the system favours the
Lagrange or the anti-Lagrange configuration. Indeed if

τAL

τL
< 1 → then the system settles in Lagrange whereas if,

τAL

τL
> 1 → then the system settles in anti-Lagrange.

(62)

Moreover, comparing the time τlib with the eccentric times τAL and τL allows us to know if
the system is still eccentric or already circular when the libration amplitude has significantly
increased. We have

τlib = 1

9π

ε

q1/Q1 + q2/Q2

τAL

τL
T , (63)
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and so, for a given sum of the planetary masses, ε, and sum of the dissipation rates,
q1/Q1 + q2/Q2, the system moves away from L4,5 faster if it favours Lagrange, and slower
if it favours anti-Lagrange.

These results are a priori valid only in a small neighbourhoodof L4,5, but in fact, the simula-
tions fromSect. 4 show that the behaviour of the systemnear L4,5 is valid even at high libration
amplitudes. This means that the increase in the libration amplitude is unbounded, leading to a
systematic destruction of the system due to close encounters between the planets. The disrup-
tion time depends on τlib, and so Lagrange-like systems have a short life expectancy, while
anti-Lagrange-like systems have a long life expectancy. Moreover, a Lagrange-like system
is eccentric when old4 (as long as it was eccentric when young), while an anti-Lagrange-like
system is always circular when old. Indeed, for an anti-Lagrange-like system, the character-
istic time τe of eccentricity damping is given by τAL and then, τlib = 7τe/3 ensures that the
eccentricity is damped when the libration amplitude has significantly increased. On the other
hand, for a Lagrange-like system, τe = τL and then, τlib � τe ensures that the system is still
eccentric when the libration amplitude has significantly increased.

Although it is clear that τlib depends on the semi-major axis ā, Eq. (63) does not explicitly
show it, since ā is hidden in the variables q j , T and Q j . We have

τlib ∝ τAL

τL
āβ, (64)

where β is 6.5 for the constant-Q model and 8 for the linear model (constant�t j ). Thus, for
a large ā or a strong anti-Lagrange tendency, co-orbital planetary systems may survive for
the entire lifetime of the star in the main sequence.

Interestingly, the ratio between the two eccentric damping timescales depends only on
the ratio between the planetary masses and the ratio between the dissipation rates inside the
planets. That is, denoting

x = m1

m2
and y = q2Q1

q1Q2
= q2η�t2

q1η�t1
= κ2,2ϙ52�t2

κ2,1ϙ51�t1
, (65)

we have

τAL

τL
= x (1 + y)

1 + yx2
. (66)

The equality between the eccentric damping timescales (τAL = τL) occurs at x = 1 and
xy = 1, plotted by black lines in Fig. 2, where we also show the ratio τAL/τL as a function of
x and y. We clearly observe two regions, corresponding to Lagrange-like and anti-Lagrange-
like systems.

Let us assume that the quality factor Q j is mass independent. We then deduce from

ϙ j ∝ m1/3
j and Eq. (65) that

y ∝ x−5/3. (67)

The blue line in Fig. 2 plots y = x−5/3. It shows the path followed by a system with two
initially identical planets (white spot) when we change the mass repartition between them.
We conclude that for a given sum of the planetary masses ε and sum of the dissipation rates
q1/Q1 + q2/Q2, the expectancy of life of the system is at its shortest form1 = m2 = εm0/2
(orange area) and it tends towards infinity if eitherm1 orm2 tends towards εm0 (yellow/white
area).

4 Old means that its age is significant with respect to its expectancy of life.
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Fig. 2 Decimal logarithm of τAL/τL in colour scale. The black straight lines are the locations of the points
where τAL = τL. The blue line is the path followed by a system of variable mass repartition. The black spots
are the positions of the numerical simulations of Sect. 4. The white dot (x = 1, y = 1) is where Rodríguez
et al. (2013) performed all of their simulations. It complies with τAL = τL, explaining why they did not see
any hierarchy between the eccentric eigenmodes. Systems in the red–black regions settle into Lagrange have
a short life expectancy and are eccentric when old, while systems in the yellow–white regions settle into
anti-Lagrange have a long life expectancy and are circular when old

3.3 Application to the detection of co-orbital exoplanets

We can use the results from Sect. 3.2 to ascertain if an already discovered exoplanet may
have an undetected co-orbital companion. For any co-orbital system, we denote τhs and
τdest the time needed to reach the horseshoe-shaped orbits, and the time needed for close
encounters to disrupt the co-orbital resonance, respectively. In the rest of this section, we
use the observational parameters to estimate τdest and then discard cases such that τdest is too
small.

The libration amplitudeΦ = max (ξ − 60◦) is defined as the angular distance to L4. IfΦ0

is the initial libration amplitude of the system and if Φ is a small libration amplitude greater
than Φ0, then, by definition of τlib, the time τΦ needed to reach the libration amplitude Φ is
given by

τΦ

τlib
= ln

(
Φ

Φ0

)
. (68)

Equation (68) a priori cannot be used to predict the time τhs, since the separatrix L3 is far
from the fixed point L4. Nevertheless, by performing numerical simulations of Eq. (51) with
arbitrary parameters and initial conditions, we verify that the expression

τhs

τlib
≈ ln

(
60

Φ0

)
≈ 4.1 − ln (Φ0) , (69)

is always a good approximation as longΦ0 ≤ 15◦, whereΦ0 is in degrees. Although τhs/τlib
only depends onΦ0, we expect that τdest/τlib also depends on ε, since this parameter controls
the maximum libration amplitude before the system becomes unstable. The smaller ε is,
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Fig. 3 Disruption time (Gyr) of an hypothetical co-orbital system as a function of the orbital period of the
observed planet and of the mass of the host star. The couple Saturn+Earth is plotted in orange, while the
couple Earth+Earth is plotted in blue. The solid lines plot the minimum of the main sequence duration and
of the age of the universe for both couples. Systems below these lines may have been already destroyed at the
time of observation, but systems above outlive either their host star or the age of the universe. The blue and
orange dots correspond to HD 158259 c and HD 102956 b. Note that, for a given orbital period, co-orbital
systems live longer around a massive host star because they have a larger semi-major axis

larger the maximum libration amplitude is. Since ε = 3 × 10−4 is the highest value allowing
horseshoe-shaped orbits (Leleu et al. 2015), the equality τdest = τhs occurs at this value. If
we fix Φ0 = 10◦, we have

1/2 τhs ≤ τdest ≤ 2 τhs ⇔ 10−9 � ε � 0.005, (70)

and so, τhs and τdest do not differ by more than a factor 2 for a wide range of ε. We thus
consider that τdest ≈ τhs in this range and Eqs. (63) and (69) can be used to predict τdest.

Figure 3 shows the disruption times of a Saturn-mass and an Earth-mass co-orbital sys-
tem (in orange), and of a system of two Earth-mass (in blue), with Φ0 = 10◦. The exact
parameters adopted for these systems are listed in Table 1. The solid line plots min (τms, τu)

where τms = 1010 yr (m0/M�)−2 is the duration of the main sequence of the host star and
τu = 13.77Gyr is the age of the universe. Figure 3 depends little on the choice of the gas giant
and on the choice of the rocky body, in the sense that it would not be drastically different if
other planets had been chosen. Therefore, it tells us if an already detected gas giant may have
a companion (orange lines), or if an already detected rocky planet may have a companion
(blue lines). The detected exoplanet is located in Fig. 3 using its orbital period and the mass
of the host star. If it is below its associated solid line (orange for a gas giant, blue for a rocky
planet), then its companion was already ejected, if it ever existed. On the contrary, if it is
above this line, the subsequent pair of co-orbital outlives either the host star or the age of the
universe and it is worth looking for the companion. As an example, it is very unlikely to find
a co-orbital companion for the rocky planet HD 158259 c (Hara et al. 2020), plotted with a
blue dot in Fig. 3, but we cannot rule out that the gas giant HD 102956 b (Luhn et al. 2019),
plotted with a orange dot in Fig. 3, has a co-orbital companion.
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Table 1 Parameters of the bodies
used to plot Fig. 3 (Lainey 2016) Mass (M⊕) Specific mass (kg/m3) κ2 Q

Earth 1 5515 0.302 280

Saturn 95.15 687.3 0.39 2450

Fig. 4 Value of the libration angle ξ = λ1 − λ2 against time. The switching from tadpole to horseshoe orbits
(crossing of the separatrix emanating from L3) occurs when the libration amplitude suddenly increases, giving
this boot shape to the plots. As expected from Fig. 2 and Table 2, systems 4, 5 and 6 live longer than systems
1, 2 and 3

4 Numerical simulations

In this section, in order to verify results of Sect. 3 and expand them to the whole space phase,
we perform some numerical simulations of planetary systems representative of the different
dynamical regimes of co-orbital planets undergoing tidal interactions with the star, such
as those described in Sect. 3. More precisely, we display the evolution of the six systems
that correspond to the black dots in Fig. 2. For all of them we choose ε = 2 × 10−4,
q1/Q1 + q2/Q2 = 4 × 10−13, m0 = M�, ρ1 = 500 kg/m3, ρ2 = 2000 kg/m3, α1 = α2 =
0.33, e2,0 = 2e1,0 = 0.04, �1,0 = �2,0 = 0, a1,0 = a2,0 = ā = 0.02 AU, ϑ1,0 = ϑ2,0 = 0
and ξ0 = 62◦, that is, the systems are initially 2◦ away from L4. Since the total planetary
masses ε and the total dissipation rate q1/Q1 + q2/Q2 are the same for all systems, their
positions is all plotted in Fig. 2 and their tidal timescales are entirely determined by the
values of the mass ratio x and the dissipation rate ratio y [see Eq. (65)], which are the only
variable parameters (Table 2). The choice for the initial eccentricities and longitude of the
perihelions guarantees that the systems are not initially collinear to the Lagrange or anti-
Lagrange configuration, and their evolution allows us to know if they are Lagrange-like or
anti-Lagrange-like.

The timescales of the six systems, expressed in number of orbital periods and deduced
from Sect. 3.2.3, are given in Table 2. τlib corresponds to the characteristic timescale of
libration amplitude excitation given by Eq. (61), while τ numlib is directly computed from the
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Table 2 Values of x , y and the corresponding timescales of the systems

# Color x y τlib τnumlib τAL τL

1 Blue 10 100 1785893 1845021 765382 7578807

2 Green 1/500 100 3570716 4198710 1530306 7578807

3 Red 100 1/50 8973910 9161859 3845961 7578807

4 Purple 100 1/200 34847651 34893952 14934707 7578807

5 Yellow 1/10 100 89303607 89304263 38272974 7578807

6 Black 100 10−5 1607641764 1607642323 688989327 7578807

The timescales are expressed in number of orbital periods

Table 3 Times to reach horseshoe-shaped orbits and until destruction

# τ51hs

(
106 periods

)
τ99hs

(
106 periods

)
Relative error (%) τdest

(
106 periods

)

1 6.28560 6.24269 0.683 6.92019

2 14.3061 14.1782 0.894 16.1457

3 31.2717 31.0543 0.695 34.8405

4 118.975 118.150 0.693 129.357

5 302.789 300.438 0.777 328.044

6 Around 5466 [see (69)] Around 6010

numerical value of Z0 + Z1 (given in “Appendix F”), without considering any first-order
expansion.

For some systems, especially system 2, there is a slight difference between τ numlib and τlib.
For these systems, the values of d1 and d2 in the matrix Z1 are not so small with respect to
1, leading to a value for ζ also not so small with respect to 1 (see “Appendix E”). A smaller
value for the sum of the dissipation rates q1/Q1 + q2/Q2 would provide a better agreement,
but it also leads to much longer simulations. On the other hand, there is no disagreement
between the analytical values of τAL and τL in Sect. 3.2.3 and their numerical counterparts,
since the eccentricities are uncoupled from the rest of the variables in the linearized system.

Each system is numerically integrated using two different sets of equations. In the first
set, we use the secular equations (51) derived in this paper. In the second set, we use a n-body
direct model [see “Appendix G”, Eq. (99)]. The results are displayed in Figs. 4, 5 and 6. The
top panels correspond to the set of Eq. (51), while the bottom panels correspond to the set
(99). All systems except system 6 are integrated long enough for the co-orbital configuration
to be destroyed.

We observe there is always a very good agreement between Eqs. (51) and (99), except
when the libration amplitude is near 360◦. Indeed, as the libration amplitude increases,
close encounters between the planets mean that planet–planet interactions are no longer
perturbations of the Keplerian motion and our model is no longer valid. On the upper plot
of Fig. 4, the amplitude of ξ tends towards 2π when time goes to infinity but never reaches
it, while on the lower plot, there exists a finite time for which ξ reaches 2π , meaning it is a
circulating angle and the motion is not in a 1:1 resonance anymore. All simulations confirm
that the co-orbital resonance is left.

We also note that for small eccentricities, averaged equations (51) (plotted on top) differ
significantly from the direct equations (99) (plotted at the bottom). We believe this is due
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Fig. 5 Value of �1 − �2 against time. Blue, green and red systems settle into Lagrange and have a short life
while purple, yellow and black systems settle into anti-Lagrange and live long. This is in agreement with what
we deduce from Fig. 2 and Table 2

to short period influences that were averaged in our model. Indeed, while the manifold
(X1 = 0, X2 = 0) is stable by the flow of the averaged Hamiltonian, it is not stable by the
flow of the complete Hamiltonian. This may explain the differences between both plots at
low eccentricities. This does not discredit though the theoretical results obtained in Sect. 3.

In Table 3, we give for reference the times τ 51hs and τ 99hs needed to reach horseshoe-shaped
orbits as deduced from the simulations of Eq. (51) and the direct n-body simulations (99),
respectively, as well as the time τdest until destruction of the co-orbital configuration, deduced
from Eq. (99). The relative error on the time of crossing of the separatrix L3 is consistently
smaller than 1%, showing the reliability of the model on the whole tadpole region for this
choice of ε. We have, for the first five systems, τhs/τ

num
lib = 3.4, which is consistent with

Eq. (69).
As expected from the values of τAL and τL given in Table 2, the three shortest simulations

correspond to Lagrange-like systems, while the three longest correspond to anti-Lagrange
like systems. This is particularly clear in Fig. 5, which displays the value of �1 − �2. For
the short-lived systems (blue, green and red), the difference of the longitude of perihelion
first settles around 60◦ = π/3 at low libration amplitude, before it moves to 0◦, when in
horseshoe orbit. For the long-lived systems (yellow, black and purple), the difference of the
longitude of perihelion first settles around 240◦ = 4π/3 at low libration amplitude, before it
moves to 180◦ = π , when in horseshoe orbit. This is in complete accordance with Eqs. (30),
(31), (76) and (77).

Figure 6 also confirms the Lagrange-like behaviour of short-lived systems, since e1 = e2
for these systems, while m1e1 = m2e2 for long-lived simulations, characteristic of their
anti-Lagrange-like behaviour. As also expected from the theoretical results, Lagrange-like
systems are still eccentric when they are old (see, e.g. the green and blue plots), while anti-
Lagrange-like systems are circular when they are at the end of their life (see the yellow
plot).
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Fig. 6 Eccentricities of both planets against time. For a same system, e1 and e2 are plotted with the same
colour. Anti-Lagrange-like systems comply with e2 = xe1 and both plots are easily distinguished, while for
Lagrange-like system, such that e1 = e2, both plots are almost overlaid. This is in agreement with what we
deduce from Fig. 2 and Table 2

Fig. 7 Total normalized energy of system 1 (left) and system 5 (right). The very anti-Lagrange-like system
5 features a pronounced plateau in its energy decrease and lives long, while the very Lagrange-like system 1
does not show any marked plateau and has a short life

In Fig. 7, we show the total energy HK + H0 + H2 + H4 + T1 + T2 of system 1 and
system 5. The energy of the anti-Lagrange-like system 5 (yellow) features two steep decrease
and a broad plateau.At the beginning of the simulation, the eccentricities of the planets are still
significant, meaning that ẇ j , the time derivative of their true longitude, is not constant. This
prevents a solid rotation around the star, although the equilibrium rotation is already reached
(small τ j

rot), and ensures dissipation: it is the first steep decrease. Then, the eccentricities are
almost damped, while the libration amplitude did not significantly increase yet. The motion
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around the star is almost a solid rotation and very few energy is dissipated into heat: it is
the plateau. Finally, the high libration amplitude of ξ reached in late tadpole and horseshoe-
shaped orbits ensures the non-constancy of ẇ j and energy dissipation: it is the second steep
decrease. For almost restricted systems, very anti-Lagrange-like, the amplitude of libration
has to be very high for the least massive planet to significantly perturb the solid rotation
of the most massive one. Thus, these systems have very broad plateau and a very high life
expectancy. On the other hand, the energy of the Lagrange-like system 1 (blue) does not
feature such a marked plateau, because the eccentricities are always nonzero even at high
libration amplitude, and hence, its life is far shorter.

This section shows that Eqs. (51) allow to correctly predict the tidal evolution of co-orbital
systems. One advantage of using these equations instead of the direct equations (99) is that
they lead to less-oscillating curves. Another advantage is that they are quicker to run (by a
factor 1/ν), since the average over the fast dynamics allows to take a larger time step. With
ε = 2 10−4, Eqs. (51) are 1/ν = 27.2 times faster to run than the direct ones with equivalent
CPU performances. Finally, the average equations (51) also allow us to better understand
and predict the dynamical behaviour of co-orbital systems.

5 Conclusion

In this paper, we have studied the tidal evolution of co-orbital planetary systems. We have
shown that these systems are always unstable, regardless of the parameters and initial config-
uration. However, for well chosen parameters, the disruption timescale can be arbitrarily high
if the planets orbit far enough from the central star and/or if the mass repartition between both
planets is far enough from equal masses. Since the current detection methods of exoplan-
ets (radial velocity and transit) favour the detection of close-in systems with roughly equal
masses for the planets, this work gives a satisfactory explanation to why no co-orbital planets
have been discovered so far, although planetary formation models predict their formation. In
Fig. 3, we give a useful plot to predict if an already detected exoplanet may have a co-orbital
companion.

We provide analytic criteria to determine the evolution timescales of a co-orbital system,
which allow us to predict if a system is eccentric or circular when it is on the verge of being
destroyed and the eccentric proper mode it has settled into. We also show the difference
between the two proper modes according to whether the system is in the tadpole or horseshoe
region. We show that the tidal evolution is essentially dominated by three characteristics
timescales. τL and τAL are responsible for damping the proper modes of the eccentricity and
τlib for pumping the libration amplitude of the resonant angle. The latter is also responsible
for the destruction of the co-orbital configuration, and it provides us with an estimate of its
life time.

We obtain a complete system of averaged equations describing the evolution of the system
which is consistent with the conservation of the total angular momentum at any order in
eccentricity and yields no significant difference with respect to the n-body direct equations
when compared by numerical integrations. This shows that the averaging process over the
orbital period and all approximations made are correct. Therefore, this system of equations
allows us to perform fast numerical integrations with a larger time step.

In the present work, we did not consider tides raised on the star [see Eq. (34)]. We did
not consider the general relativity and the rotational oblateness of the bodies either, since
these conservative effects only slightly modify the imaginary parts of the eigenvalues of
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the linearized system [Eq. (60)], which only results in small changes in the fundamental
frequencies ν, g1 and g2 and does not impact the timescales of the co-orbital system. The
quasi-satellite configuration (Pousse et al. 2017), which is a peculiar type of 1:1mean-motion
resonance that does not exist at zero eccentricity, was also not studied by this work, because
our model is singular when the planets have the same mean longitude. However, since tidal
effects damp the eccentricities of the planets, we believe that this type of orbit is even
more unstable than the Lagrange and anti-Lagrange configurations. This was numerically
confirmed by Rodríguez et al. (2013) in the case of two identical planets.
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(POCI-01-0145-FEDER-022217), funded by COMPETE 2020 and FCT, Portugal.

Appendices

A Notations

We gather here for convenience the notations used throughout this work.5

Table 4 Notations

m0, R0 Mass and radius of the central body

m1, R1 Mass and radius of the leading co-orbital body

m2, R2 Mass and radius of the trailing co-orbital body

G, ε The gravitational constant, (m1 + m2) /m0

m, β j , μ j , μ0
√
m1m2, m0m j /

(
m0 + m j

)
, G (m0 + m j

)
, Gm0

a j , e j , λ j , � j Semi-major axis, eccentricity, mean longitude, longitude of pericentre

ξ, γ, δ, Δ λ1 − λ2, (m1 + m2) /m, m1/ (m1 + m2) ,
√
2 − 2 cos ξ

Λ j , x j , x̃ j β j
√
μ j a j ,

√
Λ j

(
1 −

√
1 − e2j

)1/2
exp
(
i� j

)
, −i x̄ j

η, ā, τ, ,̇ T Mean motion at the resonance, μ1/3
0 η−2/3, ηt, d/dτ, 2π/η

J , J2, X j , Q j See Eq. (16), Quality factor of planet j

κ2, j , �t j , z
�
j Second Love number, constant time lag, z j

(
t − �t j

)
for any z j

C j , α j , θ j , ω j , ϑ j Moment of inertia, C j /
(
m j R

2
j

)
, rotation angle, dθ j /dt, 1 − ω j /η

ϙ j , q j , �λ j , �θ j R j /ā, κ2, jϙ
5
j , λ j − λ

�
j , θ j − θ

�
j

ν, g1, g2, x, y
√
27ε/4, 27ε/8, 0, m1/m2, q2�t2/ (q1�t1)

R j , f1, f2 1 + f j , m/ (m1 + m2) J2 + m/m1 J , m/ (m1 + m2) J2 − m/m2 J

B Coefficients of the HamiltonianH4 andHj
t

First, we give the coefficients depending on ξ of the Hamiltonian H4. We recall that H4 is
expressed

5 ϙ (qoppa) and ϡ [sampi, see Eq. (59)] are archaic Greek letters.
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H4 = 1

4

m

m0

{
Dh
(
X2
1 X̄

2
1 + X2

2 X̄
2
2

)+ Eh X
2
1 X̄

2
2 + Ēh X

2
2 X̄

2
1

+ Fh
(
X1X2 X̄

2
1 + X̄1 X̄2X

2
2

)+ F̄h
(
X̄1 X̄2X

2
1 + X1X2 X̄

2
2

)+ GhX1X2 X̄1 X̄2
}
.

(71)

The coefficients read
(
recall that Δ = √2 − 2 cos ξ

)

Dh = 7

16
cos ξ + 1

4Δ9

(
−3951

32
+ 115 cos ξ + 293

8
cos 2ξ − 27 cos 3ξ − 37

32
cos 4ξ

)
,

Gh = cos ξ + Δ−9
(

−4491

32
+ 139 cos ξ + 233

8
cos 2ξ − 27 cos 3ξ − 25

32
cos 4ξ

)
,

Eh = 1

32

(
e−iξ + 81e−3iξ

)
+ e−6iξ

32Δ9 PE
(
eiξ
)
,

Fh = −7

4
e2iξ + e−3iξ

4Δ9 PF
(
eiξ
)
,

PE (X) = −9

8
+15X− 349

2
X2+171X3+ 2889

4
X4−1571X5+ 2007

2
X6−87X7− 625

8
X8,

PF (X) = 207

32
+ 303

8
X− 577

4
X2+ 603

8
X3+ 2511

16
X4− 1475

8
X5+45X6+ 57

8
X7− 5

32
X8.

(72)

We now give the expressions of the coefficients appearing in the tidal Hamiltonian (41) for
the second and fourth order in eccentricity. We have

B j
t = 3

8
− 15

8
cos 2

(
�λ j − �θ j

)
,

C j
t = 3

32
ei(�λ j−2�θ j) + 9

16
e−i�λ j + 147

32
e−i(3�λ j−2�θ j),

D j
t = 3

8
+ 69

64
cos 2

(
�λ j − �θ j

)
,

G j
t = 9

16
+ 75

16
cos 2

(
�λ j − �θ j

)
,

E j
t = 81

64
e−2i�λ j + 867

32
e−2i(2�λ j−�θ j),

F j
t = 9

16
ei�λ j − 3

128
e−i(�λ j−2�θ j) − 1365

128
ei(3�λ j−2�θ j),

(73)

with

�λ j = λ j − λ
�
j and �θ j = θ j − θ

�
j . (74)

C Lagrange and anti-Lagrange in horseshoe-shaped orbits

Here, we show that the Lagrange and anti-Lagrange proper modes correspond to aligned and
anti-aligned pericentres in horseshoe-shaped orbits. The matrix of the variational equations
(27), once averaged over the semi fast dynamics and according to the geometrical consider-
ations stated at the end of Sect. 2.3, reads

M0 = −i

(m2
m0

Ah
m2
m0

Bh
m1
m0

Bh
m1
m0

Ah

)
, (75)
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where both Ah and Bh , average of Ah and Bh over the semi-fast dynamics, are real. The
eigenvectors of M0 show that for the Lagrange configuration

arg

(
X1

X2

)
= �1 − �2 = 0, (76)

while for the anti-Lagrange configuration

arg

(
X1

X2

)
= �1 − �2 = π. (77)

This corresponds to aligned and anti-aligned pericentres.

D Conservation of the total angular momentum

Here, we show that the set of equations (51) is consistent with the conservation of the total
angularmomentumof the system. The normalized6 total angularmomentum C reads (Robutel
and Pousse 2013)

C =
∑

j

m j

m
R j − 1

2

∑

j

m j

m
X j X̄ j +

∑

j

α j
m j

m
ϙ2j
(
1 − ϑ j

)
. (78)

From (51), we get

Ċ =
∑

j∈{1,2}
3
q j

Q j

m0

m
R−13

j X j X̄ j

{
h j
2 − k j

2 + p j
2 + R−1

j X j X̄ j

(
h j
4 − k j

4 + p j
4

) }
, (79)

and the total angular momentum is conserved since we have

h j
2 − k j

2 + p j
2 = 0 and

h j
4 − k j

4 + p j
4 = 0.

(80)

E Diagonalization of a perturbedmatrix

We show here the method that we use to obtain the eigenvalues of a perturbed matrix once a
diagonal basis of the principal matrix is known. Indeed, the computation of the eigenvalues
(60) is equivalent to finding the roots of the characteristic polynomial of Z0 + Z1, given in
Eqs. (94) and (95). Even when the degree of this polynomial is reduced to four using the 0
eigenvalue, it is hard to obtain its roots in a convenient form. The method we use here, briefly
presented by Laskar et al. (2012), gives the eigenvalues and eigenvectors very easily.

LetM = M0 + ζM1 ∈ Mn (C) be a n × n complex matrix where ζ is a small quantity
with respect to 1. Assume that we know a diagonal basis for M0

D0 = P−1
0 M0P0 = diag (λi ) , (81)

where the columns of P0 are the eigenvectors of M0 and the λi its eigenvalues, which are
not assumed to be of multiplicity one but which are assumed to be sorted by value, that is,

6 Normalized by mā2η.
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equal eigenvalues are consecutive. This does not restrict the generality, as any permutation
can be applied on the columns of P0 to achieve that. We now define

Q1 = P−1
0 M1P0. (82)

If P is the matrix of the eigenvectors of D0 + ζQ1, and since D0 + ζQ1 is near diagonal,
we write

P = In + ζ P1 + O
(
ζ 2
)
. (83)

We have

P−1 (D0 + ζQ1) P = D0 + ζ (Q1 + [D0, P1] ) + O
(
ζ 2
)
, (84)

where [D0, P1] = D0P1 − P1D0. Thus, the cohomological equation

Q1 + [D0, P1] = D1, (85)

where D1 = diag
(
qi,i
)
is the diagonal matrix composed of the diagonal terms of Q1. The

solution of the cohomological equation is

pi, j =
{

qi, j
λ j−λi

if λi �= λ j ,

0 else,
(86)

where

Q1 = (qi, j
)
1≤i, j≤n and P1 = (pi, j

)
1≤i, j≤n . (87)

The matrix M0 + ζM1 is now block diagonal:

P−1P−1
0 (M0 + ζM1) P0P = diag

(
B1
0 + ζB1

1, ... ,Br
0 + ζBr

1

)
, r ≤ n (88)

where ∀i ≤ r ∃k ≤ n such that

Bi
0 = λk Im(k), (89)

andm(k) denotes the multiplicity of λk and thus the size of the block. The computation of the
eigenvalues of M0 + ζM1 is reduced to the computation of the eigenvalues of the blocks
Bi
0 + ζBi

1 who are hopefully all of small size and whose eigenvalues are then analytically
easily found.

F Linearization

Near the fixed points given by (53), the linear system reads

Ẋ = (Q0 + Q1)X , (90)

where X is defined in Sect. 3.2.2. We have

Q0 =
(
Z0 05,2
02,5 M0

)
and Q1 =

(
Z1 05,2
02,5 M1

)
, (91)

where

M0 = 27

8
i

(
m2
m0

−m2
m0

eiπ/3

−m1
m0

e−iπ/3 m1
m0

)

, (92)
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M1 = −21

2
diag

{
q1

m0

m1

(
η�t1 − 5

7
i

)
, q2

m0

m2

(
η�t2 − 5

7
i

) }
, (93)

Z0 =

⎛

⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 −3γ 0
0 0 1

3γ
−1ν2 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

, (94)

Z1 =

⎛

⎜⎜⎜⎜
⎝

−d1 0 0 3γ−1δ−1d1 3γ−1d1
0 −d2 0 −3γ δd2 3γ−1d2
0 0 0 −γ (δc2 + (1 − δ) c1) γ−1 (c2 − c1)

− (1 − δ) b1 δb2 0 3γ
(
δ2b2 + (1 − δ)2 b1

)
3γ−1 [(1 − δ) b1 − δb2]

−b1 −b2 0 3γ−1δ−1b1 − 3γ δb2 3γ−1 (b1 + b2)

⎞

⎟⎟⎟⎟
⎠

,

(95)

with

δ = m1

m1 + m2
, γ = m1 + m2

m
, ν =

√
27ε

4
,

d j = 3

α j

q j

Q j
ϙ−2
j

m0

m j
, b j = 3

q j

Q j

m0

m
, c j = 78q j

m0

m j
.

(96)

Near L4,5, the eigenvectors ofM0 + M1, computed using results from “Appendix E” reveal
that the Lagrange configuration corresponds to

�1 − �2 = π

3
+ 28

9

m2
0 (m1q2/Q2 + m2q1/Q1)

m1m2 (m1 + m2)
,

e1
e2

= 1 + 20

9

m2
0 (q2m1 − q1m2)

m1m2 (m1 + m2)
,

(97)

while the anti-Lagrange configuration complies with

�1 − �2 = 4π

3
− 28

9

m2
0 (m1q2/Q2 + m2q1/Q1)

m1m2 (m1 + m2)
,

e1
e2

= m2

m1

(

1 − 20

9

m2
0 (q2m1 − q1m2)

m1m2 (m1 + m2)

)

.

(98)

G Direct 3-bodymodel

The complete equations of motion governing the tidal evolution of a three-body system in an
astrocentric frame using a linear constant time-lag tidal model are given by (Mignard 1979)

d2�r1
dt2

= −μ1

r31
�r1 + Gm2

(
�r2 − �r1

|�r2 − �r1|3 − �r2
r32

)

+ �f1
β1

+ �f2
m0

,

d2�r2
dt2

= −μ2

r32
�r2 + Gm1

(
�r1 − �r2

|�r1 − �r2|3 − �r1
r31

)

+ �f2
β2

+ �f1
m0

,

d2θi
dt2

= − (�ri × �fi ) · �k
Ci

= −3
κ2,iGm2

0R
3
i

αimir8i
�ti

[
dθi
dt

r2i −
(

�ri × d�ri
dt

)
· �k
]
,

(99)
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where �ri and θi are the astrocentric position vector and the rotation angle of the planet i ,
respectively, �k is the unit vector normal to the orbital plane of the planets and �fi is the force
arising from the tidal potential energy created by the deformation of each planet [Eq. (33)]

�fi = −3
κ2,iGm2

0R
5
i

r8i
�ri − 3

κ2,iGm2
0R

5
i

r10i
�ti

[
2

(
�ri · d�ri

dt

)
�ri + r2i

(
dθi
dt

�ri × �k + d�ri
dt

)]
.

(100)
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