
Celestial Mechanics and Dynamical Astronomy (2019) 131:54
https://doi.org/10.1007/s10569-019-9932-2

ORIG INAL ART ICLE

The Kepler problem: the energy point, the Levi-Civita, the
Burdet and the KS regularizations via the primigenial sphere

Maria Dina Vivarelli1

Received: 20 May 2019 / Revised: 30 September 2019 / Accepted: 16 October 2019 /
Published online: 14 November 2019
© Springer Nature B.V. 2019

Abstract
In our unitary description (Vivarelli in Meccanica 50:915–925, 2015) of the Kepler problem
(obtained via the introduction of a simple structure, the primigenial sphere Sp−1 ), we have
shown that this sphere encompasses, in a sort of inbred order of its elements, several fun-
damental elements of the Kepler problem. In this paper, we show that also the mechanical
energy of an elliptic Kepler orbit is an element embedded in the sphere through a peculiar
point, the energy point P∗. We show that this point in its circular motion on the sphere has a
velocity which is strictly linked to so-called Sundman–Levi-Civita regularizing time trans-
formation (Levi-Civita in Opere matematiche, 1973). Moreover in this spherical scenario,
we reconsider both the two regularizations of the Kepler problem, namely the Bohlin–Burdet
(Burdet in Z Angew Math Phys 18:434–438, 1967) and the Kustaanheimo and Stiefel (KS)
regularizations (J Reine Angew Math 218:204–219, 1965): we present a geometrical inter-
pretation of the first one, andwe show an explicit link between their regularizing fundamental
equations.

Keywords Kepler problem · Primigenial sphere · Regularization · Mechanical energy ·
General mechanics

1 Introduction

Thewell-knownclassicalKepler problemdescribes themotionof a particle under an attractive
force which decreases with the square of the distance from a fixed centre of attraction, i.e.

F = −K 2

r3
x (r =| x |) (1)

where K is a dimensional constant and the vector x represents the particle position vector in
the Cartesian frame {F, I, J,K} with the origin at the attractive centre F (focus) (Boccaletti
and Pucacco 1996; Celletti 2002).
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The Kepler problem is not regular: when the orbiting particle falls into the centre of attraction
(r = 0), the differential equation of the Kepler motion

ẍ + K 2

r3
x = 0

(
ẋ = d x

dt

)
(2)

becomes singular. This singularity leads to theoretical and practical difficulties (infinite veloc-
ities; poor accuracy in computer-aided numerical integration).

Thus, the need of a regularization procedure leads to a set of regular differential equations
(Baumgarte 1972b; Boccaletti and Pucacco 1996; Breiter and Langner 2017; Deprit et al.
1994; Ferrer and Crespo 2017; Waldvogel 2006).

We focus our attention on the two celebrated regularizations: the Bohlin–Burdet and the
Kustaanheimo–Stiefel (KS) regularizations that can be found, respectively, in Burdet (1967),
Kustaanheimo andStiefel (1965) andStiefel andScheifele (1971). [Let us observe thatwe call
Bohlin–Burdet regularization the one commonly denoted in the literature simply as Burdet
regularization: in fact Burdet employed a former idea presented by Bohlin (1911); for details,
see the end of the first paragraph in Deprit et al. (1994).]

These two regularizations transform the differential singular equation of the Kepler
motion (2) into that of a harmonic oscillator (respectively, in a 3-dimensional space and in a
4-dimensional space), and both use the so-called Sundman–Levi-Civita time transformation.

The aim of this paper is to show, first of all, how the particular structure we introduced in
our previous work (Vivarelli 2015) (that is, the primigenial sphere Sp−1 which encompasses
several characteristic features of theKepler problem) embeds also theKepler totalmechanical
energy by means of the energy point P∗. Consequently, we show that, while a physical
Kepler particle describes an elliptic orbit, the point P∗ describes a circle on the sphere
Sp−1 with a velocity which is strictly related to the Sundman–Levi-Civita regularizing time
transformation.

In the same spherical arena, we recover the Bohlin–Burdet oscillator equation and we
present an explicit link between the Bohlin–Burdet and the KS oscillator equations.

2 Levi-Civita, Burdet and KS regularizations

Let us recall the first integrals of the Kepler motion (2), namely

the constant angular momentum vector, defined by the product

� = x ∧ ẋ; (3)

the constant scalar total mechanical energy, defined by

E = 1

2
| ẋ | 2 − K 2

r
; (4)

the constant Laplace–Runge–Lenz vector, defined by

V = ẋ ∧ � − K 2 x
r
. (5)

We recall that the first invariant vector � = Γ K lies in the {F, I, J,K}-space: localized
at F , it fixes the plane of the Kepler motion {I, J} and its magnitude Γ represents Kepler’s
second law.
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The second scalar invariant E (E � 0) is related to the scalar eccentricity of the conic
orbit 0 � e � 1 by

2E = Γ 2 p−2(e2 − 1), (6)

where the constant parameter p > 0 (semi-latus rectum) is given by

p = Γ 2K−2. (7)

Both the parameter p and the eccentricity e define the non-degenerate � �= 0 vector polar
equation of the plane Kepler orbit,

x = p

1 + e cos θ
ρ (x = rρ), (8)

which is a conic section with focus at F , so that for e = 0 the orbit is a circle, for e < 1 an
ellipse, for e = 1 a parabola and for e > 1 an hyperbola.

The third invariant V lies on the fixed {I}-direction: localized at F , it is commonly repre-
sented as the constant pericentric vector

V = K 2e, (9)

where the vector
e = e ρ(0) = eI (10)

is the eccentricity vector along the reference line ρ(0) = I of the plane polar (r , θ)-coordinate
systemwith pole at F : the two orthogonal unit vectors ρ = ρ(θ), τ = τ (θ) of the {I, J}-plane
point in the direction of increasing r and θ .

We have already recalled that the Kepler problem (2) is a singular problem that needs
regularization. A basic stone, common to the several regularizing procedures devised in
the literature in order to transform the singular differential equations of the Kepler motion
into regular ones, is provided by the differential Sundman–Levi-Civita regularizing time
transformation (briefly Sundman–Levi-Civita time map) or

ds = r−1dt, (11)

which replaces the independent physical time variable t by a new fictitious time variable s,
related to t by the scalar distance factor r (see Deprit et al. 1994; Levi-Civita 1973).

The derivative with respect to the new time variable s is denoted by the symbol ′ so that

f ′ = d f

ds
= r

d f

dt
= r ḟ . (12)

The above time map (11) is used, in particular, by the two well-known regularizations,
that is, by the Bohlin–Burdet regularization (Burdet 1967; Deprit et al. 1994) and by the
Kustaanheimo–Stiefel (KS) regularization (Kustaanheimo and Stiefel 1965). These regular-
izations transform the differential singular equation of the Kepler motion (2) into that of a
harmonic oscillator (respectively, in a 3-dimensional space and in a 4-dimensional space).

This is done as follows:

Bohlin and Burdet (Burdet 1967; Deprit et al. 1994) first introduce the energy and the
Laplace vector integrals into the singular equation of the Kepler motion (2) and then
apply the Sundman–Levi-Civita time map (3) and finally obtain the differential equation

x′′ + ω2 x + V = 0, (13)

where ω2 = − 2E and which for E < 0 is the regular equation of a 3-dimensional
harmonic oscillator with constant angular frequency ω and centre at (2E−1)V.
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Kustaanheimo and Stiefel (Kustaanheimo and Stiefel 1965; Stiefel and Scheifele 1971),
after introducing the energy integral into the singular equation of the Kepler motion (2)
and applying the Levi-Civita time map (11), introduce the peculiar coordinate transfor-
mation (briefly KS map) given by

(R4 − {0}) −→ (R3 − {0}) : u → x, (14)

which maps a parametric four-dimensional Euclidean space R4 of real vectors u =
(u1, u2, u3, u4) onto the ordinary three-dimensional Euclidean space or real vectors x =
(x1, x2, x3).

In a compact matrix form, the KS map is

x = L(u)u, (15)

where the KS matrix L(u) is the real matrix

L(u) =

⎡
⎢⎢⎣
u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

⎤
⎥⎥⎦ (16)

and

x =

⎡
⎢⎢⎣

x1
x2
x3

x4 = 0

⎤
⎥⎥⎦ , u =

⎡
⎢⎢⎣
u1
u2
u3
u4

⎤
⎥⎥⎦ , (17)

so that, in terms of components, the KS map reads explicitly⎧⎪⎨
⎪⎩
x1 = u21 − u22 − u23 + u24
x2 = 2(u1u2 − u3u4)

x3 = 2(u1u3 + u2u4)

where automatically x4 = 0 and

r =| x |=
√
x21 + x22 + x23 = u21 + u22 + u23 + u24 = | u |2.

A fundamental role is played by the subsidiary ‘bilinear relation’

u4 u
′
1 − u3 u

′
2 + u2 u

′
3 − u1 u

′
4 = 0. (18)

As a consequence of the time map (11) and the coordinate KS map (15), the singular
Kepler equation (2) is transformed into the regularized differential equation

u ′′ + ω2 u = 0, (19)

where ω2 = −2E and which for E < 0 is the regular equation of a 4-dimensional harmonic
oscillator with constant angular frequency ω in the space R4.

3 Birth and review of the spherical Sp−1 description

In our previous work (Vivarelli 2015), we have noticed that the standard force expression (1)
or, being x = rρ,

F = −K 2

r2
ρ (20)
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Fig. 1 The sphere Sp−1 with

radius p−1, centre F . A point
P(θ, φ) on the sphere and the
orbiting Kepler particle Q(θ) in
the (X , Y )-plane. The
eccentricity vector e

gives prominence to the inverse-square law character of the central force, but does not explic-
itly keep track of the planarity of the motion, given by the vector �.

Therefore, we rewrote the expression (1) as

F = −� ∧ (� ∧ p−1ρ)

r2
, (21)

whence we not only found that the new expression keeps track explicitly of the fixed oriented
orbital plane by means of the constant vector �, but also that it embodies the vector p−1ρ.

But this vector p−1ρ(θ) defines a circle of radius p−1 in the orbital plane which can be inter-
preted as the equator of a sphere in the Euclidean space R3 with Cartesian frame {F, I, J,K}.

This is the sphere that we have shown to encompass several characteristic features of the
Kepler problem and that we denoted ‘primigenial’ sphere Sp−1 .
Referring to Fig. 1, we recall some basic facts (Vivarelli 2015) about the sphere.

Centre. Radius. Equatorial plane. Eccentricity Vector e. The sphere has the centre at the
attractive focus F of the conic Kepler orbit. The radius p−1 encompasses the two Kepler
fundamental constant scalars K and Γ through the constant ratio

p = Γ 2

K 2 . (22)

The equatorial plane (X , Y ) of the sphere is the orbital plane of the Kepler problem. The
eccentricity vector e = eI defined in (10) lies along the X -axis.

Point P of the sphere and point Q of an orbiting Kepler particle. A point P(θ, φ) on the
sphere is described by the spherical coordinates (the longitude angle θ and the colatitude
angle φ), the longitude θ being the same angle of a Kepler orbiting particle Q(θ).

Rescaling vector ε. A fundamental primitive element unravelled by the sphere is the rescaling
vector ε (Fig. 2). Defined as the vector

ε = sin φ ρ(θ), (23)

it belongs to the sphere equatorial plane {I, J}, it enfolds both the two spherical angles θ and
φ and ‘rescales’ the unit vector ρ(θ) by means of the magnitude

ε =| ε |= sin φ,
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Fig. 2 The rescaling vector ε

(related to the clockwise colatitude angle φ), thus satisfying the range

0 ≤ ε ≤ 1. (24)

In particular, if in the definition (23) we set θ = 0 (so that ρ(0) = I), and we choose in
the plane {I,K} the colatitude angle φ = φ̄0 such that

sin φ̄0 = e,

we recover no other than the standard eccentricity vector e = eI, that is,

ε0 = e = eI.

The sphere Sp−1 as a star of vectors.
The rescaling vector ε allowed us to consider the primigenial sphere of the Kepler problem

as the locus of vectors
P − F = p−1 (ε + cos φ K) (25)

in the right-handed frame {F, I, J,K} of R3 (see Fig. 3), so that the sphere is not considered
as the locus of equidistant points in space but as the ‘star’ of vectors P − F of the same
magnitude | P − F |= p−1 issuing from the focus F .

The C-cone and the vector N: a 3-dimensional characterization of Kepler orbits.
As a consequence of the ‘star view’, in (Vivarelli 2015) we brought into life the C-cone

which generates the Kepler ‘conic’ orbits.
In fact, in the star of vectors (25), we can fix constant values φ∗ for the colatitude angle

φ: the corresponding related vectors

P∗ − F = p−1 (sin φ∗ ρ(θ) + cos φ∗ K) (26)

define circular right cones with axis K and semi-aperture φ∗ (see Fig. 3).

The particular cone with φ∗ = π
4 (see Fig. 3) or P∗

π
4

− F =
√
2
2 p−1 (ρ +K) may be given

an infinite extension (with positive parameter λ ∈ R)

C − F = λ p−1 (ρ + K) . (27)

We have called this extension circular C-cone: it has vertex at F(0, 0, 0), and its points
C = (XC , YC , ZC) have coordinates X C = λ p−1 cos θ , YC = λ p−1 sin θ ,ZC = λ p−1

which satisfy the cone scalar Cartesian equation

X 2
C + Y2

C − Z2
C = 0 . (28)

The C-cone (related to the physical Kepler parameter p−1 and to the physical attractive
vertex F) characterizes the Kepler conic orbits in R3 by means of a particular vector N
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Fig. 3 The sphere as a star of vectors. The cones for φ = cost . The C-cone for φ = π
4

originated by Sp−1 . In fact, let us recall that the primigenial sphere relies, at the core, on the
four primitive elements

p−1, ρ, e = eI, K

which, by means of simple linear combinations, originate immediately all the fundamental
elements of the Kepler problem, as shown in Vivarelli (2015).

In particular, if (for simplicity) we denote by the symbol ē the eccentricity vector e rotated
by the angle θ in the {X , Y }-plane) whence

ē = e cos θ I + e sin θ J = eX I + eY J,

we find that the following simple linear vector combination

p−1 (ē + K)

defines the peculiar 3-dimensional vector N

N = N − F = p−1 (eX I + eY J + K) (29)

whose tip point N has coordinates

X = p−1 eX , Y = p−1eY , Z = p−1 (30)

which satisfy the scalar equation

X2 + Y 2 − Z2 = (e2 − 1)p−2 (31)

where e =| ē |= √
eX 2 + eY 2 and Z = p−1 > 0 is the same third coordinate Z = p−1 of

the North pole of the (hemi)-sphere Sp−1 .
Thus, reminding that an ellipse, a parabola and the left branch of the hyperbola correspond

to the ranges 0 ≤ e ≤ 1 and e > 1, a comparison between (31) [with the term (e2 − 1)] and
the C-cone equation (28) gives
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Fig. 4 The polar plane of N . The projection of an elliptic section onto the Kepler plane

the 3-dimensional characterization of the Kepler orbits:

The tip points N of the N-vectors (29) which lie inside the C-cone correspond to elliptical
orbits, those on the cone to parabolic ones and those outside the cone to hyperbolic orbits.

The Kepler orbits as ‘conic sections’ of the C-cone by the polar plane.
Each tip point N of the vector N defines, with respect to the unit sphere with centre at F , or

X2 + Y 2 + Z2 = 1, (32)

a polar plane, that is, the plane (orthogonal to the line FN ) which passes through the inverse
point N∗ of N so that | N∗ − F |= 1

|N−F | (see Fig. 4).

This polar plane, defined by the points (X , Y , Z) which satisfy the equation

p−1 eX X + p−1 eY Y + p−1Z − 1 = 0, (33)

intersects the C-cone in the locus given by the equation

(1 − eX
2) X2 + (1 − eY

2) Y 2 + 2peX X + 2peY Y − 2eX eY XY − p2 = 0

This locus is a conic section, which projected orthogonally onto the {I, J}-plane gives exactly
a Kepler conic section (with focus at the vertex F(0, 0, 0) of the C-cone, eccentricity e and
parameter p.) In Fig. 4, see an elliptic conic section.

In particular, the polar plane makes an angle β with the I-axis such that

tan β = e

(exactly the eccentricity of the Kepler conic orbit, see Fig. 4).
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Fig. 5 The constant vector N in
the {I,K}-plane

4 The energy embodied by the energy point P∗ on the sphere

Now our basic goal is to show that also the total mechanical energy per unit of mass E of a
Kepler particle is deeply incorporated in the Sp−1 spherical arena [via the vector N given by
(29)].

Let us consider elliptic Kepler orbits, that is, orbits characterized by the couple of param-
eters (e, p) with

the eccentricity e in the range 0 < e < 1;
the semi-latus rectum p = Γ 2 K−2.

If, for simplicity (Fig. 5), we restrict our attention to θ = 0 so that e = eI, we find that,
by (29), we are considering the vector N in the {I,K}-plane or

N = p−1 (e + K) = (H − F) + (N − H) (34)

whose tip point N has coordinates

N = (p−1e, 0, p−1)

whence it lies inside the C-cone (Fig. 6) (in fact, being for an ellipse p−1e < p−1, the first
vector component of N in (34), that is, H − F = p−1e, lies inside the circle of radius p−1,
which is the intersection of the sphere with the {X , Z}-plane); the second vector component
p−1K gives exactly the North pole of the sphere (Fig. 6).

As a consequence, we can ‘project’ the tip point N on the circle: just draw the point of
intersection P∗ of the line HN with the circle.

It is from this point P∗ that we find a representation of the scalar energy. In fact, its coordinate
ZP∗ (a cathetus of the triangle FH P∗ with | P∗ − F |= p−1) is (Figs. 6, 7)

ZP∗ =| P∗ − H |=
√

(p−1)
2 − (p−1e)2 = p−1

√
1 − e2, (35)

but, by means of the well-known relation between e and the energy E given by

1 − e2 = −2 E Γ 2 K−4 ,

we have that (35) becomes

ZP∗ = p−1
√−2E

Γ

K 2
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Fig. 6 The point N inside the
C-cone. The point P∗ and the
energy segment E∗ = P∗ − H

(recall that for elliptic orbits E < 0). Finally, by (7), we obtain

ZP∗ =
√−2E

Γ
= E∗, (36)

that is, by (35),
ZP∗ =| P∗ − H |= E∗ . (37)

Since, by construction (Fig. 7), the point P∗ makes with the Z -axis the angle φ∗ such that
sin φ∗ = e we can finally state that:

Proposition 4.1 The constant energy ratio E∗ of an elliptic orbit is represented by the length
of the energy segment, that is, by the coordinate ZP∗ of the point P∗ [obtained by intersecting
the primigenial sphere Sp−1 with the ‘vertical’ line passing through the tip point N of N
(Figs. 6, 7)]. The point P∗ has colatitude φ∗ such that

sin φ∗ = e . (38)

To further highlight the definition of E∗, we remark its intrinsic relation to the couple
(e, p) characterizing the ellipse and rewrite (36), via (33) as

E∗ = p−1
√
1 − e2 = p−1

√
1 − (sin φ∗)2 . (39)

We are now able to extend to the space {I, J,K} the ‘segment’ representation found for the
energy of an elliptic orbit in the {I,K}-plane.

We relax the restriction θ = 0 so that now the eccentricity vector e makes an angle θ

with the X -axis, or e = e(θ) = e cos θ I + e sin θ J = eX I + eY J with tan θ = eY
eX

and

e =| e |= √
(eX )2 + eY 2 . Of course, both the vector

N = N(θ) = p−1 (cos θ I + sin θ J) + p−1K

and its projected point P∗ are characterized by the same angle θ (Fig. 8), which is exactly
the angle of the Kepler particle Q(θ) on the ellipse.

So, if we consider the full motion of the Kepler particle Q(θ) on the ellipse, that is, if we
let the angle θ vary in the range [0, 2π ], we obtain the locus of all the vectors P∗ − F in the
3-space: this locus is a cone with vertex at F , height ZP∗ = E∗ and is determined by the
circle of radius p−1e on the sphere (Fig. 8).

We call this cone the energy cone and the point P∗(θ, φ∗) the energy point of the Kepler
particle (Fig. 8). Thus, we have found a three-dimensional representation of the total mechan-
ical energy.
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Fig. 7 The point P∗, its energy
coordinate ZP∗ and its colatitude
angle φ∗

Motions of the points Q(θ) and P∗(θ, φ∗). Physically, when aKepler particle Q(θ) describes
an ellipse (characterized by the constant couple (e, p), the angle θ and the focus F in the
Kepler plane), we have that (Figs. 8, 9):

– the corresponding vector P∗ − F generates the energy cone with height E∗ =
p−1

√
1 − e2 in the 3-dimensional space with e = sin φ∗,

– the energy point P∗(θ, φ∗) describes a circle of radius (p−1e) on the sphere,
– all the three elements of the elliptic Kepler orbit (the couple (e, p), the angle θ and the

focus F) are simply epitomized in the energy cone and in the energy point description.

The P∗-description of the energy enhances the previous φ0 description. So far, we have
shown that the representation of the energy E of an elliptic orbit is naturally incorporated in
the characteristic vector N related to the primigenial sphere SP−1 and to the angle φ∗.

We wish to notice that in our previous paper (Vivarelli 2015) we have arrived at the energy
in a different way, by choosing a particular, suitable colatitude angle φ0 which was required
to satisfy sin φ0 = √

2EpK−1 + 1, the angle defining the rotation of the unit vectorK in the
{K, ρ}-plane around F which bringsK onto the P∗ − F direction. But, although introduced
in two different ways, the angles are the same φ∗ = φ0 , so that (as a consequence) the P∗-
description given in this paper acquires a ‘rotational’ flavour: the colatitude φ∗ defines the
rotation of the unit vector K in the {K, ρ}-plane around F which brings K onto the P∗ − F
direction.

In other words, the P∗-description presented in this paper (which pops up directly from
the primitive element vectorN) is muchmore entangled to the spherical scenario and requires
no ‘ad hoc’ introduction as the previous artificial φ0-angle of the energy,

5 The velocity of the energy point P∗ and the Sundman–Levi-Civita
timemap

An interesting result stems naturally in the spherical arena from the point P∗.
It regards the regularizing differential time transformation (11) introduced by Sundman–
Levi-Civita (Sundman–Levi-Civita map) which, as we have seen in Sect. 2, is common to
both the Bohlin–Burdet and KS regularizations and which replaces the physical time variable
t by a new fictitious time variable s, related to t by the scalar distance factor r .

Proposition 5.1 The Sundman–Levi-Civita time map

ds = r−1 dt,

may be rewritten as

ds =
√

vP∗

p−1e Γ
dt, (40)
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Fig. 8 The point P∗(θ, φ∗) for a plane elliptic Kepler orbit (e, p, θ) is the energy point on the energy cone

where vP∗ is the linear velocity of the energy point P∗ in its circularmotion on the primigenial
sphere SP−1 .

Proof Recall that when (Figs. 8, 10) a Kepler particle Q(r , θ) describes an ellipse with focus
at F , the corresponding energy point P∗(θ) describes a circle of radius p−1e on the cone, or
equivalently on the sphere.

We denote by vP∗ the linear velocity of the point P∗, whence

vP∗ = p−1e θ̇ .

By Kepler’s second law (Γ = r2 θ̇ ), the angular velocity is θ̇ = Γ
r2

, whence

vP∗ = p−1e
Γ

r2
. (41)

Moreover, since from the Sundman–Levi-Civita map (11) we have that
(
ds

dt

)2

= 1

r2
,

we finally obtain that (41) yields the relation (40) sought for. 
�

6 The Sundman–Levi-Civita map and the KSmap linked by the point P∗

Let us recall that (Sect. 1) the whole Kustaanheimo–Stiefel regularization relies on the com-
bined action of two maps (the Sundman–Levi-Civita map and the KS map). Although these
maps are completely different, we find that there is a trait d’union between them given exactly
by the energy point P∗: this particular result is obtained by considering the two maps ‘on the
same ground’, for instance, as rotations on the sphere.
Precisely:

the time Sundman–Levi-Civita’s map (11) has been related in this paper to a ‘horizontal’
rotation of the energy point P∗ on a circle of radius p−1e (Figs. 9, 10a);
the spatial coordinate transformation [the KS map (15)] is shown in Vivarelli (1994b,
2005, 2015) (see also Deprit et al. 1994; Ferrer and Crespo 2017; Kustaanheimo and
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Fig. 9 Orbiting particle Q(r , θ)

in the Kepler (X , Y )-plane and
the associated energy point P∗
describing a circle of radius
(p−1 e) on the sphere Sp−1

Stiefel 1965) to represent a simple compound roto-dilation in R3, that is (Fig. 10b), a
rotation by the angle π

2 in the vertical {K, ρ}-plane through P∗(θ) that brings the North
pole of the sphere Sp−1 onto the point R on the equator (radius p−1), followed by a
stretching of the last point position vector R − F = p−1ρ by the factor (p r) so that it
finally reaches the physical particle Q (position vector x = rρ on the ellipse). Concisely
(Fig. 10b):

p−1K −→ R − F = p−1ρ −→ p r (p−1ρ) = rρ .

Summarizing: the whole KS regularization (that is Sundman–Levi-Civita map plus KS map)
is naturally represented by two rotations on the primigenial sphere:

a ‘horizontal’ circular rotation of the energy point P∗ on a parallel of the sphere;

a ‘vertical’ rotation in the {K, ρ}-plane on the meridian of the sphere which passes
through P∗ (followed by a ‘horizontal’ dilation) (Fig. 11).

In this sense, we can say that the point P∗ yields in a natural way the link between the
two different maps which together carry out the whole KS regularization: the (horizontal)
Sundman–Levi-Civita time map and the (vertical) coordinate KS map (Fig. 11).

7 The Bohlin–Burdet equation in the spherical scenario: the border of
the S-triangle

We are now going to show that also the regular Bohlin–Burdet oscillator equation (13) pops
up naturally from the sphere Sp−1 : as we did in Sect. 3, when we introduced the vector N, let
us consider the following simple linear vector combination

p−1 (e + ρ) = S,

which has brought us to define (see Vivarelli 2015) the peculiar sum vector S = S(θ) in
the equatorial Kepler plane of the sphere. This vector was shown to give a 2-dimensional
representation of the Kepler conics since it allows to epitomize the well-known standard
plane polar equation of the whole family of Kepler conic orbits

r = p

1 + e cos θ
(x = rρ)
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(a) (b)(a)

Fig. 10 a The Sundman–Levi-Civita map: the elliptic motion Q(θ) and the circular motion of the energy point
P∗ = P∗ (θ, φ∗) with velocity vP∗ . b The representation of the KS map: North Pole → P∗ → R → Q

by the simple equation given by the scalar product

S · x = 1. (42)

Now, to draw S, let us rewrite the sum vector S as

S ≡ p−1e + p−1ρ, (43)

so that by construction (Fig. 12), if B denotes the tip point of the vector S, we have S =
S(θ) = B − F where p−1e = H − F = p−1e I and B − H = p−1ρ(θ).

Remark Notice (Fig. 12) that p−1ρ = B − H = R − F , where the point R (on the equator
of the primigenial sphere with radius p−1) is exactly the point which occurs in the rotation
which represents the KS map (see previous Fig. 11).

We are now ready to give the following

Definition 7.1 We define S-triangle the triangle FHB defined by S (Fig. 13).

Proposition 7.1 The border of the S-triangle epitomizes the Bohlin–Burdet equation (13).

Proof Since the Bohlin–Burdet equation (13) is expressed in terms of the vector x and of its
derivatives, we first relate them to the two vector components (43) of S. This is done in four
steps.

– First, the vector p−1ρ in (43) can be reformulated as

p−1ρ = −r2ẍ
Γ 2 , (44)

since the classical equation of motion (2), bymeans of x
r = ρ and of (9), can be expressed

in the simple form r2ẍ + Γ 2(p−1ρ) = 0.
– On the other hand, the same vector p−1ρ is related to the energy: simply multiply (4) on

the right by x so that Ex = 1
2 | ẋ | 2x − Γ 2 p−1ρ whence

p−1ρ = | ẋ |2 x − 2E x
2Γ 2 . (45)
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Fig. 11 The KS map (a rotation through P∗ and a dilation). The Sundman–Levi-Civita map (a rotation of P∗
on the circle of centre C). The two maps linked by the energy point P∗

– The other vector p−1e in (43) can be reformulated as

p−1e = | ẋ |2 x − rṙ ẋ
Γ 2 − p−1ρ (46)

obtained by expression (5) of the vector V, where the vector � may be written as (3),
whence, by a well-known vector property of the wedge product a∧ (b∧ c) = (a · c)b−
(a · b)c, expression (9) can be recast by (5) as V = K 2e =| ẋ |2 x − rṙ ẋ − K 2 x

r which
by (7) yields exactly (46).

– Finally, the vector S, by substituting (46) in the definition (43), is related to the velocity
by the expression

S = p−1e + p−1ρ = | ẋ |2 x − rṙ ẋ
Γ 2 . (47)

We are now ready to consider the border of the S-triangle, given by the vector expression
(Fig. 13)

p−1e + p−1ρ − S = 0. (48)

This border, after substituting the definition (43) of S and after collecting, becomes

p−1e + (p−1ρ − p−1e) − p−1ρ = 0. (49)

But the vector between brackets may be written as

(p−1ρ − p−1e) = 2p−1ρ − (p−1e + p−1ρ),

whence the border relation (49) becomes

p−1e + 2p−1ρ − (p−1e − p−1ρ) − p−1ρ = 0,

so that (after substituting (47) in the brackets, after expressing 2p−1ρ by (45) and p−1ρ by
(44) and after simplifying) the border relation now reads

p−1e − 2Ex + rṙ ẋ
Γ 2 + r2ẍ

Γ 2 = 0

or, after rearranging the order of the derivates,

r2ẍ + rṙ ẋ − 2Ex + Γ 2 p−1e = 0. (50)
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Fig. 12 The sum vector S ≡ p−1e+ p−1ρ. The two vector components p−1e and p−1ρ as elements of Sp−1

Fig. 13 The S-triangle and its
border

Finally, in order to introduce the time s, we recall that, by (12), the second derivatives
with respect to t and s are related by

r2
(
d2

dt2

)
+ rṙ

(
d

dt

)
= d2

ds2
, (51)

so that expression (50) now reads

x′′ − 2Ex + Γ 2 p−1e = 0 (52)

or, by recalling that ω2 = −2E and by (9), it finally becomes

x′′ + ω2x + V = 0, (53)

which is exactly the regular oscillator Bohlin–Burdet equation (13). 
�
Thus, we may state that:

The3-dimensionalBohlin–Burdet oscillator equation acquires a simple geometrical inter-
pretation given by the border of the S-triangle.

8 The harmonic oscillator equations: Bohlin–Burdet meets KS

In the previous section, we have presented a geometrical interpretation of the 3-dimensional
Bohlin–Burdet oscillator equation (13).
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The aim of this section is to display an explicit link between this Bohlin–Burdet oscillator
equation (13) and the 4-dimensionalKSoscillator equation (19),which, for perusal simplicity,
we collect together:

x′′ + ω2 x + V = 0 (54)

u ′′ + ω2 u = 0 . (55)

To obtain the link, we find it useful to compare these two different equations (which live
in different spaces) by rewriting them in the same mathematical language. Explicitly, we
adopt the quaternion language, suggested by the fact that, as we have shown, the KS map
is a rotation and that it is well known that a rotation acquires a simple, concise description
through a quaternion formulation.

In fact, as we have demonstrated in our previous works (Vivarelli 1983, 1994a, b, 2005,
2015), we recall that:

– the vector KS equation (55) can be rewritten in a simple quaternion form by considering
the map u → q given by

q = (u1 + u2I + u3J) + u4K, (56)

where the real quaternion q (called in Breiter and Langner 2017 the Stiefel–Scheifele–
Vivarelli quaternion) has the term between brackets denoting its 3-vector part. In other
words, in the 3-dimensional space (R3 − {0}) = im {1, I, J}, a 3-vector x is a quaternion
with a null fourth component, or x = x1 + x2I + x3J + 0.

– It follows that the KS map u → x, given by the matrix expression (15), is expressed
explicitly by the simple quaternion product

x = qq∗, (57)

where q∗ is the anti-involute of q or

q∗ = u1 + u2I + u3J − u4K (58)

whence

x = qq∗ = (u1 + u2I + u3J + u4K)(u1 + u2I + u3J − u4K).

– With the newmapu → q given by (56), the vector four-dimensional regularKS equation
of motion (55) may be rewritten in quaternion form as:

q ′′ + ω2q = 0. (59)

Now we are able to rewrite in quaternion language also the Bohlin–Burdet equation. Just
recall (Vivarelli 1983, 1994a, b) the following important quaternion relation:

q ′q∗ = qq ′∗ (60)

(obtained by simple but tedious calculations and by taking into account the bilinear relation
(18)), whence, from (57), we have x′ = q ′q∗ + qq ′∗ = qq ′∗ + qq ′∗ = 2qq ′∗ and finally the
formula

x′′ = 2q ′q ′∗ + 2qq ′′∗ .

By the above formula and by (57), we can express the Bohlin–Burdet vector equation (54)
as:
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(2q ′q ′∗ + 2qq ′′∗ ) + (ω2 qq∗) + V = 0 . (61)

By adding and subtracting the term ω2qq∗, we obtain

2q ′q ′∗ + 2qq ′′∗ + 2ω2qq∗ − ω2qq∗ + V = 0,

whence, by collecting the factor 2q and by suitably ordering, we finally find

[ (2q (q ′′∗ + ω2q∗) ] + [ 2q ′q ′∗ − ω2 qq∗ + V ] = 0 (62)

which is the quaternion form of the Bohlin–Burdet equation (54) sought for.
Now, notice that Eq. (62) expresses nothing, but the sum of two quaternion functions given

by the square brackets say f (q) + g(q) = 0, which means that g(q) = − f (q).
Of course, if we make the particular choice f (q) = 0, the whole Eq. (62) is automatically

satisfied.
But this particular choice means that

q ′′∗ + ω2q∗ = 0 (q �= 0)

or, by recalling the quaternion anti-involute property (q∗)∗ = q ,

q ′′ + ω2q = 0,

which is exactly the quaternion regular KS equation (59) sought for.

9 Concluding remarks and outlook

Consider a particle which, under the action of a Newtonian gravitational force (Kepler prob-
lem), describes an ellipse characterized by the triplet (p, e, θ), where p and e are, respectively,
the semi-latus rectum and the eccentricity of the ellipse, while θ is the polar angle of the
particle on the ellipse.

In this paper, we have shown that the elliptic motion of this particle can be related to the
circular motion of a particular point P∗ which lies on a sphere with radius p−1, that is, on
the primigenial sphere Sp−1 , we introduced in our previous work (Vivarelli 2015) and that
was shown to encompass several geometrical and physical features of the Kepler motion.

The point P∗ is characterized by the spherical coordinates (θ, φ∗), where the longitude θ

is exactly the polar angle of the physical particle in its elliptic motion and the latitude φ∗ is
related to the eccentricity e of the ellipse by the relation e = sin φ∗. The point P∗ is called the
energy point since it embeds, by means of its third Cartesian coordinate, the total mechanical
energy of the physical particle.

But there is more than meets the eye, for this energy point P∗ is peculiar in that:

– it moves (in its circular motion on the sphere) with a velocity that relates the real and the
fictitious times which appear in the Sundman–Levi-Civita regularizing time map;

– it gives a ‘link’ between the two geometrical representations which we have introduced,
respectively, for the regularizing Kustaanheimo–Stiefel coordinate map and the regular-
izing Sundman–Levi-Civita time map: the first map is related to a meridian circle of the
sphere and the second map to a parallel circle (the two circles intersecting exactly in the
energy point P∗).

On the other hand, the primigenial sphere Sp−1 is shown to concern also the two following
particular items of the Kepler problem, that is,
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– the regularizing Bohlin–Burdet oscillator equation, which acquires a geometrical flavour
in the Sp−1 spherical scenario, since it is strictly related to the border of a triangle which
lies in the equatorial plane of the sphere;

– the Bohlin–Burdet and Kustaanheimo–Stiefel regularizing oscillator equations, which
are shown to be explicitly linked in a natural quaternion-rotation perspective.

These results confirm the effectiveness of the primigenial sphere structure which we think is
more than a fortuitous invention since it succeeds in gathering together all the characteristic
elements of the Kepler motion: suitably developed, the concept of a primigenial structure
may help in suggesting and finding the main aspects and the evolution of other well-known
dynamical systems.

We wish to end this paper by pointing out that we have restricted to elliptic Kepler motion
(which is notoriously non-degenerate, that is, � �= 0) and that we have worked in the context
of pure Kepler motion (no perturbations). So let us anticipate that we have in mind to extend
these investigations not only to degenerate orbits (� = 0), but also to consider, instead
of the Newtonian force F in (21), a perturbing force of the type F = − ∂U

∂x + P (where
U (x, t) is a perturbing potential and P an additional force), following the line suggested
by Baumgarte (1972a, b) where numerical stabilization devices are shown to improve the
accuracy of computation of perturbed Kepler orbits. Of course, if perturbations occur, we
must rewrite anew expression (21) of the Newtonian force F (from which the primigenial
structure arises): in so doing, we find that the geometrical elements of the sphere (say the
eccentricity) are subject to variations, and so the sphere undergoes a sort of ’deformation’.
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