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Abstract
This paper presents a derivative-free method for computing approximate solutions to the
uncertain Lambert problem (ULP) and the reachability set problem (RSP) while utilizing
higher-order sensitivity matrices. These sensitivities are analogous to the coefficients of a
Taylor series expansion of the deterministic solution to the ULP and RSP, and are computed
in a derivative-free and computationally tractable manner. The coefficients are computed by
minimizing least squared error over the domain of the input probability density function
(PDF), and represent the nonlinear mapping of the input PDF to the output PDF. A non-
product quadrature method known as the conjugate unscented transform is used to compute
the multidimensional expectation values necessary to determine these coefficients with the
minimal number of full model propagations. Numerical simulations for both the ULP and the
RSP are provided to validate the developedmethodology and illustrate potential applications.
The benefits and limitations of the presented method are discussed.

Keywords Lambert problem · Reachability sets · Uncertainty propagation · Stochastic
systems · Conjugate unscented transform · Higher-order sensitivity

1 Introduction

The classical Lambert problem is a well-known two-point boundary value problem, where
the solution is the initial velocity vector that connects two known position vectors for a
given time of flight. This problem and its many variants have a rich history in academic
research and has been solved in an equally diverse range of methods. A good overview
of the Lambert problem is given in Battin (1999), Battin and Vaughan (1984), Prussing
and Conway (2013) and Vallado (2001). A complimentary but equally important problem in
astrodynamics is the Reachability Set Problem (RSP). The RSP is the determination of the set
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of all possible final positions of a satellite given some range of initial positions and velocities.
Similar to the Lambert problem, reachability sets have a robust background in the literature
of mathematics, dynamics, optimization, control and game theory (Kurzhanski and Varaiya
2001; Bicchi et al. 2002; Patsko et al. 2003; Lygeros 2004; Mitchell et al. 2005; Hwang
et al. 2005). The reachability set problem has been investigated in many different contexts,
often interpreting the reachability set as an envelope of possible future states generated by
some analytically derived boundaries (Vinh et al. 1995; Dan et al. 2010; Li et al. 2011;
Gang et al. 2013; Wen et al. 2018). The Lambert problem and the reachability set problem
have many important applications in space operations including but not limited to: satellite
tracking, maneuver detection, orbit determination, track correlation, collision probability
determination, and rendezvous planning. Both problems are deterministic; however, the real
world does not reflect the idealized conditions of these problems. Due to limited accuracy
in measurement and dynamic models, the characterization of uncertainty in the Lambert
problem as well as the RSP is an important operational concern for many Space Situational
Awareness (SSA) problems.

Typically, uncertainty is analyzed by assigning a state covariance matrix and propagating
the mean and covariance through a dynamic system using a linearized solution; however,
the solution using this method can rapidly break down in the presence of highly nonlinear
dynamics. It is desirable to propagate the covariance matrix to a high degree of accuracy, and
if possible, to gain some information about the higher-order moments (HOM’s) of the state
or even the full state probability density function (PDF). Obtaining HOM’s or the state PDF
can enable satellite operators to be better informed about potentially high impact decisions
regarding valuable space assets.

Uncertainty characterization and propagation in nonlinear dynamical systems are active
areas of research in control theory (Junkins and Singla 2004; Ramdani and Nedialkov 2011;
Ghanem and Red-Horse 1999; Terejanu et al. 2008; Vishwajeet and Singla 2013), and have
been useful in astrodynamics applications (Fujimoto et al. 2012; Vishwajeet et al. 2014;
Park and Scheeres 2006) due to the high uncertainties inherent in space operations. Luo and
Yang (2017) provides a concise summary of many existing methods for linear and nonlinear
uncertainty propagation in orbital mechanics. Luo’s review concludes that many nonlin-
ear methods which require computation of statistical HOM’s still face technical challenges
associated with high computational expense in the face of practical limitations in onboard
computational capabilities.

The uncertain Lambert problem was first introduced by Schumacher et al. (2015), where
a linear state transition matrix was solved analytically. A similar analytic approach to charac-
terize the uncertainty associated with the Lambert solution involves linearizing the Lambert
solution using first-order partial derivatives about the nominal orbit (Arora et al. 2015;McMa-
hon and Scheeres 2016). These linear variational approximations to the Lambert solution are
computationally efficient; however, linear analyses are only valid if initial and final state
uncertainties are relatively small, and they may not provide insight into the exact distribution
of error associated with the Lambert solution. Armellin et al. (2012) utilized differential
algebra implemented in automatic differentiation package COSY-Infinity Makino and Berz
(2006) to compute the Taylor series expansion of the Lambert problem solution as a part of
the initial orbit determination. The obtained Taylor series expansion of the Lambert problem
is used as a surrogate model to consider the effect of uncertainties in input variables.

Rather than considering linear perturbations to the Lambert Problem inputs, or determin-
istic maneuvers for the RSP, this paper will substitute stochastic variables with a prescribed
PDF for the input variables. In theUncertain Lambert Problem (ULP), uncertainty is assigned
to the initial and final position vectors, and in the RSP, uncertainty is assigned to the initial
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position and velocity. Specifically for the RSP, uncertainty in initial velocity is often facili-
tated by the effects of uncertainty in maneuver parameters. Using a similar idea, the method
of transformation of variables has been recently used to find the density function correspond-
ing to solution of the Lambert problem in two different efforts (Healy et al. 2020; Adurthi
and Majji 2020). While Healy et al. (2020) used the transformation of variable formulation
to obtain a velocity distribution from a point source via Housen’s method, Adurthi and Majji
(2020) exploited the solution of uncertain Lambert problem for initial orbit determination and
data association problem. However, both of these approaches either use a grid-based sam-
pling or Monte Carlo sampling to compute the PDF of a velocity along a particular sample
point which can be a computationally expensive procedure.

The motivation behind this paper is to develop a nonlinear method to map the input PDF
to the output PDF by computing any arbitrary order sensitivity matrix numerically for both
the ULP and the RSP. This method is termed the higher-order sensitivity matrix (HOSM)
method, and involves computing the least squares polynomial coefficients which correspond
to the higher-order terms of a Taylor series expansion. These polynomial coefficients rep-
resent the elements of the sensitivity matrices and are synonymous with polynomial chaos
expansion coefficients in estimation literature (Jones et al. 2015; Prabhakar et al. 2010;
Dutta and Bhattacharya 2010; Madankan et al. 2013). Traditionally in the polynomial chaos
theory, the computation of higher-order sensitivity coefficients for high dimensional sys-
tems is computationally expensive due to the exponentially increasing cost of evaluating
expectation integrals with increasing state dimension. To alleviate the computational bur-
den associated with multi-dimensional expectation integral evaluation, this work utilizes a
non-product quadrature method known as the Conjugate Unscented Transformation (CUT)
Adurthi et al. (2018) to compute the necessary multidimensional expectation integrals in a
computationally attractive manner. The CUTmethod provides the minimal quadrature points
in n-dimensional space and can be seen as the extension of the celebrated unscented trans-
formation Julier et al. (2000) to compute higher-order statistical moments. The unscented
transformation captures themean and covariance of the input PDFwhile theCUTmethod pro-
vides the sigma points to capture the higher-order moments (up to order 8) of the input PDF.
A set of samples drawn according to the CUT approach called sigma points or quadrature
points are used to compute the solution of deterministic Lambert problem or reachability
set problem. The deterministic solution corresponding to these sigma points is utilized to
compute statistical moments corresponding to the PDF of ULP and RSP. These same points
are also used to compute polynomial coefficients representing the sensitivity of the Lambert
problem and reachability set problem to the input variables.

The structure of the paper is as follows: Sect. 2 provides a brief description ofULP andRSP
problem. Section 3 describes an approach to compute the desired order statistical moments
in a computationally efficient manner followed by the details of polynomial surrogate model
in the Sect. 4. Section 5 provides results corresponding to numerical experiments consid-
ered and finally, Sect. 6 provides concluding remarks regarding the utility of the developed
methodology.

2 Problem description

This section provides the mathematical description of the ULP and RSP problem. Figure 1
shows a schematic diagram of the ULP (left) and the RSP (right). In Fig. 1a, initial position r∗

1
and final position r∗

2 are nominal system inputs and initial velocity v∗
1 is the nominal system
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Fig. 1 Diagram of ULP and RSP

Table 1 Inputs and outputs for
ULP and RSP

Lambert problem Reachability problem

Input x =
{
r1
r2

}
x =

⎧⎨
⎩

r1
v1
u

⎫⎬
⎭

Output y = v1 y = r2

Fig. 2 Characterization of uncertainty

output. In Fig. 1b, initial position r∗
1, initial velocity v∗

1 and control u∗ are nominal system
inputs and final position r∗

2 is the nominal system output. Notice that both problems can be
formulated as input-output systems where the nonlinear function f maps the (n × 1) input
vector x to a (m × 1) nominal output vector y.

y = f (x). (1)

In the ULP case, f (x) represents a Lambert solver algorithmwith inputs r1, r2 and output v1,
and in the RSP case, f (x) represents the integration of the system dynamics to map uncertain
inputs r1, v1, and control u to output r2. Table 1 summarizes the variables in each problem.
To formulate this as a stochastic system, the deterministic input vector x∗ is replaced by the
continuous random (n × 1) vector x with associated probability density function ρ(x). The
objective is to find the PDF of output ρ(y) given the nonlinear mapping function f and ρ(x).

The input variable PDF’s are typically specified to be either Gaussian or uniform. Hence,
the random variable x is defined in terms of a (n×1) normalized Gaussian or uniform random
vector ζ with ρ(ζ ). The normalized PDF can then be linearly scaled to the desired input PDF
and propagated through the mapping function f as shown in Fig. 2.
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This transformation is given as follows:

x = x∗ + Sζ = x∗ + δx, (2)

where S is a linear scaling matrix dependent on ρ(ζ ). ζ is unit variance, zero mean for
a Gaussian distribution, and on the domain [−1, 1] for a uniform distribution. The linear
scaling matrix S for Gaussian and uniform distributions is given as:

x ∼ N (x∗,�) S = √
�

x ∼ U(a,b) S = diag(a − b)
, (3)

where � is the (n × n) input covariance matrix for Gaussian ρ(ζ ), and a,b are the lower
and upper boundary vectors, respectively, for uniform ρ(ζ ). For a Gaussian random variable,
all the higher-order moments and hence the PDF is completely defined by the mean and
covariance matrix; however, this is not the case when the output has been transformed by a
nonlinear function f . The objective of this work is to describe the output PDF, i.e., ρ(y) as a
function of input PDF, i.e., ρ(x). Given the fact that the characteristic function of the PDF is
a Fourier transformation of the PDF and hence the statistical moments provide the spectral
content of the PDF, we describe this PDF in terms of higher-order statistical moments. The
i th order statistical moment will be i th order tensors defined as:

�(i)
α1,α2,...αi

= E
[
(xα1 − x∗

α1
)(xα2 − x∗

α2
) . . . (xαi − x∗

αi
)
]
, αi = 1, 2, . . . , n. (4)

Furthermore, we are also interested in finding a polynomial model which captures the non-
linear function f (x) in the domain of ρ(x). The coefficients of this polynomial model define
the sensitivities of the output with respect to the input variables.

3 Computation of statistical moments

As discussed the in last section, we are interested in the computation of statistical moments
corresponding to the PDF of output variable, i.e., ρ(y). Conventionally, the random sampling
Monte Carlo (MC) method is used to numerically evaluate statistical moments. Although the
MC sampling scheme is easily implemented, it suffers from slow convergence such that
increasing the accuracy of an integral by one decimal place requires increasing the number
of sampled points by a factor of 100. Figure 3 demonstrates the convergence of the Monte
Carlo method in evaluating the mean and covariance of a zero mean, unit variance Gaussian
distribution. The left side of Fig. 3 shows the mean vs number of Monte Carlo points and
the right side shows the 2-norm of the error between the computed covariance and the unit
covariance (identity) matrix.

It is apparent from Fig. 3 that the convergence of statistical moments using the Monte
Carlo method is quite slow and can quickly cause accurate moment evaluation to become
computationally infeasible. This fact is greatly exacerbated considering that the moments
computed in this toy example are for a normalized Gaussian distribution which is trivial
to sample quickly. In a generic case however, every sampled point potentially involves a
computationally intensive operation depending on the function f (xi ). Fortunately, there are
alternatives designed to alleviate this issue.
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(a) (b)

Fig. 3 Convergence of Monte Carlo method

3.1 Momentmapping

With the goal of finding an expression for statistical moments of y as a function of statistical
moments of x, let us consider the dth order Taylor series expansion of nonlinear mapping
between input and output variables given by Eq. (1):

y(d) = f (d)(x∗ + δx) ≈ f (x∗)︸ ︷︷ ︸
Nominal Solution

+ ∂ f (x∗)
∂xq1

δxq1︸ ︷︷ ︸
1st Order Sensitivity

+ 1

2!
∂2 f (x∗)
∂xq1∂xq2

δxq1δxq2︸ ︷︷ ︸
2nd Order Sensitivity

. . .

+ 1

d!
∂d f (x∗)

∂xq1∂xq2 . . . ∂xqd
δxq1δxq2 . . . δxqd︸ ︷︷ ︸

Higher Order Terms

, for q1, q2, . . . , qd = 1, 2, . . . , n.

(5)

This formulation expresses y as polynomials in powers of the departure δx from mean value
x∗ with constant coefficients corresponding to partial derivatives of y evaluated at x∗. The
statistical characteristics of outputy are determined by computing the outputmoments defined
by E[yα1

1 yα2
2 . . . yαm

m ]. If we truncate the Taylor series expansion of y to the first order, then
analytical expressions can be obtained to compute the moments of y. For example, the mean
and covariance of y can be approximated as:

μy = E[y(1)] = E[ f (x∗)] + HE[δx] = f (x∗), H = ∂ f (x∗)
∂x

�y = E[(y(1) − μy)(y
(1) − μy)

T ] = E[HδxδxTHT ] = H�xHT .

(6)

This Jacobian approach is used in linear methods such as the Extended Kalman Filter (EKF)
and is valid in a small region around the mean, however, the approximation quickly breaks
down as input uncertainty and/or nonlinearity increases. One way to correct for this error is
to use an iterative EKF scheme, in which the first order term is used to differentially correct
the approximation Anderson and Moore (1979). An alternative method to improve accuracy
for inputs far from the mean is to include the higher-order Taylor series terms. In this respect,
let us consider the second-order Taylor series expansion y(2):

y(2) = f (x∗) + ∂ f (x∗)
∂xq1

δxq1 + 1

2

∂2 f (x∗)
∂xq1∂xq2

δxq1δxq2 . (7)
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Once again, the first two statistical moments of y(2) are given as:

μy = f (x∗) + 1

2

∂2 f (x∗)
∂xq1∂xq2

E[δxq1δxq2 ]

�y = H�xHT + 1

4

(
∂2 f (x∗)
∂xq1∂xq2

)(
∂2 f (x∗)
∂xq3∂xq4

)
E[δxq1δxq2δxq3δxq4 ].

(8)

It should be noticed that the μy is a function of covariance of x while covariance of y is a
function of fourth-order moments of x. The process of computation of statistical moments
while considering higher-order Taylor series expansion has been discussed in Ref. Majji et al.
(2008) and lead to the formulation of Jth Moment Extended Kalman Filter (JMEKF). The
computation of statistical moments of y(d) requires knowledge of the higher-order partial
derivatives of f (x) which may not be rapidly available or difficult to compute in the absence
of explicit analytical expression for the nonlinear function f (x). For example, it is difficult
to compute the expression for these Jacobians for the ULP.

3.2 Taylor series equivalent numerical approximation

As an alternative to analytically computing statistical moments of y, we seek a derivative-
free numerical approach which provides these moments estimates with the same accuracy as
the dth order Taylor series approximation of f (x) will provide. In this respect, it is desired
to evaluate the expectation value of f (x) as the sum of discrete function evaluations f (xi )
multiplied by weights wi :

E[ f (x)] =
N∑
i=1

wi f (xi ). (9)

Substituting the dth Taylor series expansion of f (x) into Eq. (9) provides the following
expression:

E

[
f (x∗) + ∂ f (x∗)

∂xq1
δxq1 + 1

2!
∂2 f (x∗)
∂xq1∂xq2

δxq1δxq2 . . .
1

d!
∂d f (x∗)

∂xq1 + · · · ∂xqd
δxq1 . . . δxqd

]

=
N∑
i=1

wi

(
f (x∗) + ∂ f (x∗)

∂xq1
δxq1,i + 1

2!
∂2 f (x∗)
∂xq1∂xq2

δxq1,iδxq2,i

+ · · · 1

d!
∂d f (x∗)

∂xq1 . . . ∂xqd
δxq1,i . . . δxqd,i

)
(10)

Realizing that the partial derivative terms on each side of the equation are equal and inde-
pendent of both the expectation value and summation operators leads to the following
simplification of the aforementioned expression:

f (x∗) + ∂ f (x∗)
∂xq1

E
[
δxq1

] + 1

2!
∂2 f (x∗)
∂xq1∂xq2

E
[
δxq1δxq2

] + · · · 1

d!
∂d f (x∗)

∂xq1 . . . ∂xqd
E
[
δxq1 . . . δxqd

]

= f (x∗)
[

N∑
i=1

wi

]
+ ∂ f (x∗)

∂xq1

[
N∑
i=1

wiδxq1,i

]
+ 1

2!
∂2 f (x∗)
∂xq1∂xq2

[
N∑
i=1

wi δxq1,i δxq2,i

]

· · · + 1

d!
∂d f (x∗)

∂xq1 . . . ∂xqd

[
N∑
i=1

wi δxq1,i . . . δxqd,i

]
. (11)
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For the above equality to hold, the coefficients of the partial derivative terms must be equal
which leads to the following constraints on the points and weights:

N∑
i=1

wi = 1

N∑
i=1

wiδxq1,i = E[δxq1 ]

N∑
i=1

wiδxq1,iδxq2,i = E[δxq1δxq2 ]

...

N∑
i=1

wiδxq1,i . . . δxqd ,i = E[δxq1 . . . δxqd ]

(12)

A direct implication of this result is that it is necessary for the points δxi and weights wi

to match the moments of the input variable δx in order to evaluate the integral up to dth order
accuracy. Such a set of points, often referred to as quadrature points or sigma points, satisfy
the moment constraints of input variable δxi up to the accuracy of a dth order Taylor series
expansion. The application of these sigma points to the propagation of random variables is
themotivation behindmanywell-known nonlinear filteringmethods including the Unscented
Kalman Filter (UKF), Gauss–Hermite Kalman Filter (GHKF), and sparse filters.

The difference between various numerical integration methods exists only in the manner
in which the points δxi and weights wi are selected. Gaussian quadrature methods provide
the deterministic points and weights to exactly replicate the moment constraints given by
Eq. (12). In 1 − D space, the Gaussian quadrature scheme provides minimal N points for
the exact computation of d = 2N − 1 order polynomials, i.e., moments (Stroud and Secrest
1966). However, one needs to take a tensor product of the points xi in a multi-dimension
space and hence, increasing the necessary number of points exponentially to Nn .

Several methods exist to alleviate the exponential growth of points with increasing dimen-
sion. One popular method is sparse grid quadratures, in particular Smolyak quadrature, which
takes the sparse product of one-dimensional quadrature points enabling multidimensional
integral evaluation with fewer points than an equivalent Gaussian quadrature rule (Gerstner
and Griebel 1998). Although the Smolyak quadrature method drastically reduces the number
of function evaluations, it comes at the cost of potentially introducing negative weights which
can adversely impact the accuracy (Stroud and Secrest 1966).

The Unscented Transform (UT) which forms the basis of celebrated UKF Julier et al.
(2000) and Julier et al. (1995) is a 3rd order minimal quadrature scheme. According to the
UT formulation, one can exactly replicate expectation integrals involving 3rd order poly-
nomials with respect to the Gaussian PDF for any dimension n with 2n + 1 points on the
eigenvectors of the covariance matrix also known as the principal axes. In our earlier work
Adurthi (2013) and Adurthi et al. (2018), it has been shown that the UT cannot reproduce
higher-order moments (d > 3) by just increasing the number of points on the principal
axes. The Conjugate Unscented Transformation (CUT) extends the conventional UT rules
by selecting symmetric points on specially defines axes in multidimensional space to con-
struct higher-order quadrature rules (Adurthi 2013; Adurthi et al. 2018). The location and
weights of these points are computed through the solution of moment constrained equations
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Fig. 4 A schematic of CUT axes

Fig. 5 Comparison of quadrature schemes for same order of accuracy Adurthi et al. (2018)

of Eq. (12). Figure 4 illustrates the CUT axes for n = 2 and n = 3. The symmetry of
the selected points automatically satisfies the odd order moments, and even order moment
constraints are used to compute the points and weights. Construction of quadrature points in
this manner enables the exact replication of any arbitrary expectation value order using the
minimal number of points. Figure 5 shows a comparison of the number of points required
to achieve the same integral accuracy for various quadrature schemes, and clearly shows
the advantage of CUT over other existing methods. For more details on CUT, and for the
tabulated points and weights for 4th, 6th, and 8th order CUT for selected n values (Adurthi
2013; Adurthi et al. 2012a, 2013, 2012b, 2018; Adurthi and Singla 2015).

All simulations in this work utilize the 8th order CUT points. With the computational
savings afforded by the CUT method, the determination of higher-order moments with dth
order accuracy is now a computationally tractable problem. Furthermore, one can exploit this
moment information to construct the PDF while making use of the principle of maximum
entropy (Adurthi and Singla 2015). An alternative is to create a surrogate model which can
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be used in conjunction with Monte Carlo methods to create histogram representation of PDF.
In the next section, a least squares method is discussed to construct a polynomial surrogate
model representing the solution of the Lambert as well as the reachability set problem while
making use of the CUT runs.

4 Polynomial approximation

In this section, we discuss a least square based method to find the polynomial approximation
of the nonlinear mapping valid over the domain of input PDF, i.e., ρ(x). The least square
formulation utilizes the CUTmethod discussed in the previous section to find the coefficients
of this polynomial expression. The Taylor series expansion given by Eq. (5) can be re-written
as follows by grouping the partial derivative terms into (m × bi ) coefficient matrices C(i),
and the deviation terms of all possible i th order combinations of δx into (bi × 1) vectors
δx(i).

y ≈ C(0) + C(1)δx(1) + C(2)δx(2) + · · ·C(d)δx(d). (13)

Note that the size of the coefficient matrices and deviation vectors will vary depending on
the number of δx permutations in the i th order. The first two δx vectors are given as:

δx(1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δx1
δx2
...

δxn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, δx(2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δx21
δx1δx2

...

δx1δxn
δx22

δx2δx3
...

δx2δxn
...

δx2n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

The total number of polynomial basis functions, M in n-dimensional space up to degree d
follows the following factorial relationship:

M =(n+d) Cd = (n + d)!
d!n! (15)

From Eq. (15), it can be deduced that the number of basis functions bi belonging to the i th
order is given by

bi = (n+i)Ci − (n+i−1)C(i−1) = (n + i)! − i(n + i − 1)!
i !n! (16)

In general, the deviation vectors in Eq. (13) can be re-arranged into any linear combination
of δx(i) to provide an arbitrary set of polynomial basis functions φ(ζ ), and a set of new
unknown coefficients. Recalling the normalized scaling of input x given by Eq. (2), the new
basis functions are expressed in terms of the normalized variable ζ . Defining the Taylor
series in terms of normalized variable ζ helps to avoid numerical error during coefficient
calculation due to taking high order exponents of the variable x, which can potentially have
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a large raw magnitude. Collecting the C(i) matrices and φ(i)(ζ ) vectors, the Taylor series
approximation can be expressed as

y ≈ Cφ(ζ ), (17)

where the total (m × M) coefficient matrix C and (M × 1) basis function vector φ(ζ ) are
given by

C =
[
C(0) C(1) C(2) . . .C(d)

]
, φ(ζ ) =

⎡
⎢⎢⎢⎢⎢⎣

1
φ(1)(ζ )

φ(2)(ζ )
...

φ(d)(ζ )

⎤
⎥⎥⎥⎥⎥⎦

(18)

These coefficient matrices are the sensitivity matrices which map the input uncertainty in ζ

to output uncertainty in y. Note that the zeroth orderC(0) term is a vector representing output
mean y∗, and the first-order coefficient matrixC(1) is analogous to the state transition matrix.
For convenience, index notation is adopted to express the approximation for the j th element
of y

y j (x) ≈ c j,kφk(ζ ) for
j = 1, 2, . . .m
k = 1, 2, . . . M

(19)

A continuous least squares error minimization procedure is used to determine the coefficients
which best approximates the output.

J =1

2

∫
	

ε jε jρ(ζ )dζ = 1

2

〈
ε j , ε j

〉
, ε j = y j (x) − c j,kφk(ζ ). (20)

Notice that 〈a, b〉 = E[ab]. Theminimization of J results in the following normal equations:

A = CB, A j,l = 〈
y j (x), φl(ζ )

〉
, Bk,l = 〈φk(ζ ), φl(ζ )〉 , (21)

whereA andB arematrices of inner products of dimension (m×M) and (M×M), respectively.
If the polynomial basis functions φ are intelligently selected to be orthogonal polynomials
with respect to ρ(ζ ), the B matrix will be a diagonal matrix and can be re-written as:

Bk,l =
{ 〈φl(ζ ), φl(ζ )〉 for k = l
0 for k �= l

(22)

For a given distribution ρ(ζ ), the orthogonal polynomials φl(ζ ) can be computed through the
application of the Gram–Schmidt process (Singla and Junkins 2008; Luenberger 1968). For a
standard zero mean, unit variance Gaussian PDF the orthogonal polynomials are the Hermite
polynomials, and for a standard uniform PDF between [−1, 1] the orthogonal polynomials
are the Legendre polynomials. An example of the first three φ(i) vectors for d = 3, n = 3,
and a Gaussian distribution (Hermite basis) is given as:
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φ(0)(ζ )=1, φ(1)(ζ ) =
⎧⎨
⎩

ζ1
ζ2
ζ3

⎫⎬
⎭ , φ(2)(ζ )=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ 2
1 − 1
ζ1ζ2
ζ1ζ3

ζ 2
2 − 1
ζ2ζ3

ζ 2
3 − 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, φ(3)(ζ )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ 3
1 − 3ζ1

ζ 3
2 − 3ζ2

ζ 3
3 − 3ζ3

(ζ 2
1 − 1)ζ2

(ζ 2
1 − 1)ζ3

(ζ 2
2 − 1)ζ1

(ζ 2
2 − 1)ζ3

(ζ 2
3 − 1)ζ1

(ζ 2
3 − 1)ζ2
ζ1ζ2ζ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

For diagonal B, the least squares coefficients c j,l become linearly independent and can be
written in the convenient analytical form given by Eq. (24)

c j,l =
〈
y j (x), φl(ζ )

〉
〈φl(ζ ), φl(ζ )〉 = E[y j (x)φl(ζ )]

E[φl(ζ )φl(ζ )] . (24)

The integrals in B are purely polynomial and can be integrated with relative ease; however,
it important to note that the integration technique used to evaluate the elements in Bmust be
able to replicate moments of ζ up to two times the maximum basis function order. The main
challenge comes in evaluating the multi-dimensional integrals in A. In general, there is not
an analytical expression for y j , so the A j,l terms must be evaluated numerically as follows:

A j,l = E[y j (x)φl(ζ )] =
N∑
i=1

w(i)y j (x(i))φl(ζ
(i)). (25)

The computational burden of evaluating A j,l is dictated by chosen quadrature scheme to
numerically approximate the aforementioned integral. As discussed in the previous Section,
theCUTmethodology enable the accurate computation of A j,l with significantly fewer points
than other quadrature methods such as the Gaussian quadrature and the Smolayak scheme.
Once the coefficients are computed, it is trivial to sample random points from P(ζ ), evaluate
the orthogonal basis functions φ(ζ ) and compute the solution given by Eq. (17). Figure 6
illustrates the procedure of creating polynomial surrogate model for the ULP problem. The
application of CUTmethodology allows us to compute both desired order statistical moments
as well as the polynomial surrogatemodel fromminimal sampling of the input variable space.

5 Results

This section will present descriptions of all numerical simulations and analysis of the results.
Test cases 1 and 2 are ULP cases while test cases 3 and 4 corresponds to RSP cases.

The two ULP test cases are (1) a Low Earth Orbit (LEO) case provided in Schumacher
et al. (2015), and (2) a hypothetical Geosynchronous Transfer Orbit (GTO) orbit in the
equatorial plane. The results for test case 1 will be compared to the linear variational solution
in Ref. Schumacher et al. (2015) to validate the equivalency of the first-order sensitivity to the
linear solution. Higher-order solutions will then be presented. The Lambert Problem solver
used in this analysis is based on the universal variable formulation of the Battin–Vaughn
algorithm (Battin and Vaughan 1984; Engels and Junkins 1981), and can be found in detail
in Prussing and Conway (2013). The solver calculates an iterative solution to the initial and
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Fig. 6 Higher-order sensitivity method summary for ULP

final position vectors for the given transfer time, and eliminates some of the singularities
associated with traditional geometric solutions to the Lambert Problem.

The two RSP cases are based on (1) the optimal trajectory computed in Betts (1977), and
(2) the first orbit insertion maneuver of the Korea Pathfinder Lunar Orbiter mission from
Song et al. (2016). Each simulation models the nominal trajectory and maneuver sequence
from the respective example in the literature, and adds uncertainty to the input variables to
compute the final reachable space. Keplerian two body dynamics is assumed for all test cases.

5.1 Test case 1: LEO

Test case 1 will be presented differently than all other test cases, in that it will be used to
validate theCUTapproach to sensitivitymatrix computation aswell as demonstrate the effects
of adding higher orders. Test case 1 corresponds toULP as presented inRef. Schumacher et al.
(2015) and constitutes a satellite in a near-circular LEO orbit with a radius of |r1| ≈ 7000
km and inclination i = 2◦. The nominal initial and final state vectors for case 1 are shown in
Table 2 and correspond to a time of flight dt = 0.2059P where P is the orbital period. The
input variables are the initial and final position vectors r1, r2, and are prescribed a Gaussian
distribution with covariance matrix:

� = 10, 000I6×6 (m2). (26)

This corresponds to a standard deviation of 100 m in each dimension. The output variable is
the initial velocity v1.

In addition to the mean and covariance, higher-order statistical central moments of the
initial position and initial velocity are presented. Only the diagonal terms of these central
moments will be considered, and can be calculated with Eq. (27)

E[(x j − E[x j ])q ] =
∫

	

(x j − x∗
j )
qρ(ζ )dζ =

N∑
i=1

wi (xi, j − x∗
j )
q , (27)
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Table 2 Test case 1: LEO state
vector

Parameter State 1 State 2

Time (s) 0 1200

x (km) −2039.8845 −6995.7285

y (km) 6672.88669 −166.39802

z (km) 232.675383 −7.0380479

ẋ (km/s) −7.236669 0.15969047

ẏ (km/s) −2.2063637 −7.5422634

ż (km/s) −0.0783 −0.2633659

where xi, j and wi are the 8th order CUT points and weights, respectively, and E[(x j −
E[x j ])q ] is the qth central moment. The first rawmoment (mean) x∗, and the 2nd–4th central
moments calculated using Eq. (27) are shown in Table 3. The third central moment is almost
zero and the fourth central moment values are close to 3σ 4 rule for the Gaussian random
variable, with σ being the standard deviation. Hence, one can conclude that the distribution
of v1 is near Gaussian. To directly compare the CUT8 results with the results in Schumacher
et al. (2015), the covariance matrix for r1 and v1 is computed. This covariance matrix can
be calculated by evaluating the deterministic Lambert problem at the CUT points, and using
Eq. (28) for x = [r1, v1]T .

� =
∫

(x − x∗)(x − x∗)T ρ(ζ )dζ

=
N∑
i=1

wi (xi − x∗)(xi − x∗)T
(28)

As expected, the covariance matrix given in Schumacher et al. (2015) Table 3 matches
the covariance calculated using the CUT8 method in Table 4 almost exactly to the precision
given. Notably, in Schumacher et al. (2015) the off-diagonal terms are assumed to be uncor-
related and set to zero, however, no assumptions about correlation are made in evaluating the
covariance matrix numerically. Thus, it is reassuring to see that the off-diagonal terms of the
covariance matrix are indeed very small, further assuring us that the CUT8 method works
properly.

To validate the equivalence of the first-order sensitivity matrix and state transition matrix,
the following first-order sensitivity matrix is computed.[


r2

v2

]
= C(1)φ(ζ ), for φ(ζ ) =

[

r1

v1

]
. (29)

The State Transition Matrix given in Schumacher et al. (2015) matches the coefficients of
C(1) given in Table 5 to the given precision. This demonstrates an approximate equivalency
of the two methods.

The sensitivity matricesC(i)
V corresponding to the initial velocities are now presented. The

first three sensitivity matrices for initial velocity are computed

v1 =
[
C(0)
V C(1)

V C(2)
V C(3)

V

]
φ(ζ ). (30)

The magnitudes of the coefficients for various orders are summarized in Fig. 7. CVx , CVy ,
and CVz are the RMS values for all elements in the 1st, 2nd, and 3rd row of coefficients in

each C(i)
V matrix (see Eq. (13)).
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Fig. 7 Test case 1: RMS of coefficients for varying sensitivity order

Table 6 Test case 1: |v1| velocity
error

Approximation order RMS
(
ε|v1|

)
(%)

1st order 4.1667e−8

2nd order 5.2026e−11

3rd order 5.2019e−11

CVx =
√√√√ 1

bi

bi∑
i=1

c21,i , CVy =
√√√√ 1

bi

bi∑
i=1

c22,i , CVz =
√√√√ 1

bi

bi∑
i=1

c23,i . (31)

Notice that the first-order coefficients in Fig. 7 are roughly 5 orders of magnitude higher
than the second order and almost 10 orders of magnitude higher than the third-order coeffi-
cients. This indicates that the solution is overwhelmingly composed of first-order variational
terms, further providing evidence that the distribution of v1 is approximately Gaussian given
the input domain assumed in this test case.

To conduct an error analysis, 10,000 random points ζ i were sampled from the normalized
Gaussian PDF ρ(ζ ), and input to the full Lambert solver algorithm to determine the true v�

1.
These same points were also used to evaluate the polynomial approximation for v1 ≈ Cφ(ζ ),
and the percent error %ε for output magnitude was computed as follows

%ε =
∥∥∥∥v

�
1 − v1
v�
1

∥∥∥∥
2

· 100%. (32)

Table 6 summarizes the RMS of percent error in v1 for varying approximation order.
Figure 8 summarizes the error for varying sensitivity approximation orderswhere the colorbar
is %ε on a logarithm scale. Figures on the left show error scatter plots with v1,x , v1,y, and
v1,z on the axes, and figures on the right are error contour plots with Mahalanobis distances
for r1, r2 on the x- and y-axes, respectively. Mahalanobis distance represents the distance of
a given sample point from the mean in multiple dimensions and can be computed as follows
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Fig. 8 Test case 1: |v1| approximation % Error. The color of the particle corresponds to the logarithm of
% error, i.e., log%ε. The cold blue color represents smaller values (≈ O(10−12)) for %ε while red color
represents higher values (≈ O(10−7)) for %ε

d =
√

(xi − x∗)T�−1(xi − x∗) =
√

ζ T
i ζ i . (33)

Table 6 shows a decrease in error of 3 orders of magnitude between the first- and second-
order sensitivity approximations, however, there is almost no improvement in error between
second- and third-order sensitivities. This is reflected in the plots in Fig. 8. The fact that
there is almost no improvement in accuracy between second- and third-order reflects that the
distribution of ρ(v1) is almost perfectly captured by the second-order polynomial approxi-
mation. It is also notable that the error contours in the first-order Mahalanobis plot appear
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Table 7 Test case 2: GTO state
vector

Parameter State 1 State 2

Time (s) 0 16,936.7

x (km) 6981.5960 −41,605.0402

y (km) 0 3639.9694

z (km) 0 0

ẋ (km/s) 0 −0.5027

ẏ (km/s) 9.8977 −1.6169

ż (km/s) 0 0

Table 8 Test case 2: |v1| velocity
error

Polynomial order RMS (εV1 ) (%)

1st order 3.4982e−6

2nd order 1.1071e−9

3rd order 5.2482e−11

much more random than those in the higher orders, indicating that in addition to improving
accuracy, adding higher-order sensitivities helps smooth out error variations in the domain
of the approximation.

5.2 Test case 2: GTO

The second test case is a Geostationary Transfer Orbit (GTO) with longer time of flight (dt =
0.4418P), and higher eccentricity than test case 1 to illustrate how thismethod performswhen
the dynamics introduce higher nonlinearities. The nominal orbit is an equatorial transfer
(i = 0◦) between the LEO altitude in test case 1 (610.6 km) and GEO altitude (35786 km).
The final position vector is at a true anomaly of 5◦ before the apoapsis (θ = 175◦). The time
of flight for test case 2 is dt = 16936.7s. The nominal state vectors for test case 2 are given
in Table 7. The PDF prescribed to both the initial and final position vectors is the same as in
test case 1; Gaussian with 100m standard deviations (� = 10, 000 × I6×6 (m2)).

Similar to test case 1, the results for test case 2 will be given as sensitivity coefficient
magnitudes, RMS error table, and error distribution plots. The magnitude of the coefficients
corresponding to each sensitivity matrix order is given in Fig. 9. Plots showing the spatial
distribution of percent error in v1 as well as the Mahalanobis distance representation of
percent error is given by Fig. 10. A summary of the RMS of percent error in v1 is given for
each approximation order in Table 8.

The statistical moments of v1 are given in Table 9. It is notable that in this test case the
skewness is roughly the same order of magnitude as the kurtosis. This indicates that there
may be some non-Gaussian effects in the solution which require higher-order sensitivities to
capture.

The RMS error in the first-order sensitivity approximation for test case 2 is larger than it
was in test case 1 by almost 2 orders of magnitude. Since each test case was prescribed the
same uncertainty in input variables, this difference is largely due to the higher nonlinearities
introduced due to a much longer time of flight. Despite the larger error for the first order
approximation relative to the LEOcase, adding higher order terms still significantly decreases
the approximation error to the point where the 3rd order approximation errors for both cases
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Fig. 9 Test case 2: RMS of
coefficients for varying
sensitivity order

1 2 3

Sensitivity Matrix Order

-14

-12

-10

-8

-6

-4

-2

0

Lo
g1

0(
C

V
)

C
V

x

C
V

y

C
V

z

are the same order of magnitude. Interestingly, Fig. 10 shows the same smoothing of the
contour lines as in test case 1, but only once the third-order sensitivity matrix is included.

5.3 The reachability set problem

This section will present and discuss the results for the two reachability set test cases. The
RSP test cases differ from the ULP cases because the satellite is no longer purely in two
body motion and is now allowed to make maneuvers at intermediate times in the simulation.
Each test case will use the NTW satellite coordinate system as defined in Vallado (2001) to
describe the impulsivemaneuvers. For this system, N̂ is in the orbital plane and perpendicular
to velocity, T̂ is parallel to the velocity vector, and Ŵ is parallel to the angular momentum
vector to complete the right handed system. The impulsive maneuvers are described by a
magnitude |
v|, as well as pitch and yaw angles ψ and θ as shown in Fig. 11.

Maneuvers in the NTW frame can be computed using Eq. 34


vNTW = |
v|
⎡
⎣ cos θ cosψ N̂

cos θ sinψ T̂
− sin θ Ŵ

⎤
⎦ . (34)

The impulsivemaneuver in theNTW framemust then be rotated to the Earth Centered Inertial
(ECI) frame with rotation matrix (T) and combined with the pre-maneuver velocity (v−) to
compute the post-maneuver velocity (v+).

v+ = v− + T
vNTW . (35)

5.4 Test case 3: two burnmaneuver

Test case 3 is based on Betts (1977) which determines the optimal three burn transfer orbit
from a LEO parking orbit to a final operations orbit of a specific inclination. This trajectory
consists of three impulsive maneuvers to several target orbits with varying inclinations;
however, this test case will only look at the first example with target i = 63.4◦. Additionally,
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Fig. 10 Test case 2: |v1| approximation % Error. The color of the particle corresponds to the logarithm of
% error, i.e., log%ε. The cold blue color represents smaller values (≈ O(10−12)) for %ε while red color
represents higher values (≈ O(10−5)) for %ε

Fig. 11 Diagram of maneuver
geometry in NTW frame
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Table 10 Test case 3: nominal
transfer orbit parameters

Parameter Parking orbit 1st transfer 2nd transfer

a∗ (km) 6667.32 22,835.4 29,243.5

e∗ 0 0.7080 0.6785

i∗(◦) 37.40 35.78 57.88

ω∗(◦) N/A 254.0 259.6

Table 11 Test case 3: nominal
burn parameters

Parameter 1st burn 2nd burn Final position

|
v∗| (m/s) 2,383.5 1,235.7 N/A

θ∗(◦) −1.36 7.21 N/A

ψ∗(◦) 5.99 74.7 N/A

u∗(◦) 255 37.7 121.7

t(s) 0 6,078.2 35,609.0

Table 12 Test case 3: nominal
maneuver uncertainties

Variable Standard deviation

σ
V1 5 (m/s)

σθ1 2◦
σψ1 2◦
σ
V2 5 (m/s)

σθ2 2◦
σψ2 2◦

test case 3 only considers the first two burns for the nominal optimal transfer orbit given in
Ref. Betts (1977), and the end of the simulation is taken to be the position where the third
burn would occur. The parking orbit is a circular LEO with i = 37.4◦, and the first burn is
applied at an argument of latitude u = 255◦. The Right Ascension of the Ascending Node
(RAAN) is not important for this analysis and is set to zero for simplicity. The nominal orbital
elements for the coasting transfer orbits are given in Table 10.

The first burn occurs at the start of the simulation, and the second burn occurs at t =
6078.2(s). The nominal burn parameters (|
v∗|, θ∗, ψ∗) as well as the nominal argument
of latitude (u∗) and time that each burn occurs are given in Table 11. Note that the time of
the second burn is fixed regardless of the deviation from nominal orbit due to the initial burn.

The state at the first burn is assumed to be known exactly, and is determined by the
position and velocity vectors of the parking orbit with argument of latitude u = 255◦. Thus,
the uncertain input variables are the maneuver magnitudes and attitude angles. It is assumed
that the pitch and yaw angles as well as the maneuver magnitude are normally distributed
random variables with mean given by the nominal parameters given in Table 11, and standard
deviations given by Table 12.

The sensitivity matrices corresponding to the reachable set at t f = 35, 609.0(s) are
computed for approximation orders 1–4. Additionally, 4th order sensitivity matrices cor-
responding to the reachable set at intermediate times are computed and used to depict the
evolution of the reachability set in Fig. 12

123



Higher-order sensitivity matrix method Page 25 of 36 50

Fig. 12 Test case 3: evolution of
fourth-order reachability set

Table 13 Test case 3: |r2|
position error

Approximation order RMS
(
ε|r2|

)
(%)

1st order 1.2227e0

2nd order 1.1255e−1

3rd order 2.3399e−2

4th order 8.3191e−3

10,000 points ζ i are randomly sampled and propagated through the full simulation, as well
as approximated using the sensitivity matrices. The percent error in the magnitude of final
position %εr2 for each sample is computed and the RMS values for each sensitivity order are
shown in Table 13. The colorbars in Fig. 13 show the percent error in final position %εr2 ,
and the axes show how the errors are spatially distributed. The axes of the plots in the left
column show the final inertial X , Y and Z positions, and the plots in the right column show
Mahalanobis distances of initial position and initial velocity on the x and y axes, respectively.

It is evident from inspection of Fig. 13 and Table 13 that the error in the final position
decreases as the sensitivity matrix order is increased. This trend is consistent with the ULP
results, however, the magnitude of percent error is considerably higher than that of both ULP
test cases previously shown (Tables 6 and 8).

Table 14 lists the statisticalmoments of the final position r2. It is evident from themoments
of r2, and particularly the third-order moment, that the distribution is strongly non-Gaussian.
This fact coupled with the large covariance indicates that it is likely necessary to include
higher-order terms to achieve any reasonable accuracy.

This result is perhaps unsurprising given the relatively high levels of uncertainty prescribed
to the maneuvers and the length of the over which the simulation is propagated. It is visually
apparent from Fig. 12 that the domain of the reachability set expands quite rapidly over
time leading to a breakdown of the validity of the Taylor series expansion at lower order
approximations. To continue to improve the approximation accuracy for simulations with
such high uncertainties, even higher orders sensitivities would need to be computed; however,
there is a point where the computational cost of computing the next sensitivity matrix may
not be worth the diminishing return on accuracy.
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Fig. 13 Test case 3: |r2| approximation % Error. The color of the particle corresponds to the logarithm of
% error, i.e., log%ε. The cold blue color represents smaller values (≈ O(10−5)) for %ε while red color
represents higher values (≈ O(10)) for %ε
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Fig. 14 Test case 4: diagram of
arrival geometry

5.5 Test case 4: Lunar orbit insertion

This test case simulates a Lunar Orbit Insertion (LOI) maneuver based on 1st orbit insertion
maneuver of the Korea Pathfinder Lunar Orbiter mission described in Song et al. (2016).
A similar example can be found in Houghton et al. (2007). It is assumed that the orbiter
approaches the moon on a hyperbolic arrival trajectory with i = 90◦ such that the satellite
can enter into a polar orbit. The nominal LOI maneuver is planned to execute at the periapsis
of the arrival orbit such that the target insertion orbit has a period of 12 hours. A diagram
showing the geometry of the arrival trajectory and insertion maneuver is shown in Fig. 14.

The semi-major axis (a0) and eccentricity (e0) of the target orbit are defined by the rela-
tionships:

a0 =
(

(P/2π)2

μ

)
(36)

e0 = 1 − Rm + h p

a0
, (37)

where P is the orbital period,μ is the standard gravitational parameter of theMoon, Rm is the
radius of the Moon, and h p is the altitude above the lunar surface at periapses. It is assumed
that the parameters i0, ω0,	0, ν0, h p and hyperbolic arrival velocity at periapsis vhyp are
design parameters that can be specified based on mission objectives. The current analysis
will use the same target orbit as in Song et al. (2016): h p = 200km, |v∗

hyp| = 2.4km/s, time
of maneuver ti = 0s and all other targeted orbit parameters shown in Table 15. The values
given represent the nominal orbit of the spacecraft immediately after the burn. Given these
target orbit specifications and the hyperbolic arrival velocity, the nominal maneuver is given
by Eq. (38)
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Table 15 Test case 4: nominal
orbit elements

Orbital element Value

Semi-major axis (a0) 6143.4 (km)

Eccentricity (e0) 0.6847

Inclination (i0) 90◦
Argument of periapse (ω0) 0◦
RAAN (	0) 0◦
True anomaly (ν0) 0◦
Period (P) 12 hr

Table 16 Test case 4: input
uncertainty

Variable Direction Standard deviation

Position N̂ 1000 (m)

Position T̂ 10,000 (m)

Position Ŵ 1000 (m)

Velocity N̂ 1 (ms )

Velocity T̂ 10 (ms )

Velocity Ŵ 1 (ms )

Pitch N/A 0.5◦
Yaw N/A 0.5◦
Burn magnitude N/A 5 (ms )

u∗ =
⎧⎨
⎩

|
v|∗ = 334.568m/s
θ∗ = 180◦
ψ∗ = 0◦

⎫⎬
⎭ (38)

Uncertainty will be included in the (3× 1) inertial cartesian position and velocity vectors
rhyp and vhyp , as well as in the (3 × 1) nominal maneuver vector u∗. Figure 11 illustrates
the geometry of the orbit insertion maneuver in the NTW frame. Note that all input variables
are assumed to be normally distributed random variables and are represented in the NTW
reference frame allowingmore realistic initial uncertainties specifications. The input variables
and their associated standard deviations are listed in Table 16.

To reduce the dimension of the input vector, and thus the computational expense of com-
puting the sensitivity coefficients, the mean and covariance of the post-maneuver velocity in
the NTW frame are computed using Eq. (39).

v∗NTW
1 = E[vNTW

1 ] = E[vNTW
hyp + 
vNTW ] = v∗NTW

hyp + 
v∗NTW

�NTW
v1 = E[(vNTW

1 − v∗NTW
1 )(vNTW

1 − v∗NTW
1 )T ] = �NTW

vhyp
+ �NTW


v

(39)

The covariancematrix for the hyperbolic arrival velocity�NTW
vhyp

is given, however the covari-

ance matrix for the maneuver in NTW frame �NTW

v is not directly specified from the burn

magnitude and attitude uncertainties sowemust calculate it. Using themaneuvermodel given
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Fig. 15 Test case 4: evolution of
fourth order reachability set

by Eq. (34), the NTW frame covariance matrix can be computed with the CUT method.

�NTW

v =

∫
(
vNTW − 
v∗NTW )(
vNTW − 
v∗NTW )T ρ(ζ )dζ

= wi (
vNTW
i − 
v∗NTW )(
vNTW

i − 
v∗NTW )T
(40)

Where wi are the CUT weights and 
vNTW
i are the CUT points scaled to the post-maneuver

velocity in the NTW frame. The post-maneuver velocity covariance matrix �NTW
v1 can now

be calculated using Eq. (39). Assume that matrix T is the rotation matrix which maps the
NTW frame to the Moon Centered Inertial (MCI) frame. To determine the mean velocity as
well as position and velocity covariances in the MCI frame, the following relations are used:

v∗mci = Tv∗NTW
1

�(mci)
v1 = T�NTW

v1 TT

�(mci)
r1 = T�NTW

r1 TT

(41)

Once a complete representation of the post-maneuver state mean and covariance has been
computed in the MCI frame (Eq. (42)), the sensitivity coefficients can be calculated in the
same manner as all previous test cases.

x =
{
r1
v1

}
, �x =

[
�

(mci)
r1 03×3

03×3 �
(mci)
v1

]
, x∗ =

{
r∗mci
1
v∗mci
1

}
. (42)

The final simulation time is t f = 2 hours. The sensitivity coefficient matrices correspond-
ing to the final time are computed up to fourth order. Additionally, fourth-order sensitivity
matrices for some intermediate times are computed and used to depict the evolution of the
reachability set in Fig. 15. The statistical moments of r2 are shown in Table 17.

10,000 points ζ i are sampled from ρ(ζ i ) and both propagated through the full simulation
as well as approximated using sensitivity matrices orders 1–4. Table 18 shows the RMS of
percent error for each sensitivity order, and Fig. 16 depicts the distribution of errors over the
samples. The plots on the left of Fig. 16 show a scatter plot of r2, and the plots on the right
show error contours vs the Mahalanobis distances of the initial position and velocity on the
x and y axes. The color scale of Fig. 16 is a log scale of percent error.

The RMS errors given in Table 18 further reinforce the trend that including higher-order
sensitivity matrices decreases the error in the approximation. Furthermore, the Mahalanbois
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Fig. 16 Test case 4: |r2| approximation % Error. The color of the particle corresponds to the logarithm of
% error, i.e., log%ε. The cold blue color represents smaller values (≈ O(10−7)) for %ε while red color
represents higher values (≈ O(10−1)) for %ε
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Table 18 Test case 4: |r2|
position error

Approximation order RMS
(
ε|r2|

)
(%)

1st order 4.1859e−2

2nd order 1.4326e−3

3rd order 6.0057e−5

4th order 2.8592e−6

distance plots show that even samples that are far from the mean have improved accuracy at
higher order, implying that the approximation is valid for a larger domain of uncertainty.

6 Conclusions

The goal of this paper was to present the HOSMmethod and demonstrate its applicability to
stochastic problems in orbital mechanics. Specific examples are presented for the ULP and
RSP, however, the HOSM method is a generic uncertainty propagation method and can be
applied to many other astrodynamics problems including orbit determination, conjunction
analysis, and data association. The higher-order moments of the stochastic output variable
up to dth order are computed using the CUT method, providing the same accuracy as a
solution performing a dth order Taylor series expansion on the output. These moments are
then used to construct a surrogate polynomial model of the output PDF, i.e., sensitivity matrix
approximation. In both the ULP and the RSP, it has been demonstrated that increasing the
order of sensitivity matrices decreases the approximation error and expands the domain over
which the approximation is valid.

The HOSM method using first-order polynomials has been shown to be equivalent to
a linear variational solution such as that given in Ref. Schumacher et al. (2015); however,
the HOSM method is flexible in the sense that higher-order polynomials can be included to
improve accuracy at the expense of increased computational time. In general, the approxi-
mation error for a given sensitivity matrix order depends on how much uncertainty there is
in the inputs (size of the domain), and on how much nonlinearity is introduced to the output
through other factors like the dynamics and time of flight. Unsurprisingly perhaps, higher
uncertainty and nonlinearity results in lower accuracy, so as uncertainty increases, one must
add higher-order derivatives to achieve the same accuracy. TheCUTpoints andweights for up
to 8th order for 6 dimensional polynomials have been computed and tabulated. This implies
that a 4th order approximation is the maximum that can be found using these tabulated values
due to the inner product of polynomial basis functions necessary to compute the sensitivity
coefficients. However, in general the procedure for computing the CUT points and weights
for higher orders and higher dimensional polynomials exists.

The novelty of this approach comes in the efficient computation of sensitivity matrices
using the Conjugate Unscented Transformation numerical integration method. The CUT
method allows for the computation of sensitivity matrices which satisfy higher order statis-
tical moment constraints, enabling the non-Gaussian statistical mapping of the inputs to the
solution space. An additional benefit of CUT is that the quadrature points are constructed
without the need to take tensor products in multi-dimensional space. This enables the same
accuracy as other quadrature methods with significantly lower computation time.

As is the case with any design problem, there are trade-offs between accuracy, compu-
tational time, and complexity that need serious consideration. The solution accuracy can
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theoretically always be improved by adding the next highest sensitivity matrix; however, it
may be the case that including these terms is infeasible either due to available computa-
tional power or restrictive complexity involved in computing CUT points. A major benefit of
this method is that it enables the analyst the flexibility to explore these trade-offs. In future
works, authors are exploring the handshake of the CUTmethodology with the transformation
of variable method to obtain an expression for the output PDF.

Acknowledgements This material is based upon work supported jointly by the AFOSR Grants FA9550-15-
1-0313 and FA9550-17-1-0088.s.
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