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Abstract
In this paper, we study the problem of determining whether a global family of even periodic
solutions of a generalized Sitnikov problem, which emerges from a circular generalized
Sitnikov problem, continues for all values of eccentricity in [0, 1) or ends in the equilibrium.

Keywords Generalized Sitnikov problem · Even periodic solutions · Global families ·
Continuation from circular Sitnikov problem

1 Introduction

The Sitnikov problem is a restricted three-body problem inwhich two bodies of equal positive
mass, called primaries, move in circular or elliptic Keplerian orbits on a plane Π , and a
massless body, called particle, moves on a straight line orthogonal to Π passing through the
primary bodies’ center of mass. If the units of mass, space and time are properly chosen, it
can be assumed that the gravitational constant G is equal to 1, the mass of the primaries is
1/2, and the minimal period of their orbits is 2π . Additionally, if the plane Π is the plane
x, y and the center of mass of the primary bodies is fixed at the origin of the system, the
motion equation for the particle is

z̈(t) + z(t)
(
r2(t, e) + z2(t)

) 3
2

= 0, (1)

where r(t, e) is the distance of the primaries to their center of mass at time t , and e ∈ [0, 1)
is the eccentricity of their corresponding orbits. The function r(·, e) is given implicitly by
the equation

r(t, e) = 1

2
(1 − e cos(u(t, e))),

where u(t, e) is the eccentric anomaly, which solves the Kepler equation

u(t, e) − e sin(u(t, e)) = t − t̄ .
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Here t̄ is the time of passage through the pericenter, which can be assumed to be equal to
zero. When e = 0, the primaries move in the same circular orbit and in this case we have the
circular Sitnikov problem.

The Sitnikov problem became relevant when K. Sitnikov showed in Sitnikov (1960) the
existence of solutions, for small e > 0, with chaotic behavior. Since then many authors have
studied this problem, see Alekseev (1968), Alfaro and Chiralt (1993), Belbruno et al. (1994),
Beltritti et al. (2018), Bountis and Papadakis (2009), Jiménez-Lara and Escalona-Buendía
(2001), Corbera and Llibre (2000), Corbera and Llibre (2002), Dvorak (1993), Llibre and
Ortega (2008), Llibre and Simó (1980), Marchesin and Vidal (2013), Moser (1973), Ortega
(2016), Ortega and Rivera (2010), Pandey and Ahmad (2013), Perdios andMarkellos (1987),
Rivera (2013), Rivera and Andrés (2012), Soulis et al. (2008), Zanini (2003).

A question that arises in the literature referred to the Sitnikov problem is the study of
families of periodic solutions that depend continuously of the parameter e. A special case
is those families whose solutions are additionally even. One way to find them is to look for
solutions of (1) satisfying the boundary conditions

ż(0) = ż(Mπ) = 0 (2)

for M ∈ N, see Jiménez-Lara and Escalona-Buendía (2001), Corbera and Llibre (2000),
Corbera and Llibre (2002), Llibre and Ortega (2008), Ortega and Rivera (2010), Rivera
(2013). If these conditions hold then z(t) = z(−t) and z(t + 2Mπ) = z(t) for every t ∈ R.

In Jiménez-Lara and Escalona-Buendía (2001), the authors study the above problem
numerically. For M = 4, Figure 9 in this work shows, among other things, certain families
that originate from the circular Sitnikov problem and continue for all values of e ∈ [0, 1),
and other families that emerge from the equilibrium z = 0 at some eccentricity e∗ and con-
tinue for all values e∗ < e < 1. Later, Llibre and Ortega (2008) prove analytically, using the
method of global continuation of Leray and Schauder, the existence of exactly νM := [√8M]
families of non-trivial periodic solutions of (1) (with initial condition z(0) > 0), satisfying
(2), families that emerge from the circular Sitnikov problem and continue for values of e > 0.
The corresponding solutions of each family have the same quantity of zeros in the interval
[0, Mπ]; this is because the zeros of these solutions are non-degenerate, and this fact allows
to see, by a classical argument employed by Rabinowitz (1971), that the number of zeros in
[0, Mπ] remain constant in these solutions. Then, every family is identified by the number
of zeros that their solutions have in the interval [0, Mπ], and this number goes from p = 1
to p = νM , see Theorem 3.1 in Llibre and Ortega (2008). In the same theorem, the authors
also prove that, fixed ε ∈ (0, 1), for these families, one of the next alternatives holds: the
first is that, called 4a) in that work, the family continues for all values of e ∈ [0, 1− ε], and
the second is that, called 4b), the family ends in the equilibrium z = 0 at some eccentricity
value E ∈ [0, 1 − ε). (However, in Figure 9 of Jiménez-Lara and Escalona-Buendía 2001
these families are not observed.) Additionally, the authors demonstrate that if p < M then
4a) holds, but if p ≥ M the alternative 4b) can hold at a value of eccentricity E , and a lower
bound for E is given, see Theorem 3.2 in Llibre and Ortega (2008). Ortega and Rivera (2010)
demonstrate analytically, using a slight variant of the Pitchfork bifurcation and the theory of
global continuation, the existence of an infinite number of families that bifurcate from the
equilibrium z = 0 at adequate eccentricities e∗ and continue for all values e∗ < e < 1. The
authors also improve the result in Theorem 3.2 in Llibre and Ortega (2008) demonstrating
that the condition 4a) is satisfied if p is less than a value p0(M), which is greater than M ,
although there is not an estimate for p0(M), see Lemma 3.1 and Theorem 7.1 in Ortega
and Rivera (2010). In addition, the authors show that conditions 4a) and 4b) cannot occur
simultaneously; this is consequence of Proposition 3 therein.
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The problems studied in Llibre and Ortega (2008) and Ortega and Rivera (2010) are
approached byRivera (2013) for a generalized Sitnikov problem inwhich there are N primary
bodies, of equal mass and posed in the vertices of a N -polygon, moving around their center
of mass in Keplerian orbits. Lastly, in Beltritti et al. (2018) the authors study a circular
generalized Sitnikov problem, in which the primaries perform a rigid motion around their
center of mass and form at all times an admissible planar central configuration (see Definition
2 in Beltritti et al. 2018).

The results of Section 2.3 in Llibre et al. (2015) and Theorem 1 in Beltritti et al. (2018)
allow us to propose a generalized Sitnikov problem (GSP) in which the primary bodies orbit
on the plane x, y around their center of mass, performing a planar homographic motion and
forming at all times an admissible central configuration. Closely following the demonstration
of the results in Llibre andOrtega (2008), Ortega andRivera (2010), Rivera (2013), and taking
into account Theorem 5 in Beltritti et al. (2018), we can extend the results of these papers to
the instance where the primaries move as mentioned above. So, in this work our objective is
to study if the families that continue from a circular generalized Sitnikov problem (CGSP)
satisfy an alternative like 4a) or 4b) of Theorem 3.1 in Llibre and Ortega (2008). We have
found evidence that the vast majority of the families satisfy a condition like 4a); in the case
of the classical Sitnikov problem, these families represent the 99.4 percent of all families
that emerge from the circular Sitnikov problem.

To prove our results, we study the linearized equation in equilibrium z = 0 for the GSP via
the polar coordinates and use the theory to count zeros of solutions of differential equations
of the form ḧ(t)+q(t)h(t) = 0 in finite length intervals, see Sect. 5 in Chapter XI in Hartman
(1982).

In the present paper, after introducing preliminary facts in Sect. 1, we describe in Sect. 2
the GSP that we consider in this work; we establish the motion equation for the particle, and
we also state a similar result to Theorem 7.1 in Ortega and Rivera (2010), which refers to the
continuation of families of even periodic solutions of the GSP that emerge from the CGSP. In
Sect. 3, we establish some mathematical criteria that allow us to determine whether a family
that emerges from the CGSP satisfies a condition like 4a) or, if it fulfills an alternative like
4b), provides an interval of possible values of eccentricities where it can end. In Sect. 4, we
present some numerical results that indicate us that the vast majority of families emanating
from the CGSP satisfy a condition like 4a). In Sect. 5, we analytically approach the problem
that concern us regarding the classical Sitnikov problem. Finally, in the “Appendix”, some
technical results used in Sect. 5 are expose and demonstrate.

2 A generalized Sitnikov problem

We begin this section by giving the definition of Central Configuration and by determining
its relationship with planar homographic motion. We remark that some reasonings in this
section are analogous to those made in Sect. 3 in Rivera (2013). Also, from now on the
gravitational constant G is equal to 1.

Definition 1 Letη = (η1, . . . , ηN )be a N -tuple of positions inR2 and letm = (m1, . . . ,mN )

be a vector of mass. We say that (η,m) is a Central Configuration if there exists α ∈ R such
that

∇ jU (η,m) = −αm jη j , j = 1, 2, . . . , N ,
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where

U (η,m) =
∑

i< j

mim j

|ηi − η j |
and ∇ j denotes the 2-dimensional partial gradient with respect to η j .

We have also that α = U (η,m)
I (η,m)

where I (η,m) = ∑N
i=1 mi |ηi − c|2, and c is the center of

mass of the configuration (η,m) (see Section 2.3 in Llibre et al. 2015).
Fixing the center of mass at the origin of the coordinate system, by Proposition 2.3.4 in

Llibre et al. (2015), if r1(t), θ1(t) is any solution of

r̈1(t) − r1(t)
(
θ̇1(t)

)2 = − α

r21 (t)

d

dt

(
r21 (t)θ̇1(t)

) = 0, (3)

and we define

χ j (t) := r1(t)Q(θ1(t))η j ,

where Q(θ) =
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, then χ(t) = (χ1(t), χ2(t), . . . , χN (t)) is a planar homo-

graphic solution of the N -body problem. It is known that for, every e ∈ [0, 1) there exists
r1(t) = r1(t, e) and θ1(t) = θ1(t, e) solutions of (3), such that the functions χ j (t) describe
an ellipse with eccentricity e ∈ [0, 1) and semimajor axis s j := |η j | (see Chapter 2 inMurray
and Dermott (1999). In such a case, the minimal period of χ j (t) is 2π√

α
and

r1(t, e) = 1 − e cos(u(t, e)), (4)

where

u(t, e) − e sin(u(t, e)) = √
α(t − t̄), (5)

with t̄ being the time of passage through the pericenter, which we suppose, without loss of
generality, is equal to zero.We also choose appropriate units so that α = 1, then the functions
χ j (t) are 2π-periodic. From now on, we identify an admissible central configuration with
the value λ := ∑N

i=1
mi
8s3i

; this definition of λ is chosen to keep the analogy with the results

in Rivera (2013). We do so because, as we can see in Rivera (2013) and we will see in this
work, the results obtained for the considered problems depend on the value of λ.

By Theorem 1 in Beltritti et al. (2018), if (η,m) is an admissible central configuration,
we can propose a generalized Sitnikov problem (GSP), in which the trajectories of primaries
are the functions χ j (t) with r1(t, e) as in (4), and the massless particle moves on a straight
line orthogonal to the plane x, y; a line passing through the origin of the system. In this case,
the differential equation that describes the movement of the particle is

z̈(t) +
N∑

i=1

mi z(t)
(
4s2i r

2(t, e) + z(t)2
) 3
2

= 0, (6)

where the definition r(t, e) := r1(t, e)/2 is also chosen to keep the analogy with the results
in Rivera (2013). At this point, we are interested in solutions of (6) satisfying the Neumann
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boundary conditions

ż(0) = ż(Mπ) = 0. (7)

Thus, a function z(t) that solves (6) and satisfies (7) is an even, 2Mπ-periodic solution of
the GSP. If we define z(t, ξ, η, e) as the solution of (6) such that z(0) = ξ and ż(0) = η,
then finding solutions of (6) satisfying (7) is equivalent to looking for the zeros of the real
analytic function

Fλ
M (ξ, e) : R × [0, 1) → R, Fλ

M (ξ, e) := ż(Mπ, ξ, 0, e).

Due to the symmetries of the GSP, we can search for such zeros only in the set R+ × [0, 1).
For e = 0, the primaries move in circular orbits and in this case the values ξλ

p,M ∈ R+
such that of Fλ

M (ξ, 0) = 0 are those that satisfy

T λ(ξλ
p,M ) = 2Mπ

p
, forp ∈ N, (8)

where T λ(ξ) is defined as the minimum period of z(t, ξ, 0, 0). If (8) holds, then p is
the number of zeros of z(t, ξλ

p,M , 0, 0) in [0, Mπ ]. From Theorem 5 in Beltritti et al.

(2018), we have that T λ(ξ) is an increasing function, lim
ξ→0+ T λ(ξ) = 2π

(
∑N

i=1
mi
s3i

)− 1
2

and lim
ξ→+∞ T λ(ξ) = +∞. Then (8) has a solution for all values of p ∈ N such that

p < M

(
N∑

i=1

mi

s3i

) 1
2

= M
√
8

(
N∑

i=1

mi

8s3i

) 1
2

= M
√
8λ.

Therefore, if we define Mλ := min
{
M ∈ N : M ≥ 1√

8λ

}
and

νM,λ :=
⎧
⎨

⎩

[√
8λM

]
if

√
8λM /∈ N

[√
8λM

]
− 1 if

√
8λM ∈ N,

then, for M ≥ Mλ, the equation Fλ
M (ξ, 0) = 0 has exactly νM,λ solutions in R+. Taking into

account the previous reasoning, after the next definition, we conclude this section enunciating
a result concerning families of solutions of the GSP that emerge from the CGSP. The notation
we use is analogous to that in Ortega and Rivera (2010).

Definition 2 Let Σλ
M := {

(ξ, e) ∈ R+ × [0, 1) : Fλ
M (ξ, e) = 0

}
and C∗ be a connected

component of Σλ
M (which is actually arcwise connected because Fλ

M is analytic). Then
C := {z(t, ξ, 0, e) : (ξ, e) ∈ C∗} is a global family of solutions of the GSP and C∗ is the
connected component associated with C.

Proposition 1 Let λ > 0. For every M ≥ Mλ and p ∈ {1, 2, . . . , νM,λ}, there exists a global
family Cp,M,λ of non-trivial solutions of the GSP such that

i) all solutions of Cp,M,λ have exactly p zeros in [0, Mπ].
ii) C∗

p,M,λ

⋂{e = 0} = {(ξλ
p,M , 0)} where C∗

p,M,λ is the connected component associated
with Cp,M,λ.

Moreover, one and only one of the following conditions holds:
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D1) the projection of C∗
p,M,λ on e-axis is the interval [0, 1),

D2) the projection of C∗
p,M,λ on e-axis is [0, ē), with ē < 1. Furthermore, cl(C∗

p,M,λ)
⋂{ξ =

0} = {(0, ē)}, where cl is the closure operator in R
2.

Proof Closely following the ideas in Llibre and Ortega (2008) and Ortega and Rivera (2010),
if we adapt them to this instance we obtain the proof. 	


Note that if Cp,M,λ fulfills D1, then the family continues for all values of e ∈ [0, 1), in
such a case, we say that Cp,M,λ satisfies D1-condition. On the other hand, if Cp,M,λ fulfills
D2, then it ends in the equilibrium z = 0 at a value of eccentricity ē, in this case we say that
Cp,M,λ satisfies D2-condition at eccentricity value ē.

3 Mathematical criteria for the study of conditionsD1 andD2

In this section, we introduce somemathematical criteria that allow us to approach the problem
of determiningwhether a family Cp,M,λ satisfies the conditionD1 or, if it fulfillsD2-condition
at an eccentricity value ē to establish a lower and upper bound for ē. To introduce such criteria,
we need to study the linearized equation in the equilibrium z = 0 for the GSP, via the polar
coordinates, and demonstrate some results about it.

We first remark that, throughout this paper, we always treat λ as a fixed number and we
study the problem that concerns us varying the values of M ≥ Mλ and p ∈ {1, 2, . . . , νM,λ}.

Following the ideas used in Llibre and Ortega (2008), we can see that if there exists a
family Cp,M,λ that satisfiesD2-condition at an eccentricity value e ∈ [0, 1), then the solution
y(t, e) of

⎧
⎨

⎩

ÿ(t, e) + λ
y(t,e)
r3(t,e)

= 0

y(0, e) = 1
ẏ(0, e) = 0

(9)

is an even, 2Mπ-periodic function, which has exactly p zeros in the interval [0, Mπ], and
additionally

ẏ(Mπ, e) = 0. (10)

The differential equation in (9) is the linearized equation in the equilibrium z = 0 for the
GSP. Introducing polar coordinates

y(t, e) = ρ(t, e) cos(θ(t, e)), ẏ(t, e) = ρ(t, e) sin(θ(t, e))

we have that θ solves the problem
{

θ̇ (t, e) = − λ
r3(t,e)

cos2(θ(t, e)) − sin2(θ(t, e))

θ(0, e) = 0.
(11)

Note first that y(t, e) = 0 if and only if θ(t, e) = (2κ̄ + 1) π
2 for some κ̄ ∈ Z. Now, since

θ̇ (t, e) < 0 for every t ∈ R the function θ can cross the iπ-level, i ∈ Z, only once and it
does so from top to bottom, since also θ(0, e) = 0 then if θ(t̄, e) = −κπ , with κ ∈ Z, we
have that actually κ ∈ N and the number of zeros of y(t, e) in [0, t̄] is κ . So, equality (10)
and the condition that y(t, e) has p zeros in [0, Mπ ] can be joined, in terms of the function
θ , in the following equation

θ(Mπ, e) = −pπ. (12)
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Remark 1 Due to the previous analysis, a necessary condition for a global family Cp,M,λ

to satisfy D2 at an eccentricity value e ∈ [0, 1) is that the solution of (11) satisfies (12).
Then, the negation of this condition allow us to discard the possibility that Cp,M,λ ends in
the equilibrium at a value of eccentricity for which (12) is not true. Since the falsity of (12)
does not seem to be easy to check, through a series of changes of variable, we will analyze
this condition in a mathematical framework that allows us to check it more easily.

Taking into account (5), if we apply the independent change of variable u − e sin(u) = t
the problem (9) becomes

⎧
⎨

⎩

(1 − e cos(u))ÿ(u, e) − e sin(u)ẏ(u, e) + 8λy(u, e) = 0
y(0, e) = 1
ẏ(0, e) = 0

(13)

and the condition (10) remain equal. The differential equation involved in (13) is a particular
case of the so called Ince’s equation, which has been an object of study of many scholars, see
Magnus and Winkler (2013). An advantage of this equation over the equation in (9) is that
the functions that multiply y(u, e) and its derivatives depend explicitly on the independent
variable. For λ = 1, at the end of Ortega and Rivera (2010), the authors pose a question that
involves the differential equation in (13) and the Neumann boundary conditions ẏ(0, e) =
ẏ(Mπ, e) = 0, which in case of having an affirmative answer, it dismisses the possibility of
the existence of a global family Cp,M,1 satisfying D2-condition. Reformulating the problem
(13) in terms of polar coordinates

y(u, e) = ρ̄(u, e) cos(θ̄(u, e)), ẏ(u, e) = ρ̄(u, e) sin(θ̄(u, e)),

we have that θ̄ solves the problem
{ ˙̄θ(u, e) = − 8λ cos2(θ̄ (u,e))

1−e cos(u)
− sin2(θ̄(u, e)) + e sin(θ̄ (u,e)) cos(θ̄ (u,e)) sin(u)

1−e cos(u)

θ̄ (0, e) = 0.
(14)

Now we will show a relationship between θ(t, e) and θ̄ (u, e).

Lemma 1 Let θ and θ̄ be the solutions of the initial value problems (11) and (14), respectively.
Then θ(t, e) = −κπ ⇔ θ̄ (u, e) = −κπ , for κ ∈ N, where t and u are related by the equation
t = u − e sin(u).

Proof If t = u − e sin(u) we have that

ẏ(t, e) = ẏ(u, e)
du

dt
= ẏ(u, e)

1

1 − e cos(u)
,

then ẏ(t, e) = 0 ⇔ ẏ(u, e) = 0. Thus θ(t, e) = −κ1π ⇔ θ̄ (u, e) = −κ2π , with κ1, κ2 ∈ Z.
Since θ̇ (t, e) < 0 for every t ∈ R and ˙̄θ(u, e) < 0, if θ̄ (u, e) = jπ with j ∈ Z, the functions
θ and θ̄ can cross the iπ -level, i ∈ Z, only once and do so from top to bottom. Since
additionally θ(0, e) = θ̄ (0, e) = 0 we conclude that κ1 = κ2 and κ1, κ2 ∈ N. 	


Let w(u, e) be the function such that y(u, e) = w(u, e)v(u, e), with v(u, e) =√
1 − e cos(u), then

⎧
⎨

⎩

ẅ(u, e) + qλ(u, e)w(u, e) = 0

w(0, e) = (1 − e)− 1
2

ẇ(0, e) = 0,
(15)
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where

qλ(u, e) = (1 − e cos(u))2 + (32λ − 4)(1 − e cos(u)) + 3(1 − e2)

4(1 − e cos(u))2
. (16)

Reformulating again the problem in terms of polar coordinates, we have that if

w(u, e) = ρw(u, e) cos(θw(u, e)), ẇ(u, e) = ρw(u, e) sin(θw(u, e)),

then

{
θ̇w(u, e) = −qλ(u, e) cos2(θw(u, e)) − sin2(θw(u, e))
θw(0, e) = 0.

(17)

Remark 2 For the next lemma, we will need that qλ(u, e) > 0 for every e ∈ [0, 1) and u ∈ R,
and this is true if and only if λ ≥ 1

8 . Therefore, from this point on we study our problem for
values of λ ≥ 1

8 . In these cases, Mλ = 1, so for every M ∈ N we have that νM,λ ≥ 1 (except
if λ = 1

8 and M = 1; in this case νM,λ = 0), and thus, there always exists a family Cp,M,λ

emanating from the CGSP. Note that the condition λ > 1
8 is equivalent to the fact that the

CGSP has a synchronous solution, see Corollary 2 in Beltritti et al. (2018).

Lemma 2 Let θ̄ and θw be the solutions of the problems (14) and (17), respectively. Then
θ̄ (Mπ, e) = −κπ ⇔ θw(Mπ, e) = −κπ for M, κ ∈ N.

Proof Let us first observe that

θ̄ (u, e) = −(2κ − 1)
π

2
⇔ θw(u, e) = −(2κ − 1)

π

2
, for κ ∈ N. (18)

In fact, since y(u, e) = 0 ⇔ w(u, e) = 0 then θ̄ (u, e) = −(2κ1 − 1) π
2 ⇔ θw(u, e) =

−(2κ2 − 1) π
2 , for some κ1, κ2 ∈ Z. Since ˙̄θ(u, e) < 0 and θ̇w(u, e) < 0 if θ̄ (u, e) = κ̄1

π
2

and θw(u, e) = κ̄2
π
2 , κ̄1, κ̄2 ∈ Z, the functions θ̄ and θw can cross the i π

2 -level, with i ∈ Z,
only once and do so from top to bottom. Furthermore, since θ̄ (0, e) = θw(0, e) = 0 then
κ1 = κ2 and κ1, κ2 ∈ N.

Since ẏ(Mπ, e) = ẇ(Mπ, e)v(Mπ, e) + w(Mπ, e)v̇(Mπ, e) = ẇ(Mπ, e)v(Mπ, e) we
have that ẏ(Mπ, e) = 0 ⇔ ẇ(Mπ, e) = 0, then

θ̄ (Mπ, e) = −κ̃1π ⇔ θw(Mπ, e) = −κ̃2π

with κ̃1, κ̃2 ∈ N. Let us see that κ̃1 = κ̃2. Suppose without loss of generality that κ̃1 > κ̃2,
then there exists u1 ∈ (0, Mπ) such that θ̄ (u1, e) = −κ̃1π + π

2 and, due to (18), we have
that θw(u1, e) = −κ̃1π + π

2 . Since θw can cross the (−κ̃1π + π
2 )-level once and does so from

top to bottom then θw(Mπ, e) ≤ −κ̃1π which is an absurd because κ̃1 > κ̃2. Then, κ̃1 = κ̃2.
	


Now let us define the function ϕ̄(u, e) as a smooth choice of the argument of the curve

u → D(u, e)

[
w(u, e)
ẇ(u, e)

]
, (19)

where D(u, e) is the 2 × 2 diagonal matrix with entries 1 and q
− 1

2
λ (u, e). A definition like

above can be found in Hartman (1982) (see formula (2.48) in Chapter XI) and it is useful to
estimate the number of zeros of solutions of ḧ(t) + q(t)h(t) = 0 in an interval [0, T̃ ] with
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T̃ > 0 (see Sect. 5 of Chapter XI in Hartman (1982). Also, as in Hartman (1982), we can see
that

{ ˙̄ϕ(u, e) = −√
qλ(u, e) − 1

4 sin(2ϕ̄(u, e)) q̇λ(u,e)
qλ(u,e)

ϕ̄(0, e) = 0.
(20)

Lemma 3 Let θw and ϕ̄ be the solutions of (17) and (20), respectively. Then θw(u, e) =
−κπ ⇔ ϕ̄(u, e) = −κπ for κ ∈ N.

Proof From the definition of ϕ̄, we have that θw(u, e) = −κ1π ⇔ ϕ̄(u, e) = −κ2π for
κ1, κ2 ∈ Z . Now, κ1 = κ2 and κ1, κ2 ∈ N since both functions can cross the iπ-level, i ∈ Z,
only once and do it from top to bottom, and also θw(0, e) = ϕ̄(0, e) = 0. 	


In order to facilitate the view of the subsequent calculations, we define ϕ(u, e) :=
−ϕ̄(u, e). Note that this function solves the problem

{
ϕ̇(u, e) = √

qλ(u, e) − 1
4 sin(2ϕ(u, e)) q̇λ(u,e)

qλ(u,e)
ϕ(0, e) = 0.

(21)

Now we enunciate the first theorem of this article.

Theorem 1 Let θ and ϕ be the solutions of (11) and (21), respectively. Then

θ(Mπ, e) = −κπ ⇔ ϕ(Mπ, e) = κπ

for κ, M ∈ N.

Proof The result is a consequence of all previous lemmas in this section. 	

The advantage of working, in this context, with the function ϕ instead of θ is that the

nonlinear term 1
4 sin(2ϕ(u, e)) q̇λ(u,e)

qλ(u,e) in (21) is very small compared to
√
qλ(u, e) (at least

numerically, for
(
λ > 9

64

)
, it seems to be). This suggests thatϕ(Mπ, e) ≈ ∫ Mπ

0

√
qλ(u, e)du.

More precisely, as the function qλ(u, e) satisfies qλ(iπ +u, e) = qλ(iπ −u, e) for i ∈ Z, e ∈
[0, 1) and u ∈ R; also,

q̇λ(u, e) = e
(
3e2 + (16λ − 2) e cos(u) − (16λ + 1)

)
sin(u)

2 (1 − e cos(u))3
< 0

for u ∈ (0, π), we have that
∣∣∣∣
1

4

∫ Mπ

0
sin(2ϕ(u, e))

q̇λ(u, e)

qλ(u, e)

∣∣∣∣ du ≤ 1

4

∫ Mπ

0

∣∣∣∣
q̇λ(u, e)

qλ(u, e)

∣∣∣∣ du = M

4

∫ π

0

∣∣∣∣
q̇λ(u, e)

qλ(u, e)

∣∣∣∣ du

= −M

4

∫ π

0

q̇λ(u, e)

qλ(u, e)
du = M

4
ln

(
(1 + e)(16λ + e)

(1 − e)(16λ − e)

)
,

hence

ϕ(Mπ, e) =
∫ Mπ

0

√
qλ(u, e)du − 1

4

∫ Mπ

0
sin(2ϕ(u, e))

q̇λ(u, e)

qλ(u, e)
du

= M
∫ π

0

√
qλ(u, e)du − 1

4

∫ Mπ

0
sin(2ϕ(u, e))

q̇λ(u, e)

qλ(u, e)
du

> M
∫ π

0

√
qλ(u, e)du − M

4
ln

(
(1 + e)(16λ + e)

(1 − e)(16λ − e)

)
,

(22)

123



6 Page 10 of 23 G. Beltritti

and note that if e = 0 the terms 1
4

∫ Mπ

0 sin(2ϕ(u, e)) q̇λ(u,e)
qλ(u,e)du and M

4 ln
(

(1+e)(16λ+e)
(1−e)(16λ−e)

)
are

equal to 0, and the last expression grows up very slowly as function of e. So the expression

M
∫ π

0

√
qλ(u, e)du − M

4
ln

(
(1 + e)(16λ + e)

(1 − e)(16λ − e)

)
(23)

could be a good approximation below of ϕ(Mπ, e). Taking into account this heuristic expla-
nation, the Theorem 1 and inequality (22); once we fix λ ≥ 1

8 , we will focus on finding those
values of M ∈ N, p ∈ {1, 2, . . . , νM,λ} and e ∈ [0, 1) such that the inequality

∫ π

0

√
qλ(u, e)du − 1

4
ln

(
(1 + e)(16λ + e)

(1 − e)(16λ − e)

)
>

p

M
π (24)

is true (note that this is a problem involving only elementary functions); indeed, if a global
family Cp1,M1,λ satisfies D2-condition at ē ∈ [0, 1), which implies that θ(M1π, ē) = −p1π ,
and the above inequality holds for M1, p1 and some e1 ∈ [0, 1), then, by Theorem 1 and
(22), e1 �= ē. Therefore, inequality (24) allow us to discard values of eccentricities at which
a global family Cp,M,λ could satisfy D2-condition. Note that if there exists M ∈ N and
p ∈ {1, 2 . . . , νM,λ} such that (24) is true for every e ∈ [0, 1) then Cp,M,λ satisfies D1-
condition.

Since νM,λ

M <
√
8λ and lim

M→∞
νM,λ

M = √
8λ , a particular inequality that we will also

analyze is
∫ π

0

√
qλ(u, e)du − 1

4
ln

(
(1 + e)(16λ + e)

(1 − e)(16λ − e)

)
>

√
8λπ, (25)

which implies (24) for all M ∈ N and p ∈ {1, 2, . . . , νM,λ}. So, if the above inequality holds
for some ē ∈ [0, 1) then there is not a global family Cp,M,λ satisfying D2-condition at ē.

Remark 3 A fundamental ingredient to demonstrate that Λ = N, if λ > 9
64 , in Theorem

3 in Rivera (2013), the Theorem 6.1 in Llibre and Ortega (2008) and item (i i) of Lemma
3.1 in Ortega and Rivera (2010), is lim

e→1− θ(Mπ, e) = −∞, which is, in Rivera (2013), a

consequence of Corollary 1 therein, and, in Llibre and Ortega (2008) and Ortega and Rivera
(2010), is obtained fromProposition 6.4 inLlibre andOrtega (2008). Let us see that estimation
(22) allow us to give another proof of lim

e→1− θ(Mπ, e) = −∞.

If λ > 1
8 and 0 < e < 1, then

∫ π

0

√
qλ(u, e)du >

∫ π

0

√
8λ − 1

1 − e cos(u)
du = √

8λ − 1
∫ 1

−1

1√
1 − ex

1√
1 − x2

dx

>

√
8λ − 1√

2

∫ 1

0

1√
1 − ex

1√
1 − x

dx

>

√
8λ − 1

2

∫ 1

0

1√
1 − ex

1√
1 − ex

dx

=
√
8λ − 1

2

∫ 1

0

1

1 − ex
dx

=
√
8λ − 1

2

1

e
ln

(
1

1 − e

)
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>

√
8λ − 1

2
ln

(
1

1 − e

)
.

Hence, if C̃ := 16λ−1
(16λ+1)2 , due to (22), we infer that

4

M
ϕ(Mπ, e)

> 4
∫ π

0

√
qλ(u, e)du − ln

(
(1 + e)(16λ + e)

(1 − e)(16λ − e)

)

>
√
64λ − 8 ln

(
1

1 − e

)
− ln

(
(16λ + 1)2

(1 − e)(16λ − 1)

)

= ln

(
C̃

(1 − e)
√
64λ−8−1

)
.

Thus, if λ > 9
64 then

√
64λ − 8 − 1 > 0, hence lim

e→1− ϕ(Mπ, e) = +∞. By Theorem 1, we

have that lim
e→1− θ(Mπ, e) = −∞.

Now we enunciate the second theorem of this work.

Theorem 2 Let λ ≥ 1
8 , M ∈ N and p ∈ {1, 2, . . . , νM,λ}. Consider Cp,M,λ as the global

family that emerges from the CGSP. Then,

i) if Cp,M,λ satisfies D2-condition at an eccentricity value ē, then ẽp,M,λ ≤ ē where ẽp,M,λ

is the minimum solution of equation
∫ π

0

√
qλ(u, e)du − 1

4
ln

(
(1 + e)(16λ + e)

(1 − e)(16λ − e)

)
= p

M
π (26)

in [0, 1). If additionally λ > 9
64 then ē ≤ êp,M,λ where êp,M,λ is the maximum solution

of (26) in [0, 1).
ii) if (26) has no solution in [0, 1) then Cp,M,λ satisfies D1-condition.

Proof Let λ ≥ 1
8 , M ∈ N and p ∈ {1, 2, . . . , νM,λ}. If Cp,M,λ satisfies D2-condition at an

eccentricity value ē, by Theorem 1 we have that ϕ(Mπ, ē) = pπ . Then, from (22) and the
fact that

∫ π

0

√
qλ(u, 0)du = √

8λπ >
p
M π , the equation (26) has a solution in [0, 1), and this

proves the existence of ẽp,M,λ. Since
∫ π

0

√
qλ(u, 0)du >

p
M π then inequality (24) holds for

every 0 ≤ e < ẽp,M,λ, which implies that ẽp,M,λ ≤ ē. If also λ > 9
64 by Remark 3, we have

that êp,M,λ exists and that inequality (24) is also true for êp,M,λ < e < 1. Then ē ≤ êp,M,λ.
If (26) has no solution, since

∫ π

0

√
qλ(u, 0)du >

p
M π , we have that (24) is true for every

e ∈ [0, 1), then Cp,M,λ satisfies D1-condition. 	


Note that, since
∫ π

0

√
qλ(u, 0)du >

p
M π for every p ∈ {1, 2, . . . , νM,λ}, the condition

(26) has no solution in [0, 1), is equivalent to the condition (24) is true for every e ∈ [0, 1).
Considering what we have mentioned in this section, the condition the inequality (24)

holds for every e ∈ [0, 1) is a mathematical criteria that allows us to assure, if this is true,
that a global family Cp,M,λ satisfies D1-condition. Being the case that (24) is not true for all
e ∈ [0, 1), the equality (26) allows us to give a lower bound, and if λ > 9

64 , we can give a
higher bound for a possible value of eccentricity ē at which the global family Cp,M,λ could
satisfy D2-condition.
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Fig. 1 Inequality check (25)

4 Numerical results

In this section, we show numerical results about the veracity of the inequality (25) and
∫ π

0

√
qλ(u, e)du − 1

4
ln

(
(1 + e)(16λ + e)

(1 − e)(16λ − e)

)
> δπ, (27)

for values of δ less than and close to
√
8λ. Note that (27) implies (24) for every M ∈ N and

p ∈ {1, 2, . . . , νM,λ} such that p
M < δ.

For values of λ = 1
8 + 7

8
j

250 , j = 1, 2, . . . , 250 and e = k
250 , for k = 1, 2, . . . , 249,

we check inequality (25) numerically. The results can be seen in Fig. 1, the colored points
correspond to pairs (λ, e) such that (25) is true. A fact to highlight is that for every λ ≥ 0.1635
there is an interval Jλ := [bλ, 0.996] such that the inequality (25) is true for (λ, e)with e ∈ Jλ.
(note that the minimum λ value for which the inequality (25) is true is greater than 9

64 ; this
happens because the maximum value of eccentricity that we consider is 0.996). When λ = 1
we have the classical Sitnikov problem and in this case b1 = 0.34. This fact, together with
Theorem 1, implies that the question posed at the end of Ortega and Rivera (2010) has an
affirmative answer for all e ∈ [0.34, 1).

An interesting fact can be seen when we analyze the veracity of (27) numerically, con-
sidering δ less than and close to

√
8λ. The results are in Fig. 2. In this case, we can see

that for δ <
√
8λ fixed, there exists xδ such that the inequality (27) is true for every pair

(λ, e) ∈ [xδ, 1] × [0, 0.996]; furthermore, xδ goes quickly to 0.1635 when δ decreases. This
suggests that D1-condition is satisfied by most global families Cp,M,λ. In the particular case
λ = 1 and δ = 0.994

√
8, the inequality (27) is true for all e ∈ [0, 0.996].

Remark 4 Note that numerical results about inequality (25) and (27), for λ = 1, suggest that
there is no possibility that a global family Cp,M,1 satisfies D2-condition at any e ≥ 0.34, or,
if p

M < 0.994
√
8 at any e ∈ [0, 1) (this suggests that 99.4 percent of Cp,M,1 families satisfy
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Fig. 2 Inequality check (27)

D1-condition). However, for ē ∈ [0, 0.34] there is still the possibility that a global family
Cp,M,1 exists, with

p
M ≥ 0.994

√
8, satisfying D2-condition at ē. In this case, the expression

(23) is not good enough to estimate ϕ(Mπ, e) and analyze such situation. A similar fact
happens for λ ≥ 1

8 .

5 Global families that emerge from the classical circular Sitnikov
problem

In this section, we explain analytically the numerical results obtained in Sect. 4 for the
classical Sitnikov problem (λ = 1). We remark that for such analysis we will need to use
computationally obtained results.

We highlight that at all times in this section λ = 1.

Lemma 4 The inequality (25) holds for every e ∈ [0.96, 1).
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Proof Let’s first observe that
∫ π

0

√
q1(u, e)du >

√
15

4
π +

√
14

2
ln

(
64

75(1 − e)

)
+ 2√

3
. (28)

In fact,
∫ π

0

√
q1(u, e)du

= 1

2

∫ 1

−1

√

1 + 28

1 − ex
+ 3(1 − e2)

(1 − ex)2
dx√
1 − x2

> T1 + T2 + T3

where

T1 = 1

2

∫ 0

−1

√

1 + 28

1 − ex

dx√
1 − x2

,

T2 = 1

2

∫ 2
3−e

0

√
28

1 − ex

dx√
1 − x2,

T3 = 1

2

∫ 1

2
3−e

√

1 + 28

1 − ex
+ 3(1 − e2)

(1 − ex)2
dx√
1 − x2

.

Now

T1 >
1

2

∫ 0

−1

√

1 + 28

2

dx√
1 − x2

=
√
15

4
π. (29)

On the other hand, if 0 < e < 1 then

T2 >
1

2

∫ 2
3−e

0

√
28

1 − ex

dx
√
1 − (ex)2

=
√
14

2

1

e
ln

⎛

⎜
⎝

(√
2 + √

1 + ex
)2

1 − ex

⎞

⎟
⎠

∣∣∣∣

2
3−e

0

=
√
14

2

1

e

⎛

⎝ln

⎛

⎝ 3 − e

3(1 − e)

(√
2 +

√
3 + e

3 − e

)2
⎞

⎠− ln
(
(
√
2 + 1)2

)
⎞

⎠

=
√
14

2

1

e

(
ln

(
1

3(1 − e)

(√
2(3 − e) + √

3 + e
)2)− ln

(
(
√
2 + 1)2

))
.

As the function
√
2(3 − e) + √

3 + e is decreasing in [0, 1] (since its derivative is equal to
1

2
√
e+3

− 1√
6−2e

which is negative for all e ∈ [0, 1]), we have that

T2 >

√
14

2
ln

(
16

3(1 − e)

(√
2 + 1

)−2
)

>

√
14

2
ln

(
16

3(1 − e)

(
5

2

)−2
)

=
√
14

2
ln

(
64

75(1 − e)

)
.

(30)
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Finally, let us define for e ∈ [0, 1) that

σ(x, e) := 1

2

√

1 + 28

1 − ex
+ 3(1 − e2)

(1 − ex)2
1√

1 − x2
.

Since, for every e ∈ [0, 1), σ(x, e) is an increasing function of x in [0, 1] then

(T3)
2 >

(
σ

(
2

3 − e
, e

)(
1 − 2

3 − e

))2
= e3 − 5e2 − 28e + 96

60 − 12e
,

and since the last term of the above chain of inequalities is decreasing in [0, 1] (because its
derivative is − e3−10e2+25e+22

6(e−5)2
which is negative in [0, 1]) then

T3 >
2√
3
. (31)

Then, inequality (28) follows from inequalities (29), (30) and (31). Now, we have that

4
∫ π

0

√
q1(u, e)du >

√
15π + √

56 ln

(
64

75(1 − e)

)
+ 8√

3
.

Then, a sufficient condition for (25) to hold is

√
15π + ln

((
64

75

)√
56

(16 − e)

(1 − e)
√
56−1(16 + e)(1 + e)

)

+ 8√
3

> 4
√
8π.

This inequality is true for e = 0.96 and as the function (16−e)

(1−e)
√
56−1(16+e)(1+e)

is increasing

(since its derivative
34e2−√

14
(
2e3+2e2−512e−512

)−544

(1−e)−1+2
√
14(1−e)(e+1)2(e+16)2

is positive for e ∈ [0, 1)) the above

inequality is true for all e ∈ [0.96, 1). 	

The previous result guarantees that for every M ∈ N and p ∈ {1, 2, . . . , νM,1} the global

family Cp,M,1 cannot satisfy D2-condition at an eccentricity value ē ≥ 0.96. So, from now
we will analyze the problem that concern us for e ∈ [0, 0.96].
Lemma 5 Let q1(u, e) be the function defined in (16). If e ∈ [0, 0.96] then

∫ π

0

√
q1(u, e)du >

√
8π P(e),

where

P(e) = g1(0) + g1(1)e
2 + g1(2)e

4 + g1(3)e
6

= 1 + 703

4096
e2 + 6375537

67108864
e4 + 18015614935

274877906944
e6.

Proof Using the code described in Remark 5, in the “Appendix”, we can check, without error,
that

∫ π

0 c1,2τ (u)du > 0 for 0 ≤ τ ≤ 35. Now, if we take e ∈ [0, 0.96], from Lemma 8 and
(34), we have that

∞∑

τ=0

∫ π

0
c1,2τ (u)due2τ
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= π P(e) +
35∑

τ=4

g1(τ )πe2τ +
∞∑

τ=36

∫ π

0
c1,2τ (u)due2τ

> π P(e) + π

18∑

τ=4

g1(τ )e2τ
e36−2τ

(96/100)36−2τ − π

4

∞∑

τ=36

e2τ

= π P(e) + πe36
18∑

τ=4

g1(τ )

(
100

96

)36−2τ

− πe72

4

∞∑

τ=0

e2τ

= π P(e) + πe36
(

18∑

τ=4

g1(τ )

(
100

96

)36−2τ

− 1

4

e36

1 − e2

)

> π P(e) + πe36
(

18∑

τ=4

g1(τ )

(
100

96

)36−2τ

− 1

4

( 96
100

)36

1 − ( 96
100

)2

)

.

The term
∑18

τ=4 g1(τ )
( 100
96

)36−2τ − 1
4

(
96
100

)36

1−
(

96
100

)2 can be computed with a software and we can

check without error that it is positive. The code for such calculus is

sum(gt(tau,1)*Rational(100,96)**(36-2*tau) for tau in range(4,19))-Rational(1,4)

*Rational(96,100)**36/(1-Rational(96,100)**2).

Hence, by Lemma 7, we have that
∫ π

0

√
q1(u, e)du >

√
8π P(e)

for all e ∈ [0, 0.96]. 	

Now, from the previous lemma, a sufficient condition for inequality (25) to be satisfied

for an eccentricity value e ∈ [0, 0.96] is
√
8π P(e) − 1

4
ln

(
(1 + e)(16 + e)

(1 − e)(16 − e)

)
>

√
8π.

If we define R(e) := √
8π P(e) − 1

4 ln
(

(1+e)(16+e)
(1−e)(16−e)

)
, we can see that Ṙ(e) = R1(e)

R2(e)
where

R2(e) is positive for all e ∈ [0, 1) and R1(e) is a polynomial with three changes of sign;
moreover, we can check that R1(0) < 0, R1(0.34) > 0, R1(1) < 0 and R1(16) > 0; then,
by Descartes’ rule, Ṙ(e) has exactly two zeros in [0, 1). Also, the first one, e1 ≈ 0.173307,
corresponds to a local minimum and the second, e2 ≈ 0.972036 corresponds to a local
maximum. Now, since R(0.34) >

√
8π then R(e) >

√
8π for all e ∈ [0.34, 0.96], and

taking into account Lemma 4, we have that (25) is true for every e ∈ [0.34, 1) (and therefore
(24) holds for every e ∈ [0.34, 1), M ∈ N and p ∈ {1, 2, . . . , νM,1}). Furthermore, e1 is an
absolute minimum of R(e) in [0, 0.34] and since

R(e1) > 0.9947
√
8π,

then inequality (24) is true for every e ∈ [0, 1), M ∈ N and p ∈ {1, 2, . . . , νM,1} such that
p
M < 0.9947

√
8.

Therefore, if we define ν̄M,1 := [0.9947√8M], we can enunciate the next result:

Theorem 3 Let M ∈ N and p ∈ {1, 2, . . . , νM,1}. Then
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Table 1 Values of ẼνM,1,M,1 and ÊνM,1,M,1

M ẼνM,1,M,1 ÊνM,1,M,1 M ẼνM,1,M,1 ÊνM,1,M,1

11 0.0779307994172 0.266165566346 28 0.0479647245568 0.294340570618

17 0.0318703774875 0.309281619806 29 0.00504589244926 0.3338914818999

22 0.0779307994172 0.266165566346 33 0.0779307994172 0.266165566346

23 0.0144361793582 0.3253177402009 34 0.0318703774875 0.309281619806

27 0.12544499902 0.220520002988 38 0.1080987980725 0.237324102312

i) if 1 ≤ p ≤ ν̄M,1 the global family Cp,M,1 satisfies D1-condition.
ii) if ν̄M,1 < p ≤ νM,1 and the global family Cp,M,1 satisfies D2-condition at an eccentricity

value ē, then ē ∈ (0, 0.34). Moreover, Ẽ p,M,1 < ẽp,M,1 ≤ êp,M,1 < Ê p,M,1, where
Ẽ p,M,1 and Ê p,M,1 are the only two roots of R(e) − p

M π in (0, 0.34).

The reason why we introduce the Ẽ p,M,1 and Ê p,M,1 values in this result is because we can
find them numerically and be sure that another root of R(e)− p

M π does not exist in (0, 0.34);
note that we cannot guarantee it will happen if we look for the solutions of (26).

Proof The item i) and the fact that ē ∈ (0, 0.34) in item ii) follow from the reasoning made
in the above paragraph. Now, if Cp,M,1 satisfies D2-condition at ē, then equality (26) has
a solution in (0, 0.34). Since e1 is the only value in (0, 0.34) such that Ṙ(e) is equal to
zero, R(0) − p

M π > 0, R(0.34) − p
M π > 0, and

∫ π

0

√
q1(u, e)du >

√
8π P(e) for every

e ∈ [0, 0.34], there are exactly two roots of R(e) − p
M π in (0, 0.34), Ẽ p,M,1 and Ê p,M,1,

such that Ẽ p,M,1 < ẽp,M,1 ≤ êp,M,1 < Ê p,M,1. 	

Now, we can see that ν̄M,1 = νM,1 for M = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13 and other

21 values of M less than 54. So, in these cases, every global family satisfiesD1-condition. In
addition, for M ≤ 80 we have that ν̄M,1 = νM,1 or ν̄M,1 = νM,1 − 1. Therefore, if M ≤ 80,
the only global family that could satisfy D2-condition is CνM,1,M,1. For some values of M

such that ν̄M,1 = νM,1 − 1, in Table 1 we show the values of ẼνM,1,M,1 and ÊνM,1,M,1.
Note that Theorem 3 improves Theorem 3.2 in Llibre and Ortega (2008), and we can

check that the values of ẼνM,1,M,1 are greater than the lower bound ρM exposed therein, but

in this case both ẼνM,1,M,1 and ÊνM,1,M,1 are given implicitly.

Corollary 1 Let M ∈ N and p ∈ {1, 2, . . . , ν̄M,1}. Then for all e ∈ [0, 1) there exists an even
2Mπ-periodic solution, which has p-zeros in [0, Mπ ], of the classical Sitnikov problem in
which the primaries orbit in ellipses of eccentricity e.

Conclusions. We study a generalized Sitnikov problem, in which the primary bodies are
performing a planar homographic motion and forming at all times an admissible central
configuration. This problem represents a generalization of the Sitnikov’s problems considered
in Llibre and Ortega (2008), Ortega and Rivera (2010), Rivera (2013), and the results in
these papers can be extended to this case closely following the ideas therein. The particular
question that is studied in this work is the problem of determining if a global family Cp,M,λ of
even periodic solutions which emerges from a CGSP continues for all values of eccentricities
e ∈ [0, 1) (D1-condition) or ends in the equilibriumat a value of eccentricity ē (D2-condition).
The principal contribution of this paper, which represents an advance on what is already
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6 Page 18 of 23 G. Beltritti

known in the literature, is some mathematical criteria to determine if a global family Cp,M,λ

satisfies D1-condition, or to give a lower bound and, if λ > 9
64 , to give an upper bound for

a possible value of eccentricity ē at which Cp,M,λ could satisfy D2-condition. Such criteria
allow us to find evidence that the vast majority of global families Cp,M,λ satisfyD1-condition.
For the classical Sitnikov problem (λ = 1), these families represent the 99.4 per cent of all
global families.

6 Appendix

In this section, we enunciate and demonstrate some technical lemmas, which deal with
Taylor series of

√
qλ(u, e) and

∫ π

0

√
qλ(u, e)du and are used to demonstrate other results of

the article.
Before enunciating the first lemma, it should be noted the definition of combinatory

number,

(
γ

n

)
:=

∏n
i=1(γ−i+1)

n! , where γ ∈ R and n ∈ N.

Lemma 6 Let qλ(u, e) be the function defined in (16). Then, for u ∈ (0, π), we have that

√
qλ(u, e) = √

8λ
∞∑

l=0

cλ,l(u)el ,

where

cλ,l(u) =∑
[
l
2

]

j=0

∑l−2 j
k=0

( 1
2 − j
k

)
bkλ(u) cosl−k−2 j (u)

( 1
2
j

)
a j
λ(u), (32)

with aλ(u) = cos2(u)−3
32λ , bλ(u) = − 32λ−2

32λ cos(u).

Proof Let us first observe that

√
qλ(u, e) = 1

2

√
32λ − (32λ − 2) cos(u)e + (cos2(u) − 3)e2

1 − e cos(u)

= √
8λ

√
1 + bλ(u)e + aλ(u)e2

1 − e cos(u)

where aλ(u) = cos2(u)−3
32λ and bλ(u) = − 32λ−2

32λ cos(u). As
√
1 + x = ∑∞

i=0

( 1
2
i

)
xi for all

−1 < x < 1, we have that

√
qλ(u, e) = √

8λ fλ(u, e)
∞∑

n=0

cosn(u)en,

where fλ(u, e) :=∑∞
n=0

( 1
2
n

)
en(bλ(u) + eaλ(u))n .

Since
√
1 + x is analytic in (−1, 1) and bλ(u)e + aλ(u)e2 is analytic, as a function of e

in R, we have that, for every u ∈ (0, π),
√
1 + bλ(u)e + aλ(u)e2 = fλ(u, e) is analytic, as

a function of e, in (−1, 1). Then, for e ∈ [0, 1)

fλ(u, e) =
∞∑

n=0

∂n fλ(u, 0)

∂en
en

n! .
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Let us calculate ∂n fλ(u,0)
∂en .

∂n fλ(u, 0)

∂en
=

n∑

m=
[
n+1
2

]

( 1
2
m

)
∂n

∂en
(em(bλ(u) + eaλ(u))m)

∣
∣
∣
e=0

=
n∑

m=
[
n+1
2

]

( 1
2
m

) n∑

i=0

(
n
i

)(
∂ i em

∂ei
∂n−i

∂en−i
(bλ(u) + eaλ(u))m

) ∣∣
∣
∣
e=0

=
n∑

m=
[
n+1
2

]

( 1
2
m

)(
n
m

)(
∂mem

∂em
∂n−m

∂en−m
(bλ(u) + eaλ(u))m

) ∣∣
∣
∣
e=0

=
n∑

m=
[
n+1
2

]

( 1
2
m

)(
n
m

)
(m!)2

(2m − n)!b
2m−n
λ (u)an−m

λ (u).

Now,

√
qλ(u, e) = √

8λ
∞∑

l=0

cλ,l(u)el ,

where

cλ,l(u) =
l∑

n=0

∂n fλ(u, 0)

∂en
cosl−n(u)

n! .

Considering j = n − m, and k = n − 2 j , we have that

cλ,l(u) =
l∑

n=0

n∑

m=
[
n+1
2

]

( 1
2
m

)(
n
m

)
(m!)2

(2m − n)!
b2m−n
λ (u)an−m

λ (u)

n! cosl−n(u)

=
l∑

n=0

n∑

m=
[
n+1
2

]

[
m∏

s=1

(
1

2
− s + 1

)]
b2m−n
λ (u)

(2m − n)!
an−m
λ (u)

(n − m)! cos
l−n(u)

=

[
l
2

]

∑

j=0

l∑

n=2 j

n− j∏

s=1

(
1

2
− s + 1

)
bn−2 j
λ (u)

(n − 2 j)! cos
l−n(u)

a j
λ(u)

j !

=

[
l
2

]

∑

j=0

l−2 j∑

k=0

k+ j∏

s= j+1

(
1

2
− s + 1

)
bkλ(u)

k! cosl−k−2 j (u)

j∏

i=1

(
1

2
− i + 1

)
a j
λ(u)

j !

=

[
l
2

]

∑

j=0

l−2 j∑

k=0

( 1
2 − j
k

)
bkλ(u) cosl−k−2 j (u)

( 1
2
j

)
a j
λ(u). (33)
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Lemma 7 Let qλ(u, e) be the function defined in (16). Then
∫ π

0

√
qλ(u, e)du = √

8λ
∞∑

τ=0

∫ π

0
cλ,2τ (u)due2τ .

Proof Note first that

( 1
2
k

)
(−1)k < 0 if k ≥ 1, and

( 1
2 − j
k

)
(−1)k > 0 if j ≥ 1 and k ≥ 0.

Since the function −1 <
aλ(u)

1+bλ(u)
< 0 for u ∈ (0, π), and

∑∞
k=0

(
γ

k

)
βk = (1 + β)γ for

γ ∈ R and |β| < 1, if u ∈ (0, π), we have that

|cλ,l (u)|

≤ 1 +
l∑

k=1

∣∣
∣
∣

( 1
2
k

)
bkλ(u)

∣∣
∣
∣
∣∣
∣cosl−k(u)

∣∣
∣+

[
l
2

]

∑

j=1

l−2 j∑

k=0

∣∣
∣
∣

( 1
2 − j
k

)
bkλ(u)

∣∣
∣
∣

∣∣
∣
∣cos

l−k−2 j (u)

( 1
2
j

)
a j
λ(u)

∣∣
∣
∣

≤ 1 −
∞∑

k=1

( 1
2
k

)
bkλ(u) −

∞∑

j=1

∞∑

k=0

( 1
2 − j
k

)
bkλ(u)

( 1
2
j

)
a j
λ(u)

= 2 −√1 + bλ(u)

∞∑

j=0

( 1
2
j

)(
aλ(u)

1 + bλ(u)

) j

≤ 2.

Thus, by the dominated convergence theorem we have that
∫ π

0

√
qλ(u, e)du = √

8λ
∞∑

l=0

∫ π

0
cλ,l(u)duel ,

for every 0 ≤ e < 1. Taking into account the expression of cλ,l(u), if l is an odd number
then

∫ π

0 cλ,l(u)du = 0. Therefore,

∫ π

0

√
qλ(u, e)du = √

8λ
∞∑

τ=0

∫ π

0
cλ,2τ (u)due2τ .

	

Remark 5 From (33) in Lemma 6, if we define hτ (u, ω) := cos2τ−2ω(u)(3− cos2(u))ω, we
have that

cλ,2τ (u) =
2τ∑

n=0

n∑

m=
[
n+1
2

]

( 1
2
m

)(
n
m

)
(m!)2

(2m − n)!
b2m−n
λ (u)an−m

λ (u)

n! cos2τ−n(u)

=
2τ∑

n=0

n∑

m=
[
n+1
2

]

[
m∏

s=1

(
1

2
− s + 1

)]
(−1)m

(n − m)!
1

(2m − n)!
(32λ − 2)2m−n

(32λ)m
hτ (u, n − m).

Now, taking into account that
∫ π

0 cosi (x)dx = i−1
i

∫ π

0 cosi−2(x)dx for i ≥ 2, if τ ≥ n−m ≥
0 then

∫ π

0
hτ (u, n − m)du

123



Periodic solutions of a generalized Sitnikov problem Page 21 of 23 6

=
n−m∑

i=0

(
n − m

i

)
3i (−1)n−m−i

∫ π

0
cos2(τ−i)(u)du

=
n−m∑

i=0

(
n − m

i

)
3i (−1)n−m−i

τ−i∏

j=1

2τ − 2i − 2 j + 1

2τ − 2i − 2 j + 2
π

=: ḡ(τ, n − m)π.

Hence,
∫ π

0
cλ,2τ (u)du

=
2τ∑

n=0

n∑

m=
[
n+1
2

]

[
m∏

s=1

(
1

2
− s + 1

)]
(−1)m

(n − m)!
1

(2m − n)!
(32λ − 2)2m−n

(32λ)m
ḡ(τ, n − m)π

= : gλ(τ )π. (34)

Note that
∫ π

0 cλ,2τ (u)du is always a product between a number gλ(τ ) and π , so we can
calculate with a symbolic computation software the expression of gλ(τ ) without error. Thus,
for example, we can verify that

∫ π

0
cλ,0(u)du = π

∫ π

0
cλ,2(u)du = 768λ2 − 64λ − 1

4096λ2
π

∫ π

0
cλ,4(u)du = 3

(
2293760λ4 − 163840λ3 − 4608λ2 − 128λ − 5

)

67108864λ4
π.

In general it seems to be that
∫ π

0 cλ,2τ (u)du > 0 for all λ ≥ 1
8 and τ ∈ N0.

The code used in the Python library “Sympy” with which we calculate
∫ π

0 cλ,2τ (u)du is
described below

def conv(m,n):

return factorial(m)/factorial(m-n)/factorial(n)

def intcos(s):

return prod(Rational(2*s-2*j+1,2*s-2*j+2) for j in range(1,s+1))

def bargt(t,s):

return sum((-1)**(s-i)*3**(i)*conv(s,i)*intcos(t-i) for i in

range(s+1))

def gt(tau,lam):

A=sum(sum((-1)**m*prod(Rational(1,2)-s+1

for s in range(1,m+1))*1/factorial(n-m)/factorial(2*m-n)

*(32*lam-2)**(2*m-n)/(32*lam)**m*bargt(tau,n-m) for m in

range(floor(Rational(n+1,2)),n+1)) for n in range(2*tau+1))

return A

The function gt(tau,lam) calculates gλ(τ ) with error zero.
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Lemma 8 Let c1,l(u) be the coefficient defined in (32). Then
∫ π

0
c1,2τ (u)du ≥ −π

4
.

for all τ ∈ N0.

Proof For u ∈ (0, π
2 ), we have that

c1,2τ (u)

=
2τ∑

k=0

( 1
2
k

)
bk1(u) cos2τ−k(u) +

τ∑

j=1

2τ−2 j∑

k=0

( 1
2 − j
k

)
bk1(u) cos2τ−k−2 j (u)

( 1
2
j

)
a j
1 (u)

= cos2τ (u)

2τ∑

k=0

( 1
2
k

)(
−15

16

)k
+

τ∑

j=1

2τ−2 j∑

k=0

( 1
2 − j
k

)
bk1(u) cos2τ−k−2 j (u)

( 1
2
j

)
a j
1 (u)

≥ cos2τ (u)

√

1 − 15

16
+

τ∑

j=1

⎡

⎣
2τ−2 j∑

k=0

( 1
2 − j
k

)
bk1(u)

⎤

⎦
( 1

2
j

)
a j
1 (u)

= (1 + b1(u))
1
2

∞∑

j=1

( 1
2
j

)(
a1(u)

1 + b1(u)

) j

= (1 + b1(u))
1
2

(

−1 +
√

1 + a1(u)

1 + b1(u)

)

= a1(u)

(1 + b1(u))
1
2

1

1 +
√
1 − −a1(u)

1+b1(u)

. (35)

Since the function a1(u)

(1+b1(u))
1
2
is negative and increasing in (0, π

2 ) (because its derivative is

equal to
(
45 cos2 (u)−64 cos (u)+45

)
sin (u)

16(16−15 cos (u))
3
2

, which is positive for all u ∈ (0, π
2 )), and the function

−a1(u)
1+b1(u)

is positive anddecreasing in (0, π
2 ) (since its derivative−

(
15 cos2 (u)−32 cos (u)+45

)
sin (u)

2(15 cos (u)−16)2

is negative for u ∈ (0, π
2 )), we have that the last expression in the chain of inequalities

mentioned above is increasing. Then, it reaches its minimum in
[
0, π

2

]
at u = 0. Hence

c1,2τ (u) ≥ c1,2τ (0) = − 1
4 for every u ∈ (0, π

2 ). Therefore

∫ π

0
c1,2τ (u)du = 2

∫ π
2

0
c1,2τ (u)du ≥ −π

4
.
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