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Abstract
Designing optimal spacecraft trajectories is a critical task for any mission design. In partic-
ular, mission designers seek to exploit from the combined effects of planetary gravity-assist
maneuvers and electric propulsions systems to reduce both the flight time and propellant con-
sumption. In order to obtain more realistic results, disturbances such as (1) gravitational force
of secondary bodies, (2) Solar radiation pressure, and (3) non-spherical gravity models have
to be considered. Mission designers are, thus, faced with the task of solving a constrained
optimal control problem where the complexities are compounded due to the nonlinearity of
the dynamical models as well as the existence of intermediate constraints (e.g., gravity-assist
constraints). This investigation presents a methodology to incorporate all of the enumerated
factors in planetary trajectory design using the indirect optimization method. In order to
demonstrate the utility of the method, an interplanetary trajectory from the Earth to Jupiter
is considered, while the spacecraft performs a gravity-assist maneuver with the Earth en
route to Jupiter. An appealing feature of the developed tool is the flexibility in adding or
removing any of the disturbances, which allows us to assess the impact of each item on the
final solution. The results are compared against two existing solutions in the literature and
demonstrate the utility of the method.
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1 Introduction

In designing interplanetary and deep-space missions, issues such as feasibility and cost effi-
ciency of a large number of mission scenarios have to be addressed. On the other hand, these
facets of any mission design problem are inherently coupled with the spacecraft’s trajectory
(Sarli and Kawakatsu 2017). Developments in electric propulsion technology and optimiza-
tion methods have led to a paradigm shift in mission design evident by missions such as
Deep Space-1 in 1998 (Rayman et al. 2000), Hayabusa in 2003 (Kawaguchi et al. 2005),
SMART-1 in 2003 (Kugelberg et al. 2004), and Dawn in 2007 (Rayman et al. 2006).

Electric propulsion systems (Racca 2003) produce a small amount of thrust and result
in challenging optimal control problems (OCPs) (Betts 1998), which are solved by indirect
(Conway 2011; Saghamanesh and Novinzadeh 2014; Taheri et al. 2016; Taheri and Junkins
2019), direct (Enright andConway 1992; Sentinella andCasalino 2009), and hybrid (Dellnitz
et al. 2009) optimization methods. The focus of this paper is on the indirect optimization
method, but we employ a hybrid solution strategy (not to be confusedwith the hybridmethod)
in order to solve the resulting OCPs. In addition to the use of electric propulsion systems,
an important step in designing deep-space trajectories is to leverage planetary gravity-assist
(GA) maneuvers in order to reduce the time of flight and fuel consumption (Yam et al.
2004; Longuski and Williams 1991). For instance, Galileo spacecraft (Lieske 1996) used an
Earth–Venus–Earth–Earth–Jupiter sequence, which consists of three GA maneuvers.

In reality, GA maneuvers are continuous events and high-fidelity tools such as Mystic
(Whiffen 2006) and Copernicus (Ocampo 2003) model such as continuous maneuvers. How-
ever, these high-fidelity trajectory optimization tools are usually used at later mission design
stages, whereas the majority of preliminary studies are performed using low- to medium-
fidelity optimization tools (Whiffen and Lam 2006). A rather comprehensive comparison
of the capabilities of various trajectory optimization tools is conducted in Polsgrove et al.
(2006).

In preliminary studies, it is a common practice to use impulsive planetary GA model
(as opposed to a continuous multi-body model) where each GA maneuver is modeled as
an instantaneous change (delta-v) to the heliocentric velocity vector. Indirect optimization
methods encounter difficulties when GA maneuvers are modeled, and numerical continu-
ation and homotopy methods have found widespread applications in order to alleviate the
difficulties when indirect methods are used (Bertrand and Epenoy 2002). Some solution
methods take alternative approaches, for instance, by finding the unknown co-states by par-
ticle swarm optimization (PSO) algorithms (Jiang et al. 2012), or by forming an auxiliary
unconstrained optimization problem (Hans and Renjith 1996), by adjoint variable solutions
(Martell and Lawton1995), or by smoothing the control input using a hyperbolic tangent
smoothing method (Taheri and Junkins 2018). The homotopy approach proposed by Jiang
et al. (2012) has presented a suite of practical techniques to alleviate some of the numerical
difficulties associated with solving OCP problems. These practical approaches have been
improved by Saghamanesh and Baoyin (2018a). In a recent work, Saghamanesh and Baoyin
(2018b) and Saghamanesh et al. (2019) demonstrated the utility of their method to solve
direct-type (i.e., no GA maneuver) fuel-optimal low-thrust trajectory optimization problems
using an ephemeris planetary model and taking into account accurate modeling of perturba-
tions.

Typical mission design process starts with simple models (i.e., 2-body gravity models).
Extensive trade studies are performed to determine the best launch dates, flight time, andmis-
sion options (i.e., gravity-assist sequence). A useful tool could be one in which the important

123



Interplanetary gravity-assist fuel-optimal trajectory optimization Page 3 of 21 16

perturbations are modeled in the dynamics and are incorporated within the indirect opti-
mization method, while the parameters of the mission (e.g., event times such as departure,
gravity-assist and final times) are fixed. Such a tool allows us to obtain more realistic solu-
tions. The current study investigates and demonstrates the utility of the method developed in
Saghamanesh and Baoyin (2018a) to more challenging problems, namely low-thrust trajec-
tory optimization with one GA opportunity.

We incorporate and investigate the impact of important disturbances on a fuel-optimal
low-thrust rendezvous-type trajectory optimization from the Earth to Jupiter with an Earth-
GA maneuver. The dynamic model includes perturbations due to: (1) gravitational force of
all planets in the Solar system, (2) Solar radiation pressure, and (3) non-spherical gravity
model of the Earth and all of the planets in the Solar system (i.e., perturbation due to second
zonal harmonic J2 of each planet). In addition, planetary ephemeris data (JPL’s Horizon
database) are used during the numerical integration of the dynamics. Herein, the above
model is referred to as the high-fidelity ephemeris model. For low-thrust trajectory design
tasks to a massive body such as Jupiter, incorporation of perturbations is known to lead to
significant improvements in fuel consumption and time of flight compared to a GA trajectory
in the two-body (2B) dynamic model (Saghamanesh and Baoyin 2018c). The errors caused
by the 2B model in the estimation of the variation of the impulsive planetary GA are studied
in Negri et al. (2017).

In addition to the complications arising from a GAmaneuver, inclusion of the enumerated
disturbances compounds the OCP since amulti-point boundary-value problem (MPBVP) has
to be solved. Therefore, we make use of the robust dual-step optimization strategy developed
in Saghamanesh and Baoyin (2018a). GA maneuvers increase the dimension of the design
variables. The high-dimensional design space is parameterized using a hyper-sphere in an
abstract angular space. Another contribution of the paper is that we present a new parameter-
ization and provide the complete set of mapping relations from the abstract high-dimensional
sphere to the physical design space.

The application of the proposed methodology is shown for two types of trajectories:
(1) without Earth GA and (2) with an Earth GA. Each case is further studied when the
2B and/or high-fidelity ephemeris model are used. The Earth–Earth–Jupiter (denoted as
E–E–J for brevity) represents a specially challenging case since the Earth is a dominant
source of gravitational perturbation during the early phase of trajectory. To further verify
the performance of the proposed algorithm, the results are compared against two sets of
solutions obtained in Yam et al. (2004) and Guo et al. (2011). The results are interesting
and of significant practical utility and demonstrate the capability of the robust dual-step
methodology to satisfy the prescribed constraints with remarkable accuracies as are shown
herein.

2 System description

There are several choices of coordinates and/or elements to formulate low-thrust trajectories
as is investigated in Batliss (1971); however, the derivations can be achieved in a more
straightforward manner compared to the other sets of coordinates/elements when Cartesian
coordinates are used for modeling the state dynamics and perturbations. In a high-fidelity
ephemeris model, it is important to consider perturbing accelerations due to: (1) other planets
of the Solar system, Fp (Vallado 2001), (2) oblateness effects of planets, F J2. (Li et al. 2018),
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and (3) Solar radiation pressure, Fs (McInnes 2013). Let r denote the position vector, these
perturbing accelerations can be modeled (Saghamanesh et al. 2019) as

Fp � − μpl
∥
∥r − rpl

∥
∥3

(

r − rpl
)− μpl

∥
∥rpl

∥
∥3

rpl,

F J2. � −μplr20 J2
2r5

(

3r + 6r sin ϕ
∂z

∂ r
− 15r sin2 ϕ

)

,

Fs � β
r

mr3
; β � σ ∗

σ
, (1)

where rpl andμpl denote the position vector and the gravitational parameter of a planet in the
Heliocentric Ecliptic Reference Frame (HERF), ∂z/∂ r � [0, 0, 1]T, ϕ denotes the planet-
centric latitude, σ � m/A denotes a constant flight loading, A is the unit area, σ ∗ � 1.53
(g m−2), and β denotes the Solar radiation pressure. For each planet, Fp and F J2. have to
be considered. The state dynamics, thus, become

ṙ � v, v̇ � − μ

r3
r +

Tmaxu

m
α +
∑

Fp +
∑

F J2. + Fs, ṁ � −Tmax
c

u, (2)

where v ∈ R
3 denotes the spacecraft velocity vector and m is the instantaneous spacecraft

mass. The summations are performed over the planets of the Solar system. The thrust vector
of the spacecraft is parameterized as T � uTmaxα, in which Tmax, u ∈ [0, 1], and α

denote maximum thrust magnitude, the engine throttle magnitude, and the thrust steering
unit vector, respectively. The effective exhaust velocity (a constant value) of the propulsion
system is c � Ispg0 whereμ, Isp and g0 denote the Sun’s gravitational parameter, the thruster
specific impulse, and the Earth’s sea-level gravitational acceleration.

A GA impulse model is adopted in which the spacecraft position vector, r , is equal to the
position vector of the planet, rpl, at the time of GA maneuver, tG. Thus, we have

{

t−G � t+G � tG

r
(

t−G
) � r

(

t+G
) � rpl(tG)

, (3)

where superscripts ‘−’ and ‘+’ denote the time instants immediately before and after the GA
maneuver. The spacecraft velocities can be written as

{

v(t−G ) � vpl(tG) + v−∞
v(t+G) � vpl(tG) + v+∞

;
∥
∥v−∞

∥
∥ � ∥∥v+∞

∥
∥ � v∞, (4)

where v±∞ and vpl(tG) denote GA hyperbolic excess velocity vectors (‘−’ for incoming and
‘+’ for outgoing) and the velocity vector of the planet at tG, and rp denotes the hyperbolic
periapsis radius associated with the GA orbit as

rp � μpl

v−∞v+∞

(
1

sin(δ/2)
− 1

)

, (5)

where δ denotes the GA turn angle and δmax is limited by rmin as the minimum acceptable
GA radius:

⎧

⎪⎪⎨

⎪⎪⎩

δ � arccos
(

v−∞.v+∞
v2∞

)

δmax � 2 arcsin

(

1

1+
rmin

μpl
v2∞

)

, δ ≤ δmax. (6)
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The GA frame is defined by three orthogonal unit vectors as follows:

î � v−∞
v∞

, k̂ � vpl(tG) × v−∞
∥
∥vpl(tG) × v−∞

∥
∥
, ĵ � k̂ × î, δ ∈ [0, δmax]. (7)

Ultimately, the net change in the velocity vector due to a GA maneuver can be derived as

�vG � v(t+G) − v(t−G ) � v∞(cos δ î + sin δ sin α ĵ + sin δ cosα k̂). (8)

where α and δ are used to parameterize the velocity vector in the GA frame.

3 Low-thrust trajectory optimization description

In this section, fundamental components of the problem are reviewed briefly. For fuel-optimal
trajectories, the performance index is written in two different Lagrange forms as

J �
tf∫

t0

Tmax
c

udt ⇒ Ja � λ0

tf∫

t0

Tmax
c

[u − εu(1 − u)]dt, (9)

where a quadratic term is introduced to J and the resulting expression is furthermultiplied by a
constant auxiliarymultiplier (λ0 ∈ (0, 1]) to form the auxiliary homotopy performance index,
Ja according to Jiang et al. (2012) andSaghamanesh andBaoyin (2018a). Thesemodifications
are introduced to achieve two specific goals: (1) to alleviate the difficulties associated with
bang–bang controls (by a homotopic method) that are attributes of fuel-optimal solutions,
and (2) to make use of the homogeneity of the set of resulting equations, which allows us
to bound the search space. In the auxiliary performance index, ε is a continuation parameter
where ε � 1 and ε � 0 correspond to the energy- and fuel-optimal problems, respectively.

The procedure for deriving parts of the optimality conditions is straightforward
(Saghamanesh and Baoyin 2018a), and only the final relations are presented. Let λ �
[

λ0,λ
T
r ,λ

T
v , λm

]T
denote the vector of co-states (note that λ0 is one of the unknown param-

eters, but it is constant in the homotopic process). Application of Pontryagin’s minimum
principle along with Lawden’s primer vector theory leads to the following extremal controls
(Saghamanesh and Baoyin 2018a)

α � − λv

‖λv‖ , u �

⎧

⎪⎪⎨

⎪⎪⎩

0 ρ > ε

1 ρ < −ε

1
2 − ρ

2ε |ρ| ≤ ε

, ρ � 1 − c‖λv‖
mλ0

− λm

λ0
, (10)

where ρ is the so-called switching function. Co-state dynamics λ̇ � −[∂H/∂x]T can be
derived by Euler–Lagrange conditions (Bryson 2018) as follows:

λ̇r � μ

r3
λv − 3μλv . r

r5
r −

∑
(

3μplλv .(r − rpl)
∥
∥r − rpl

∥
∥5

(r − rpl) − μplλv
∥
∥r − rpl

∥
∥3

)

− β

(
λv

mr3
− 3λv . r

r5
r
)

−
∑
[

15μplr20 J2
2

(
sin2 ϕ

r5
λv − 7 sin2 ϕ(λv . r)

r7
r +

2 sin ϕ(λv . r)
r6

∂z

∂ r

)

−μplr20 J2
2

(
3λv

r5
− 15(λv . r)

r7
r
)

− 3μplr
2
0 J2

(

λv .
∂z

∂ r

)(

−5 sin ϕ

r6
r +

1

r5
∂z

∂ r

)]

,

λ̇v � −λr ,
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λ̇m � −Tmaxu

m2
‖λv‖ − β

λv . r
m2r3

. (11)

3.1 Constraints

In this paper, a fuel-optimal rendezvous-type trajectory from the Earth to Jupiter with one
Earth-GA maneuver is considered. The initial time t0 and the final time tf are fixed. The
boundary conditions (subscripts ‘E’ and ‘J’ for Earth and Jupiter) are given by

ψ(t0) �

⎡

⎢
⎢
⎣

r(t0) − rE
v(t0) − vE

m(t0) − 1

⎤

⎥
⎥
⎦

� 0, ψ(tf ) �

⎡

⎢
⎢
⎣

r(tf ) − rJ
v(tf ) − vJ

λm(tf )

⎤

⎥
⎥
⎦

� 0, (12)

where λm(tf ) � 0 is due to transversality condition since the final mass is free, and that the
spacecraft mass is normalized such that m(t0) � 1. The position and velocity vectors of the
spacecraft r(tG) and v(tG) are equal to the GA planet’s position vector rpl, and the relations
given in Eq. (4) hold.

The GAmaneuver introduces four equality constraints and one inequality constraint writ-
ten as

ψ(tG) �
[

r(tG) − rpl(tG)∥
∥v−∞

∥
∥− ∥∥v+∞

∥
∥

]

�0, σG � 1 − rp
rmin

≤ 0. (13)

In addition, rigid conditions should be added because of the inequality constraint as

κ · σG � 0, κ ≥ 0. (14)

Two additional inner conditions have to be included if/when a GAmaneuver exists (Jiang
et al. 2012). The GA transversal conditions constitute the first set of inner conditions written
as
⎧

⎪⎪⎨

⎪⎪⎩

λr
(

t+G
) � λr

(

t−G
)− Z1∼3,

λv

(

t+G
) � Z4u+ + 1

rmin
κB,

λv

(

t−G
) � Z4u− − 1

rmin
κA,

;

⎧

⎪⎪⎨

⎪⎪⎩

A � rp
v−∞

[

1
4 sin2 δ

/

2(1−sin δ
/

2)

(

u+ − cos δu−)− u−
]

,

B � rp
v+∞

[

1
4 sin2 δ

/

2(1−sin δ
/

2)

(

u− − cos δu+
)− u+

]

,

.

(15)

where Z1∼4 is a 4-D multiplier and κ is a positive scalar multiplier and u± � v±∞/v∞. The
velocity vector of the spacecraft and its co-state vector are different at time instances t−G
and t+G. Hence, the Hamiltonian values would differ before and after the moment of GA.
Consequently, the GA stationarity condition constitutes a second inner condition, which
should be satisfied in an extremal solution and can be written as follows:

H
(

t−G
)− H

(

t+G
)− Z1∼3 · vpl(tG) + Z4

(

u+ − u−) · apl(tG) − 1

rmin
κC � 0, (16)

where apl(tG) is the acceleration of the GA planet at tG, and C are defined as

C � rp

{

− 1

4 sin2 δ
/

2
(

1 − sin δ
/

2
)

[
1

v+∞

(

u− − cos δu+
)

+
1

v−∞
(

u+ − cos δu−)
]}

.apl(tG),

(17)
apl(tG) � − μ

r3pl(tG)
rpl(tG), (18)

where α and δ are used to parameterize the velocity vector in the GA frame.
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4 Multiple-point boundary-value problem

The optimal control problem is transformed into a MPBVP, which includes: the final con-
straints, ψ(tf ), Eq. (12), the intermediate GA constraints, Eq. (13), the GA transversal
conditions, λv

(

t−G
)

, from Eq. (15), the GA stationarity condition, Eq. (16), and the rigid

conditions, Eq. (14). Let Γ (t0, ε) � [λ0,λT
r ,λT

v , λm, ZT
1∼4, κ

]T ∈ R
13 denote the vector of

unknown co-states and constant Lagrange multipliers, and let �(ε) � [

Γ ,�vT
]T ∈ R

16

denote the vector of total unknowns that characterizes a solution completely. A shooting
equation, Φ, given in Eq. (19) characterizes the problem. We mention that a normalization
technique used in Jiang et al. (2012) and Saghamanesh and Baoyin (2018a) can be employed
throughout the optimization algorithm (Saghamanesh and Baoyin 2018a), which maps the
designs variables to the surface of a hyper-sphere surface of dimension 13. As a consequence
of normalization, a scalar equality constraint Γ (t0, ε) − 1 � 0 should be introduced to the
shooting problem (last relation).

Φ(Θ) �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ(tf )

r(tG) − rpl(tG)

v−∞ − v+∞
λv

(

t−G
)− Z4u− + 1

rmin
κA

Eq. (15)

σG

‖Γ (t0, ε)‖ − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

� 0. (19)

It is also possible to remove the scalar equality constraint entirely by parameterizing the
elements of the 13-D hyper-sphere, Γ (t0, ε), throughout the algorithm as is demonstrated
herein,which improves the convergence. The high-dimensional design space is parameterized
using a high-dimensional sphere in an abstract angular space. Themapping relations from the
abstract high-dimensional sphere to the physical design space are given in this paper. These
mapping relations are especially effective when GA with a high-dimension design space is
parameterized.

We introduce a 15-D vector of search variables X(ε) � [x1, . . . , x15] (where xi ∈ [0, 1]
for i � 1, . . . , 15). These search variables are used to construct some intermediate angle
variables. Eventually, the angle variables form the 13 elements of the Γ vector such that the
‖Γ (t0, ε)‖−1 � 0 constraint is satisfied automatically during the optimization process. First,
the 12-D angle variables ϕ � [ϕ1, . . . , ϕ12]T are obtained from 12-D x1−12(ε) as follows:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ1,2,3�π
2 x1,2,3 ∈ [0, π

2

]

ϕ4,5�π (x4,5− 1
2 ) ∈ [−π

2 , π
2

]

ϕ6,7� 2πx6,7 ∈ [0, 2π ]

ϕ8�π (x8− 1
2 ) ∈ [−π

2 , π
2

]

;

⎧

⎪⎪⎨

⎪⎪⎩

ϕ9�π
2 x9 ∈ [0, π

2

]

ϕ10� 2πx10 ∈ [0, 2π]

ϕ11,12�π
2 x11,12 ∈ [0, π

2

]

. (20)

Then, here we have introduced the relations between the 8-D unknown co-states λ �
[

λ0,λ
T
r ,λ

T
v , λm

]T
and the 5-D GA numerical multipliers, [Z1∼4, κ] as follows:

λ0 � sin ϕ1,

λm(t0, ε) � cosϕ1 sin ϕ2 cosϕ12,

λr (t0, ε) � cosϕ1 cosϕ2 cosϕ3 cosϕ12[cosϕ4 cosϕ6 cosϕ4 sin ϕ6 sin ϕ4]
T,
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λv(t0, ε) � cosϕ1 cosϕ2 sin ϕ3 cosϕ12[cosϕ5 cosϕ7 cosϕ5 sin ϕ7 sin ϕ5]
T, (21)

Z1 � cosϕ1 sin ϕ8 sin ϕ12,

Z2∼4 � cosϕ1 cosϕ8 cosϕ9 sin ϕ12[cosϕ10 cosϕ11 cosϕ10 sin ϕ11 sin ϕ10]
T, (22)

κ � cosϕ1 cosϕ8 sin ϕ9 sin ϕ12, (23)

where λr , λv , and Z1∼4 are restricted within the domain [−1, 1] and λ0, λm , and κ are
restricted within the domain [0, 1] throughout the optimization algorithm. Note that this
parameterization is different from the one given in Jiang et al. (2012).

In addition, the 3-D GA velocity increment vector becomes [see Eq. (8)]

�vG � x15

√
μpl

rmin
[cos δ cosα, sin δ cosα, sin α]T, (24)

where

α � π(x13 − 0.5) ∈
[

−π

2
,
π

2

]

, δ � 2πx14 ∈ [0, 2π]. (25)

Altogether, there are 15-D search variables, X(ε), but they are related to the actual 16
unknowns of the original MPBVP, �(ε) ∈ R

16. An ideal scenario is to fix the initial time, t0,
the final time tf , and especially the GA time, tG. The reason behind fixing these three times
is that any change in the results can be solely attributed to a combination of performance of
the robust dual-step optimization algorithm and the use of a high-fidelity ephemeris model.
However, when all of these times instants are fixed, the resulting OCP is more challenging.
Note that whenGA time, tG, is fixed, theGA stationarity condition Eq. (16) has to be removed
from the shooting function since it does not hold.

5 Solutionmethodology

The first step of the optimization makes use of a PSO algorithm to perform a broad search,
whereas the second step improves upon the solution of the first step through a gradient-
based algorithm. A brief review of the involved steps of the dual-step optimization algorithm
(Saghamanesh and Baoyin 2018a) is presented:

• Energy-optimal step (ε � 1) that consists of two parts: (1) we employ a PSO algorithm
with the goal or objective of finding a minimum to a cost defined in Eq. (26), and (2)
optimization based on an indirect method (using MATLAB’s fsolve function) to solve the
shooting problem defined in Eq. (19) starting from the solution of the first part. PSO is
applied to determine an approximate energy-optimal solution.

I (X(1)) � ‖Φ(λ(t0, 1))‖2 + λ0

tf∫

t0

Tmax
c

[u − εu(1 − u)] dt, (26)

where X(ε) denotes the 15-D vector of search variables.
• Fuel-optimal solution is achieved through a homotopic method. A one-parameter family
of neighboring OCPs is constructed to guide the energy-optimal solution to a fuel-optimal
one. The optimal (denoted by superscript ‘*’) search-variables vector X∗(1) are iterated
as is outlined in Saghamanesh and Baoyin (2018a).
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The key point in the algorithm proposed by Saghamanesh and Baoyin (2018a), that
enhances convergence, is that the 15-D search-variables vector X(ε) and the 8-D unknown

co-states λ � [

λ0,λ
T
r ,λ

T
v , λm

]T
are efficiently restricted within domain [−1, 1], and the

switching function remains bounded in close proximity to the domain [−1, 1]. In fact, these
domains are mapped from an unbounded domain [−∞,∞] to the domain [−1, 1]. Conse-
quently, the optimal solution is rapidly designed to obtain the global robust convergence to
satisfy all constraints without any ambiguity. The fitting process of all iterations robustly
finds the unknown variables with the percent of converged solutions to maximum, and the
penalty terms are quickly satisfied with predetermined high accuracy, from the energy- to
fuel-optimal solutions, especially close to zero point as a critical point (Saghamanesh and
Baoyin 2018a). A fixed step-size fourth-order Runge–Kutta method is used as the integrator
throughout the computational process.

6 Numerical simulations

An interplanetary trajectory from the Earth to Jupiter is considered with an Earth-GAmaneu-
ver en route to the Jupiter, i.e., an E–E–J sequence. Two dynamic models are considered:
(1) a 2B dynamic model and (2) a high-fidelity ephemeris dynamic model that takes into
account all of the sources of perturbations modeled in Sect. 2. The particular mission we
have chosen has also been already solved in a 2B model by Yam et al. (2004) using program
GALLOP, and by Guo et al. (2011) using a homotopic method. We compare our results
against the reported solutions of these two papers. The optimization solution is significantly
challenging: (1) when Earth-GA scenario in full ephemeris model is implemented, (2) when
the flight time is long, and (3) when the high-energy transfer between Earth and Jupiter is
considered.

Similar to Yam et al. (2004), we assume that there exists a launcher with an upper stage
(rocket engine with a specific impulse of Isp,chemical � 404 (s)), which is capable of injecting
a spacecraft with an initial mass of 20,000 (kg) to a parabolic escape trajectory, i.e., v∞ � 0.
For v∞ > 0, the launcher injects less mass on the escape hyperbola. At the launch time,
the magnitude of the hyperbolic excess velocity is a design variable and influences both
the trajectory and the final mass considerably as is shown herein. The spacecraft launch
hyperbolic excess velocity vector v∞i is calculated as follows:

v∞i � v∞i u∞; u∞ � ± vE(t0)

‖vE(t0)‖ , (27)

where vE is the Earth velocity vector and the positive direction is used for an E–E–J scenario.
Furthermore, Tsiolkovsky rocket equation can be used to determine the initial spacecraft
mass immediately after performing the impulsive maneuver as

m0(v∞i ) � m0 exp

(

− �vi

vex,chemical

)

, �vi � vLEO

⎛

⎝

√

2 +

(
v∞i

vLEO

)2

− 1

⎞

⎠, (28)

where m0 � 20, 000 (kg) denotes the initial spacecraft mass, when v∞i � 0, and
vex,chemical � Isp,chemicalg0 denotes the effective exhaust velocity of the rocket engine.
Besides, �vi denotes the launch hyperbolic velocity required to inject the spacecraft into
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Fig. 1 Variation of initial mass
versus different values of launch
hyperbolic excess velocity
magnitude

Launch V , (km/s)
0 2 4 6 8 10

In
je

ct
ed

 M
as

s,
 (k

g)

104

0

0.5

1

1.5

2

Heavy lifter capability

the hyperbolic interplanetary trajectory where vLEO is the low-Earth orbit circular velocity.
Therefore, the initial and final conditions, Eqs. (12), have to be updated as follows:

ψ i �
⎡

⎣

r i (t0) − rE
vi (t0) − vE − v∞i u∞
mi (t0) − m0(v∞i )

⎤

⎦ � 0, ψ f �
⎡

⎣

r i (tf ) − rJ(tf )
vi (tf ) − vJ(tf )
λmi (tf )

⎤

⎦ � 0. (29)

Due to Eq. (28) and the upper stage parameters of the heavy lifter with chemical propulsion
system, Fig. 1 depicts the variation of the injected spacecraft mass versus different values of
the launch hyperbolic excess velocity, v∞i ∈ [0, 10] (km/s). The parameters of the problem
that are used for numerical simulations are listed in Table 1. These parameters are chosen
according to Yam et al. (2004) and Guo et al. (2011). The state vectors of the planets, the
gravitational constant (μ), and the radius of the sphere of influence (SOI) of the planets, the
Sun, and the Moon are extracted from JPL/HORIZON.1

Table 2 provides a summary of the fuel-optimal solutions for seven different discrete values
of launch hyperbolic excess velocity, v∞i (km/s), for both the 2B and high-fidelity ephemeris
models. The minimum launch hyperbolic excess velocity required for the considered mission
is 0.2 and 0.71 (km/s) for the 2B and high-fidelity ephemeris models, respectively. Further-
more, the optimal spacecraft final mass in the 2B model is 16,194.92 (kg) and corresponds
to v∞i � 0.71 (km/s), whereas for a v∞i � 1.0 (km/s), the optimal spacecraft final mass
value is 15,816.01 (kg) in the high-fidelity model. The minimum propellant consumption
of the spacecraft trajectory in the 2B and high-fidelity ephemeris models is 3,172.9 and
3,439.76, respectively. The 2B and high-fidelity ephemeris fuel-optimal GAmaneuvers have
turn angles, δ � 62.45◦ and δ � 61.88◦, respectively. Furthermore, Table 2 illustrates that
all fuel-optimal trajectory solutions in both the 2B and high-fidelity ephemeris models with
different v∞i have happened at rp � rmin since the turn angle δ has approached its max-
imum turn angle, δmax. To demonstrate the accuracy of the method, sum of the residuals
of the shooting function associated with the resulting MPBVP, σΦ , is shown in Table 2.
Such small errors correspond to remarkable accuracies in satisfying position and velocity
level constraints. Accordingly, for example, final errors for the fuel-optimal solution in the
high-fidelity ephemeris model are �rf � 9.329 × 10−5 (km) and �vf � 1.545 × 10−13

(km/s).

1 https://ssd.jpl.nasa.gov/horizons.cgi [Retrieved on: Dec. 21, 2018].
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Table 1 Parameters and boundary values for E–E–J mission

Parameter Value

Initial time, t0 (TDB; JD) 2015-Sep-29; 2457294.5

Time of flight (Day) 1650

GA time, tG (TDB; JD) 2016-Dec-13; 2457735.5

Final time, tf (TDB; JD) 2020-Apr-05; 2458944.5

rE(t0) (km) [1.492379863972002E+08, 1.390507388385712E+07,
− 1.091628710047342E+03]

vE(t0) (km/s) [− 3.244857796752582E+00,
2.953631760164528E+01,
1.457142753285012E−04]

rJ(tf ) (km) [1.831524367474829E+08, −
7.549252259309978E+08, 9.622131755180359E+05]

vJ(tf ) (km/s) [1.255182726793268E+01, 3.701492760087362E+00,
− 2.962213103240350E−01]

m0 (kg) 20,000 (v∞ � 0)

Isp (s) 6,000

Tmax (N) 2.26

Table 3 summarizes the GA fuel-optimal co-states and numerical results for both dynamic
models tomake the results reproducible. The 8-D fuel-optimal (ε � 0) unknown co-states are
presented for 2B and full ephemeris models. The GA point numerical results are illustrated
including the GA hyperbolic excess velocity vectors v±∞, the GA velocity increment �vG,
and the 5-D GA numerical multipliers [Z1∼4κ]. The 6-D unknown co-states, λ(t, ε) �
[λr ;λv], and the 4-D GA numerical multipliers [Z1∼4] are restricted in domain [−1, 1];
and the homotopy multiplier, γ0, the mass co-state, λm , and the numerical multiplier, κ , are
restricted in domain [0, 1], respectively, throughout the continuation procedure.

Figure 2 depicts the time history of the magnitudes of the planetary gravity perturbations
along the high-fidelity GA trajectory with v∞i � 1 (km/s). The blue and red color lines
correspond to segments before and after the Earth-GA maneuver, respectively. Prior to the
Earth-GAmoment, the main sources of perturbations are due to the Earth’s gravity potentials
and Earth’s moon. During the Earth-GA maneuver, Earth and moon become the main source
of perturbations. The influence of the gravity potential of Jupiter grows over time and gets
large as the spacecraft enters the Jupiter’s SOI. Figure 3 shows the Solar radiation pressure
perturbations for both constant and instantaneous spacecraft mass before and after the Earth-
GA maneuver. With respect to the physical quantity contained in Eq. (1), the Solar radiation
pressure perturbation in the case of the constant spacecraft mass is always smaller than the
instantaneous spacecraft mass.

Figure 4 shows the time history of the magnitude of the perturbing acceleration due
to second zonal harmonic, J2, for both Earth and Jupiter before and after the Earth-GA
maneuver. As expected, the influence of the non-spherical perturbation appears solely in the
Earth and Jupiter’s SOI, especially when the spacecraft is in vicinity of the Earth and Jupiter.
Obviously, some of the perturbations are small and ignorable, but the developed tool gives
us an important flexibility since we can remove or add any of the considered perturbations
and further investigate the contribution and impact of any of the modeled disturbances on
the final result. What makes this tool appealing is that high-resolution, accurate solutions are
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Table 3 GA fuel-optimal (ε � 0) co-states and numerical results for both dynamic models

Model Parameter Value

2B λ∗(t0, ε � 0) � [λ0;λr ;λv ; λm ] [0.738847671546093; −
0.198312898340045, −
0.056701384955407,
0.001841432347858;
0.002410676434749, −
0.072614809101210,
6.662456942172081E−06;
0.173433077894903]

GA v−∞ vector (AU/year) [0.128800880366841,
1.565465527913766,
0.001643349072466]

GA v+∞ vector (AU/year) [− 1.328384352538554,
0.838168072693657,
0.011999179703736]

GA velocity increment, �vG (AU/year) [− 1.457185232905395, −
0.727297455220110,
0.010355830631270]

GA numerical multipliers, [Z1∼4, κ] [0.286031574437662,
0.220376259680493, −
0.012954837350316, −
0.062637707919544,
0.026416672729789]

High-fidelity λ∗(t0, ε � 0) � [λ0;λr ;λv ; λm ] [0.700043269094924; −
0.245178247714832, −
0.203562963688364,
0.002052600721053; −
0.001346275195062, −
0.080572033575802, −
1.691864425568939E−05;
0.191679134567181]

GA v−∞ vector (AU/year) [0.135548692242488,
1.578495045302698,
0.002091919541258]

GA v+∞ vector (AU/year) [− 1.328203578395685,
0.863517207498826,
0.015418133203754]

GA velocity increment, �vG (AU/year) [− 1.463752270638174, −
0.714977837803873,
0.013326213662496]

GA numerical multipliers, [Z1∼4, κ] [0.255543646559886,
0.227307732392116, −
0.014145480478796, −
0.056896286836334,
0.024276549639133]
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Fig. 2 Magnitude of planetary gravity perturbations versus time

achievable since we have used the indirect optimization method for formulating and solving
the resulting OCPs.

Figure 5 depicts time histories of the optimal thrust magnitude profile and the correspond-
ing switching functions for both of the dynamic models. The SF profiles in Fig. 5 remain
bounded in close proximity to the domain [−1, 1], and it shows that there are six thrust
switches in the 2B and high-fidelity models. Another point worthy of mentioning is that as
expected, the switching function has a discontinuity in both models.

Figure 6 shows the fuel-optimal co-state vectors λ∗(t, ε � 0) � [λr ,λv] in both the
2B and full ephemeris models. In addition, the fuel-optimal co-states are restricted within
domain [−1, 1] throughout the iterations, which is an advantage of the method developed in
Saghamanesh and Baoyin (2018a) and used in the current paper. On the contrary, without
using normalization, unknown co-states should, frequently, be searched over a large domain
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Fig. 3 Solar radiation pressure
perturbation for variable and
constant spacecraft mass
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[− 100000, 100000], which makes the process of continuing from energy- to fuel-optimal
solution significantly challenging. The corresponding auxiliary multiplier, λ0, for the 2B and
full ephemeris models is 0.933882435 and 0.991005017, respectively.

Table 4 provides a summary of the results of this study against those reported in the
literature. The optimal launch hyperbolic excess velocity, v∞i , and the GA hyperbolic excess
velocity, v±∞, are different compared with the values of the existing solutions in the 2Bmodel
with an Earth-GA trajectory in the 2B model. First, we compare the optimal direct transfer
trajectories (the last two columns). In order to compare our solution with that of Yam et al.
(2004), we used a 2B model by turning off the perturbations in our model. Our method has
found a solutionwith v∞i � 0.6 (km/s) that puts a larger initial mass on the escape hyperbola.
Even though the propellant consumption is greater than the solution in Yam et al. (2004),
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Fig. 6 Time histories of
fuel-optimal co-state vectors for
both dynamic models
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the final delivered mass has been improved by 191.8 kg (a 1.4% improvement, which is not
huge). Obviously, this improvement is solely due the hyperbolic excess velocity and the fact
that an indirect optimization method is used, which results in a high-resolution solution. The
time of transfer is not optimized, but such direct trajectories are longer compared to a solution
with a GA maneuver with the Earth.

For a GA trajectory, we look at the solutions when a 2B model is used (columns 4–6).
For the same value of v∞i � 0.71 (km/s), our method results in the best solution although
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Fig. 7 E–E–J GA transfer, fuel-optimal low-thrust trajectories for both dynamic models; and E–J 2B fuel-
optimal direct transfer

the margin of improvement is nearly negligible. As is well known and evident in the results,
the value of final mass is significantly improved compared to a direct trajectory and also
the time of flight is reduced by almost 1 year. We proceed by considering the difference
between the results when a high-fidelity ephemeris model is used with the same v∞i � 0.71
(km/s) (columns 3 and 4). The difference in the fuel consumption between the high-fidelity
and 2B models is equal to 418.2 (kg). The 2B model results in a trajectory that may appear
to consume close to half a ton less propellant than an optimized solution in a high-fidelity
ephemeris model. Obviously, the 2B model over-predicts the performance and may lead to
erroneous mission design conclusions. Finally, the best solution using a high-fidelity model
corresponds to v∞i � 1 (km/s). The optimal Earth v∞ increases from 0.71 to 7.4461 km/s
and from 1 to 7.5104 km/s during the E–E transfer in 441 days for the 2B and high-fidelity
ephemeris models, respectively.

Figure 7 plots the fuel-optimal direct andGA trajectories using the high-fidelity ephemeris
and 2B models. Solid line and dash-dot line styles denote the portion of trajectories before
and after the Earth-GA event, respectively. A distinct difference between the trajectories is
the direct transfer to the Jupiter using the 2B model, which takes a longer time of flight
of 2020 days. The challenging part of the problem is that the Earth’s gravity is constantly
affecting the trajectory during the first 441 days and becomes dominant at the time of GA. In
addition, the last 417 days of flight occurswithin Jupiter’s SOI,which influences the trajectory
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significantly. Nevertheless, the proposed methodology shows robustness while taking all of
the considered perturbations into account.

7 Concluding remarks

In this study, contribution of three sources of perturbations is studied on designing a fuel-
optimal low-thrust gravity-assist trajectory from the Earth to Jupiter with a gravity-assist
maneuver with the Earth. These disturbances constitute a high-fidelity ephemeris dynamic
model, which consists of (1) gravitational perturbations due to all planets in the Solar system,
(2) disturbance due to Solar radiation pressure, and (3) non-spherical perturbations of all of
the planets (i.e., perturbation due to second zonal harmonic J2). A two-step robust homotopic
method is used to solve the resulting multi-point boundary-value problem with remarkable
accuracies in satisfying the constraints.

A fixed-time rendezvous trajectory (i.e., launch, gravity-assist, and capture times are
fixed) is considered so that any changes in the results can be attributed solely to the use of the
high-fidelity ephemeris model and the application of the robust two-step hybrid optimization
method. In addition to the gravity-assist trajectory, a fixed-time direct trajectory from the
Earth to Jupiter is also studied. A comprehensive comparison of the results using two-body
and high-fidelity ephemeris models are conducted for different values of escape hyperbolic
excess velocities. For the same initial mass of 19820 kg, the results indicate that for the same
value of hyperbolic excess velocity (0.7 km/s), an optimized solution obtained using a high-
fidelity ephemerismodelmay consume asmuch as half a tonmore propellant than a trajectory
obtained using a two-body model! This difference is considerable and shows the necessity to
have a tool that allows us to obtain more realistic results. While not a new finding, the results
indicate that it is possible to improve the final mass by a different hyperbolic excess velocity
value.
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