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Abstract
Third-body perturbations have been extensively studied in recent years. Almost all previous
works, however, assumed that the perturbations are caused by a third body that orbits the
primary on a radius larger than the semimajor axis of the perturbed object. This assumption
is justified as long as the primary is not accompanied by a third body in close orbit. In this
work, we present an analytic model for the dynamics of a perturbed object that orbits the
primary on an orbit with a semimajor axis larger than the semimajor axis of the third body.
Such a third body is referred to as an inner third body. An analysis of the long-term evolution
of the orbital elements is presented, followed by simulation results, which demonstrate the
validity of the model. Amore generalized model is then developed, which includes a nonzero
eccentricity for the orbit of the third body. An analogy between the J2 problem and the inner
third-body perturbation is indicated as well.

Keywords Perturbations · Inner third body · Double averaging

1 Introduction

The development of semi-analytical orbital models dates back to thework of Brouwer (1959),
who separated the influence of the J2 perturbation into short-period, long-period and secular
variations. This perturbation is dominant in low orbits. For higher orbits, third-body pertur-
bations must be taken into account. For example, in the high Earth orbit region, the lunisolar
attraction becomes a dominant perturbation. One of the first models of third-body perturba-
tions was developed by Kozai (1966), who published a comprehensive special report, which
introduced the short-period solutions for the orbital elements. Kozai (1966) showed that in
order to compute the position of a satellite with seven significant digits, even if the mean
motion is as large as ten revolutions per day, lunisolar short-period perturbations should be
taken into account.

Later Kozai (1973) used the ecliptic reference system for the Moon and the equatorial
system for the satellite and introduced a new method for the evaluation of lunisolar per-
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turbations, wherein it was proposed to compute secular and long-period perturbations by
numerical integration and short-period perturbations by analytical formulae.

A simplified approximate model was introduced by Broucke (2003), who described the
effect of the third-body perturbation on a satellite using double averaging over the mean
anomaly of the satellite, as well as the mean anomaly of a distant third body. This yielded an
analytic model for the evolution of the mean orbital elements during a long time period.

Solórzano and Prado (2007a, b) studied the motion of a satellite using a singly averaged
model. The disturbing function was expanded into Legendre polynomials up to fourth order.
The single average was taken over the mean motion of the satellite to eliminate short-period
perturbations.

Domingos et al. (2008) examined the third-body perturbations in the case of elliptic
orbits with the disturbing function expanded into Legendre polynomials up to second order.
The mentioned work was extended by Xiaodong et al. (2012), presenting the long-term
perturbations due to a third body in an elliptic inclined orbit.

Nie et al. (2019) presented a semi-analytical model for third-body perturbations including
the inclination and eccentricity of the third body and provided an analytical transformation
between osculating and mean elements, in addition to developing the long-term dynamical
equations.

The works discussed thus far assumed that the third-body perturbation is caused by a third
body that orbits the primary in a radius larger than the semimajor axis of the perturbed object,
e.g., a satellite. This assumption is justified as long as the primary does not have a third body
in close orbit.

For example, consider Mars and its moons, Phobos and Deimos. Both are in relatively
close orbit around Mars. The orbit of Phobos is especially close to Mars, and its semimajor
axis is smaller than the areostationary radius. A third body that orbits a primary in a radius
smaller than the semimajor axis of a satellite is called an inner third body.

A discussion of inner third-body dynamics was provided by Romero et al. (2015), in
the context of station-keeping maneuvers required to control the inclination evolution of
areostationary satellites. Such dynamics are different from the classical outer third-body
case. In order to accurately predict the long-term motion of a satellite orbiting an inner third-
body system, an appropriate model of the long-term effects caused by the inner third body
is needed.

In this work, we develop a model for the long-term evolution of the orbital elements due
to the inner third-body perturbation, while considering Legendre polynomials up to second
order. We show that the resulting orbital element rates of the inner third-body problem are
different from the classical problem. Whereas in the work of Romero et al. (2015), the non-
averaged perturbing potential of an inner third body was used in order to examine its effects
on the required station-keeping maneuvers, in this work, we study the long-term effects of
the doubly averaged inner third-body perturbing potential on the orbital element evolution.
We show that for near-circular orbits, the J2 problem and the inner third-body problem are
equivalent and provide simulations to validate the model.
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Fig. 1 An inner third-body configuration. The primary is located at the center of the reference system, and the
orbit of the inner third body is in the XY plane

2 The perturbing potential

When the primary is located at the center of the reference system, the perturbing potential of
an inner third body can be written as (Romero et al. 2015)

R = μ3

r

[
1 +

(
d

r
− r2

d2

)
cos S +

∞∑
l=2

(
d

r

)l

Pl (cos S)

]
, (1)

where μ3 is the gravitational parameter of the third body, d is the distance between the
primary and the third body, r is the distance between the primary and the satellite, S is the
central elongation between the satellite and the third body, as shown in Fig. 1, and Pl are the
Legendre polynomials of degree l.

Figure 2 depicts a comparison of the perturbing potential of an inner third body for different
values of themaximumvalue of l. The examined satellite is a variant ofMars Odyssey, having
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the following orbital elements:

a = 17000 km, e = 0.0091, i = 92.977◦

� = 91.051◦, ω = 270.385◦, f = 76.912◦. (2)

Except for the semimajor axis, these are the actual orbital elements of Mars Odyssey as
of January 1, 2009, provided by NASA’s HORIZONS database1. In such an orbit, Phobos
induces an inner third-body perturbation upon the satellite.

As shown in Fig. 2, taking the first Legendre polynomial, l = 2, gives a reasonable
approximation of the perturbing potential. We will refer to the region in which the model of
the inner third body is valid as the inner third-body region. For a more accurate calculation
of the total perturbing potential, the perturbation of Deimos should be taken into account.
However, we will still use the Mars–Phobos system as a practical means to test the results
of the model, by comparing it with the results of GMAT (NASA’s General Mission Analysis
Tool) when Phobos is the only perturbation source. In what follows, we focus on modeling
the dynamics given a single inner third body.

We start by approximating the perturbing potential while taking only P2. According to
spherical trigonometry, the cosine of the central elongation is given by (Nie and Gurfil 2018)

cos(S) = sin (M3 − �) sin (ω + f ) cos (i) + cos (M3 − �) cos (ω + f ), (3)

where M3 is the mean anomaly of the third body, � is the satellite’s right ascension of
ascending node (RAAN), ω is its argument of periapsis, f is the true anomaly of the satellite,
and i is the satellite’s inclination.

Substituting Eq. (3) into Eq. (1) yields the perturbing potential of an inner third body in
terms of the orbital elements:

R = μ3

2d2r3
[
d4(3(sin (M3 − �) sin (ω + θ) cos (i) + cos (M3 − �) cos (ω + θ))2 − 1)

+ 2d2r2 + 2r(d3 − r3)(sin (M3 − �) sin (ω + θ) cos (i)

+ cos (M3 − �) cos (ω + θ))] . (4)

In order to eliminate the short-period variations, the disturbing function is averaged with
respect to the mean anomaly of the third body:

Ra = 1

2π

2π∫
0

RdM3

= μ3

4r3
[
3d2 sin2 (�) sin2 (ω + f ) cos2 (i) + 3d2 sin2 (�) cos2 (ω + f ) + 4r2

+ 3d2 sin2 (ω + f ) cos2 (�) cos2 (i) + 3d2 cos2 (�) cos2 (ω + f ) − 2d2 ].

(5)

The elimination of the medium-period variations is performed by integrating Ra with respect
to the mean anomaly of the satellite. This integration is somewhat more complicated, due to
the dependency of r on f ,

r = a
(
1 − e2

)
1 + e cos( f )

. (6)

1 https://ssd.jpl.nasa.gov/horizons.cgi.
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(a) Considering only the first Legendre polynomial, lmax = 2.
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(b) Considering the first two Legendre polynomials, lmax = 3.
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(c) Considering the first three Legendre polynomials, lmax = 4.

Fig. 2 The perturbing potential of Phobos on a Mars Odyssey orbiter variant
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The doubly averaged perturbing potential is

Rda = 1

2π

2π∫
0

RadM = 1

2π

2π∫
0

Id f , I = r2

a2
√
1 − e2

Ra, (7)

according to the relation d f
dM = a2

r2

√
1 − e2.

Substituting Eqs. (5) and (6) into I , we get after some manipulations

I = μ3g(e, f )

8πa3(1 − e2)1.5
[
8πa2(1 − e2)2 + 3d2(e cos f + 1)2(sin� cos2 (ω + f )

− sin� sin2 (ω + f ) cos2 i + 2 sin (ω + f ) cos� cos i cos (ω + f )) cos�

− d2

32
(e cos f + 1)2(12 sin (2�) − 6 sin (2� − 2i) + 24π cos (2i + 2ω + 2 f )

− 18 sin (−2� + 2ω + 2 f ) + 18 sin (2� + 2ω + 2 f ) + 24 sin (−i + 2ω + 2 f )

+ 24 sin (i + 2ω + 2 f ) + 12 sin (−2� + i + 2ω + 2 f ) − 48π cos (2ω + 2 f )

+ 3 sin (2� − 2i + 2ω + 2 f ) + 12 sin (2� − i + 2ω + 2 f ) − 48π cos (2i)

+ 12 sin (2� + i + 2ω + 2 f ) + 3 sin (2� + 2i − 2ω − 2 f ) − 6 sin (2� + 2i)

+ 3 sin (2� + 2i + 2ω + 2 f ) − 3 sin (−2� + 2i + 2ω + 2 f ) − 16π

+ 24π cos (−2i + 2ω + 2 f ) − 12 sin (2� + i − 2ω − 2 f ))] ,

(8)

where g(e, f ) = 1
e cos ( f )+1 .

In order to facilitate the analysis, we will assume a small eccentricity for the satellite. In
this case, we can approximate g(e, f ) using its Taylor expansion up to the second order in
e, i.e.,

g(e, f ) ≈ 1 − e cos ( f ) + e2 cos2 ( f ). (9)

Having simplified g(e, f ), we can integrate I to get the doubly averaged perturbing potential
of an inner third body:

Rda = 1

2π

2π∫
0

Id f = μ3

48a3
(
48a2 − 27d2e2 sin2 i + 18d2e2 − 18d2 sin2 i + 12d2

)
.

(10)

3 Orbital element evolution

In this section, we derive the rates of the orbital elements and present the equivalence to the
J2 problem for near-circular orbits of the satellite.
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3.1 Derivation of the orbital element rates

Having found Rda, its partial derivatives are given by

∂Rda

∂a
= μ3

a4

(
27

16
d2e2 sin2 (i) − a2 − 9

8
d2e2 + 9

8
d2 sin2 (i) − 3

4
d2

)
,

∂Rda

∂ω
= 0

∂Rda

∂e
= d2eμ3

24a3
(18 − 27 sin2 (i)),

∂Rda

∂i
= −d2μ3

48a3
(18 + 27e2) sin (2i). (11)

The partial derivatives ∂Rda
∂M and ∂Rda

∂�
are equal to zero due to the averaging of the perturbing

potential over the anomalies of the satellite and the third body.
In order to find the doubly averaged rates of the orbital elements, the partial derivatives of

the perturbing potential are substituted into the Lagrange planetary equations (Alfriend et al.
2010):

ȧ = 2

na

∂Rda

∂M

ė = −
√
1 − e2

na2e

∂Rda

∂ω
+ 1 − e2

na2e

∂Rda

∂M
di

dt
= − 1

na2
√
1 − e2 sin(i)

∂Rda

∂�
+ cot(i)

na2
√
1 − e2

∂Rda

∂ω

�̇ = 1

na2
√
1 − e2 sin(i)

∂Rda

∂i

ω̇ =
√
1 − e2

na2e

∂Rda

∂e
− cot(i)

na2
√
1 − e2

∂Rda

∂i

Ṁ = n − 2

na

∂Rda

∂a
− 1 − e2

na2e

∂Rda

∂e
, (12)

where n =
√

μ

a3
=

√
μ3
Ka3

, d = 3
√

μ

n2m
= 3

√
μ3
Kn2m

with nm being the mean motion of the

third body, and K = μ3
μ
. The resulting rates of the orbital elements due to the gravitational

perturbation induced by an inner third body are, therefore,

ȧ = ė = di

dt
= 0

�̇ = −C1
3e2 + 2√(
1 − e2

)
a7

cos(i)

ω̇ = C1
2e2 + 5 cos(2i) + 3

2
√(

1 − e2
)
a7

Ṁ = C1

2
√
a7

(
16e2 − 24e2 sin2(i) + 3 cos(2i) + 1

) + C2√
a3

, (13)

where C1 and C2 are given by

C1 = 3

8
6

√
μ7
3

Kn8m
, C2 =

(
2
√
K + 1√

K

) √
μ3. (14)
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There are several insights gained. First, the doubly averaged semimajor axis, eccentricity
and inclination remain constant. Because the three mean momenta elements remain constant,
the mean rates of change of � and ω are constant as well.

The analysis presented thus far could have been conducted while taking into consideration
an additional Legendre polynomial. Doing so would have given a more accurate approxima-
tion of the perturbing potential,

R = μ3

2d2r4

[
cos(S)d5(5 cos2(S) − 3) + 2 cos(S)r2(d3 − r3) + 2d2r3

+ d4r(3 cos2(S) − 1)
]
,

(15)

which takes into account P3. However, using Eq. (15) leads to the same rates of the doubly
averaged orbital elements presented in Eq. (13).

3.2 Model applicability limits

The model applicability limits can be developed as a function of the ratio between the semi-
major axes of the perturbed and the perturbing bodies, denoted by Q. We can evaluate the
errors introduced by neglecting the fourth Legendre polynomial, which provides a good
estimate of the errors of the model in Eq. (13).

The orbital rates can be calculated while taking into account all Legendre polynomials up
to the fourth degree in Eq. (1). Based on that calculation, and defining Q = a/d , d = 3

√
μ3
Kn2m

,

the corresponding error of each orbital element is obtained as a function of Q:

ȧerr = 0

ėerr = 45Knm
256Q5.5

e
√
1 − e2

(
6 − 7 sin2 (i)

)
sin2 (i) sin (2ω)(

di

dt

)
err

= 45Knme2

4096Q5.5
√
1 − e2

(7 (cos (4i + 2ω) − cos (4i − 2ω))

+10 (cos (2i + 2ω) − cos (2i − 2ω)))

�̇err = 45Knm

128Q5.5
√
1 − e2

(14e2 sin2 (i) sin2 (ω) + 28e2 sin2 (i) − 6e2 sin2 (ω)

− 17e2 + 7 sin2 (i) − 4) cos (i)

ω̇err = 45Knm

128Q5.5
√
1 − e2

(7e2 sin4 (i) sin2 (ω) + 14e2 sin4 (i) − 28e2 sin2 (i) + 13e2

− 14e2 sin2 (i) sin2 (ω) + 6e2 sin2 (ω) − 28 sin2 (i) + 8

+ 7 sin4 (i) sin2 (ω) + 21 sin4 (i) − 6 sin2 (i) sin2 (ω))

Ṁerr = 45Knm
256Q5.5

(84e2 sin4 (i) sin2 (ω) + 168e2 sin4 (i) − 72e2 sin2 (i) sin2 (ω)

− 204e2 sin2 (i) + 48e2 − 14 sin4 (i) sin2 (ω) + 7 sin4 (i)

+ 12 sin2 (i) sin2 (ω) − 6 sin2 (i)). (16)

As seen in Eq. (16), the resulting errors in the orbital element rates (except for the semimajor
axis) are proportional to Q−5.5, which indicates that the error drops quickly as the ratio
between the semimajor axes of the perturbed and perturbing bodies grows. Also, no error has
been introduced in the rate of change of the semimajor axis by omitting the fourth Legendre
polynomial.
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3.3 Comparison to an external third-body perturbationmodel

Recall the known doubly averaged orbital rates of the classical external third-body perturba-
tion (Nie et al. 2019):

ȧ = 0

ė = 15Kn2ma
3
2

8
√

μ
e
√
1 − e2 sin2(i) sin(2ω)

di

dt
= −15Kn2ma

3
2

16
√

μ

e2√
1 − e2

sin(2i) sin(2ω)

�̇ = 3Kn2ma
3
2

8
√

(1 − e2)μ

[
5e2 cos(2ω) − 3e2 − 2

]
cos(i)

ω̇ = 3Kn2ma
3
2

8
√

(1 − e2)μ

[
5(sin2(i) − e2) cos(2ω) + 5 cos2(i) + e2 − 1

]

Ṁ =
√

μ

a
3
2

− Kn2ma
3
2

8
√

μ

[
15(e2 + 1) sin2(i) cos(2ω) + (3e2 + 7)(3 cos2(i) − 1)

]
. (17)

Unlike Eq. (17), the resulting rates of the inner third-body problem, Eq. (13), do not depend
on the argument of perigee. Furthermore, in the classical case of a third-body perturbation
both the mean eccentricity and the mean inclination change over time. In the case of an inner
third body, however, both the mean eccentricity and the mean inclination are constant. These
changes compared to the classical model result from the fact that r > d .

3.4 J2 analogy

We now consider the J2 problem and its similarities to the inner third-body problem. Both
problems can be modeled by a rotating dipole of masses which generate a gravitational field.
The concept ofmodeling the zonal harmonics as amass dipolewas first published byAksenov
et al. (1962) and is called two fixed centers (TFC).

We show here that for near-circular orbits, the J2 problem and the inner third-body prob-
lem are equivalent and share a general, unified solution. Recall the secular orbital element
evolution of the J2 problem:

ȧJ2 = ėJ2 = di J2
dt

= 0

�̇J2 = − 3J2R2
eq

√
μ

2a
7
2 (1 − e2)2

cos(i)

ω̇J2 = 3J2R2
eq

√
μ

8a
7
2 (1 − e2)2

(5 cos(2i) + 3)

ṀJ2 = 3J2R2
eq

√
μ

8a
7
2 (1 − e2)

3
2

(3 cos(2i) + 1) +
√

μ

a3
. (18)

For near-circular orbits, the rates of the inner third-body case can be approximated by the
following form:
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ȧI3 = ėI3 = di I3
dt

= 0

�̇I3 = − 2C1√
a7

cos(i)

ω̇I3 = C1

2
√
a7

[5 cos(2i) + 3]

ṀI3 = C1

2
√
a7

[3 cos(2i) + 1] + C2√
a3

. (19)

Thus, in the near-circular approximation, both the J2 problem and the inner third-body
problem yield orbital element rates of the form:

ȧ = ė = di

dt
= 0

�̇ = αa−3.5 cos(i)

ω̇ = βa−3.5 [5 cos(2i) + 3]

Ṁ = γ a−3.5 [3 cos(2i) + 1] + δ, (20)

where α, β, γ and δ are constants whose values are determined by the configuration of the
system (whether it describes the gravitational field of an oblate planet or a planet with its
moon). The values of α, β, γ, δ for the inner third-body configuration (I3) and the oblate
planet configuration (J2) are:

αI3 = −2C1, βI3 = C1

2
, γI3 = C1

2
, δI3 = C2√

a3

αJ2 = −3

2
J2R

2
eq

√
μ, βJ2 = 3

8
J2R

2
eq

√
μ, γJ2 = 3

8
J2R

2
eq

√
μ, δJ2 =

√
μ

a3
. (21)

Without assuming a near-circular orbit, the rate of change of the argument of perigee in
Eq. (13) would have maintained its additional component of the order of e2, which does not
exist in the rate of change of the argument of perigee in Eq. (18).

In order to describe the dynamics of a satellite in a near-circular orbit, Eq. (21) implies
that a problem of an inner third body with μ3, nm and K can be replaced with a problem of
an oblate planet with an effective standard gravitational parameter ofμeff = C2 and effective
zonal coefficient and equatorial radius that satisfy the relation

J2,eff R
2
eq,eff = 4C1

3
√
C2

= μ
11
12
3

2n
4
3
m

√
2K

5
6 + K− 1

6

. (22)

4 Applications

Here, we use the derived orbital element rates in order to calculate the long-term evolution of
the orbital elements of a satellite in an inner third-body region of the Martian system, under
the gravitational perturbation of Phobos.

To test themodel,we usedGMAT to simulate the orbit propagation of a satellite in the inner
third-body region aroundMars. The forcemodel included the inner third-body perturbation of
Phobos, taken as a point mass. Gravitational harmonics were disabled in order to exclusively
examine the effects of the inner third body. The ephemeris source was mar085.bsp, an SPK
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SPICE kernel provided by the JPL database. Simulation results were calculated using the
default GMAT integrator with respect to an inertial frame, with Mars at the origin.

We considered two satellites. The first satellite has a variant orbit of the orbiter MAVEN,
with the following initial orbital elements:

a = 28131 km, e = 0.1, i = 160◦

� = 29.16◦, ω = 29.075◦, f = 114.256◦. (23)

�, ω and f are the orbital elements of MAVEN as of January 1st 2019, provided by NASA’s
HORIZONS database. e = 0.1 is small enough to justify the use of the model (13), and
a = 28131 km places the satellite in the inner third-body region.

The second satellite has the same initial orbital elements as in Eq. (23) except for the
initial inclination, i.e.,

a = 28131 km, e = 0.1, i = 74.92◦

� = 29.16◦, ω = 29.075◦, f = 114.256◦. (24)

The inclination of the second satellite is the actual inclination of MAVEN at the said time.
Figure 3 shows simulation results corresponding to the first satellite. Simulation time

was 3 years. The results include the long-term change predicted by the model (13) and the
osculating elements that were simulated using GMAT. As seen, there is a good correlation
between the derived averaged model and the GMAT simulated non-averaged results.

Figure 4 shows the simulation results corresponding to the second satellite. Simulation
timewas 100 days. The results include the evolution of the orbital elements when propagating
the inner third-body rates, Eq. (13), and the classical third-body rates, Eq. (17), in an inner
third-body system. As expected, naïve integration of the classical third-body perturbation
model cannot be used in an inner third-body system, as the evaluated averaged elements
diverge away from their osculating counterparts.

It can be seen that the predicted rate of change in the right ascension of the ascending
node is slightly different from the one simulated by GMAT. This difference is the result of
assuming that the satellite is sufficiently farther from Mars compared with the orbital radius
of the inner third body. When increasing the semimajor axis of the satellite, the predicted
right ascension of the ascending node converges to the simulated results of GMAT.

The aforementioned simulations correspond to Q = 3, which provides good accuracy.
Because the errors in the orbital rates are proportional to Q−5.5, increasing the semimajor
axis of the satellite by a factor of two will reduce the error by a factor of about 45.

As mentioned earlier, the simulations do not include the gravity model of Mars (except
for the Keplerian term), in order to exclusively examine the effects of the inner third body.
Although the gravity field of Mars is the dominant perturbation source, we disabled it with-
out exploring the error introduced, as the focus herein is on modeling the inner third-body
dynamics. A future work will focus on the possible applications of the model and the errors
introduced when neglecting or approximating the gravity field.

5 Accommodating the third-body eccentricity

Here, we generalize the analytic model to consider a nonzero eccentricity for the orbit of
the third body. In the case of a third body with an elliptical orbit, the cosine of the central
elongation is given by
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Fig. 3 The propagation of eccentricity, inclination, right ascension of ascending node and argument of perigee
of a variant orbit of the orbiter MAVEN. Initial inclination is 160◦
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Fig. 4 The evolution of the orbital elements when propagating the inner third-body orbital element rates and
the classical third-body orbital element rates in an inner third-body system

123



31 Page 14 of 17 G. Marcus, P. Gurfil

cos(S) = sin ( f3 + ω3 − �) sin (ω + f ) cos (i) + cos ( f3 + ω3 − �) cos (ω + f ).

(25)

Substituting Eq. (25) into Eq. (1), we get

R = μ3

2d2r3
[d4(3(sin (ω + f ) sin (−� + ω3 + f3) cos (i)

+ cos (ω + f ) cos (−� + ω3 + f3))
2 − 1)

+ 2d2r2 + cos (ω + f ) cos (−� + ω3 + f3)

+ 2r(d3 − r3)(sin (ω + f ) sin (−� + ω3 + f3) cos (i))]. (26)

Given R in terms of the orbital elements, we can integrate the potential with respect to the
anomalies of the third body and the satellite. The doubly averaged perturbing potential is
thus obtained by

Rda = 1

4π2

2π∫
0

2π∫
0

RdM3dM = 1

4π2

2π∫
0

2π∫
0

Ĩd f3d f , (27)

where

Ĩ =
(
rr3
aa3

)2 R√(
1 − e2

) (
1 − e23

) . (28)

Substituting Eqs. (6), (26), and the relation r3 = a3
(
1−e23

)
1+e3 cos( f3)

into Eq. (28), and assuming a

near-circular orbit both for the satellite and for the third body, we can approximate Ĩ using a
Taylor expansion up to the second order in e3 and then in e. The resulting doubly averaged
perturbing potential is

Rda = μ3

4a3

[
45

2
a23e

2e23 sin (�) sin2 (i) sin (ω3) cos (� − ω3) − 9

4
a23e

2 sin2 (i)

− 45

4
a23e

2e23 sin
2 (i) sin2 (ω3) + 9

4
a23e

2e23 sin
2 (i) − 3

2
a23 sin

2 (i)

− 45

4
a23e

2e23 sin
2 (�) sin2 (i) + 3

2
a23e

2 − 15

2
a23e

2
3 sin

2 (�) sin2 (i)

− 15

2
a23e

2
3 sin

2 (i) sin2 (ω3) + 3

2
a23e

2
3 sin

2 (i) + 3

2
a23e

2
3 + 4a2 + a23

+ 15a23e
2
3 sin (�) sin2 (i) sin (ω3) cos (� − ω3) + 9

4
a23e

2e23

]
, (29)

where a3 = 3
√

μ3
Kn2m

. The corresponding rates of the doubly averaged orbital elements are

obtained as previously using the Lagrange planetary equations:

ȧ = ė = 0
di

dt
= e23C1

2
√(

1 − e2
)
a7

(15e2 + 10) sin (i) sin (2� − 2ω3)

�̇ = −C1
3e2 + 2 + e23h1 (e, ω3,�)√(

1 − e2
)
a7

cos (i)
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ω̇ = C1
2e2 + 5 cos(2i) + 3 + e23h2 (e, i, ω3,�)

2
√(

1 − e2
)
a7

Ṁ = C1

2
√
a7

(16e2 − 24e2 sin2 (i) + 3 cos(2i) + 1 + e23h3 (e, i, ω3,�)) + C2√
a3

,

(30)

where C1 and C2 are given in Eq. (14) and

h1 (e, ω3,�) = 15e2 sin2 � − 30e2 sin� sinω3 cos (� − ω3) + 15e2 sin2 ω3 − 2

+ 10 sin2 � − 20 sin� sinω3 cos (� − ω3) + 10 sin2 ω3 − 3e2

h2 (e, i, ω3,�) = 30e2 sin2 � − 60e2 sin� sinω3 cos (� − ω3) + 30e2 sin2 ω3

− 50 sin2 i sin2 ω3 − 12e2 − 50 sin2 � sin2 i + 20 sin2 � + 2

+ 100 sin� sin2 i sinω3 cos (� − ω3) + 20 sin2 ω3 + 10 sin2 i

− 40 sin� sinω3 cos (� − ω3)

h3 (e, i, ω3,�) = 240e2 sin� sin2 i sinω3 cos (� − ω3) − 120e2 sin2 � sin2 i

− 30 sin2 � sin2 i − 120e2 sin2 i sin2 ω3 + 24e2 sin2 i + 24e2

+ 6 + 60 sin� sin2 i sinω3 cos (� − ω3) − 30 sin2 i sin2 ω3

+ 6 sin2 i . (31)

In contrast to the case of a third body in a circular orbit, here we see a long-periodic
change in the inclination. Another insight is that the effects of the third body’s eccentricity
are proportional to the second order of e3, which renders its influence rather small. In order
to illustrate how small the influence is, we consider a hypothetical case wherein Phobos has
an eccentricity of 0.15.

Figure 5 shows a comparison between the rates of the doubly averaged eccentricity, incli-
nation, right ascension of the ascending node and argument of perigee, in the cases of zero
and nonzero third-body eccentricities. The setup is the same as presented earlier, with the
satellite having the initial orbital elements as in Eq. (24). It can be seen that the differences
between the two cases are indeed small, even when the eccentricity of the third body’s orbit
was taken to be 0.15. The simulation was set to start in January 1, 2019, lasting about one
Earth month during which Phobos’ mean argument of perigee was around 145◦.

6 Conclusions

An expansion of the perturbing potential of an inner third body in terms of Legendre poly-
nomials was examined, and an analysis of the corresponding long-term rates of the orbital
elements was introduced. It was shown that for small eccentricity orbits of the satellite, the
inner third-body problem is equivalent to the J2 problem.

We used only the first nonzero Legendre polynomial (P2) for the analysis and showed that
adding P3 results in the same rates for a third body in a circular orbit. We applied the inner
third-body model on the Mars–Phobos system. The results were compared with a GMAT
simulation, demonstrating the validity of the model.

We analyzed the errors introduced by truncating the series of Legendre polynomials at
P4 and gave error estimates for each orbital element rate. The proposed method provides
accurate long-term rates if the ratio between the semimajor axes of the perturbed and the
perturbing bodies is at least 3.
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Fig. 5 The rates of the doubly averaged eccentricity, right ascension of the ascending node, argument of
perigee and inclination, in cases of zero and nonzero third-body eccentricities in the case of Mars—when
Phobos has a hypothetical eccentricity of 0.15
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The presented model was generalized to account for a nonzero eccentricity of the orbit
of the third body, and a resulting change in inclination of the satellite has been detected. We
showed that the effect of the third body’s eccentricity, e3, was proportional to (e3)2, which
renders its influence rather small even for eccentricities around e3 = 0.1.
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