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Abstract
This work focuses on the definition of satellite constellations whose secular relative distribu-
tions are invariant under the perturbation produced by the Earth gravitational potential. This
is done by defining the satellite distribution directly in the Earth-Centered–Earth-Fixed frame
of reference and using the along-track time distances between satellites to define the satellite
constellation configuration. In addition, in order to expand the possibilities of application of
this design methodology, a general transformation between the formulations of Flower Con-
stellations, Walker Constellations, and a relative to Earth formulation based on along-track
and cross-track distances between satellites is obtained. This allows not only for a relation
between these formulations, but also for the obtainment of the relative to Earth distribution of
such constellations. Finally, an example of application of these methodologies is presented
for a low Earth orbit.

Keywords Satellite constellation · Perturbed dynamics · Nominal design · Mathematical
models

1 Introduction

A large number of satellite missions require flying over the same regions of the Earth surface
periodically for different purposes. One of the most common examples is Earth observation
satellites, but there are other uses, such as the ability to establish communications periodically
with certain ground stations, or the study of defined regions of the planet surface that require
regional coverage. All these applications are based on satellites that present a particular set
of orbital elements related to a feature, the repeating ground-track condition. This property
can be easily modeled in a Keplerian formulation with a closed solution. However, if orbital
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perturbations are considered, the problem becomes more complex and transforms, what once
was a simple formulation, into a problem that has no analytical solution.

As a result, several methodologies have appeared over the years to solve this problemwith
different approaches. For instance, in Wagner’s (1991) work, a numerical method based on a
semi-major axis correction is used to achieve the repeating ground-track property under the
effect produced by the oblateness of the Earth (J2 perturbation). Another example, this time
applied to satellite constellations, can be seen in the Flower Constellations (Mortari et al.
2004; Avendaño et al. 2012) where the repeating ground-track property under the effects
of J2 is taken into account both in the nominal design of the orbits and in their station
keeping (Mortari et al. 2014; Casanova et al. 2014b; Arnas et al. 2016a).

In this work, we focus on the nominal definition of repeating ground-track constellations,
that is, constellations whose satellites have the repeating ground-track property, and, in addi-
tion, are required to share a common ground-track, that is, all satellites will describe the same
trajectory from the Earth-Centered–Earth-Fixed frame of reference. To that end, we propose
a constellation design model where the distribution of satellites is performed using the along-
track distances in time between the satellites of the constellation. Themethodology presented
is based on the formulation provided by Arnas et al. (2016b, 2017a), a mathematical model
to define satellite constellations that performs the definition of the constellation directly in
the ECEF (Earth-Centered, Earth-Fixed) frame of reference using as distribution parameters
the along-track and cross-track distances between satellites. Using this relative to Earth for-
mulation allows for a more natural definition of the constellation as related to Earth, and for
the inclusion of the effects of orbital perturbations in the initial design of the constellation.
In that sense, this formulation presents a different approach to satellite constellation design
compared with Flower Constellations (Mortari et al. 2004) and its variants in Lattice (Aven-
daño et al. 2013; Davis et al. 2013) and Necklace (Arnas 2018; Casanova et al. 2014a; Arnas
et al. 2017b, 2018) formulations, Walker Constellations (Walker 1984), Draim Elliptic Con-
stellations (Draim 1987), the Kinematically Regular Satellite Networks (Mozhaev 1973),
the Streets of Coverage (Luders 1961), and many others (Ulybyshev 2008; Lo 1999; Beste
1978; Ballard 1980; Wook et al. 2018), where this definition is done in the inertial frame of
reference.

To that end, this manuscript introduces a modified formulation of the design model
presented in Arnas et al. (2017a) to account for periodic perturbations such as the Earth
gravitational potential. This is done by providing a distribution invariant that is used to
define the nominal orbits of repeating ground-track constellations under the effect of such
perturbations. Additionally, in order to extend this property to other satellite distribution, a
general transformation of this formulation with other known satellite constellation designs
is provided.

This work is presented as follows: First, we summarize the set of satellite constellation
formulations that are used in this work, namelyWalker Constellations, Flower Constellations,
2D Lattice Flower Constellations, 2DNecklace Flower Constellations, and a relative to Earth
satellite distribution. Second, we introduce a methodology based on the formulation from
Arnas et al. (2016b) to define constellations whose satellites share their relative trajectories
under the perturbation produced by the Earth gravitational potential. Third, we propose a
one-to-one transformation between the formulations defined by Flower Constellations and
Walker Constellations (the most used satellite constellation design to this date), and the ones
defined in this work for the cases of repeating ground-track constellations. This is done in
order to show the relation between these formulations and to extend the properties of this
model to other satellite constellation designs. Fourth, we present an example of an application
of this constellation design methodology for a low Earth orbit and study the maintenance
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of the defined distribution in the long term under the perturbation produced by the Earth
gravitational potential.

2 Preliminaries

In this section, we present a summary of the satellite constellation design formulations that
are used in this work. In particular, we deal with the formulations of Walker Constellations,
Flower Constellations, 2DLattice Flower Constellations, 2DNecklace Flower Constellations
and a satellite distribution based on the along-track time distance between the satellites of
the constellation.

2.1 Walker Constellations

Walker–Delta Constellations (Walker 1984) are the most well-known satellite constellation
design in the literature. They are based on the idea of distributing satellites evenly in a set
of equally spaced inertial circular orbits. In this constellation design, all satellites share the
nominal values of semi-major axis and inclination. Walker Constellations are defined by
the following notation: i :t/p/ f , being i the inclination of the orbits, t the total number of
satellites, p the number of orbital planes of the constellation, and f ∈ {0, . . . , p−1} a phase
parameter that defines the shifting of the distribution in true anomaly from adjacent orbital
planes. Particularly, in a Walker Constellation, the right ascension of the ascending node and
the mean anomaly follow this distribution:

�Ωi j = 2π
(i − 1)

p
,

�Mi j = 2π
p

t
( j − 1) + 2π

f

t
(i − 1) , (1)

where �Ωi j and �Mi j are the right ascension of the ascending node and the mean anomaly
of the satellites of the constellation with respect to a reference satellite, and i and j name the
satellite in orbit i , and position j in that orbit.

2.2 Flower Constellations

Flower Constellations (Mortari et al. 2004) are a constellation design methodology that is
based on the idea of distributing satellites over a unique space-track in a given reference
system. In that sense, they present several similarities to Arnas et al. (2017a) since both deal
with the same problem. However, there are two important differences between them. First,
Flower Constellations are defined using classical variables (the mean anomaly and the right
ascension of the ascending node of the satellites), while Arnas et al. (2017a) uses along-
track and cross-track time distances between satellites. Second, the resultant distributions
generated by Flower Constellations present a set of distribution patterns that are repeated
through the space-track, while the other formulation does not impose any restriction in the
definition of the along-track distribution.

In the same way as Walker Constellations, a Flower Constellation is characterized for
having all satellites with the same value of semi-major axis, eccentricity, inclination and
argument of perigee; however, they are not limited to only circular orbits as in the case of
Walker Constellations. In a Flower Constellation, the right ascension of the ascending node
and the mean anomaly follow this distribution:
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�Ωg = −2π
Fn
Fd

(g − 1) mod (2π),

�Mg = 2π
FnNp + FdFh(g)

FdNd
(g − 1) mod (2π), (2)

where Np and Nd are the number of orbits and number of days until grond-track repetition,
g ∈ {1, 2, . . .} with g ≤ FdNdNp names each satellite of the constellation, Fd is the number
of orbits of the constellation, Fn ∈ {0, 1, . . . , Fd − 1} with gcd(Fn, Fd) = 1 is an integer
parameter that can be freely chosen, and Fh(g) ∈ {0, 1, . . . , Nd−1} is the phasing parameter,
which can be changed for each satellite of the constellation.

2.3 2D Lattice Flower Constellations

2D Lattice Flower Constellation (Avendaño et al. 2013) is a general methodology to generate
completely uniformdistributions using as a base the FlowerConstellationTheory. Thismeans
that the constellation configuration is the same nomatter the satellite selected as the reference.
In general, 2D Lattice Flower Constellations distribute satellites in different space-tracks
(contrary to what happened in the original Flower Constellations where all satellites were
located in a common space-track) containing an equal number of satellites. In a 2D Lattice
Flower Constellation, satellites share the same semi-major axis, eccentricity, inclination and
argument of perigee, while their right ascension of the ascending node and mean anomaly
follow this distribution:

�Ωi j = 2π

LΩ

(i − 1) mod (2π),

�Mi j = 2π

LM
( j − 1) − 2π

LM

LMΩ

LΩ

(i − 1) mod (2π), (3)

where LΩ is the number of orbits of the constellation, LM is the number of satellites per orbit,
and i ∈ {1, . . . , LΩ } and j ∈ {1, . . . , LM } name each satellite of the constellation. Finally,
LMΩ ∈ {0, 1, . . . , LΩ − 1} is the combination number, an integer parameter that allows to
shift the distribution between different orbital planes. As it can be seen from Eqs. (1) and (3),
Walker Constellations constitute a particularization for circular orbits of the more general
2D Lattice Flower Constellations.

2.4 2D Necklace Flower Constellations

2D Necklace Flower Constellations (Arnas et al. 2018) are based on the idea of generating a
fictitious constellation based on the 2D Lattice Flower Constellations formulation, which is
a completely uniform distribution, and then select, from the set of available positions already
defined, the subset of satellites that fulfills a series of mission requirements. When dealing
with uniform distributions, 2D Necklace Flower Constellations are related to 2D Lattice
Flower Constellations through:

(i − 1) = GΩ − 1 mod (LΩ),

( j − 1) = GM − 1 + SMΩ(GΩ − 1) mod (LM ), (4)

where GΩ and GM represent the necklaces in the right ascension of the ascending node and
the mean anomaly, respectively, and SMΩ is the shifting parameter that relates the movement
of the necklace in the mean anomaly with the orbital plane considered. Under this definition,
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GΩ is a subset from GΩ ∈ {1, 2, . . . , LΩ }which represents a subset of orbital planes selected
from the complete lattice configuration. In a similar manner, GM is a subset of elements from
GM ∈ {1, 2, . . . , LM } and represents a subset of positions from the set of available positions
in each orbit. This means that the formulation is able to define directly which are the actual
occupied positions in the constellation without requiring to define all the positions from
the complete lattice. In addition, if a complete uniform distribution is required, the shifting
parameter has to fulfill the following relation (Arnas et al. 2018):

Sym(GM ) | SMΩ LΩ − LMΩ, (5)

which reads Sym(GM ) divides (SMΩ LΩ − LMΩ), where Sym(GM ) is the symmetry of the
necklace in the mean anomaly, that is, the minimum number of rotations that the necklace
has to perform in the available positions to generate the same distribution. For instance,
the necklace GM = {1, 3, 5} ∈ N6 has Sym(GM ) = 2 since GM = {1, 3, 5} ≡ {3, 5, 7}
mod (6).

2.5 Relative to Earth satellite distribution

We define repeating ground-track constellations as the constellations whose satellites share
a set of defined repeating ground-tracks. In order to achieve this condition, the dynamic of
satellites must fulfill a compatibility relation with the rotation of the Earth given by:

Tc = NpTΩ = NdTΩG , (6)

where Tc is the period of the repeating cycle, TΩ is the nodal period of the orbit, TΩG

is the nodal period of Greenwich, Np is the number of orbital revolutions of the satellite
to cycle repetition, and Nd is the number of days to cycle repetition. Note that Np and
Nd are coprime numbers to avoid duplicate definitions of the same configurations using
Eq. (6) (Avendaño et al. 2012). In general, this condition is applied individually for each
satellite of the constellation obtaining a repeating ground-track constellation. However, in
this work, we approach this problem from a different perspective using the formulation
seen in Arnas et al. (2016b). This new approach is based on including the periodic orbital
perturbations directly on the nominal design of the constellation.

Arnas et al. (2017a) propose a satellite constellation design based on the idea of defining
a series of space-tracks (or relative trajectories) where all the satellites of the constellation
are located. The particularity of this formulation is that the distribution is defined based on
the along-track time distances and cross-track separation between satellites. That way, for a
non-perturbed dynamical model, the distribution of the constellation can be defined by:

�Ωkq = �Ωk − ω⊕(tkq − t0),

�Mkq = n(tkq − t0), (7)

where the parameters (k, q) relate to a given spacecraft in the space-track k and position q
in that space-track; �Ωkq and �Mkq are the right ascension of the ascending node and the
mean anomaly of the satellites of the constellation with respect to a given reference; �Ωk is
the cross-track angular distance of the space-tracks with respect to the reference; ω⊕ is the
spin rate of the Earth; n is the mean motion of the satellites; and (tkq − t0) is the along-track
time distance of each satellite with respect to a reference. On the other hand, the values of
the semi-major axis a, eccentricity e, inclination i and argument of perigee ω are shared by
all the satellites of the constellation.
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Additionally, when dealing with repeating ground-track orbits, it is possible to relate the
dynamics of satellites with the movement of the Earth using Eq. (6):

Tc = Np
2π

n
= Nd

2π

ω⊕
, (8)

which can be introduced in Eq. (7) to obtain the following expression:

�Ωkq = �Ωk − 2πNd
(tkq − t0)

Tc
,

�Mkq = 2πNp
(tkq − t0)

Tc
, (9)

where (tkq − t0) ∈ [0, Tc). Note that now Tc is the parameter that defines the general dynamic
of the constellation. This expression can define any constellation distribution where all satel-
lites have the same repetition cycle Tc. Moreover, it is interesting to study also the case where
all satellites of the constellation share the same ground-track, that is, k = 1. For those cases,
Eq. (9) can be simplified into:

�Ωq = −2πNd
(tq − t0)

Tc
,

�Mq = 2πNp
(tq − t0)

Tc
, (10)

where we have changed the sub-indexes to q in order to make it clear that only one ground-
track is considered for the distribution. Furthermore, if a uniform distribution of satellites is
required along the ground-track, we can define the constellation by means of a distribution
parameter q ∈ {1, . . . , Nst}, where Nst is the number of satellites of the constellation. That
way, since the distribution is uniform, the along-track configuration can be defined by:

tq − t0 = (q − 1)

Nst
Tc, (11)

which introduced in Eq. (10) leads to:

�Ωq = −2πNd
(q − 1)

Nst
,

�Mq = 2πNp
(q − 1)

Nst
, (12)

where q names each satellite of the constellation. Note that although Eq. (12) is a general
formulation that allows to generate satellite distributions based on a common ground-track,
this kind of distribution can be obtained with many other formulations.

3 Designing repeating ground-track constellations

In Sect. 2, we summarized the formulations of somewell-known satellite constellation design
models under a non-perturbed model. The idea of this section is to develop a mathematical
model which includes the Earth gravitational potential in its formulation, identifying an
invariant in the distribution under such perturbation. In order to do that, we first study the
evolution of the system under the Earth gravitational potential, and from it, we propose a
modified satellite constellation definition based on the formulation presented in Eq. (12) and
evaluate its long-term dynamic.
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3.1 Perturbed dynamic

When orbital perturbations are considered, it is useful to take their effects into account when
performing the nominal distribution of the constellation. In particular, Eq. (9) can be written
in terms of the nodal periods. Using the relations presented in Eqs. (6) and (8), the following
expression can be obtained:

�Ωkq = �Ωk − 2π

TΩG
(tkq − t0),

�Mkq = 2π

TΩ

(tkq − t0), (13)

which relates the distribution to the nodal periods associated with the constellation. However,
due to orbital perturbations, the reference position where the mean anomaly is defined, the
perigee of the orbit, can change, and thus, this effect must be taken into account. In order to
overcome this difficulty, the constellation is defined related to the Earth equator, instead of
the apogee of the orbits, that is:

�Ωkq = �Ωk − 2π

TΩG
(tkq − t0),

�χkq = �Mkq + �ωkq = 2π

TΩ

(tkq − t0) + �ωkq , (14)

where we define �χkq = �Mkq + �ωkq as the mean argument of latitude of each satellite
with respect to a given reference. It is important to note that for a repeating ground-track
constellation, if no orbital perturbations are considered, every satellite must have the same
argument of perigee, and thus,�ωkq = 0. Equation (14) represents a generalization of Eq. (7)
for repeating ground-track constellations under orbital perturbations since it only depends
on the resultant dynamic with respect to the movement of the Earth.

Moreover, the nodal period of the orbit (TΩ ) and the nodal period of Greenwich (TΩG )
are also affected by orbital perturbations, transforming the relation showed in Eq. (8) into:

Tc = Np
2π

nkq + Ṁo
kq + ω̇kq

= Nd
2π

ω⊕ − Ω̇kq
, (15)

where nkq is the meanmotion, Ṁo
kq is the secular variation of the mean argument with respect

to the mean motion, ω̇kq is the secular variation of the argument of perigee, and Ω̇kq is the
secular variation of the right ascension of the ascending node of each of the satellites of
the constellation. By introducing the perturbed values of the nodal periods into Eq. (14), we
obtain:

�Ωkq = �Ωk − ω⊕(tkq − t0) + Ω̇kq(tkq − t0),

�χkq = nkq(tkq − t0) + (Ṁo
kq + ω̇kq)(tkq − t0), (16)

which clearly shows that the distribution must take into account the rotation of the orbits in
their orbital planes and also the drift that the orbital planes experience from the reference
time in order to maintain the sharing of the ground-tracks of the constellation. Moreover,
if the relations from Eq. (15) are used in Eq. (16), we can derive the following distribution
under orbital perturbations:

�Ωkq = �Ωk − 2πNd
(tkq − t0)

Tc
,
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�χkq = 2πNp
(tkq − t0)

Tc
, (17)

which is equivalent as the one obtained inEq. (9). This implies that the along-track distribution
can be maintained from the non-perturbed definition to the nominal distribution under orbital
perturbations. The same can be said for Eq. (10), as it is a particular case of application.
Note that the inertial distribution must change when dealing with a perturbed model since Tc
depends on the orbital perturbations considered.

3.2 Constellation definition

Equation (16) would lead, in general, to a difficult process in order to obtain compatible
constellations that fulfill the distribution under orbital perturbations. This is due to the fact
that the secular variation of the orbital elements depends on the initial position of each
satellite.However, there is an alternative approach to solve this problemwhen dealingwith the
perturbations produced by the Earth gravitational potential, which is the case when defining
the nominal orbits of a constellation. In particular, we know that from the ECEF frame of
reference, the gravitational field of the Earth can be approximated as independent with time.
This means that the dynamic of satellites only depends on the trajectories that they follow
in this reference system, not on the moment when they fly over these trajectories. In other
words, Ω̇kq = Ω̇k , nkq = nk , Ṁo

kq = Ṁo
k and ω̇kq = ω̇k . Therefore, Eq. (16) can be rewritten

in terms of the different space-tracks in the ECEF frame of reference:

�Ωkq = �Ωk − ω⊕(tkq − t0) + Ω̇k(tkq − t0),

�χkq = nk(tkq − t0) + (Ṁo
k + ω̇k)(tkq − t0), (18)

where the sub-indexes in k relate to each space-track of the constellation. Thus, a set of
satellites that share a particular space-track from the ECEF frame of reference (even if it is
not closed), and under the Earth gravitational potential, will continue to share their space-
track over the course of their orbits. This property is used in here in combination with the
formulation presented in Sect. 2.5 to perform the nominal definition of the constellation.

That way, if we focus on a particular space-track of the constellation, we can define a
leading satellite (which is not required to be a real satellite of the constellation) and use it to
define a space-track related to the ECEF frame of reference for a given time interval. This
is done by performing a propagation of this satellite under the Earth gravitational potential.
Then, taking any point defined during this propagation in the ECEF frame of reference and
assigning it to a satellite of the constellation lead to a distribution whose satellites share the
same space-track over time. In other words, the distribution of satellites in the constellation
follows these relations (Arnas et al. 2016b):

xq(t0) = xls(tq),

vq(t0) = vls(tq), (19)

where xq(t0) and vq(t0) are the position and velocity of satellite q in the ECEF frame of
reference at the initial time (t0), while xls(tq) and vls(tq) are the position and velocity in the
ECEF of the leading satellite for that space-track at time tq . This process is then continued
by defining a leading satellite for each space-track of the constellation and generating the
satellite distribution related to it following the same methodology.

Thus, the mean evolution of the right ascension of the ascending node and the mean
argument of latitude for the leading satellite in time tkq , when considering repeating ground-

123



Nominal definition of satellite constellations Page 9 of 20 19

track orbits, are provided by:

Ωls(tkq) = Ωls(t0) + Ω̇ls(tkq − t0),

χls(tkq) = χls(t0) + nls(tkq − t0) + (Ṁo
ls + ω̇ls)(tkq − t0), (20)

where the sub-index ls relate to the leading satellite of each space-track. Equation (20)
represents the same distribution as the one defined in Eq. (18) except for a rotation in the
right ascension of the ascending node corresponding to the difference in the spin rates of the
ECEF and inertial frames of reference. Therefore, each leading satellite is able to define the
positions of all satellites that share its space-track under the perturbation produced by the
Earth gravitational potential.

3.3 Evolution of the distribution

Now, we will study the evolution of this kind of distribution under the Earth gravitational
potential. To that end, we compare the dynamic of a leading satellite with one of the satellites
of the constellation that is located in the same relative to Earth trajectory at an along-track
distance of tq . Let tf be a given general instant in which the satellite distribution is studied.
At that time, the leading satellite will have the following secular orbital elements:

Ωls(t f ) = Ωls(t0) + Ω̇ls(t f − t0),

χls(t f ) = χls(t0) + nls(t f − t0) + (Ṁo
ls + ω̇ls)(t f − t0). (21)

On the other hand, the evolution of the secular values of the orbital elements for the second
satellite (q) can be obtained through:

Ωq(t f ) = Ωq(t0) + Ω̇ls(tf − t0),

χq(tf ) = χq(t0) + nls(t f − t0) + (Ṁo
ls + ω̇ls)(t f − t0), (22)

which compared to the evolution of the leading satellite leads to:

�Ωq(t f ) = Ωq(t f ) − Ωls(t f ) = Ωq(t0) − Ωls(t0) = �Ωq(t0),

�χq(t f ) = χq(t f ) − χls(t f ) = χq(t0) − χls(t0) = �χq(t0). (23)

Thismeans that the distribution of the constellation ismaintained regarding its secular values.
Therefore, by following the satellite distribution provided by:

�Ωkq = �Ωk − 2π

TΩG
(tkq − t0),

�χkq = �ωkq + 2π

TΩ

(tkq − t0), (24)

it is possible to perform the nominal definition of a repeating ground-track constellation under
the perturbation produced by the Earth gravitational potential. Moreover, this methodology
shows that using a constellation definition from the ECEF frame of reference provides impor-
tant advantages when dealing with the nominal design of the orbits under such perturbations.
In particular, it allows to include the effects of the gravitational potential of the Earth directly
in the nominal definition of the constellation; and it provides a very simple methodology to
distribute satellites under this dynamic. Note also that the process introduced in this section
can be applied to the definition of constellations around any celestial body that presents a
gravitational field that can be considered as time invariant in a given reference frame.
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3.4 Constellation definition by a series expansion

In previous subsections, we have dealt with a study of the evolution of satellite distributions
over time by taking into account the secular variations of the orbital variables. However, it
is also possible to reach the same conclusions by taking into account the complete series
expansion of the orbital variables considered. That way, we can rewrite Eq. (18) by including
the complete series expansion of the orbital variables of the satellite distribution under the
Earth gravitational potential:

�Ωkq = �Ωk − ω⊕(tkq − t0) +
∞∑

i=1

1

i !
diΩk

dt i
(tkq − t0)

i

�χkq = nk(tkq − t0) + (Ṁo
k + ω̇k)(tkq − t0)

+
∞∑

i=2

1

i !

[
di−1nk
dt i−1 + di (Mo

k + ωk)

dt i

]
(tkq − t0)

i (25)

and then relate them with the dynamic of a leading satellite of the constellation as done in
Eq. (20):

Ωls(tkq) = Ωls(t0) +
∞∑

i=1

1

i !
diΩls

dt i
(tkq − t0)

i

χls(tkq) = χls(t0) + nls(tkq − t0) + (Ṁo
ls + ω̇ls)(tkq − t0)

+
∞∑

i=2

1

i !

[
di−1nk
dt i−1 + di (Mo

ls + ωls)

dt i

]
(tkq − t0)

i , (26)

which leads to the following expressions:

�Ωkq + ω⊕(tkq − t0) − �Ωk = Ωls(tkq) − Ωls(t0) =
∞∑

i=1

1

i !
diΩls

dt i
(tkq − t0)

i

�χkq = χls(tkq) − χls(t0) = nls(tkq − t0) + (Ṁo
ls + ω̇ls)(tkq − t0)

+
∞∑

i=2

1

i !

[
di−1nk
dt i−1 + di (Mo

ls + ωls)

dt i

]
(tkq − t0)

i . (27)

This represents an equivalent constellation distribution based solely on the trajectory defined
by the leading satellite in its dynamic under the Earth gravitational potential. In particular,
we can reorder the expression to obtain:

�Ωkq = �Ωk − ω⊕(tkq − t0) +
∞∑

i=1

1

i !
diΩls

dt i
(tkq − t0)

i

�χkq = nls(tkq − t0) + (Ṁo
ls + ω̇ls)(tkq − t0)

+
∞∑

i=2

1

i !

[
di−1nls
dt i−1 + di (Mo

ls + ωls)

dt i

]
(tkq − t0)

i , (28)

which is equivalent to Eq. (25) since the perturbation considered only depends on the position
of satellites in the ECEF frame of reference. This allows also to obtain the instantaneous
values of the orbital distribution at any instant by means of the perturbed orbit of the leading
satellite.
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4 From Flower Constellations to relative to Earth distributions

In this section, we deal with the problem of transforming distributions which are based on
the Flower Constellation Theory (ECI-defined) into the formulation provided by Eq. (12)
(ECEF-defined). This has two objectives. First, to provide a one-to-one correspondence
between the existing satellite constellation design formulations and the formulation used in
this work for the case of repeating ground-track constellations. This allows, for instance,
to obtain the revisiting times of the satellites of a constellation since the relative positions
of the satellites in the ECEF frame of reference are known. Second, this transformation
allows extending the properties under the Earth gravitational potential that the formulation
presented in this work provides to other constellation definitions. In that sense, we select
Flower Constellations as a reference design since they represent the generalization of the
most common satellite constellation designs (Davis et al. 2012); particularly, they are a
generalization ofWalker Constellations (Walker 1984), Dufour Constellations (Dufour 2003)
and Draim Constellations (Draim 1987).

The satellite constellation designs that are considered in this manuscript are as follows:
the Flower Constellations, the 2D Lattice Flower Constellations, the 2D Necklace Flower
Constellations and the Walker-Delta Constellations. In that respect, this section focuses on
constellations distributed in only one ground-track. This is done since the original Flower
Constellation is limited to this kind of design, and also due to the fact that having all the
satellites in a common ground-track is a very extended practice that is worthwhile to study
independently. To that end, the transformation and parameter conditions that these satellite
constellation designs must meet are included. Note that Walker-Delta Constellations are a
particularization of 2D Lattice Flower Constellations for circular orbits. However, we have
also included this satellite constellation methodology in this work due to its importance in
the literature.

4.1 Flower Constellations

We relate the distribution defined by Eq. (2) with a uniform distribution in the ECEF frame
of reference, represented by Eq. (12). (Note that Flower Constellations are distributed in
only one ground-track.) To that end, since we want to consider all possible combinations of
Flower Constellations, we define a number of possible positions distributed uniformly in a
ground-track equal to Nst = FdNdNp. That way, equating Eqs. (2) and (12) we obtain:

�Ωg = �Ωq mod (2π),

�Mg = �Mq mod (2π), (29)

which after some elemental operations (multiplying by NpFd/2π) leads to:

(q − 1) = FnNp(g − 1) mod (NpFd),

(q − 1) = (FnNp + FdFh(g))(g − 1) mod (NpFd), (30)

which due to its modular character can be expressed as:

(q − 1) = FnNp(g − 1) + AFdNp,

(q − 1) = (FnNp + FdFh(g))(g − 1) + BFdNd, (31)
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where A and B are two unknown integers. By subtracting the two equations in Eq. (31) and
performing some operations, we obtain:

Fh(g)(g − 1) = ANp − BNd, (32)

which always has a solution for each possible combination of parameters, since Np and
Nd are always relative prime between them (Mordell 1969). That way, once A and B are
determined and substituted them in Eq. (31), the relative positions (q) of all the satellites
of the constellation are obtained. Then, using that result, the along-track distribution of the
constellation is provided by Eq. (11), which could be used, for instance, to compute the
revisiting time of the subsatellite points (points of intersection between the radio vector of
each satellite and the Earth surface) of the constellation by the sole use of integer operations.

4.2 2D Lattice Flower Constellations

In general, 2D Lattice Flower Constellations generate distributions based on one or several
different ground-tracks. As a first case of study, we focus on designing 2D Lattice Flower
Constellations in such a way that all satellites share the same ground-track. This requires to
impose some conditions in the distribution parameters: number of satellites per orbit (LM ),
number of orbits (LΩ ) and combination number LMΩ . In particular, by equating the right
ascension of ascending node from Eqs. (12) and (3), we obtain:

− 2πNd
(q − 1)

Nst
= 2π

(i − 1)

LΩ

+ 2πC, (33)

where C is an unknown integer resultant from the modular arithmetic intrinsic in the right
ascension of the ascending node, and Nst = LΩ LM since both constellations must present
the same number of satellites. Then, after some simple operations, Eq. (33) leads to:

LM (i − 1) + (LΩ LM )C = −Nd(q − 1), (34)

which is a Diophantine equation (Mordell 1969) where a solution exists if and only if
gcd(LM , LΩ LM )|Nd, which reads gcd(LM , LΩ LM ) divides Nd. This condition can be
expressed in a simpler manner as LM |Nd, that is, the number of satellites per orbit LM

must be a divisor of Nd. Condition LM |Nd imposes a constraint in the selection of the satel-
lites per orbit of the constellation that is the result of the different possibilities that uniform
configurations can present in their distribution over the nodes of an inertial orbit.

On the other hand, in order for a given constellation to have all its satellites in the same
ground-track, the constellation distribution must fulfill the following condition (Avendaño
et al. 2013):

Np�Ωi j + Nd�Mi j = 0 mod (2π) �⇒ Np�Ωi j + Nd�Mi j + 2πD = 0, (35)

being D an unknown integer. Then, by substituting Eq. (3) in the previous expression, we
obtain:

2πNp
(i − 1)

LΩ

+ 2πNd

(
j − 1

LM
− LMΩ(i − 1)

LΩ LM

)
+ 2πD = 0, (36)

which after some elemental operations leads to:

NdLΩ( j − 1) + (LΩ LM )D = −(NpLM − NdLMΩ)(i − 1), (37)

where, in order for the solution to exist, gcd(NdLΩ, LΩ LM )|(NpLM − NdLMΩ). Taking
into account that gcd(NdLΩ, LΩ LM ) = LΩ gcd(Nd, LM ) and considering that LM |Nd
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as previously stated, we conclude that gcd(NdLΩ, LΩ LM ) = LΩ LM . Consequently, in
order for a solution to exist, LΩ LM must divide (NpLM − NdLMΩ). Thus, the value of the
combination number LMΩ is a solution of the following Diophantine equation:

NdLMΩ + (LΩ LM )E = NpLM , (38)

being E an unknown integer. The solution of this Diophantine equation exists if and only if:

gcd(Nd, LΩ LM )|NpLM ⇐⇒ gcd

(
Nd

LM
, LΩ

)∣∣∣∣ Np. (39)

Since gcd(Nd, Np) = 1 and LM |Nd, it can be concluded that gcd

(
Nd

LM
, LΩ

)
= 1, which

means that the number of orbits of the constellation (LΩ ) has to be coprime with Nd/LM ,
which also implies that gcd(Nd, LΩ LM ) = LM . Therefore, the possible values of the com-
bination number LMΩ provided by Eq. (38) are:

LMΩ(λ) = LMΩ(0)+λ
LΩ LM

gcd(Nd, LΩ LM )
= LMΩ(0)+λ

LΩ LM

LM
= LMΩ(0)+λLΩ, (40)

where λ is any integer number and LMΩ(0) is a particular solution of Eq. (38). As it can
be seen, the value of LMΩ is unique, since the combination numbers are defined such that
LMΩ ∈ {0, 1, . . . , LΩ − 1} to avoid duplicities in the formulation (Arnas et al. 2018).
Thus, all conditions that 2D Lattice Flower Constellations must fulfill in order to generate a
repeating ground-track constellation are known:

LM |Nd, gcd

(
Nd

LM
, LΩ

)
= 1, and

(
NdLMΩ − NpLM

) |LΩ LM . (41)

Now, we plan to relate the resultant distribution with the configuration generated by
Eq. (12). In that sense, since the distributions from both formulations are completely uniform,
the number of available positions in the ECEF must be Nst = LΩ LM , that is, the number
of satellites of the 2D Lattice Flower Constellation. Then, by equating Eqs. (3) and (12), we
obtain:

2π

LM
( j − 1) − 2π

LM

LMΩ

LΩ

(i − 1) = 2πNp
(q − 1)

Nst
mod (2π), (42)

which after some elemental operations, and knowing that the number of satellites is Nst =
LΩ LM , leads to:

Np(q − 1) = ( j − 1)LΩ − (i − 1)LMΩ mod (LΩ LM ), (43)

which can be also expressed as:

Np(q − 1) + FLΩ LM =
[
( j − 1)LΩ − (i − 1)LMΩ

]
, (44)

being F an unknown integer. Equation (44) is a Diophantine equation that allows to obtain
the relative positions (q) of all the satellites of the constellation. Once the values of q are
computed, it is possible to obtain the along-track distribution of the constellation using
Eq. (11).

Moreover, as a second case of study, we deal with constellations that are distributed in
several ground-tracks. In this situation, there is no limitation in the selection of the con-
stellation parameters LΩ , LM and LMΩ since the constellation is not constrained to a
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common ground-track, and a direct relation can be performed between Eqs. (3) and (7) to
obtain:

tkq − t0 = Tc
Np

[
j − 1

LM
− LMΩ(i − 1)

LΩ LM

]
mod (Tc),

�Ωk = 2π

[(
1 − Nd

Np

LMΩ

LM

)
i − 1

LΩ

+ Nd

Np

j − 1

LM

]
mod (2π), (45)

which defines a more general transformation between 2D Lattice Flower Constellations and
the formulation provided by Eq. (7).

4.3 2D Necklace Flower Constellations

2D Necklace Flower Constellations are based on admissible locations defined by the 2D Lat-
tice Flower Constellations formulation. This means that we have to apply the same conditions
in LΩ , LM and LMΩ in order to obtain a constellation distributed in the same ground-track.
On the other hand, the resultant along-track distribution of the constellation can be obtained
by introducing Eq. (4) into Eq. (44):

Np(q − 1) + E (LΩ LM ) =
[
(GM − 1 + SMΩ(GΩ − 1))LΩ − (GΩ − 1)LMΩ

]
, (46)

which is also a Diophantine equation where the value of q for each satellite of the constel-
lation can be obtained. It is important to note that in this case, since we have introduced
necklaces in the formulation, we will only obtain a subset of all the possible values of q that
could be generated with the fictitious constellation. In that sense, the values obtained in the
transformation are related to the positions where the real satellites of the constellation are
located, while the rest of the values of q that are not generated correspond to empty locations
of the configuration.

4.4 Walker Constellations

Since Walker Constellations are a subset of 2D Lattice Flower Constellations (Davis et al.
2012), we can benefit from that fact by first relating both formulations. In that sense, the
number of satellites of the constellation is t = LΩ LM , the number of orbital planes p = LΩ

and the number of satellites per orbit t/p = LM . Moreover, the distribution in right ascension
of the ascending node and mean anomaly is obtained as follows:

�Ωi j = 2π
(i − 1)

p
,

�Mi j = 2π
p

t
( j − 1) + 2π

f

t
(i − 1) , (47)

or if related with the notation from 2D Lattice Flower Constellations:

�Ωi j = 2π

LΩ

(i − 1) ,

�Mi j = 2π

LM
( j − 1) + 2π

LM

f

LΩ

(i − 1) . (48)

By relating Eqs. (48) and (3), it is derived that LMΩ = − f mod (LΩ). Moreover, since
the limits in definition of the parameter f ∈ {0, . . . , p − 1} and LMΩ ∈ {0, . . . , LΩ − 1}, it
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Table 1 Non-perturbed satellite
distribution

Sat. (k,q) 1,1 1,2 1,3 1,4

�Ω (◦) 0.0 0.0 0.0 0.0

�M (◦) 0.0 270.0 180.0 90.0

tkq (days) 0.0 1.0 2.0 3.0

can be concluded that LMΩ = p − 1 − f . Therefore, a Walker-Delta Constellation can be
defined unequivocally in terms of a 2D Lattice Flower Constellation. This also means that
the condition to generate a constellation whose satellites are located in the same ground-
track is the same as in the case of 2D Lattice Flower Constellations. The same applies to the
transformation between Walker-Delta Constellations and the proposed formulation.

5 Example of application

In this section, we propose an example of nominal design of a repeating ground-track con-
stellation based on four Earth observation satellites in low Earth orbits (Nst = 4) that present
the properties of repeating ground-track, sun-synchrony and frozen condition in the eccen-
tricity vector. These design properties are selected to provide a more stable set of conditions
for Earth observation. For this example, we assume that all the satellites of the constellation
have the same payload, which is based on an optical sensor. This means that satellites will
require the same local time at the ascending node to maintain the illumination conditions for
all the constellation. In addition, we consider that due to payload requirements, each satellite
must present a repeating ground-track cycle of 59 orbital revolutions (Np = 59) and 4days
(Nd = 4). Finally, in order to improve the revisiting time of the constellation, a uniform
distribution over the same ground-track is imposed (k = 1). Note that a non-uniform distri-
bution can be also chosen using the formulation provided by Eq. (24); however, we select
a uniform distribution to also be able to relate to the different satellite constellation designs
studied in this work.

The distribution sought can be directly achieved by a uniform distribution over the ground-
track using Eq. (12):

�Ωq = −2πNd
(q − 1)

Nst
mod (2π) = −2π(q − 1) mod (2π),

�Mq = 2πNp
(q − 1)

Nst
mod (2π) = 59

2
π(q − 1) mod (2π), (49)

which generates not only a unique ground-track for the constellation, but also a unique
inertial orbit since Nd = Nst = 4. Table 1 shows the non-perturbed distribution of the
constellation in the right ascension of the ascending node, the mean anomaly and the along-
track time distance, where Sat. (k,q) relates to a given spacecraft in the space-track k and
position q in that space-track. Note that tkq is also providing the revisiting time of each
satellite of the constellation. On the other hand, the same distribution can be obtained by
means of the Flower Constellations formulation. In particular, regarding the original Flower
Constellations formulation, an equivalent distribution is obtained imposing Fd = Fn = 1,
and Fh(g) = 0 ∀ g ∈ N. Using Eq. (2):

�Ωg = −2π
Fn
Fd

(g − 1) mod (2π) = −2π(g − 1) mod (2π),
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Table 2 Initial positions and velocities of the constellation in the ECEF

Sat. (k,q) x (km) y (km) z (km) vx (km/s) vy (km/s) vz (km/s)

1,1 5239.796 − 129.887 4668.592 − 4.968 − 1.659 5.529

1,2 4607.737 1190.089 − 5159.020 5.721 − 0.472 5.001

1,3 − 5251.862 127.935 − 4663.414 4.959 1.658 − 5.529

1,4 − 4618.759 − 1190.801 5156.713 − 5.713 0.473 − 5.000

�Mg = 2π
FnNp + FdFh(g)

FdNd
(g − 1) mod (2π) = 59

2
π(g − 1) mod (2π), (50)

we can observe that both distributions are completely equivalent if we impose q = g. Addi-
tionally, regarding 2D Lattice Flower Constellations, the equivalent distribution is obtained
imposing LΩ = 1, LM = 4 and LMΩ = 0. That way, using Eq. (3):

�Ωi j = 2π

LΩ

(i − 1) mod (2π) = 0 mod (2π),

�Mi j = 2π

LM
( j − 1) − 2π

LM

LMΩ

LΩ

(i − 1) mod (2π) = π

2
( j − 1) mod (2π), (51)

where the relations between j ∈ {1, 2, 3, 4} and q ∈ {1, 2, 3, 4} are provided by Eq. (44):

Np(q−1)+FLΩ LM =
[
( j−1)LΩ−(i−1)LMΩ

]
�⇒ 59(q−1)+4F = ( j−1), (52)

obtaining j = 1 → q = 1, j = 2 → q = 4, j = 3 → q = 3 and j = 4 → q = 2. The
same result is obtained when dealing with 2D Necklace Flower Constellations since all the
positions of the constellation are occupied.

However, we are more interested in defining the nominal design of this constellation under
the Earth gravitational potential. In particular, we consider a gravitational potential of the
Earth (NIMA 2000) up to fourth-order terms (including tesserals). Under these conditions,
we first have to define the leading satellite of the constellation. In that sense, a numerical
algorithm (in particular the one proposed in Arnas (2018)) is used for the purpose of finding
a repeating sun-synchronous frozen orbit under the gravitational model considered in this
study. Table 2 shows the initial position and velocity in the ECEF frame of reference of
the leading satellite of the constellation (satellite 1, 1). Note that this satellite defines the
nominal orbit for the whole constellation under the model of gravitational potential of the
Earth considered and also serves as a reference for the satellite distribution.

After the initial state of the leading satellite is completely defined, we perform the satellite
distribution using Eq. (11) and define the constellation based on the propagation of this
leading satellite (see also Table 1 for the along-track distribution of the constellation). The
initial state of the constellation is presented in Table 2 where the positions and velocities are
defined in the ECEF frame of reference. On the other hand, Table 3 shows the distribution
of the constellation in osculating elements. One important thing to note is that the inertial
orbits of the satellites of the constellation are not exactly the same due to Eq. (16).

Figure 1 shows the ground-track of the constellation for a propagation of 4days. As
it can be seen, all four satellites share the same ground-track, which is closed, achieving
the ground-track property for the whole constellation. This state has been achieved even
with the perturbation produced by the Earth gravitational potential, obtaining a repeating
ground-track property that can bemaintained formonths (and for the perturbation considered)
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Table 3 Osculating elements of the constellation for epoch (UTC Julian date) 21545.222

Sat. (k,q) a (km) e (–) i (◦) Ω (◦) ω (◦) ν (◦)

1,1 7171.935 0.021 100.056 7.700 42.498 0.000

1,2 7166.682 0.020 99.678 3.828 311.799 359.987

1,3 7171.967 0.021 100.067 7.672 224.771 357.624

1,4 7166.697 0.020 99.686 3.824 129.712 2.153

Fig. 1 Ground-track of the constellation

Table 4 Final positions and velocities of the constellation in the ECEF after 1year

Sat. (k,q) Position (km) Velocity (km/s)

x y z vx vy vz

Computed

1,1 4508.88 1189.00 − 5259.75 5.82 − 0.44 4.88

1,2 − 5334.07 111.27 − 4560.09 4.85 1.66 − 5.64

1,3 − 4486.98 − 1186.42 5257.85 − 5.83 0.44 − 4.88

1,4 5361.59 − 105.54 4538.63 − 4.83 − 1.66 5.64

Theoretical

1,1 4508.88 1189.00 − 5259.75 5.82 − 0.44 4.88

1,2 − 5334.00 111.26 − 4560.18 4.85 1.66 − 5.64

1,3 − 4487.16 − 1186.47 5257.68 − 5.83 0.44 − 4.88

1,4 5361.35 − 105.51 4538.92 − 4.83 − 1.66 5.64

without orbital maneuvers. In particular, a propagation of 1year was performed using this
configuration and an adaptable time step. Table 4 shows the position and velocity of the
constellation after this propagation (column “computed”). Moreover, in order to show the
evolution of the relative distribution itself, an additional computation (column “theoretical”)
is done. This computation was performed by taking the values of position and velocity from

123



19 Page 18 of 20 D. Arnas, D. Casanova

the first satellite (1,1) after the 1-year propagation as the reference for the constellation,
and performing the constellation distribution from them, that is, the positions and velocities
of this “theoretical” constellation are computed using the distribution defined by Eq. (11).
As it can be seen, the difference between both results is minimal, being these differences a
consequence of the error accumulation after 1year of propagation of the constellation. It is
important to emphasize that if other orbital perturbations are considered, the space-track of
the constellation will change, and thus, orbital maneuvers will be required to be applied to
correct that situation.

6 Conclusion

This work presents a methodology to perform the nominal design of repeating ground-track
constellations under the effect of the perturbation produced by the Earth gravitational poten-
tial. In particular, we provide a new mathematical formulation to define these systems and
analyze the long-term dynamic of the resultant constellations. The general idea of this proce-
dure is to define the constellation distribution directly in the ECEF frame of reference using
the along-track and cross-track time distances between satellites. That way, it is possible
to include the effects of these perturbations directly in the nominal definition of the con-
stellation, being able to maintain the along-track distribution of the constellation during the
dynamic of the system. This methodology is based on the definition of a set of leading satel-
lites, one per each different space-track of the constellation, that are used in order to generate
the set of perturbed space-tracks in which the satellite distribution is defined. Following this
procedure, these reference space-tracks allow to distribute satellites in such a way that the
constellation along-track distribution is maintained under the perturbation produced by the
Earth gravitational potential. In that sense, we show that some additional considerations have
to be taken into account. In particular, the satellite distribution must consider the combined
effect of the mean anomaly and the variation of the argument of perigee in order to define a
time invariant distribution under these orbital perturbations. Moreover, the secular variation
of the right ascension of the ascending node and the mean anomaly of the leading satellite
have to be included in the nominal distribution of the constellation.

Additionally, a transformation between Flower Constellations (including Lattice and
Necklace formulations), Walker Constellations, and a relative to Earth formulation is intro-
duced. This allows, for instance, to obtain the relative distribution in along-track and
cross-track distances of Flower Constellations in the ECEF frame of reference. The most
important application of these transformations is to be able to extend the interesting proper-
ties in the ECEF frame of reference of the formulation presented in this work to other satellite
constellation designs. Thismeans thatwith these transformations, following the design proce-
dure presented, it is possible to define the nominal design of any Flower Constellation under
the effect of the perturbation produced by the Earth gravitational potential. In that sense,
Flower Constellations were selected since they represent a generalization of the most com-
mon satellite constellation designs currently in use. Moreover, this set of transformations can
be used to compute the revisiting times between the subsatellite points of repeating ground-
track constellations by the sole use of integer operations, since the along-track distribution
is provided directly by the proposed mathematical formulation.

Finally, an example of application for a LEO Earth observation constellation is presented,
where we show how the distribution can be maintained using this methodology for long
periods of time (more than a year) under a 4x4 model of the Earth gravitational potential. In
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this example, we deal with sun-synchronous orbits that have the frozen eccentricity condition,
since this is a wide-spread design for Earth observation missions, and show their relations
with all the formulations used in this work.
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