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Abstract
We study the reduction and regularization processes of perturbed Keplerian systems from
an astronomical point of view. Our approach connects axially symmetric perturbed 4-DOF
oscillators with Keplerian systems, including the case of rectilinear solutions. This is done
through a preliminary reduction recently studied by the authors. Then, the reduction program
continues by removing the Keplerian energy. For each value of the semi-major axis, we
explain the astronomical meaning of the sextuples defining the orbit space S

2 × S
2 and

its connection with the orbital elements. More precisely, we present alternative sextuple
coordinates for the set of boundedKeplerian orbits that ‘separate’ the node of the orbital plane
from the argument of perigee giving the Laplace vector in that plane. Still, the reduction of
the axial symmetry defined by the third component of the angular momentum is performed.
For the thrice reduced space Γ0,L,H we propose the Cushman–Deprit coordinates, a variant
to the set given by Cushman. The main feature of these variables is that they are all with the
same dimensions, which is convenient for the normalization procedure. As an application of
the proposed scheme, we study the spatial lunar problem.

Keywords Harmonic oscillator · Kepler system · Orbital elements · Geometric reduction

1 Introduction

As it is well known, the study of perturbed Keplerian systems entered into a new paradigm
during the second half of last century, built on the joint efforts coming from the numerical,
analytical and geometric realms. Indeed, on the one hand theKS transformationmade possible
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to cope with new possibilities for computing opening in those years. This transformation was
key to treat numerically these nonintegrable systems as perturbed harmonic oscillators, which
brought accuracy and stability when dealing with both short and long period space missions,
as well as very long-term dynamics in celestial mechanics. The reader will find in the recent
publication of Roa (2017) a full account of it. On the other hand, the secular perturbation
theories (averaging) also received a newunderstanding as Lie series based on thework ofHori
(1966) and Deprit (1969), now under the name of normalization. Finally, the development
of the geometric program set up by Smale in the seventies dealing with dynamical systems,
it was carried out by Cushman (1992) for perturbed Keplerian systems along the eighties.
It was required to apply the results of regular and singular reductions obtained along those
years, allowing to simplify the systems reaching the core of them, in order to classify the
different types of solutions and their evolution as functions of integrals and parameters. The
reader may go from the germinal papers (Meyer 1973; Marsden and Weinstein 1974) to the
more recent overview of Marsden et al. (2007) for an explanation of that effort.

In the frame set up in the previous paragraph, an ingredient has to be added. Since the
advent of symbolic algebraic manipulators, this tool has been an essential piece in order to
carry out the steps required to produce higher order normalization theories, coping with the
improvement in precision of observation data, in particular with perturbed satellite dynamics
where closed form expressions were the goal, in order the dispose of a set of formulas ready
for dealing with high eccentric orbits.

We really think there is still room to contribute filling the gap, which still exists, between
the very active field of astrodynamics literature and the new path followed bymodern celestial
mechanics we have just referred to. We believe that this paper is a step in that direction. More
precisely, the aimof this paper is twofold. First,wepresent in symplectic variables, i.e., putting
it in astrodynamics context, our recent works (Ferrer and Crespo 2018; Crespo and Ferrer
2020) on a new interpretation of KS transformation dealing with perturbed Kepler systems as
reduced symmetric 4D oscillators. It represents an alternative to Moser regularization which
involves constrained normalization. The main contribution of this work is the proposal of
Cushman–Deprit coordinates, a variant to Cushman coordinates, which helps to illustrate
what is essential in Cushman variables and, at the same time, it invites the readers to search
for other choices if necessary in their work. What is the interest of this proposal?

Deprit, Henrard, Coffey, and other collaborators, leading the application of symbolic
manipulators to celestial mechanics, found very convenient to have at hand ways of check-
ing intermediary heavy expressions with several variables and parameters, appearing in the
computations of Lie brackets, needed to get averaged higher order theories in explicit form.
One effective way to keep control of those computations was to check dimensions at dif-
ferent steps of the computations, simplifications, etc. That was the reason why Deprit and
his team, instead of Cushman variables, they preferred to work with Coffey–Deprit–Miller
(CDM) variables (Coffey et al. 1986), which are all of the same physical dimensions and
why, today, they continue to be in use when no rectilinear solutions are involved. While of
interest in astronomy and astrodynamics quarters, what we have just said in the above lines
may be of no real concern for geometers. Moreover, some readers may see all this just as
history. Here, we will like to add only two short comments. The first is that Cushman stated,
without much emphasis, that his variables were just one possibility. The second comment
is that Cushman–Deprit variables we propose as an alternative, which illustrate Cushman
claim, have also the characteristic to be a third choice ‘tuning’ Cushman and CDM sets of
variables; although we recognized this is a matter of opinion. In fact, the main reason for our
proposal, apart from the practical issue of keeping dimensions, is that one of the variables is
just G2, the square norm of the angular momentum vector.
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Section 2 summarizes the approach given in Ferrer and Crespo (2018), Crespo and Ferrer
(2020) to the reduction and regularization process of Keplerian system, which is the one
we follow throughout this paper. In Sect. 3, we deal with the reduced spaces obtained by
removing the Keplerian energy. In Sect. 4, we deal with the singular reduction in the node.
We introduce a new set of variables for the full reduced space, which are an alternative to
the variables proposed by Cushman (1983, 1992). Section 5 answers the question of what
families of Kepler orbits do we have associated with each point of the (KS-energy-reduced)-
reduced space. Finally, in Sect. 6, we consider the Hill’s spatial lunar problem as a benchmark
to develop the alternative plan proposed. The purpose of this application is not to find new
dynamical features of the model but to illustrate the setting we are proposing.

2 A Précis on the KS-reduction and Kepler regularization

Regarding to Keplerian systems, the reduction in the energy is only possible after regular-
ization due to the incompleteness of the Keplerian flow. In the literature, there are mainly
two different ways in which this process can be done. Namely, Moser regularization (Moser
1970) and KS-regularization (Kustaanheimo 1964; Kustaanheimo and Stiefel 1965), which
is the chosen one in this paper. However, in Ferrer and Crespo (2018) the KS-regularization
is revisited from a geometrical point of view. It provides a very different explanation of the
whole process, which reveal the true role of the KS-map and the bilinear relation associated
and provides a geometric insight of all these elements. Along this paper, we follow this
new approach finding the Kepler system after reducing an S1-symmetry of the 4D isotropic
oscillator.

As a result of work done along the last two decades, we have end up proposing alterna-
tives to the program followed by Cushman, based on the use of Moser transformation and
constraint normalization (van der Meer and Cushman 1986). Indeed, after several trials (van
der Meer 2015; Egea et al. 2007; Díaz et al. 2010; Crespo et al. 2016) with partial progress,
we have recently succeeded in presenting a reduction process by stages starting from the
reparametrized 4D isotropic oscillator (Crespo and Ferrer 2020), i.e., showing that the KS
frame, of great value for numerical purposes as we have pointed out above, it serves also to
deal with reductions making more expedited the whole process, because we do not need to
make use of constrained normalization required in Cushman approach. Here, we keep that
part to the minimum providing an explanation of that process at each step making use of
orbital elements, absent in geometric mechanics literature.

2.1 KS-reduction

We describe the KSmap as the orbit map associated with a symplectic diagonal action given
by

χ : S1 × T ∗
R
4
0 −→ T ∗

R
4
0 χ(α,q,p) = (Rαq,Rαp), (1)

being Rα the rotation given by the following matrix

Rα =

⎡
⎢⎢⎣
cosα 0 0 − sin α
0 cosα − sin α 0
0 sin α cosα 0

sin α 0 0 cosα

⎤
⎥⎥⎦ . (2)
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Moreover, the momentum map related to the named symmetry is the quadratic polynomial
defining the bilinear relation

Ξ0 : T ∗
R
4
0 −→ R (q,p) → Ξ0(q,p) = q1 p4 − p1q4 + q2 p3 − p2q3. (3)

It plays a key role in the regularization process since the Kepler system is obtained as the
reduced oscillator only for the momentum value Ξ0 = 0, which correspond to the classic
bilinear relation. In what follows, we refer to the above symmetry of the 4D oscillator as
the KS-symmetry. The KS-reduced space is a 6D manifold described with 16 invariants (see
Crespo and Ferrer 2020). However, a suitable combination of these invariants allows to reduce
the number of variables describing the KS-reduced space. Precisely, these combinations of
invariants coincide with the components of the classical KS-map, which following Saha
(2009) and using the identification of quaternionsH0 ≡ R

4
0, is expressed with a very compact

expression.

K S : T ∗
H0 −→ T ∗

H0 (q,p) → (x̃, ỹ),

x̃ = q∗ k q, ỹ = q∗ k p
2q∗ q

,
(4)

where k is the quaternion (0, 0, 0, 1), q∗ denotes de conjugate of q and the operation relating
them is the usual quaternionic multiplication. In what follows, we consider x = Im(x̃) =
(x1, x2, x3) and y = Im(ỹ) = (y1, y2, y3). In Crespo and Ferrer (2020), we showed that
Z = (x, y) is endowed with the following non-degenerate Poisson structure

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0
ξ x3
2|x|3

−ξ x2
2|x|3

0 −1 0
−ξ x3
2|x|3 0

ξ x1
2|x|3

0 0 −1
ξ x2
2|x|3

−ξ x1
2|x|3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where Ξ0 = ξ is the fixed value of the momentum map. Moreover, (x, y) defines a chart
for the KS-reduced space, which for the particular value of the momentum map Ξ0 = 0
coincides with T ∗

R
3
0 endowed with the standard symplectic form.

2.2 Kepler regularization

Our methodology applies for perturbed Keplerian systems. That is to say, we consider the
following family of Hamiltonians made of the Kepler system plus a small perturbation

K̃κ (x, y) = |y|2
2

− κ

|x| + ε P(x, y), (6)

in T ∗
R
3
0, where R

3
0 = R

3 − {0} and κ is the (positive) mass-gravitational constant. In Ferrer
and Crespo (2018); Crespo and Ferrer (2020), the authors dealt with the unperturbed case
ε = 0, which will be denoted as Kκ . The connection with the 4D oscillator

Hω = 1

2

4∑
i

(p2i + ω2 q2i ), (7)
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defined in T ∗
R
4
0 = T ∗(R4 − {0}), being ω2 ∈ R a positive constant, is made by means of

the KS-reduction. Precisely, the process starts by fixing the energy level Hω − h = 0, for
h > 0. Then, we reduce out theKS-symmetry of the 4D oscillator and provide theKS-reduced
Hamiltonian expressed through the (x, y) chart as

HAux = 1

2

(
4|y|2|x| + ξ2

|x| + ω2|x|
)

− h. (8)

By fixing the momentum mapΞ0 = ξ = 0 and subtracting the constant term ω2/2, together
with the time reparametrization dτ = 1/(4|x|) ds, we finally obtain

Kκ (x, y) = |y|2
2

− κ

|x| , (9)

where κ = h/4. The case of a perturbed Keplerian system is tackled by considering a suitable
perturbed 4D oscillator instead of (7)

H̃ω = 1

2

n∑
i=1

(p2i + ω2q2i ) + ε 4|q|2P∗(q,p), (10)

where P∗(q,p) is easily obtained by substitution of x(q,p) and y(q,p) in P(x, y).

Remark 1 Notice that the way in which we connect the oscillator and the Kepler system is
a very different operation from the originally proposed in Kustaanheimo (1964); Kustaan-
heimo and Stiefel (1965). Our approach establishes the connection by means of a geometric
reduction in the Ξ0 symmetry of the oscillator, and moreover, it reveals the true role of the
bilinear relation as a particular value of the momentum map. Namely, Ξ0 = 0.

Remark 2 Note that the process described above is only possible if the Hamiltonian H̃ω is
also endowed with theKS-symmetry. However, it is always guaranteed since the perturbation
is expressed as a function in the invariants (x, y).

2.3 Symplectic angular charts for the KS-symmetry

The previousKS-reductionmay be easily tracked bymeans of classical charts based on angles
coming from celestial mechanics. In this section, we recall several sets of symplectic charts
incorporating the angle α, of the S1 action described above, among the angular variables.
This feature makes the following charts particularly suitable for keeping track of the whole
regularization process, since they allow to perform the KS-reduction by fixing one angle.
These charts were previously presented in Ferrer (2010), Crespo et al. (2016), Ferrer and
Crespo (2014), Crespo (2015), and here, we include a brief summary for the benefit of the
reader.
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2.3.1 The KSmap in the projective Euler variables

First, we introduce the set of variables dubbed as Projective Euler variables defined by means
of the following transformation

PE : (ρ, φ, θ, ψ, P, Φ,Θ,Ψ ) → (q,p)

q1 = √
ρ cos

θ

2
sin

φ + ψ

2
,

q3 = √
ρ sin

θ

2
sin

φ − ψ

2
,

q2 = √
ρ sin

θ

2
cos

φ − ψ

2
, q4 = √

ρ cos
θ

2
cos

φ + ψ

2
,

(11)

with ρ ∈ R+, φ + ψ ∈ (0, 2π), φ − ψ ∈ (−π, π) and θ ∈ (0, π). The associated momenta
are obtained by canonical extension of (11), that is,

∑
pidqi = P dρ+Φ dφ+Θ dθ+Ψ dψ

P = 1

2ρ
(q1 p1 + q2 p2 + q3 p3 + q4 p4),

Θ = (q2 p2 + q3 p3)(q21 + q24 ) − (q1 p1 + q4 p1)(q23 + q22 )

2
√
(q21 + q24 )(q

2
2 + q23 )

,

Φ = 1

2

(
(p1q4 − p4q1) + (p3q2 − p2q3)

)
,

Ψ = 1

2
Ξ0 = 1

2

(
(p1q4 − p4q1) − (p3q2 − p2q3)

)
.

(12)

This kind of variables is not new, see for instance (Ikeda and Miyachi 1971; Stiefel and
Scheifele 1971; Barut et al. 1979; Iwai 1981; Cornish 1984), all of them being a variation of
the Euler parameters. However, the set we are presenting here combines the one-dimensional
square-root coordinatewith the unit quaternion parametrization byEuler angles. Thus, having
the advantage of connecting with the Kepler system in a straightforward manner.

In Ferrer and Crespo (2018), it is showed that the restriction of the 4D harmonic oscillator
to either Φ = 0 or Ψ = 0 in Projective Euler variables leads to the 3D Kepler system
expressed in spherical coordinates.

2.3.2 Projective Andoyer variables

Although Projective Euler variables allow to see theKSmap in a straightforwardmanner, they
provide the Kepler system in spherical coordinates. Nevertheless, in the classical literature of
CelestialMechanics we findmore convenient charts for this system as the Projective Andoyer
variables will also provide a connection between both systems, but the Kepler Hamiltonian
will be given in polar-nodal variables. We will use a compact quaternionic formulation, and
we introduce the following notation

ql,α = cosα + l sin α, l = i, j,k

Then, projective Andoyer variables are given by the following transformation

PA : (ρ, λ, μ, ν, P,Λ,M, N ) → (q,p),

q = √
ρ qk,ν qi,J qk,μ qi,I qk,λ, p = 1

4ρ2 qw,
(13)
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where ρ ∈ R+, λ ∈ (0, π), μ, ν ∈ (0, 2π). Moreover, the angles I and J are given
by cos I = Λ/M, cosJ = N/M and w = (τ, ρ1, ρ2, ρ3) denotes a quaternion whose
components are

τ = ρP,

ρ1 = 2
√
M2 − N 2 sin ν,

ρ2 = 2
√
M2 − N 2 cos ν,

ρ3 = 2N .

(14)

Note that these variables are not defined for M = 0 and they also incorporate the KS-
reduction angle. Moreover, this set of variables connect with the Kepler system in polar-
nodal variables. Precisely, considering the regularization�(ρ) = 1/(4ρ) and the Projective
Andoyer variables we obtain

K̃ = �(ρ)(Hω − h) = 1

2

(
P2 + M2

ρ2

)
− κ

ρ
, (15)

where κ = h/4, in the manifold K̃ = −ω2/8, which is the Hamiltonian of the Kepler system
in polar-nodal coordinates (see Deprit 1982). Further details are given in Ferrer and Crespo
(2018).

2.3.3 Projective Delaunay variables

Up to now, we have presented two sets of symplectic coordinates that reveal the Kepler-
oscillator connection in a straightforward manner. Nevertheless, the treatment of perturbed
Keplerian systems calls for coordinates not only compatible with an easy way of connecting
with the oscillator, but also suitable for the reduction in the Keplerian energy. These vari-
ables are implemented by means of a canonical transformation in part of the phase space of
Hamilton–Jacobi type:

Dκ : (�, g, L,G) → (ρ, μ, P,M).

For details of this transformation Dκ giving the relations defining Delaunay transformation,
we refer to Deprit (1982). The projective Delaunay transformation is given as

PD : (ρ, λ, μ, ν, P,Λ,M, N ) → (�, λ, g, h, L,Λ,G, H).

The relations defining Delaunay transformation read as follows

μ = g + f , ν = h, N = H , M = G, (16)

ρ = a (1 − e cos E), P = L e sin E

a (1 − e sin E)
, (17)

where a = a(L), e = e(L,G) are given by

a = L2/κ, η = G/L, e =
√
1 − η2, (18)

f and E are auxiliary angles. The symplectic variable � satisfies

� = E − e sin E, tan f /2 = √
(1 + e)/(1 − e) tan E/2. (19)

Later on, we also need p = ρ(1 + e cos f ), where p = aη2, and

ρ cos f = a(cos E − e), ρ sin f = aη sin E . (20)
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In Crespo et al. (2016), it is proved that the composition of PA and PD and the regu-
larization ds = 1/(4ρ) dτ allows to express the Hamiltonian of the 4D isotropic oscillator
as

H0 = − κ2

2L2 (21)

in the manifold H0 = −ω2/8.
For the benefit of the reader, let us mention that Moser and Zehnder (2005) introduced

action-angle variables for the Kepler problem in R
n and called them Delaunay variables.

When we restrict to n = 4, those variables do not coincide with the set built in this paper.

3 Astrodynamical interpretation of the KS-energy reduced space

In this section, we deal with the reduced spaces obtained by removing the Keplerian energy.
However, the intricate way in which the reduction process behaves, usually, results in a loss of
astrodynamical intuition. One of our main goals is to shed light on this process at each stage
by relating invariants and orbital elements in their canonical version, i.e., Delaunay variables.
These variables are the common sets used when dealing with Kepler systems; astrodynamics
textbooks give a full description of them. Excluding the anomalies, when we fix a set of
them, we have defined a Kepler orbit. Elementary classification of Kepler orbits usually asks
for sets such as circular, equatorial, polar, rectilinear, and they are related to special values
of the orbital elements, which we may see as a label for them. This work shows how these
packages of orbits are arranged in the reduced spaces.

It is well-known that rectilinear, circular, and equatorial orbits require particular treatment
in the classical approach and the new techniques we mention above have allowed to include
them within the generic treatment, referring to them as singular. Nevertheless, this work is
not dealing with elaborated geometric concepts. In this regard, we will make full use of
ideas widely used in celestial mechanics and astronomy through centuries, which switch
back to the primitive and most classical way to present symplectic reduction. Namely, we are
referring to the process of choosing suitable symplectic coordinate transformations by which
the number of equations and variables reduces. These simplifications are usually achieved
by incorporating invariants of the geometric reduction among the new set of variables. A
disadvantage is that these transformations often need several charts to analyze the whole
phase space, while the geometric approach allows for a complete study.

Usually, the reduced space obtained after regularization (KS-reduction) and using the
Keplerian energy is represented by a linear combination of the angular momentum vector
G = (G1,G2,G3) and the eccentricity vector A = (A1, A2, A3)

σ = 1

2
(G + LA), δ = 1

2
(G − LA). (22)

Note that two of the momenta in the projective Delaunay variables are related to the angular
momentum vector in the following way

G = |G|, H = G3. (23)

We refer to this regularized-reduced space as the (KS-energy)-reduced space, which is
diffeomorphic to S

2
L × S

2
L and may be regarded as a way of packing orbits with the same

semi-major axis. The subindex L stands for the fact that the radius of the spheres are related
to L .
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From the astrodynamical point of view, it would be desirable to have a simple connection
between the orbital elements and the variables of the reduced space. With that idea in mind,
other variables may be explored in order to obtain a better description in terms of the orbital
elements. For those applications not interested in rectilinear orbits, the projective Delaunay
is specially well suited. Precisely, this chart is a generalization of the classical Delaunay
elements, also dubbed as dynamical orbital elements, which is completely adapted to the
(KS-energy)-reduction process. That is to say, the starting point is the 4D oscillator expressed
in these variables. Then, after time reparametrization and the KS-reduction we are led to the
Kepler system (plus a perturbation). The reduction process in this environment involves only
to constraint some of the momenta to a constant and to get rid of the corresponding cyclic
angle-variable.Moreover, the remaining variables compose the corresponding reduced space.

Next, we present an alternative local chart for the (KS-energy)-reduced space. Later on,
in the following section we also introduce a global set of variables for the (KS-energy-
axial)-reduced space. In both cases, our variables have a very direct connection with the
dynamical orbital elements (Delaunay variables). The variables we are going to introduce for
the (KS-energy)-reduced space have pros and cons. On the one hand, they provide a complete
separation of orbital elements. On the other hand, these variables can only be used for non-
rectilinear motions, since they are based in the Delaunay angles. Thus, this type of orbits
can only be handled with the invariants σ and δ. The reader should assess the convenience
of using this chart for each application. There are other alternative sets of symplectic local
coordinates for the (KS-energy)-reduced space. For instance, see the one introduced in Iñarrea
et al. (2011).

3.1 Local coordinates in the (KS-energy)-reduced space: separating node and
perigee

A preliminary proposal of the new sorting of the orbits on S
2
L × S

2
L , alternative to the one

associated with (σ , δ) coordinates, was already considered by one of the authors (Ferrer
2003). This new sorting allows for a complete separation of orbital elements in the (KS-
energy)-reduced space. Nevertheless, it is not at no cost, the new variables are only locally
defined and three Delaunay-type charts are needed to cover the set of non-collinear orbits.
Rectilinear orbits cannot be studied with these variables.

The (KS-energy)-reduced space may be ‘reordered’ taking into account the bounded non-
rectilinear Keplerian orbits, O = Δc

⋃
Δe: circular orbits Δc = {G = L} and elliptic

orbits Δe = {G | 0 < G < L}. Here, we give a full description of a modified version and
use it for the explanation of the reduction. The idea is to ‘separate’ orbital elements in the
way we ‘locate’ the orbits in S

2
L × S

2
L ≡ S

2
1 × S

2
2. We use the first sphere S

2
1 for the

argument of periaxis and eccentricity. Each ‘small circle of latitude’ of S21 relates to orbits
with the same eccentricity. We associate the north pole of S21 with the circular orbits, and the
south pole with the rectilinear. The second sphere S22 gives the positions of the orbital plane.
Each ‘small circle of latitude’ S22 corresponds to orbits with the same inclination; north and
south poles of S22 relate to direct and retrograde equatorial orbits. Coordinates are denoted
by S

2
1 = {(λ1, λ2, λ3) | ∑

λ2i = 1
4 L

2} and S
2
2 = {(ζ1, ζ2, ζ3) | ∑

ζ 2i = 1
4 L

2}. Following
the same notation as before, by ni and si we refer to the ‘north’ and ‘south’ poles of S2i ,
respectively.

More precisely, the sorting is as follows:

(i) Δc = circular orbits (G = L) : n1 × S
2
2 − (n2, s2). The point (n1, n2) corresponds to

the direct equatorial circular orbit, and (n1, s2) is the retrograde equatorial circular orbit,
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which are not covered by this chart. Moreover, the set (0, 0, 1
2 L, ζ1, ζ2, ζ3), ζ3 �= ± 1

2 L
are circular orbits, with the inclination cos I = H/L . Thus, we obtain the argument of
the node and inclination (h, I ) by inverting the following expressions

ζ1 = 1

2
L sin I cos h, ζ2 = 1

2
L sin I sin h, ζ3 = 1

2
H , (24)

where cos I = H/G and we may also write L = √
κa and ζ3 = √

κa(1 − e2) cos I .
Finally, the set 1

2 L(0, 0, 1, cos h, sin h, 0) are circular polar orbits, with 0 < h ≤ 2π .
(ii) Δe = elliptic orbits (0 < G < L) : (S21 − {n1, s1}) × S

2
2.

‘Non-equatorial ellipses’. We make correspond the elliptic inclined (non-equatorial)
orbits with the sextuples (S21 − {n1, s1}) × (S22 − {n2, s2}). We establish the correspon-
dence between the Delaunay set of variables (G, H , g, h), and our coordinates on S21×S

2
2

as follows

λ1 = G

L

√
L2 − G2 cos g, ζ1 = 1

2

L

G

√
G2 − H2 cos h,

λ2 = G

L

√
L2 − G2 sin g, ζ2 = 1

2

L

G

√
G2 − H2 sin h,

λ3 = 1

L
(G2 − 1

2
L2), ζ3 = 1

2

L

G
H .

(25)

We could give to the previous variables a slight different and compact form, which could
be preferred by the readers familiarized with astrodynamics

λ1 = Le
√
1 − e2 cos g, ζ1 = 1

2
L sin I cos h,

λ2 = Le
√
1 − e2 sin g, ζ2 = 1

2
L sin I sin h,

λ3 = L(
1

2
− e2), ζ3 = 1

2
L cos I .

(26)

Observe that, taking into account that L2 = κa, the expressions of the new variables
given above are explicitly given in terms of the orbital elements. Conversely, Delaunay
variables (g, h,G, H) as functions of ζ and λ are given by

G =
√
L(λ3 + L

2 ) cos g = λ1√
λ21+λ22

, sin g = λ2√
λ21+λ22

,

H = 2ζ3
√

λ3
L + 1

2 cos h = ζ1√
ζ 21 +ζ 22

, sin h = ζ2√
ζ 21 +ζ 22

.
(27)

4 (KS-energy-axial)-reduced space: Cushman–Deprit coordinates

Now, we deal with the singular reduction in the node. We introduce a new set of variables
for the (KS-Energy-axial)-reduced space, which are an alternative to the variables proposed
by Cushman (1983, 1992). In our opinion, this paper contributes to complement the work
done by Coffey et al. (see Sects. 2 and 3 in Coffey et al. (1986)) in their effort to bring near
to the astrodynamics quarters the results on reductions done by geometers. More precisely,
they left uncompleted the set of coordinates for the thrice reduced space. They proposed
a set of coordinates ξi on S

2, diffeomorphic to the thrice reduced space (for H �= 0), as
an alternative to the set πi already chosen by Cushman (1983) based on invariant algebra.
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However, the singular case H = 0 was not covered by the variables given in Coffey et al.
(1986). Here, we consider a set of variables (γ1, γ2, γ3) based on the ones provided in Coffey
et al. (1986), but being valid also for the singular case H = 0. Additionally, all these
variables have the same dimensions, something which was not a big concern for Cushman.
In our case, from the experience with normalization procedures, we prefer variables with the
same dimensions. More precisely, we choose as third variable γ3 the invariantG2. Thus, each
point in the horizontal sections of the thrice reduced space Γ0,L,H , defined by γ3 = constant,
corresponds with a family of ellipses with the same eccentricity and the same perigee, which
ends in a segment when H = 0, where each point corresponds to a family of rectilinear
solutions. This helps to see what is at the core of the third reduction process.

WhenCushman carried out the reduction process he looked for amodel of the (KS-energy-
axial)-reduced space. However, there are other possibilities, from Cushman (see Cushman
1983, p. 409) we quote: “We now carry out the reduction process on the S1 action Ψ . To
find a model for the reduced phase space…” This section contains three sets of variables
by which we can describe the (KS-energy-axial)-reduced space. The first set of variables
given in Cushman (1983) is focussed in the mathematical treatment of the problem, while
the second one (Coffey et al. 1986) concentrates on the astrodynamical description. Finally,
we consider a set of coordinates that combines both approaches.

4.1 Variables based on invariant theory: Cushman’s choice

Cushman built his model based on the generators of the invariant algebra associated with the
action defined by the axial symmetry induced by H . These generators are given as function
of the components of the vectors (σ, δ) given in (22)

τ1 = σ 2
1 + σ 2

2 , τ2 = σ1δ2 − σ2δ1, τ3 = σ3,

τ4 = δ21 + δ22, τ5 = σ1δ1 + σ2δ2, τ6 = δ3
(28)

together with the constraints

τ1 + τ 23 = L2

4
, τ4 + τ 26 = L2

4
, τ 22 + τ 25 = τ1τ4, τ3 + τ6 = H , (29)

where H = G3. The above relations allow to express the (KS-energy-axial)-reduced space
by means of the following πi invariants

π1 = 1

2
(τ3 − τ6), π2 = τ2, π3 = τ5. (30)

Note: The reader should be aware that Cushman along his papers used different notations for
the invariants: σi , πi , etc.

The surface of the (KS-energy-axial)-reduced space takes the form

ΠL,H = {(π1, π2, π3) |π2
2 + π2

3 = (L2 − (π1 − H)2)(L2 − (π1 + H)2)}, (31)

together with

|π1 − H | ≤ L, |π1 + H | ≤ L. (32)

Notice that Cushman changes slightly this definition in Cushman (1992). Figure 1 shows
ΠL,H for several values of H .

As we said before, there is no claim that the coordinates chosen by Cushman are the only
ones or even the more convenient. In fact, his choice is dictated by the algebraic process
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Fig. 1 Cushman’s reduced space ΠL,H ≡ Vn 0,ζ for two values of H . The singular case H = 0 has two
singular points corresponding to π1 = ±L and π2 = π3 = 0

followed, taking the polynomials of lower degree, although they are of different physical
dimensions. These variables may be expressed in Delaunay coordinates in the open domain
where they are defined in the following way

π1 =L e sI sin g,

π2 = − 2LG e sI cos g,

π3 =2G2 − L2 − H2 + L2e2s2I sin
2 g,

(33)

where sx = sin x and cx = cos x .

4.2 Coffey–Deprit–Miller’s variables for the non-singular case

A set of coordinates for the (KS-energy-axial)-reduced space, alternative to Cushman’s, were
proposed byDeprit and his collaborators (Coffey et al. 1986), (from now onCDM). Referring
for its explanation to that paper, they are given by

ξ1 = LG e sI cos g,
ξ2 = LG e sI sin g,
ξ3 = G2 − (L2 + H2)/2

(34)

which are of the same dimensions. They satisfy ξ21 + ξ22 + ξ23 = (L2 − H2)2/4, i.e., the
reduced surface is a sphere. We may recover them from Cushman’s variables by:

ξ1 = −π2/2, ξ2 = π1

√
(π3 − π2

1 + L2 + H2)/2, ξ3 = (π3 − π2
1 )/2. (35)

Although these coordinates are very well suited for astrodynamical applications, they
have one major drawback: CDM variables cannot be used for the singular case. That is to
say, for H �= 0 the (KS-energy-axial)-reduced space is diffeomorphic to a sphere, which
matches the geometry of (ξ1, ξ2, ξ3). However, when H = 0, the reduced space is no longer
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diffeomorphic, but homeomorphic to a sphere since two singular points arise. This case
cannot be analyzed with CDM variables, which continue to preserve the spheric shape.

4.3 Modulus of the angular momentum as a variable: Cushman–Deprit coordinates

Here, we present an alternative model for the (KS-energy-axial)-reduced space. Namely, we
introduce variables γ = (γ1, γ2, γ3) defined as

γ1 = L2 e sI sin g,

γ2 = LG e sI cos g,

γ3 =G2 + c,

(36)

where c ∈ R is a constant thatmay be chosen in accordancewith the problem at hand, keeping
in mind that units are the same for each γi . For example, by choosing c = −(L2 + H2)/2 we
get γ3 = ξ3 given in equation (34). The inverse transformation of (36) is written immediately

sin g = γ1

L2esI
, cos g = γ2

LG esI
, G = √

γ3 − c (37)

where

e =
√
1 − (γ3 − c)/L2, sI = sin I =

√
1 − H2/(γ3 − c). (38)

However, this set of variables is not restricted to the Delaunay chart. Indeed, there is a
diffeomorphism connecting (γ1, γ2, γ3) with Cushman’s variables (Cushman 1983)

π1 = 1

L
γ1, π2 = −2γ2, π3 = 2(γ3 − c) + 1

L2 γ
2
1 − L2 − H2. (39)

Note this alternative set of coordinates shares some features with Cushman’s variables
and with CDM variables and for that reason we dub variables (36) as Cushman–Deprit’s
coordinates. Namely, our alternative may be used for any value of H . Additionally, these
variables are all with the same dimensions, which was not a concern for Cushman. In our
case, from the experience with normalization procedures, we prefer variables with the same
dimensions. Moreover, γ3 is directly related to the eccentricity. Thus, with these invariants,
a fixed value of γ3 corresponds to a family of orbits with the same eccentricity.

In what follows, we will consider the case c = 0. By means of this set of invariants, the
(KS-energy-axial)-reduced space is expressed by the following semialgebraic variety

Γ0,L,H = {(γ1, γ2, γ3) | f (γ ) = 0, 0 ≤ H2 ≤ γ3 ≤ L2}, (40)

where

f (γ ) = γ 2
1 γ3 + L2γ 2

2 − L2(L2 − γ3)(γ3 − H2). (41)

This function defining the (KS-energy-axial)-reduced space is named in the context of sym-
plectic and Poisson reduction as Casimir function. The singular case is characterized by

Γ0,L,0 = {(γ1, γ2, γ3) | f0(γ ) = 0, 0 = H ≤ γ3 ≤ L2} (42)

with

f0(γ ) = γ 2
1 γ3 + L2γ 2

2 + L2γ 2
3 − L4γ3. (43)
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Since the relations (39) define a diffeomorphism in R
3, we can assure that Γ0,L,H is

diffeomorphic to a sphere for H �= 0 and for the case H = 0 two singular points arise in
Γ0,L,0, which are located at (±L2, 0, 0), as the following proposition shows.

Proposition 1 The algebraic variety defined by Γ0,L,H is a smooth 2D surface for H �= 0.
For the case H = 0, two singular points arise in Γ0,L,0 at (±L2, 0, 0).

Proof The point γ = (γ1, γ2, γ3) of Γ0,L,H is singular if satisfies

f (γ ) = 0, d f (γ ) = (0, 0, 0), 0 ≤ H2 ≤ γ3 ≤ L2. (44)

Therefore, after the computation of the partial derivatives, we have the following polynomial
system

2γ1γ3 = 0, 2L2γ2 = 0, γ 2
1 + 2L2γ3 − L2(L2 − H2) = 0. (45)

These equations imply γ2 = 0 and either γ1 = 0 or γ3 = 0. The case γ1 = 0 and γ2 = 0,
together with the third equation, leads to γ3 = L2 − H2/2, which does not satisfy condition
f (γ ) = 0. Then, the only remaining case is γ2 = γ3 = 0, which implies that H = 0 from
(44). Hence, using again the third equation in (45) we have that γ1 = ±L2. Therefore, the
points (±L2, 0, 0) are singular. 	


Recently, a full study of the reduced stellar three body problem has been carried out (see
Palacián et al. 2013) where the set of coordinates used (formulas (5.1), (5.2) p. 162) for the
reduced space are similar to Eq. (36). In our view, the reason of that similarity, versus the
ones proposed by Cushman, is due to the fact that they have chosen τ1 = 2G2

1 − Ξ2
1 , i.e.,

one of the invariants is quadratic in the angular momentum, like our γ3 = G2.

Remark 3 For the applications, it is usually convenient to set c = 0 and consider dimension-
less variables by dividing out L as follows

γ ∗
1 = γ1

L2 = esI sin g, γ ∗
2 = γ2

L2 = ηesI cos g, γ ∗
3 = γ3

L2 = η2. (46)

5 On the astrodynamical interpretation of (�1, �2, �3)

In this section, we answer the question ofwhat families ofKepler orbits dowe have associated
with each point of the surface (40) defining the reduced space, see Fig. 2. In other words,
we may see the (KS-energy-axial)-reduced space as sets of orbits and each point in the
surface (40) as a label for each set. In more detail, we have that for H �= 0 the surface is
diffeomorphic to the sphere, but its horizontal sections have an ellipse shape, see Fig. 2a.
Those parallels ellipses reduce to a point at the top (0, 0, L2) (north pole of the reduced
space) when G = L , which corresponds to the circular orbits with inclination cos I = H/L .
Again, the parallels reduce also to a point at the bottom (0, 0, H2) (south pole of the reduced
space), when G = |H |, and it corresponds to the family of equatorial elliptic orbits with
eccentricity e = √

1 − H2/L2. When the integral H = 0, the surface contains two singular
points (±L2, 0, 0), and it is not diffeomorphic but homeomorphic to a sphere, see Fig. 2b.
Indeed, on the surface Γ0,L,0 the point (0, 0, L2) corresponds to G = L . Nevertheless, when
G = 0, we are at the bottom of Γ0,L,0 which no longer is a point but a segment. The extremes
of the segment are the points of the surface (−L2, 0, 0) and (L2, 0, 0) which are singular.
Those points represent two rectilinear orbits in the two directions of the x3 axis. Each of the
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Fig. 2 (KS-energy-axial)-reduced spaceΓ0,L,H for two values of H . The singular case H = 0 has two singular
points corresponding to γ1 = ±L and γ2 = γ3 = 0

rest of the points of this segment, i.e., (L2 sin g0, 0, 0), g0 ∈ (−π/2, π/2) they represent
families of rectilinear orbits in s1 × S

2
L (see Sect. 3.1) with the same latitude of the Laplace

vector (eccentricity vector).

5.1 On the (KS-energy-axial)-reduced space and orbital elements:What about the
inclination?

Referring to the (KS-energy-axial)-reduced space in astrodynamics terms, whichever set of
coordinate we have chosen, we may say that we have get rid of the node angle, which may be
recovered (in the reconstruction process) after we have studied the dynamics in the reduced
system.

Indeed, we know the expression relating the integral H with the orbital elements

H = cos I
√
κa(1 − e2). (47)

Thus,whenwefix the value of H = h, the eccentricity and inclination could change according
to Eq. (47). In particular, we may express the inclination as a function of the eccentricity,
parametrized by L and H . Denoting σ = H/L , we have

Iσ = arccos
σ√

1 − e2
. (48)

In Fig. 3, it is shown the evolution of those curves parametrized by σ . It represents a com-
plement to Fig. 2 of the (KS-energy-axial)-reduced space Γ0,L,H , where the variables (g,G)

are portrayed, i.e., eccentricity and argument of perigee, but not the inclination of the orbit.
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Fig. 3 Relation between e and I
for families of orbits after the
third reduction. Those curves are
I = I (e; L, H), i.e., the
inclination as function of the
eccentricity, parametrized by the
integrals (L, H). A complement
to this is Fig. 2 of the
(KS-energy-axial)-reduced space
Γ0,L,H , where the variables
(g,G) are portrayed, i.e.,
eccentricity and argument of
perigee, but not the inclination of
the orbit

6 Application: the Hill problem

The Hill problem was originally conceived to develop a theory for the lunar motion as a first
approximation of the circular restricted three body problem (CRTBP). Roughly speaking, it
considers the evolution of a body with negligible mass (the Moon) attracted by two primaries
(theSun and theEarth).However, after proper scaling, thismodel is suitable for the description
of the dynamics of a variety of systems. Hill system provided a very successful analytic theory
for the lunarmotion, which even today receives attention, see for exampleMeyer et al. (2015),
where the authors determine the existence of invariant 3-tori by studying the full averaged
system. Also, in Lara et al. (2010); Lara and Palacián (2009) higher order normalization
through Lie transformations is performed and dynamics of the resulting system are analyzed
for the case in which the scaling is adapted for an Enceladus orbiter.

In our application, we do not fix a particular scaling setting, but we consider the general
model to illustrate the regularization process and usage of Cushman–Deprit variables. Thus,
we study a system with two finite masses M and m, to which we refer as the primaries,
moving in a Keplerian circular orbit, plus an infinitesimal body under the influence of the
primaries. The origin is fixed at m, and we consider a uniformly rotating frame at the rate
of the m-primary about the mass M in such a way that the positive x-axis points to the M-
primary. Moreover, let R and r be the distances from the origin to the M and m primaries,
respectively, the validity of the Hill model is restricted to the assumption that the third body
is close to the smaller massm. That is to say, it is assumed that the ratio ρ = r/R is small and
the first-order truncation of the CRTBP could be accurate enough for an analytical theory.
After this process is carried out, we arrive at the Hamiltonian defining the Hill’s equations,
which is taken from Lara et al. (2010)

K = 1

2
|y|2 − κ

|x| − N (x1y2 − x2y1) + N 2

2
(−2x21 + x22 + x23 ), (49)

where x = (x1, x2, x3) and y = (y1, y2, y3) are the position and conjugate momenta vectors,
κ is the gravitational parameter of the central body and N is the rotation rate of the system.
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6.1 Regularization of the spatial lunar problem

Next, we introduce a perturbed 4D oscillator as it is instructed in Sect. 2

H̃ω = Hω − 4 NPa + 2 N 2Pb, (50)

defined in T ∗
R
4
0 = T ∗(R4 −{0}), whereHω is the 4D oscillator (7) and Pa and Pb are given

by

Pa =2(q2q4 − q1q3)(p2q1 + p1q2 + p4q3 + p3q4)

− 2(q1q2 + q3q4)(p4q2 + p2q4 − p1q3 − p3q1),

Pb =|q|2(−12(q2q4 − q1q3)
2 + |q|4).

(51)

In what follows, we fix the energy level H̃ω = h > 0. Note that the above Hamiltonian is
connectedwith (49) through theKS-reduction (see Ferrer andCrespo 2018; Crespo and Ferrer
2020). That is to say, theHamiltonian function (50) is endowedwith the axial symmetry given
by the polynomial

Ξ0 = 1

2

(
(p1q4 − p4q1) − (p3q2 − p2q3)

)
.

Thus, in theΞ0-reduced space, the regularized Lunar Hamiltonian may be expressed in terms
of the invariants associated toΞ0. This process usually relies on invariant theory, leading to a
high number of invariants. However, in Ferrer and Crespo (2018) we showed that theKS-map
(4) provides an orbit map for this reduction and allows to express (50) in the Ξ0-reduced
space for each fixed value of Ξ0 = ξ as follows

HAux = 1

2

(
4|x| |y|2 + ω2|x| + ξ2

|x|
)

− h

− 4N |x|
(
(x1y2 − x2y1) − ξ

x3
|x|

)

+ 2N 2|x|(−2x21 + x22 + x23 ).

(52)

Restricting to the case ξ = 0, it is clear that

HAux = 4|x|K,

which implies that after time regularization given by ds = 4|x|dt , we obtain the spatial Lunar
system.That is to say, system (49) is the result of fixing the energy level H̃ω = h > 0, dividing
out the Ξ0 symmetry in (50), restricting to the stratum ξ = 0 and a time regularization.

6.2 (KS-energy-axial)-reduced flow: relative equilibria and bifurcation

In this section, we carry out the elimination of the node and Keplerian energy. For this task,
projective Delaunay variables are better suited. In these variables, the Hamiltonian function
defining the lunar problem system Eq. (49) takes the form

K : M −→ R; K = Kκ + P(l, g, h, L,G, H), (53)

where M = T
3 × Ω, being Ω = {(L,G, H)/ | H |< G < L, G �= 0}. Note that, in the

Delaunay chart, G �= 0 excludes the rectilinear case. However, the set of variables we have
introduced for the description of the (KS-energy-axial)-reduced space includes the treatment
of rectilinear orbits, which correspond to γ3 = 0.
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Now, we introduce the formal LH -symmetry by means of Lie transforms in order to fully
reduce the system to 1-DOF. This process gives us the following Hamiltonian

Km = − κ2

2L2 +
m∑
i=1

εi Pi (_, g, _, L,G, H). (54)

Precisely, for the case m = 2 we take from San Juan and Lara (2006) the normalized
Hamiltonian

K2 = − κ2

2L2 − ε
κ

a
η cI

− ε2
κ

16L2

(
15e2s2I cos 2g + (

3e2 + 2
) (
2 − 3s2I

))
,

(55)

where L2 = κa and using Hill units we set κ = 1, ε = N
n = a3/2 = L3 and n =

√
κ
a3

the mean motion of the small body. Note that the same symbols are used to refer to the new
variables after the normalization to simplify notation. However, the context made clear what
variables are we dealing with in each case. Thus, after some easy algebraic manipulations,
eliminating constant terms and scaling the Hamiltonian, we obtain the following function in
the Cushman–Deprit variables (36) that defines the (KS-energy-axial)-reduced space

K2 =5γ 2
1 + 2γ3. (56)

Note that we are using the agreement given in Remark 3. ThisHamiltonian defines a parabolic
cylinder. In Fig. 4, we show the intersection of the (KS-energy-axial)-reduced space with the
Hamiltonian. The associated equations of motion in the (KS-energy-axial)-reduced space
read as follows

(γ̇1, γ̇2, γ̇3) = ∇K2 × ∇ f (γ ), (57)

which, after a convenient time reparametrization, leads to

γ̇1 = 2γ2,

γ̇2 = γ1
(
5γ 2

1 + 8γ3 − 5(1 + σ 2)
)
,

γ̇3 = −10 γ1γ2,

(58)

where, as it was defined before, σ = H/L . Next, we shall present the relative equilibria
organized in two families of equilibria.

– Rectilinear orbits:We search first for possible rectilinear solutions. They satisfy γ3 = 0.
Moreover, from the third equation in (56) we identify two possibilities: (i) γ1 = γ2 = 0
which are rectilinear equatorial orbits; (ii) γ3 = γ2 = 0 and γ1 = ±1, i.e., singular
rectilinear polar orbits.

– Polar equilibria: These are equilibria located at the γ3 axis also dubbed as North-South
equilibria. They always exist for any value of the ratioσ = H/L . Assuming γ1 = γ2 = 0,
we obtain the equilibria E1 = (0, 0, L2) and E2 = (0, 0, H2) in the γ3 axis. These points
are located at the top and bottom of the reduced space and for this reason are dubbed
as north and south pole of the reduced space. Since G = L for E1, this equilibrium
corresponds to a family of circular orbits with inclination given by cos I = σ . For E2,
we have G = H , which leads to the family of elliptic equatorial orbits with eccentricity
e = √

1 − σ 2. Note that for G = H = 0, E2 correspond to the family of equatorial
rectilinear orbits, which we have previously identified.
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Fig. 4 The reduced flow is given by the level curves result of the intersection of the reduced space Γ0,L,H
with the Hamiltonian surface given by constant values ofK2. Negative values of H are analogous. Notice that
the reduced space for different values of H has been rescaled to the same size

– Equilibria in the γ1γ3-plane and bifurcation at the north pole: A pitchfork bifurcation
occurs at the north pole for σ0 = ±√

3/5, which in astronomical terms corresponds to
the “critical inclination”

cos I = ±
√
3

5
. (59)
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Then, for σ ∈ (−
√

3
5 ,

√
3
5 ) we have the equilibria E3 = (γ1, γ2, γ3) and E4 =

(−γ1, γ2, γ3), where

(γ1, γ2, γ3) = L2

(√
1 + |σ |

(
|σ | − 8√

15

)
, 0,

√
5

3
|σ |

)
. (60)

That is to say, the equilibria (0, 0, L2), correspondingwith circular orbits with inclination
cos I = σ , bifurcates into elliptic orbits. Moreover, as H decreases the eccentricity
increases and for H = 0 these equilibria are located in the singular points (±L2, 0, 0),
which correspond to polar rectilinear orbits, see Fig. 4, where we plot the intersection of
the reduced space with the level surfaces defined by the Hamiltonian Eq. (56) for several
values of the integral H .

One may readily get the astrodynamical meaning to the relative equilibria taking into
account Eq. (38). Indeed, making use of them, we have that when σ0 < |σ | < L for
any initial conditions the families of normalized ellipses undergo circulation of the perigee
meanwhile the eccentricity oscillates. This regime changes when |σ | < σ0 because then,
the separatrix defines two regions. The one related to the lower part of the reduced space
continues to have a circulation pattern for the perigee. Nevertheless, associated with the two
relative equilibria bifurcating from the ‘north pole’ of the reduced space, we have two regions
where perigee and eccentricity are librating. These features may be seen in Fig. 4a–d. We
also like to mention that the equatorial rectilinear solutions found in this analysis require
further investigation.

7 Conclusions and future work

This work presents an alternative to the usual itinerary in the regularization process of per-
turbed Keplerian systems. Our approach relies on the reduction of symmetries on perturbed
4D oscillators. Precisely, the KSmap is just the orbit map associated with an axial symmetry
of the oscillator and allows to identify perturbed Keplerian systems as subsystems in 4D
perturbed oscillators. Moreover, this methodology avoids the use of additional techniques
as constraint dynamics (Cushman 1992), which is needed when the regularization is made
throughMoser procedure (Moser 1970). However, another way to avoid the use of constraint
dynamics in the setting of Moser regularization is given in Meyer et al. (2018), where the
authors work directly with the invariants of the Kepler reduction plus an extra angle, which
when n = 2, 3, is essentially the eccentric anomaly. Alternatively, we provide several symplec-
tic charts allowing to track the regularization process in a straightforward way. Additionally,
once the regularization is carried out, the remaining system is normalized and the Keplerian
energy and the node are eliminated in consecutive stages. This work presents an astrodynam-
ical interpretation of each stage, and alternative variables are presented for the full reduced
space. These variables have the advantage of having the same physical dimensions, which
from our experience, is of great practical interest.

The reconstruction of the points in the (KS-energy-axial)-reduced space is left for a forth-
coming paper. This process can be made in several stages, reverting each of the reductions
performed. Thus, a point in the (KS-energy-axial)-reduced space, generically corresponds
with a S1 fiber in the (KS-energy)-reduced space. However, for the singular case, there are
two points (associated with the rectilinear polar orbits), which, each one, correspond with a
single point in the (KS-energy)-reduced space. Further progress in the reconstruction process
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toward the (KS)-reduced and full spaces increases the dimension of the fiber to T 2 and T 3,
respectively (except for the singular points). Moreover, along with this process, it is neces-
sary to establish the main features (in terms of the existence of periodic solutions, invariant
tori of different dimensions, bifurcations, etc.) of the departure system obtained through the
reduction. This process is delicate as a truncation of the remainder in the normalization is
done; hence, one has to prove the persistence of the solutions for the departure system, see
(Reeb 1952; Yanguas et al. 2008).
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