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Abstract
We propose a semianalytical method for the calculation of widths, libration centers and
small-amplitude libration periods of the mean motion resonances kp:k in the framework of
the circular restricted three-body problem valid for arbitrary eccentricities and inclinations.
Applying the model to the trans-Neptunian region, we obtain several atlas of resonances
between 30 and 100 au, showing their domain in the plane (a, e) for different orbital incli-
nations. The resonance width may change substantially when varying the argument of the
perihelion of the resonant object, and in order to take into account these variations, we intro-
duce the concept of resonance fragility. Resonances 1:k and 2:k are the widest, strongest,
most isolated ones and associated with lower fragility for all intervals of inclinations and
eccentricities. We discuss the existence of high kp:k resonances. We analyze the distribution
of the resonant populations inside resonances 1:1, 2:3, 3:5, 4:7, 1:2 and 2:5.We found that the
populations are in general located near the regions of the space (e, i) where the resonances
are wider and less fragile with the notable exception of the population inside the resonance
4:7 and in a lesser extent the population inside 3:5 which are shifted to lower eccentricities.

Keywords Mean motion resonances · Trans-Neptunian objects · Semianalytical model ·
Retrograde orbits

1 Introduction

The resonant structure of the TNR was explored by numerical integrations of test particles
(e.g., Levison and Duncan 1993; Duncan et al. 1995; Malhotra 1996; Melita and Brunini
2000) and by application of analytical theories that depend on the adopted approach for the
resonant disturbing function. Analytical expansions of the disturbing function (e.g., Beaugé
1996; Ellis and Murray 2000) are limited to some intervals of eccentricities and/or inclina-
tions. Analytical expansions around arbitrary specific points of the phase space (also called
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asymmetric expansions) allowed the study of the resonant motion around the center of the
expansion (Ferraz-Mello and Sato 1989; Gallardo and Ferraz-Mello 1995; Roig et al. 1998),
and they were applied to understand the dynamics of the asteroidal resonances mostly. Semi-
analytical methods, analytical theories based on the numerical evaluation of the disturbing
function, allowed a very precise description of the planar mean motion resonances (MMRs)
in the asteroid belt and in the TNR (Schubart 1964; Moons and Morbidelli 1993; Morbidelli
et al. 1995, and subsequent references). Resonance’s properties for planar direct orbits were
very well described since then. Retrograde resonances appeared in the 1980s related to stud-
ies on dynamical evolution of comets (Emelyanenko 1985; Carusi et al. 1986), but probably
because it sounded very unlikely, only in the last years the planar retrograde (Morais and
Giuppone 2012; Morais and Namouni 2013b) and then the general inclined resonance prob-
lem was started to be studied systematically (Morais and Namouni 2013a; Namouni and
Morais 2015; Morais and Namouni 2016; Namouni andMorais 2017a; Morais and Namouni
2017; Voyatzis et al. 2018; Lei 2019). Some of these studies provide a general picture of the
resonances but limited to some intervals of eccentricity and/or inclination.

An analytical expression for the resonant disturbing function for arbitrary (e, i) has in
general several terms that must be taken into account globally in order to have a complete
picture of the resonance. Namouni and Morais (2017b) and Namouni and Morais (2018)
presented a theory that allows finding specific terms of the analytical expansion for arbitrary
spatial resonances. The theory by Lei (2019) is very similar to the one presented by Namouni
andMorais (2018) but arranging the resonant terms in a more compact way providing a more
global description of the whole resonance and not limited to individual resonant terms. Both
theories are valid in all intervals of inclinations but limited to e ≤ 0.5 due to convergence
problems in the series expansions. In a different approach and by means of a numerical eval-
uation of the resonant disturbing function, Gallardo (2006, 2019) calculated the resonance’s
strength and provided a general picture of all kinds of resonances in terms of strengths. Both
approaches by Lei (2019) and Gallardo (2006, 2019) put in evidence that the particle’s argu-
ment of the perihelion is crucial for the definition of the strength and width of a resonance
in the spatial case.

We present here a semianalytical model based on the numerical evaluation of the resonant
disturbing function, which assumes some approximations that simplify greatly the theory
providing a very fast method for automatically computing equilibrium points, libration peri-
ods and widths of MMRs for orbits with arbitrary eccentricities and inclinations. Moreover,
we introduce a new concept: the fragility of resonances. In Sect. 2, we explain and test the
model. In Sect. 3, we extensively apply the model to the TNR obtaining several atlas contain-
ing hundreds of resonances and we discuss the existence of high kp:k resonances. In Sect.
4, we analyze six known populations of resonant trans-Neptunian objects (TNOs). We end
with a summary in Sect. 5.

2 Amodel for spatial MMRs

2.1 Resonant Hamiltonian

Let us consider the MMR that we note as kp:k, which corresponds to the commensurability
kpn p � kn, being kp, k positive integers that do not have common divisors and n p, n the
mean motions of the planet and the TNO, respectively. The corresponding critical angle is
given by
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Three-dimensional structure of mean motion resonances beyond Neptune Page 3 of 26 9

σ = kλ − kpλp + (kp − k)�, (1)

where subindex p denotes planet. Note that using this notation 3:1, for example, is an interior
resonance and 1:3 an exterior resonance and it is not necessary to specify whether it is interior
or exterior or whether it is direct or retrograde. The last term for σ in Eq. (1) can be a
combination of � and Ω (longitudes of the perihelion and ascending node, respectively),
but that is not relevant for our purposes as we will explain. Following, for example, Nesvorný
et al. (2002) or Saillenfest et al. (2016) the semisecular Hamiltonian obtained eliminating
the short-period terms depending on λ or λp , but not on σ , is

H(a, e, i, ω, σ ) = − μ

2a
− n p

kp
k

√
μa − R(a, e, i, ω, σ ), (2)

where μ = GM�. Note that the dependence with e, i, ω is through the resonant disturbing
functionR. AsH does not depend explicitly with the time, it is conserved and the solutions
occur in surfaces defined by H(a, e, i, ω, σ ) = constant . Several analytical developments
of R(a, e, i, ω, σ ) have been proposed, each one valid in some intervals of the orbital ele-
ments. We will adopt here the approximation given by Gallardo (2006, 2019) where, for the
resonance kp:k, R is numerically evaluated assuming fixed values for (a ≡ a0, e, i, ω):

R(σ ) = 1

2πk

∫ 2πk

0
R(λp, λ(λp, σ ))dλp, (3)

where a0 is the nominal value for the exact resonance and R is the disturbing function of the
planet with mass mp and heliocentric position rp on the particle with heliocentric position
r:

R = Gmp

( 1

| rp − r | − r · rp
r3p

)
. (4)

Themean longitude of the asteroid,λ, in (3) is expressed as a function of (λp, σ ) according
to Eq. (1). This numerical averaging is the same proposed by Schubart (1964) but assuming
fixed (a, e, i, ω) in the calculation of the integral (3). The assumption of fixed ω does not
introduce any spurious result because ω varies in very long time scales. On the other hand,
the elements (a, e, i) do vary a little during one resonant libration but, as we will show, their
variations do not introduce relevant changes in the numerical calculation of the equilibrium
points, libration periods and resonancewidths. Then, the approximation assumed implies that
the resonant Hamiltonian has two variables (a, σ ) and it depends also on the fixed parameters
(e, i, ω). The solutions will be level curves H(a, σ ), and analyzing them, we can identify
the stable and unstable equilibrium points, the librations around the stable points and the
separatrices as we will explain below. The level curves of H = constant are calculated
using

H(a, σ ) = − μ

2a
− n p

kp
k

√
μa − R(a0, σ ). (5)

2.2 Equilibrium points and libration periods

To obtain the equations for (a, σ ), we should first change to the canonical variables (Σ, σ )

where Σ = √
μa/k. The canonical equations are

dΣ

dt
= −∂H

∂σ
, (6)
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Fig. 1 Resonance 1:3 with Neptune for an orbit with e = 0.7, i = 90◦, ω = 0◦. Top: some level curves for
H(a, σ ) given by Eq. (5) including the separatrix. Bottom: corresponding R(a0, σ ) given by Eq. (3). The
stable equilibrium points are the minimum forR located at σ = 26◦ and σ = 334◦. The unstable equilibrium
points are located at σ = 0◦ and σ = 180◦. The separatrix passing by the unstable equilibrium point at
σ = 180◦ and a0 = 62.63 au defines the total width of the resonance (Sect. 2.3), indicated with arrows, which
turns out to be 0.8 au

dσ

dt
= ∂H

∂Σ
. (7)

From Eq. (6), we obtain
da

dt
= 2k√

μ/a

∂R
∂σ

, (8)

from which we conclude that the dependence ofR with σ defines the dynamical behavior of
the resonance because the stronger the dependence ofR with σ the larger the rate of change
of a due to the resonant motion. The equilibrium points are defined by the condition

dσ

dt
= da

dt
= 0. (9)

Using this condition, from Eq. (1) assuming d�/dt = 0 it follows that the equilibrium
points are at a = a0. But using Eqs. (9) and (8), we have that the equilibrium points verify

∂R
∂σ

= 0. (10)

In Fig. 1, we show an example where the equilibrium points are located at σ = 0◦, 26◦,
180◦ and 334◦. Being (Σ0, σ0) an equilibrium point in canonical variables, if we consider
some small displacement (S, s), using the canonical equations we can obtain the first-order
expansions

dS

dt
= −Hσσ s − HσΣ S, (11)

ds

dt
= HΣσ s + HΣΣ S, (12)
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where subscripts in H mean partial derivatives. Looking for solutions of the type S =
A exp(2π t/T ) and s = B exp(2π t/T ), it is straightforward to prove that oscillations only
occur with a libration period, T , in years given by

T = a

k

2π√
3Rσσ

, (13)

where Rσσ is the second derivative calculated numerically at the stable equilibrium point.

2.3 Resonance widths

The resonance’s half width Δa is equal to the difference between a0 and asep where asep is
defined by the separatrix such that

H(asep, σs) = H(a0, σu), (14)

being σs and σu the stable and unstable equilibrium points, respectively. The total width is
twiceΔa and in Fig. 1 is shown with vertical arrows. IfΔH = H(asep, σs)−H(a0, σs), then
we can approximate

ΔH = ∂H
∂a

Δa + ∂2H
∂a2

(Δa)2

2
+ · · · . (15)

Evaluating the derivatives at the stable equilibrium point and using (14), we have

ΔH = H(a0, σu) − H(a0, σs) � ∂2H
∂a2

(Δa)2

2
. (16)

The left hand is
R(σs) − R(σu) = −ΔR, (17)

while

∂2H
∂a2

= −3

4
n2,

and then, the half width of the resonance expressed in au is

Δa �
√
8/3

n

√
ΔR, (18)

whereΔR is the maximum amplitude ofR(σ ). Then, for a specific resonance with a defined
planet the method consists in, given (e, i, ω), calculating numerically the functionR(σ ) and
deducing numerically ΔR andRσσ at the stable equilibrium points in order to calculate Δa
and the periods of the small-amplitude librations. As we assume � and Ω constants, it is
irrelevant which combination of these angles we use in (1) because all of them will generate
the sameΔR andRσσ . Up to now, this method is analogue to the analytical method given by
Lei (2019) but here we calculateR numerically, while in Lei (2019) an analytical expansion
is used and consequently it is not applicable for very high eccentricities. Both methods
calculate widths using R evaluated at the equilibrium points and are unable to distinguish
asymmetries between the left and right limits of the resonances. Those asymmetries are
especially noticeable in some first-order resonances with Jupiter (Nesvorný et al. 2002).
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2.4 Calculation of1R in close encounters

The calculation of the resonance width is a fundamental problem in resonance dynamics.
Usually, the width is defined by the separatrix in an analogue procedure as we have done
here. But the region close to the separatrix is chaotic and chaos is especially important when
resonances are so wide that they overlap. In these cases, the widths deduced from separatrices
are larger than the regions where the oscillations are really stable. Also, for sufficiently
eccentric orbits having large-amplitude librations, a close encounter between the object and
the planet can occur, generating a peak inR and disrupting the resonantmotion. To avoid these
flaws and in order to have reliable widths for the planar case, Malhotra (1996), Malhotra et al.
(2018) and Lan and Malhotra (2019) defined the widths only for stable librations obtained
by means of numerical explorations using Poincaré surface of sections. For the same reason,
Gallardo (2006) defined the strength of the resonance as SR =< R > −Rmin, a parameter
that is not strongly affected by the maximum peaks of R generated in situations of close
encounters.

Using our approach, in the process of calculation of R(σ ) for a given σ , when varying
λ and λp , the particle may be placed in a configuration of close encounter with the planet.
If there is no collision, it is possible to calculate R(σ ) with enough precision, but it will be
an unstable configuration and in the real world the resonant motion will be broken. Then,
following the criteria of stable librations, in order to calculateΔR to obtain reliablemaximum
resonance widths, we do not take into account values of R obtained in circumstances of
close encounters. After some numerical experiments comparing our predicted widths with
the results of numerical integrations, we found that a safe distance is 3RH , where RH is the
planetary Hill’s radius. A resonant TNO encountering Neptune at less than 3RH brakes the
resonant configuration.Wehave also found that the limit has somedependencewith the orbital
inclination. For near-zero-inclination orbits, the actual limit probably is between 3 and 4RH

but for high inclinations is closer to 2RH . The disruption of the resonant motion depends on
theminimumdistance to the planet but also on the relative velocitywhich strongly depends on
the orbital inclination. So, 3RH is a compromise in order to have an idea of the safemaximum
resonance widths in situations of close encounters. We remark that, theoretically, libration
amplitudes can be larger but most probably unstable. In our model, we do not consider the
superposition of resonances as a limitation for the resonance width. If that situation exists, it
will be evident when calculating a series of neighboring resonances. We have written a code
in FORTRAN for computingR(σ ),ΔR, the total width of the resonance, the location of the
equilibrium points and corresponding libration periods of the small-amplitude oscillations.
It is not difficult to generalize the algorithm to the case of an eccentric planet. It can be
downloaded from http://www.fisica.edu.uy/~gallardo/atlas/ra/. In the next subsection, we
present some tests of our model in extreme situations.

2.5 Testing themodel with dynamical maps

We have tested our model comparing the predicted widths with the ones that can be deduced
bymeans of dynamicalmaps calculatedwith the numerical integrations of the exact equations
of motion considering the Sun, Neptune in circular and zero-inclination orbit and massless
particles in arbitrary orbits. We have found a very good agreement in very different circum-
stances, and we will illustrate with two extreme cases related to the resonance 1:3 involving
collision with Neptune. The first case is the study of the resonance widths in the space (a, e)
for orbits with i = ω = 0◦. These conditions imply that for e > 0.51 there will be a colli-
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Fig. 2 Resonance 1:3 with Neptune. Left: dynamical map showing in color scale the logarithm of Δa in au
as function of the initial (a, e) for test particles with initial i = 0◦. Yellow regions correspond to Δa > 10
au and blue and black to Δa < 0.1 au. For 0 < e < 0.68, the initial critical angle was taken σ = 300◦ and
for e > 0.68 was taken σ = 0◦. For e > 0.51, there are intersections with Neptune’s orbit. The red region,
corresponding to Δa of the order of some au, defines the limits of the stable domain of the resonance. Right:
the limits predicted with the model

sion for some values of σ . We calculated dynamical maps taking a grid of initial conditions
covering 61.6 < a < 63.6 au and 0 < e < 0.98, and we computed the mean barycentric
semimajor axes after ten orbital periods and then the variation Δa of the mean values after
200 orbital periods. Using this methodology, we eliminate short-period oscillations of a and
we can distinguish the orbital changes due to the librations. The resulting dynamical map
strongly depends on the chosen initial value of σ in the numerical integrations. For different
initial σ , we will obtain different libration amplitudes, so for different intervals in e, we
choose different initial σ according to the locations of the equilibrium points, so that the
resonant regions obtained in the map are the widest possible. The result is shown in Fig. 2
left panel, where black and blue regions of the map correspond to minimum changes typical
of secular evolutions, red corresponds to oscillations due to the resonant motion and yellow
corresponds to large changes due to disruption of the resonance. The domain of the stable res-
onance is the red region. In the yellow regions, for e > 0.5 the orbits abandon the resonance
due to close encounters with Neptune. The dark regions near the nominal value a0 are due
to small-amplitude oscillations around the equilibrium points inside the resonance. In Fig. 2
right panel, we show the limits computed by our algorithm calculating ΔR rejecting values
of R obtained with close encounters with distances less than 3RH . Even for the extreme
situations when e > 0.5 our algorithm is capable of detecting quite correctly the limits of
the stable borders of the resonance. There is a very good match with Fig. 2 second panel of
Lan and Malhotra (2019) where the resonance widths were obtained by Poincaré sections.
Another example is shown in Fig. 3. It is the same resonance but studied in the plane (a, i)
for e = 0.6 and ω = 0◦. The map in the left panel was calculated taking initial σ = 300◦
in order to obtain the widest librations. The right panel corresponds to the calculated limits
according to our model showing a very good agreement. We have also found a very good
agreement between the limits for the resonance 2:5 given by ourmodel and Fig. 3 byMalhotra
et al. (2018). Then, the model gives good approximations to the widths of the stable resonant
orbits. Nevertheless, in order to represent more exactly the actual limits of the resonances
in situations of close encounters, a fine-tuning of the algorithm can be done adjusting the
tolerance to the close encounters with the planet when calculating ΔR. Retrograde orbits
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9 Page 8 of 26 T. Gallardo

Fig. 3 Resonance 1:3 with Neptune. Left: dynamical map showing in color scale the logarithm of Δa in au
as function of the initial (a, i) for test particles with initial e = 0.6 and ω = 0◦. Yellow regions correspond
to Δa > 10 au and blue and black to Δa < 0.1 au. The initial critical angle was taken σ = 300◦. The red
region, corresponding to Δa of the order of some au, defines the limits of the stable domain of the resonance.
Right: the limits predicted with the model

probably can tolerate close encounters up to 2RH , while for direct orbits the limit could be
shifted to 4RH .

The weakest part of this model is assuming that (e, i) are fixed during the librations,
assumption that was avoided in the literature since the beginning of the application of semi-
analytical methods for MMRs because the aim was precisely to find the time evolution of
the eccentricity. For this reason, this model is unable to describe the time evolution of (e, i),
but it is useful for the determination of the resonance widths which by definition are the
maximum Δa of the resonance’s domain in the space (a, e, i) for given fixed (e, i).

We have also applied the model to resonances with Jupiter, where the librations of (e, i)
are the largest in the Solar System, and comparing with the widths deduced from dynamical
maps, we have found an excellent agreement in the absence of situations of close encounters.
For example, we compared our calculated widths with the ones presented by Lei (2019) for
resonances 2:1 and 3:1 with Jupiter for e < 0.5 obtaining a perfect agreement. But, when the
eccentricity is large enough to allow close encounters, sometimes it is necessary to adjust the
criteria of rejection of data from 3RH to even 1RH according to the case. Just for illustration,
the total width of the resonance 3:2 with Jupiter for i = 0◦ and e = 0.5 is 0.33 au according
to the distance between its separatrices (e.g., Nesvorný et al. (2002)). But, by means of
numerical integrations or dynamical maps it is easy to show that, due to the disruptive close
encounters with Jupiter, the width for stable librations is approximately 0.17 au which is the
value predicted by our model discarding close encounters to less than 3RH . Nevertheless,
in order to reproduce the widths deduced from the dynamical map of Figure 7 in Gallardo
(2019) corresponding to resonance 3:1 with Jupiter for i = 90◦, at very high eccentricities
we had to allow close encounters even to less than 1RH in our algorithm, probably because
of the large orbital inclination but also because this resonance is extremely strong and can
overcome such close encounters. On the other hand, for e < 0.7 the match between the
dynamical map and our widths for that resonance is almost perfect in any circumstances.
We also reproduced correctly the results shown in Figure 8 of Gallardo (2019) because it is
a configuration without close encounters (i = ω = 90◦), and the results of Figure 17 from
Gallardo (2019) allowing encounters as close as 1RH . Then, the criterion of 3RH is a general
rule, but in particular cases it can be revised.
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A limitation of our model is that it does not take into account the law of structure (Ferraz-
Mello 1988) that relates a0 with e, but this effect is restricted to the first-order resonances
at very low eccentricities. It is originated in the non-negligible value of �̇ , which is typi-
cal of near-zero-eccentricity orbits and that we have ignored assuming constant � in Eq.
(1). In conclusion, we can say that this model allows to obtain a good approximation of
the fundamental properties of MMRs in general in the Solar System. In the next section,
applying this model we will present a study of the resonant structure beyond Neptune in
three-dimensional space, including the orbital inclination of the resonant objects. We will
also show the relevance of the argument of the perihelion, ω, for spatial resonances.

3 Properties of the spatial MMRs beyond Neptune

3.1 Libration centers, periods and widths for stable librations

It is known that for the planar case all resonances except resonances 1:k have libration centers
strictly at σ0 = 0◦ or σ0 = 180◦. Resonances 1:k instead have asymmetric librations, i.e.,
libration centers whose positions depend on the orbital eccentricity. Applying our method to
the spatial case, we found that all resonances can have libration centers widely distributed in
the interval 0◦ ≤ σ0 ≤ 360◦ and that for a specific resonance, σ0 depends on the set (e, i, ω).

Nevertheless, we have found a very particular situation when ω = N × 90◦ being N an
integer: For all spatial resonances, the equilibrium points present a symmetry with respect
to σ = 180◦. In this situation, resonances 1:k exhibit a wide variation in the location of
the equilibrium points but preserving the symmetry with respect to σ = 180◦, while for all
other resonances the equilibrium points are strictly at σ = 0◦ or 180◦. On the contrary, for
ω �= N × 90◦ the symmetry is destroyed for all resonances and the equilibrium points can
be located in all the intervals of σ between 0◦ and 360◦.

We illustrate these properties with some examples. Figure 4 shows all the libration centers,
periods and widths we have found for resonance 1:2 when assuming ω = 90◦ and varying
the eccentricity between 0.02 and 0.96 in steps of 0.02 and the inclination between 0◦ and
180◦ in steps of 5◦. Depending on the values of (e, i), sometimes we found one or two or
three stable libration centers and we plotted all of them. There is a perfect symmetry with
respect to σ = 180◦ and similar situations occur when ω = N × 90◦. Figure 5 shows the
same resonance but imposing ω = 60◦, the symmetry is destroyed and the stable libration
centers can be located in all intervals between 0◦ and 360◦ depending on (e, i). Figure 6
shows the case of the resonance 2:3 imposing ω = 60◦. The libration center can be located
anywhere in the interval between 0◦ and 360◦, but taking ω = N × 90◦ we obtain libration
centers exclusively at 0◦ or 180◦ for this resonance. Then, ω is a crucial parameter for the
location of the libration centers in the spatial case. Evenmore, we have found that the number,
location, stability of the equilibrium points as well as the topology ofH(a, σ ) depend on the
set (e, i, ω).

To get an idea of the wide variety of resonance properties, a global representation of
libration periods and maximum widths for all resonances between 30 and 100 au verifying
kp, k ≤ 30 is shown in Fig. 7. All calculations correspond to orbits with arbitrarily chosen
e = 0.3 and ω = 90◦, and for each resonance, we show the results for three different
inclinations: 10◦ with black points, 90◦ with red and 170◦ with violet. For some resonances,
more than one libration state is possible and all of them were plotted. We note that several
resonances for the case i = 170◦ with high kp, k close to resonance 1:1 were computed
with zero width because of instabilities generated by close encounters with Neptune. For
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Fig. 4 Resonance 1:2. Libration centers, periods (bottom) and maximum widths (top) for stable librations
obtained when varying e between 0.02 and 0.96 in steps of 0.02 and i between 0◦ and 180◦ in steps of 5◦
assuming ω = 90◦. The symmetry with respect to σ = 180◦ is preserved. All resonances 1:k exhibit a similar
behavior when ω = N × 90◦

this particular inclination, the resonances are in general weaker with the notable exception
of resonances 1:k. Polar resonances (i = 90◦) are sometimes as strong as the resonances for
i = 10◦. We tested our predicted libration periods for i = 0◦ with the ones given by Lan and
Malhotra (2019) in their Fig. 8b, and we have found a very good agreement. In our Fig. 7, it is
evident that, for a given interval in a, the larger the resonance width, the shorter the libration
period of the small-amplitude librations, which is related to better stability. Libration periods
of several Myrs probably are not realistic because they are associated with weak resonances
and also because we are not considering the secular effects that are characteristic of the TNR.
Resonances 1:k marked with a short vertical blue line in Fig. 7 are the strongest, widest
and associated with the shortest libration periods, independently of their inclinations, when
compared with their surrounding resonances. They dynamically dominate because of their
larger strength and isolation and their dynamical relevance shapes distribution of the points
in Fig. 7.

3.2 The fragility of the spatial resonances

In the planar model, the strength and width of a given resonance depend just on the orbital
eccentricity. In the spatial case, they depend on the set of parameters (e, i, ω). While the
orbit is librating, (e, i) experience small-amplitude oscillations, but ω generally circulates
or shows large variations in longer time scales. The variations in ω generate changes in the
resonance width and topology. If these changes are small, the resonance will not be affected
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Fig. 5 Resonance 1:2. Same as Fig. 4 but assuming ω = 60◦. The symmetry is destroyed
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Fig. 6 Same as Fig. 5 but for resonance 2:3 (ω = 60◦)
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Fig. 7 Libration periods of the
small-amplitude oscillations (top)
and maximum widths (bottom)
for all 234 resonances with
kp, k ≤ 30 located between 30
and 100 au. Calculations
correspond to orbits with
e = 0.3, ω = 90◦, and for each
resonance, three different orbital
inclinations were considered:
10◦, 90◦ and 170◦ are
represented by black, red and
violet points, respectively. From
left to right, location of
resonances 1:1, 1:2, 1:3, 1:4, 1:5
and 1:6 is represented by short
blue vertical lines

but if they are large eventually the resonance could become weak and the resonant motion
may break down. Then, for the spatial resonances we introduce a new concept that we will
call resonance fragility and that we define it as the dimensionless parameter

f (e, i) = (Δamax − Δamin)/Δamin, (19)

where Δamax and Δamin are the maximum and minimum total resonance widths of stable
librations obtained, respectively, when varying ω for fixed (e, i). A fragility equal to 0 means
that there is no fragility, the resonance’s width is invariable with ω and the resonance can be
considered stable in the sense that changes in its properties cannot be expected. A resonance
with fragility f can change its width by a factor of f + 1, so it is an indication of instability.
Then, for a given resonance, f is a function depending on (e, i) and we could have regions
of the plane (e, i) with high fragility. These regions indicate the values (e, i) for which the
resonant motion is more vulnerable, or fragile, and the least probable regions capable of
sustaining a resonant population for long time scales. In Figs. 8, 9, 10, 11, 12, 13, 14 and 15,
we illustrate with some resonances that have been considered since the study of the dynamics
of the TNR began ordered in increasing values of semimajor axes. In the left panels, on a grid
of (e, i), we show the maximum widths of stable librations in au calculated when varying ω

from 0◦ to 90◦ (ΔR is π -periodic in ω and symmetric respect to ω = 90◦) in steps of 5◦ and
in the right panels the corresponding fragility f according to Eq. (19). The same scale for
Δamax was used in all figures in order to an easy comparison between them, and the same
scale was used in all figures for f .

For low-inclination orbits, say i < 10◦, the fragility is in general very low but for higher
inclinations some resonances show increasing fragility. We have found that high fragility is
associated with changes in the stability of the equilibrium points. Although high fragility is
associated with lower resonance widths, we have found that the fragility mostly depends on
the type of the resonance. Resonances 1:1, 1:2 and 1:3 show larger widths in au, and these
are the resonances which exhibit lower fragility. More precisely, examining the figures it is
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Fig. 8 Resonance 1:1 at a = 30.1 au. Left: maximum width in color code from 0 to 1.2 au obtained varying
ω. Right: fragility in color code from 0 to 4. Yellow regions represent very-high-fragility regions with f ≥ 4

Fig. 9 Same as Fig. 8 for resonance 7:9 at a = 35.6 au. Left: maximumwidth in au obtained varying ω. Right:
fragility

Fig. 10 Same as Fig. 8 for resonance 2:3 at a = 39.5 au. Left: maximum width in au obtained varying ω.
Right: fragility

evident that for a generic resonance kp:k the larger the value of kp , the larger the fragility of
the resonance being 7:9, 4:7 and 3:5 themost fragile of the resonances shown and in that order.
Then, resonances 1:k (kp = 1) are the widest and the more robust, followed by 2:k (kp = 2).
The polar resonant object 471325 (2011 KT19) is evolving in the region .28 < e < .48
and i ∼ 112◦ of resonance 7:9 (Morais and Namouni 2017) where according to Fig. 9 the
fragility is large; more precisely, it varies from 2 to 6. It is a very fragile region, and in fact,
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Fig. 11 Same as Fig. 8 for resonance 3:5 at a = 42.3 au. Left: maximum width in au obtained varying ω.
Right: fragility

Fig. 12 Same as Fig. 8 for resonance 4:7 at a = 43.7 au. Left: maximum width in au obtained varying ω.
Right: fragility

Fig. 13 Same as Fig. 8 for resonance 1:2 at a = 47.8 au. Left: maximum width in au obtained varying ω.
Right: fragility

the object leaves the resonance after some Myrs. We have not studied experimentally the
effect of f in a population of resonant objects, but if we imagine that N resonant objects are
uniformly distributed along the domain of the resonance, we can guess that a resonance with
fragility f could loss its members until reduced to N/( f + 1). On the other hand, an object
observed evolving inside a region of high fragility must be a survivor of an originally larger
population. That could be the case for 471325 (2011 KT19).

123



Three-dimensional structure of mean motion resonances beyond Neptune Page 15 of 26 9

Fig. 14 Same as Fig. 8 for resonance 2:5 at a = 55.5 au. Left: maximum width in au obtained varying ω.
Right: fragility

Fig. 15 Same as Fig. 8 for resonance 1:3 at a = 62.6 au. Left: maximum width in au obtained varying ω.
Right: fragility

Gallardo et al. (2012) and Saillenfest et al. (2016, 2017) studied the long-term dynamical
evolution of resonant motions due to the Lidov–Kozai mechanism where large changes in
(e, i) take place along with variations of ω. In these cases, the resonances also have large
variations in their behavior and strength, including notable changes in their topology. Our
definition of fragility only takes into account the variations generated by ω, independently of
the secular mechanism affecting (e, i) of the objects. Fragility is an intrinsic property of the
resonance and is defined by the values of (e, i). Nevertheless, if we know the long-term time
evolution of (e, i), we can follow the evolution of the resonant motion in terms of width and
fragility. For example, if the object is evolving toward a region of high fragility in the plane
(e, i), the resonance could break, and on the other hand, if it is evolving toward a region of
low fragility, the resonance will be guaranteed.

3.3 Atlas of resonances from 30 to 100 au

To have a general panorama of the resonances beyondNeptune, we show in Fig. 16 the classic
picture of resonance’s widths as function of the eccentricity but calculated for i = 10◦ and
ω = 90◦ for all resonances with Neptune with kp ≤ 20 and k ≤ 20 . The darkest regions are
due to the superposition of resonances. In the planar theory, when the perihelion q = a(1−e)
verifies q ≤ aN , the intersection of orbits is unavoidable and collisions take place unless the
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Fig. 16 Resonance widths for all the 93 resonances with Neptune between 30 and 70 au verifying k ≤ 20 and
kp ≤ 20 calculated with i = 10◦ and ω = 90◦. Collision curve from Eq. (20) and the curve corresponding to
q = aN are shown. Resonances 1:k are strong and isolated from their neighbors

critical angle is limited to safe values. In the spatial case instead, as in the case of Fig. 16,
if we assume that the planet has a zero-eccentricity and zero-inclination orbit, the condition
for intersection of orbits is given by

a(1 − e2)

1 ± e cosω
= ap, (20)

where ap is the semimajor axis of the planet, Neptune in this case (ap = aN ). This colli-
sion curve, e(a) for ω = 90◦, and the curve given by q = aN (which defines the critical
eccentricity ec) are shown in Fig. 16 . The last one is associated with regions in the plane
(a, e) where resonances are wider and, on the contrary, the collision curve is associated with
regions where resonances shrink due to the restrictions to the values of σ imposed by the
close encounters with Neptune. Note the domain and isolation of resonances 1:k (including
1:1) and in a lesser extent resonances 2:k. Note also the superposition of resonances for
a < 34 au which it is known to be a chaotic region (Levison and Duncan 1993). Our widths
are in very good agreement with the results presented in Fig. 1 by Lan and Malhotra (2019)
for the planar case.

To illustrate the inclination effect, we show in Fig. 17 the same resonances of Fig. 16 but
calculated for i = 70◦. For very low eccentricities, they are wider than in the case of i = 10◦
but globally, considering all the intervals of eccentricities, they become narrower avoiding
their superposition. Resonances 1:k and 2:k continue to dominate. In Fig. 18, we show the
panorama for i = 150◦. In this case, resonances 1:k and 2:k persist and the others present
some predominance only close to the collision curve.We illustrate with more detail the effect
of the orbital inclination on the resonance width in Fig. 19 for the case of resonance 1:2 for
three extreme values of inclination. The orbital inclination (and also ω) changes completely
the resonance domain in (a, e).

A very interesting effect appears for high-inclination resonances which are observed
in Figs. 17 and 18: They are wider close to the collision curve. We checked this behav-
ior with dynamical maps confirming the predictions of our model. Then, high-inclination
non-resonant objects in collision routes could be trapped by weak resonances which are
abnormally wide for that particular eccentricities.
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Fig. 17 Same as Fig. 16 but calculated for i = 70◦ and ω = 90◦. Resonances 1:k are still strong and isolated

Fig. 18 Same as Fig. 16 but calculated for i = 150◦ and ω = 90◦. Resonances 1:k and 2:k dominate

Fig. 19 Resonance widths for
resonance 1:2 computed for three
different inclinations i = 10◦,
90◦ and 170◦ assuming ω = 90◦.
The collision eccentricity with
Neptune deduced from Eq. (20) is
indicated with arrows
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Going further, Fig. 20 shows the distribution of resonances between 70 and 100 au calcu-
lated as shown in Fig. 16 but up to kp = 40 and k = 40. Again, resonances 1:k are strong and
isolated. Finally, resonances with Uranus are shown in Fig. 21. In this case, only orbits below
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Fig. 20 Resonance widths for the 60 resonances with Neptune between 70 and 100 au verifying k ≤ 40 and
kp ≤ 40 calculated for i = 10◦ and ω = 90◦

Fig. 21 Resonances with Uranus calculated for i = 10◦ and ω = 90◦. Only orbits with eccentricity below the
curve q = aN are stable

the curve q = aN can survive in long timescales. At these low eccentricities, resonances with
Uranus are weak so not very much objects can evolve in these resonances. Nevertheless, their
imprint can appear in dynamical maps for example, as we will show later.

3.4 On the existence of high kp:k resonances

One may guess that the isolation of resonances 1:k shown in the preceding figures is only
apparent and due to the limits imposed to kp, k. Probably, for greater kp and k, resonances
1:k will be surrounded with closer resonances as in the case of resonances 2:k (Fig. 16). In
order to study this point, we calculated the resonances approaching the resonance 1:2 from
the left and right sides up to kp, k = 40 and Fig. 22 shows the result. Note the sinusoidal-like
variations of the widths conforming the eccentricity increases. They are related to successive
changes in the stability of the equilibrium points or to the alternation between the location of
the principal and the secondary minimum of R. A similar behavior is shown in figure 1 by
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Fig. 22 Detail of Fig. 16 showing the region close to resonance 1:2 considering all resonances with k ≤ 40
and kp ≤ 40. Darker regions correspond to superposition of resonances

Lan and Malhotra (2019). Figure 22 shows that the resonance 1:2 is now more threatened by
weak neighbor resonances but the doubt persists: Is it in fact isolated? Are these high kp:k
resonances real?

To solve the point, we appeal to dynamical maps. We integrated the Sun with the giant
planets in its present orbits but assuming i = 0◦ for all of them and 80000 particles with
initial 45.5 < a < 48.5 au, 0 < e < 0.8 and all of them with the same initial Ω = 0◦,
ω = 90◦, i = 10◦ and mean anomaly M = 45◦. Each particle is integrated by 200 orbital
periods, and the detected changes in barycentric a are plotted in logarithmic scale. Figure
23 shows the resulting map. Large Δa (in yellow) are due to close encounters or highly
chaotic evolutions. Very small Δa (in black and blue) are due to secular evolutions. Regular
structures inside the secular or chaotic regions are due to oscillations in a due to resonances.
The domain of the resonance 1:2 is clear, and their limits are neatly defined. The yellow
fuzzy horizontal band is generated by intersections and to close encounters with Neptune
and Uranus. For particles with orbits coplanar with the planets, all the regions above the line
defined by q = aN (that is, e > 0.36) would be yellow. Particles with eccentricities close to
the collision bands defined by Uranus and Neptune are unstable because their circulating ω

eventually will take a value close to the one given by Eq. (20) corresponding to a collision
with one of the planets. The initial conditions were taken so that initial σ ∼ 280◦ for the
resonance 1:2 which guarantees large-amplitude librations and maximum resonance widths
in the dynamical map. But for eccentricities close to the collision curve this initial condition
produces close encounters with Neptune disrupting the resonance. That is why the resonance
does not persist close to the collision curve.

What we want to stress is that there are several resonances at the left of the resonance 1:2
but they do not affect the limits of the resonance. Below the yellow unstable band, we can
identify traces of the resonances up to a ∼ 46.7 au corresponding to resonance 15:29. We
show a zoom of this region in Fig. 24. Between this resonance and resonance 1:2, there are no
dominant resonant structures and they do not affect the borders of resonance 1:2. Note that,
at the right of the resonance 1:2 in Fig. 23, it is possibly to distinguish a ghostly pattern due to
the resonance 1:4 with Uranus. Above the yellow band, the continuous chaotic region is due
to close encounters with the planets mostly, not to superposition of resonances. We have also
calculated dynamical maps extending the integration time and no new resonances appear.
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Fig. 23 Dynamical map for the resonance 1:2 and its neighborhood obtained integrating the Sun, the giant
planets in coplanar orbits with initial λN ∼ 0◦ and massless test particles during 200 orbital periods with
i = 10◦ and initial ω = 90◦, Ω = 0◦ and M = 95◦ (σ1:2 = 280◦). Horizontal and vertical axes are the
initial barycentric semimajor axis and eccentricity, respectively. The logarithmic color scale shows maximum
detected variations in barycentric a in au. Compare with Fig. 22. High kp :k weak resonances with Neptune
are present at the left and the region defined by the rectangle is augmented in Fig. 24. The resonance 1:4 with
Uranus appears at the right side at a ∼ 48.4 au

Fig. 24 Zoom of the rectangle of Fig. 23 showing from left to right with fading intensity the resonances 10:19
at a ∼ 46.13 au, 11:21, 12:23, 13:25, 14:27 and 15:29 at a ∼ 46.65 au

We also obtained dynamical maps for polar orbits of i = 90◦ that show a very rich resonant
structure between the collision lines with Neptune and Uranus, but no invading resonances
appear close to resonance 1:2.

We can understand why this resonance is isolated noting that the nearest resonances
are those with large kp, k which means that they are weak but fundamentally that for the
dynamical start-up of the resonances it is necessary a large number of orbital revolutions
dropping the efficiency of the resonant mechanism. The resonant mechanism works because
there is a sequence of perturbations by Neptune that is repeated after kp revolutions of the
particle. During that time interval, both objects, planet and TNO, cannot change very much
their orbits; otherwise, the sequence of perturbations will be broken and the resonance cannot
be installed. The greater the number of perihelion passages, kp , that the TNOmust complete,
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the greater the probability that its orbit changes due to the cumulative effect of planetary
perturbations. We can guess that this situation of isolation of resonance 1:2 is analogue for
the other 1:k resonances because their potentially threatening resonances are also those with
large kp and k values. Therefore, it is reasonable that there are some maximum values for
kp, k so that the real resonances can work. In the specific case of the resonance 1:2, the
closest resonance with some, though tiny, dynamical traces seems to be 15:29. Yu et al.
(2018) performed numerical integrations of particles with 30 < a < 100 au looking for
captures in MMRs, and they obtained a very illustrative map of captures for resonances kp:k
(q:p using their notation) that shows that the efficiency of captures drops substantially for
kp > 13 in very good agreement with our results. It is worth mentioning that Chambers
(1997) studied the credibility of exterior MMRs with Jupiter and concluded that for high
k/kp ratios the binding energies of the comets to the Sun are not large enough to overcome
the planetary perturbations and the resonances cannot work. Our case is different, it is not a
problem of low binding energy (all orbits have a ∼ 47 au in the case of resonance 1:2) but
of the large number of orbital revolutions that the TNO needs to complete in order to set the
resonant mechanism. Remember that we have also shown that for large kp the fragility of
the resonance is large. Then, although in this work we have not investigated the problem in
depth, there is enough evidence, indicating there is a maximum limit for kp (close to ∼ 14)
in the TNR so that a resonance can be installed.

4 Six resonant populations of TNOs

Using the orbital elements obtained from AstDyS1 by June 2019, we performed numerical
integrations using EVORB (Fernandez et al. 2002) of the four giant planets plus the TNOs
with semimajor axes close to the resonances 1:1, 2:3, 3:5, 4:7, 1:2 and 2:5. We automatically
analyzed the output of the first 105 years searching for librations of the corresponding critical
angles. The automatic detection is based on a statistical analysis of the critical angle. If the
distribution of the calculated σ is approximately uniform between 0◦ and 360◦, we discard
the possibility of being a resonant TNO. But, if there is an obvious concentration in some
intervals and its semimajor axis is inside the limits of the resonance, we consider the object
as resonant. In cases that are not very conclusive, we checked its status by direct inspection.
We identified 652 TNOs evolving in these resonances.

Figure 25 shows the six populations of resonant objects inside level curves of maximum
widths for each resonance. The level curves are the same that can be deduced from the
corresponding Figs. 8, 9, 10, 11, 12, 13 and 14. These are themaximumwidths corresponding
to stable librations obtained when varying ω between 0◦ and 90◦. Maximum widths in the
plane (e, i) for low-inclination orbits correspond to orbits with q ∼ aN , which means e ∼ ec.
Then, it is natural that the populations tend to concentrate close to themaximumwidth regions
but below that eccentricities, avoiding collisions with Neptune. All populations are nearly
concentrated close to the region (e, i) where the maximum width is located with the notable
exception of population 4:7 and in a lesser extent also 3:5. These populations appear shifted
to the left, to lower eccentricities in comparison with the other populations. Lykawka and
Mukai (2005) studied the 4:7 resonance and found that themost stable region is approximately
defined by 0.25 < e < 0.3 in good agreement with the location of the region corresponding
to maximum widths we show in Fig. 25. Nevertheless, the mean eccentricity for the 4:7
population is 0.14, well below the most stable region.

1 newton.spacedys.com/astdys.
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Fig. 25 Six populations of resonant objects represented by black dots accompanied with level curves of
maximum widths in au in steps of 0.1 au. The location corresponding to the maximum width in all the space
considered is indicated by a red cross

Figure 26 shows the six population along with level curves of fragility. In general, each
population is inside regions of f < 0.5 and far from the region of f = 1 represented by
red lines with the exception, again, of the populations 3:5 and 4:7 which are shifted to lower
eccentricities, to regions of larger fragility. We have calculated an atlas of resonances near
the resonance 4:7, and going up to values of kp, k ≤ 40, we find resonances that invade both
borders of the resonance. But, by means of dynamical maps we verified that these threatening
resonances in fact do not exist because of their impossibility to be installed, as in the case of
the resonance 1:2 that we have studied. Then, it is not clear for us whether the anomalous
low eccentricities in the 3:5 and 4:7 resonant populations are generated by the resonances
themselves, by secular effects inside the resonances or by cosmogonic reasons.
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Fig. 26 Same populations of Fig. 25 but showing the resonances’ fragility. Black level curves indicate f = 0.5,
and red level curves f = 1. All shown regions of resonance 1:1 have f < 0.5

5 Summary

We have developed a simple model for the calculation of librations centers, periods and
widths of arbitrary MMRs with a planet in circular orbit with no restrictions about the
orbital elements of the small body. No series developments are necessary, and we provide
a code to calculate the resonance’s properties. For the calculation of the maximum widths,
we follow the idea of stable librations. For its computation, we adopt the criteria of rejecting
perturbations generated at planetocentric distances lower than 3RH . The obtained widths are
in good agreement with results from numerical integrations and from other authors. We have
not investigated in deep the reasons why the resonances become unstable at the borders for
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some regions in the space (e, i), but we have found several cases of low kp:k resonances
in the TNR where the instability is caused by encounters with the planet, not due to the
superposition of resonances.

We showed the relevance ofω in defining the properties of the resonances, like the location
of the libration centers and the resonance widths. Considering the time variation of ω, we
introduce the concept of fragility of the resonances which is a measure of how much the
resonance width can change while varying ω but preserving (e, i). The fragility is irrelevant
for zero-inclination or zero-eccentricity orbits, but in other cases is important, andwe showed
that in the TNR for resonances with greater kp the corresponding fragilities are greater. A
resonance with high fragility in some regions of (e, i) will not be able to sustain resonant
TNOs for long time scales in that region.

The model allowed us to present a very complete atlas of resonances beyond Neptune
that shows that resonances 1:k and 2:k are the strongest and most isolated ones even for
polar and retrograde orbits, confirming the findings of other previous studies (e.g., Gallardo
2006; Lykawka and Mukai 2007; Yu et al. 2018; Gallardo 2019; Lan and Malhotra 2019).
Their isolation is related to the impossibility that the neighbor high kp:k resonances can be
installed. These high kp:k resonances, probably partially overlapping each other, only exist
in theory. We also found that high-inclination resonances become wider near the collision
curve, a fact that could facilitate the capture in resonance for high-inclination objects.

We studied six resonant populations of TNOs, and we found that in general these popu-
lations tend to concentrate in the region of the plane (e, i) where the resonance widths are
larger and the resonances less fragile. But there is a notable exception which is the population
inside the resonance 4:7 which is clearly shifted to lower eccentricities. In a lesser extent,
the resonance 3:5 shows a similar behavior. We do not have an explanation for this particular
behavior of these resonances.

All evidence points to resonances 1:k and 2:k as the strongest, widest, less fragile and
more isolated resonances in the TNR for all intervals of inclinations and eccentricities. The
evidence also points to a limit value of kp , maybe 14, so that a resonance can be installed in
the TNR.
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