
Celestial Mechanics and Dynamical Astronomy (2019) 131:38
https://doi.org/10.1007/s10569-019-9913-5

ORIG INAL ART ICLE

Resonant Laplace-Lagrange theory for extrasolar systems
in mean-motion resonance

M. Sansottera1 · A.-S. Libert2

Received: 2 April 2019 / Revised: 25 June 2019 / Accepted: 11 July 2019 / Published online: 13 August 2019
© Springer Nature B.V. 2019

Abstract
Extrasolar systems with planets on eccentric orbits close to or in mean-motion resonances
are common. The classical low-order resonant Hamiltonian expansion is unfit to describe the
long-term evolution of these systems. We extend the Lagrange-Laplace secular approximation
for coplanar systems with two planets by including (near-)resonant harmonics and realize
an expansion at high order in the eccentricities of the resonant Hamiltonian both at orders
one and two in the masses. We show that the expansion at first order in the masses gives a
qualitative good approximation of the dynamics of resonant extrasolar systems with moderate
eccentricities, while the second order is needed to reproduce more accurately their orbital
evolutions. The resonant approach is also required to correct the secular frequencies of
the motion given by the Laplace-Lagrange secular theory in the vicinity of a mean-motion
resonance. The dynamical evolutions of four (near-)resonant extrasolar systems are discussed,
namely GJ 876 (2:1 resonance), HD 60532 (3:1), HD 108874 and GJ 3293 (close to 4:1).

Keywords Extrasolar systems · n-Body problem · Mean-motion resonances · Perturbation
theory

1 Introduction

The search for exoplanets around nearby stars has produced a tremendous amount of obser-
vational data, pointing out the peculiar character of the Solar system. To date, more than 600
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multiple planet systems have been found and the number of discovered planets with unex-
pected orbital properties (such as highly eccentric orbits, mutually inclined planetary orbits,
hot Jupiters, compact multiple systems) constantly increases. Extrasolar systems that reside
in or near mean-motion resonances are commonly detected with significantly high eccen-
tricities. Therefore, the classical approach based on low-order expansions in eccentricities
conceived for the Solar system is at least questionable when applied to extrasolar systems.

In the non-resonant scenario, the long-term evolution of a planetary system is described
by the secular theory which consists in an averaging of the Hamiltonian over the fast angles
(related to the mean anomalies). The classical procedure, denoted “averaging by scissors,”
removes from the Hamiltonian all the terms including the fast angles. Thus, the fast actions
are fixed and so are the semi-major axes. This Hamiltonian is named approximation at order
one in themasses, and the linearized equations of motion correspond to the Laplace-Lagrange
secular theory. This approach is adequate for the quasi-circular planetary orbits of the Solar
system. Pushing the expansions at higher-order terms in the eccentricities (up to order 12)
in Libert and Henrard (2005, 2007), the authors have shown that the high-order expansion
accurately reproduces the long-term dynamics of extrasolar systems with eccentric orbits
and which are far away from mean-motion resonance.

Instead, if the ratio between the mean-motion frequencies is close to the k∗
1 : k∗

2 com-
mensurability, the impact of the harmonics (k∗

1λ1 − k∗
2λ2) on the long-term evolution of the

system should be included in the Hamiltonian formulation. Still, in view of the exponential
decay of the Fourier expansion with |k|1 = |k1| + |k2|, only low-order mean-motion res-
onances must be considered. The effect of near resonances on the long-term evolution of
a planetary system is taken into account by considering the so-called Hamiltonian at order
two in the masses, where the integrable approximation describes an invariant torus (up to
order two in the masses) instead of the classical circular orbits. The gain obtained with this
approximation in the context of the planetary motion of the Solar system has been deeply
studied in Laskar (1988). Also, the second-order approximation plays a crucial role in the
applicability of the celebrated theorems of Kolmogorov and Nekhoroshev to the planetary
case since it allows to tackle analytically the problem of the stability of the Solar system, see,
e.g., Robutel (1995), Celletti and Chierchia (2005), Gabern (2005), Locatelli and Giorgilli
(2007), Giorgilli et al. (2009, 2017), Sansottera et al. (2013, 2011), and Sansottera et al.
(2015). Regarding extrasolar systems, in Libert and Sansottera (2013), we have considered
a secular Hamiltonian at order two in the masses and showed that this secular Hamiltonian
provides a good approximation of the dynamics for extrasolar systems which are near a
mean-motion resonance, but not really close to or in a mean-motion resonance. Further-
more, the canonical transformation used for the approximation at second order in the masses
allowed to evaluate the proximity of the system to a mean-motion resonance. In particular,
we defined an heuristic criterion based on the computation of a δ-parameter which allows
to discriminate between the different regimes (see Sect. 3.3 and also Libert and Sansottera
(2013) for more details).

Coming to the resonant case, several alternatives have been proposed to study analytically
the dynamics of resonant extrasolar systems. Instead of expanding the disturbing function in
series of the eccentricities following the classical approach, Beaugé and Michtchenko (2003)
have introduced an analytic expansion based on a linear regression, which is convenient for
the high-eccentricity planetary three-body problem. Other works (e.g., Alves et al. (2015))
avoid the use of expansions and consider the adiabatic regime, eliminating all the short-period
terms by directly performing a numerical averaging of the Hamiltonian. For systems with
small planetary eccentricities, the classical low-order expansion in eccentricities is suitable,
as highlighted for instance in Callegari et al. (2004) for the near resonance between Uranus
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and Neptune and in Callegari et al. (2006) for a 3:2 resonance among planets around the pulsar
PSRB1257+12. The limitations of an expansion at first order in the masses and truncated at
order four in the eccentricities have been studied in Veras (2007), making reference to the
GJ 876 extrasolar system. Finally, an integrable approximation for first-order mean-motion
resonance (i.e., a k : k − 1 resonance) has been developed in Batygin and Morbidelli (2013)
in order to address resonant encounters during divergent migration.

In the present work, we are interested in the dynamics of systems which are really close to
or in a mean-motion resonance. Our strategy is to reconstruct their evolution using a resonant
Hamiltonian expanded at high orders, hence including appropriate resonant combinations of
the fast angles. In other words, our goal is to extend the classical Laplace-Lagrange secular
theory to the resonant case. We aim to see whether it is worth pushing the expansion of the
resonant Hamiltonian to high order in eccentricities and to the order two in the masses for
describing the evolutions of resonant exoplanets with moderate eccentricity.

The problem tackled here is challenging: the convergence domain of the Laplace-Lagrange
expansion of the disturbing function is limited, as demonstrated by Sundman (1916) (see also
Ferraz-Mello (1994)). Considering only the secular terms of the expansion, Libert and Hen-
rard (2005, 2007) observed a numerical convergence of the secular expansion (convergence
au sens des astronomes, see Poincaré (1893)) and showed that the approximation is accurate
even for moderate to high planetary eccentricities. However, here we must consider also
the contribution of the resonant combinations, making this approach potentially doubtful for
extrasolar systems. As a result, we think that establishing the extent of validity of the classical
approaches, along the lines of classical Celestial Mechanics, is pivotal and deserves to be
investigated.

The paper is organized as follows. In Sect. 2, we introduce the planar Poincaré variables
and outline the expansion of the Hamiltonian. The resonant Hamiltonians, both at orders one
and two in the masses, are presented in Sect. 3, while Sect. 4 is dedicated to the application of
our analytical approach to several (near-)resonant extrasolar systems, where representative
planes of the dynamics and the proximity to periodic orbits family are also discussed. Finally,
our findings are summarized in Sect. 5.

2 Hamiltonian expansion

We consider a system consisting of a central star of mass m0 and two coplanar planets of
masses m1 and m2. The indices 1 and 2 refer to the inner and outer planets, respectively.
The Hamiltonian formulation of the planetary three-body problem in canonical heliocentric
variables (see, e.g., Laskar (1989)) with coordinates r j and momenta r̃ j , for j = 1, 2, has
four degrees of freedom and reads

F(r, r̃) = T (0)(r̃) +U (0)(r) + T (1)(r̃) +U (1)(r), (1)

where

T (0)(r̃) = 1

2

2∑

j=1

‖r̃ j‖2
(

1

m0
+ 1

m j

)
, T (1)(r̃) = r̃1 · r̃2

m0
,

U (0)(r) = −G
2∑

j=1

m0m j

‖r j‖ , U (1)(r) = −G
m1m2

‖r1 − r2‖ .
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When adopting the planar Poincaré canonical variables, i.e.,

� j = m0 m j

m0 + m j

√
G(m0 + m j )a j , λ j = Mj + ω j ,

ξ j =
√

2� j

√
1 −

√
1 − e2

j cos ω j , η j = −
√

2� j

√
1 −

√
1 − e2

j sin ω j , (2)

for j = 1 , 2 , where a j , e j , Mj and ω j are the semi-major axis, the eccentricity, the mean
anomaly and the longitude of the pericenter of the j-th planet, respectively, we have

F(�,λ, ξ , η) = F (0)(�) + F (1)(�,λ, ξ , η), (3)

where F (0) = T (0) + U (0) is the Keplerian part and F (1) = T (1) + U (1) is the perturbation
(see, e.g., Laskar (1989)). The ratio between the two parts is of order O(μ) with μ =
max{m1/m0,m2/m0}, so the variables (�,λ) are referred to as the fast variables and (ξ , η)

as the secular variables. Following Libert and Sansottera (2013), we realize an expansion of
the Hamiltonian in Taylor-Fourier series of the Poincaré variables.

To do so, we first realize a translation, TF , in the fast actions

L = � − �∗,

where �∗ is a fixed value.1 The Hamiltonian (3) is then expanded in Taylor series of L, ξ

and η around the origin, as well as in Fourier series of λ, and we obtain

H(T ) = n∗ · L +
∞∑

j1=2

h(Kep)

j1,0
(L) + μ

∞∑

j1=0

∞∑

j2=0

h(T )
j1, j2

(L,λ, ξ , η), (4)

with n∗
j =

√
(m0 + m j )/a3

j for j = 1, 2 , and where the terms h(Kep)

j1,0
are homogeneous

polynomials of degree j1 in the fast actions L, while the functions h(T )
j1, j2

are homogeneous
polynomials of degree j1 in the fast actions L, degree j2 in the secular variables (ξ , η) and
trigonometric polynomials in the angles λ. A detailed treatment can be found in Duriez
(1989a, b), Laskar (1989) and Laskar and Robutel (1995) where the low-order analytical
expressions of the crucial terms are given in Sect. 7. The computations have been done via
algebraic manipulation, using a package developed on purpose named X�óνoς (see Giorgilli
and Sansottera (2011)).

The expansion is truncated as follows. We include in the Keplerian part terms up to degree
2 in the fast actions L, while in the perturbation we consider the terms which are: (i) up to
degree 1 in L; (ii) up to degree 12 in the secular variables (ξ , η); and (iii) up to trigonometric
degree 24 in the fast angles λ.

3 Resonant approximation of the Hamiltonian

In the present work, we are interested in the dynamics of systems that are really close to
or in a mean-motion resonance. The averaging procedures, both at first and second orders
in the masses, must be adapted so as to take into account the strong influence of the mean-
motion resonance. The main issue concerns the presence of small divisors that prevents the
convergence of the averaging procedure on a domain that contains the initial data. We explore

1 Here, we expand around the initial values, but the average values over a long-term numerical integration
could also be considered (see, e.g., Sansottera et al. (2013)).
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here two different approaches, considering resonant Hamiltonians at order one and two in
the masses.

3.1 Resonant Hamiltonian at order one in themasses

The classical “averaging by scissors” method can be simply modified by including appropriate
resonant combinations of the fast angles into the Laplace-Lagrange secular expansion. The
resonant combination to take into account is related to the nearest mean-motion resonance
and can be determined from the vector n∗, for example, by means of continued fraction
approximations, or by exploiting the δ-parameter (see Sect. 3.3). Precisely, having fixed a
resonant harmonic k∗ · λ, the resonant Hamiltonian at order one in the masses writes

H(O1)
res = H(T ) + H̃(T ), (5)

with

H(T ) = 1

4π2

∫ 2π

0

∫ 2π

0
H(T ) dλ1 dλ2 and H̃(T ) = μ

∞∑

j1=0

∞∑

j2=0

h(T )
j1, j2

(L,k∗ · λ, ξ , η).

The first term, H(T )
, is the classical averaging of the Hamiltonian over the fast angles, λ. In

the second one, H̃(T ), all the terms corresponding to the resonant harmonic k∗ · λ and its
multiples are collected. Although they depend on the fast angles, due to the (near-)resonance
relation, they are slow terms and have to be taken into account in the study of the long-term
evolution.

3.2 Resonant Hamiltonian at order two in themasses

The secular approximation at order two in the masses is based on a “Kolmogorov-like”
normalization step aiming at removing the fast angles from terms that are at most linear in the
fast actions L. Again, we modify the standard approach by putting the resonant combinations
of the fast angles, the harmonics k∗ · λ, in the normal form, thus removing them from the
generating function.

We briefly summarize the averaging procedure here; more details can be found in, e.g.,
Locatelli and Giorgilli (2007), Sansottera et al. (2013) and Libert and Sansottera (2013).
We adopt the standard Lie series algorithm (see, e.g., Henrard (1973) and Giorgilli (1995))
to transform the Hamiltonian (4) into Ĥ(O2) = expL

μ χ(O2)
1

H(T ). The generating function

μχ(O2)
1 (λ, ξ , η) is determined by solving the homological equation

2∑

j=1

n∗
j
∂ χ(O2)

1

∂λ j
+

KS∑

j2=0

⌈
h(T )

0, j2

⌉

λ;KF
(λ, ξ , η) =

KS∑

j2=0

⌈
h(T )

0, j2

⌉

λ;KF
(k∗ · λ, ξ , η), (6)

where � f �λ;KF denotes the Fourier expansion of a function f including only the harmonics
satisfying 0 < |k|1 ≤ KF . The parameters KS and KF are tailored according to the con-
sidered mean-motion resonance, and the actual choice is detailed in Sect. 4 for each system
studied here. The transformed Hamiltonian Ĥ(O2) can be written in the same form as (4),
replacing h(T )

j1, j2
with ĥ(O2)

j1, j2
. Here and in the following, with a common little abuse of notation,

we denote the new variables with the same names as the old ones in order to not unnecessarily
burden the notation.
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To compute the resonant Hamiltonian to the second order in the masses, H(O2) =
expL

μ χ(O2)
2

Ĥ(O2), we solve the following homological equation to determine the gener-

ating function μχ(O2)
2 (L,λ, ξ , η), which is linear in L,

2∑

j=1

n∗
j
∂ χ(O2)

2

∂λ j
+

KS∑

j2=0

⌈
ĥ(O2)

1, j2

⌉

λ;KF
(L,λ, ξ , η) =

KS∑

j2=0

⌈
ĥ(O2)

1, j2

⌉

λ;KF
(L,k∗ · λ, ξ , η).

(7)

The resonant Hamiltonian H(O2) writes

H(O2)(L,λ, ξ , η) = n∗ · L +
∞∑

j1=2

h(Kep)

j1,0
(L) + μ

∞∑

j1=0

∞∑

j2=0

h(O2)
j1, j2

(L,λ, ξ , η;μ) + O(μ3).

(8)

Note that we denote again by (L,λ, ξ , η) the new coordinates. The composition of the Lie
series with generating functions μχ(O2)

1 and μχ(O2)
2 will be denoted by TO2, precisely

TO2(L,λ, ξ , η) = expL
μ χ(O2)

2
◦ expL

μχ(O2)
1

(L,λ, ξ , η). (9)

Finally, since we aim for a second-order approximation, we neglect the terms of order
O(μ3) and, likewise we do in the first-order approximation, we select the secular and resonant
terms as in (5), namely

H(O2)
res = H(O2) + H̃(O2). (10)

Similarly to the resonant approximation at order one in the masses, H(O2)
denotes the Hamil-

tonian H(O2) averaged over the fast angles, λ, while H̃(O2) contains the terms corresponding
to the resonant harmonic k∗ ·λ and its multiples. Let us stress the crucial difference between
the first- and second-order approximations: the second-order one takes into account the effect

of low-order harmonics in both expressions H(O2)
and H̃(O2).

To illustrate the averaging procedure described here, the expressions of the resonant Hamil-
tonians at order one and two in the masses are given in “Appendix A” for GJ 876 system (see
Subsect. 4.2 for a complete description of the system). All the terms are reported up to order
one in the fast actions L, degree 6 in the fast angles λ and order two in the secular variables
(ξ , η).

3.3 The ı-parameter: proximity to amean-motion resonance

In Libert and Sansottera (2013), we introduced an heuristic criterion to evaluate the proximity
of planetary systems to mean-motion resonance, by exploiting the canonical change of coor-
dinates used for the approximation at order two in the masses. We report here the definition
of the δ-parameter that will be used in the analysis of the selected planetary systems and refer
to Libert and Sansottera (2013) for a detailed discussion.
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The first-order terms of the near the identity change of variables, TO2, are

ξ ′
j = ξ j

(
1 − 1

ξ j

∂ μχ(O2)
1

∂η j

)
,

η′
j = η j

(
1 − 1

η j

∂ μχ(O2)
1

∂ξ j

)
,

for j = 1 , 2 . Considering the coefficients of the functions

δξ j = 1

ξ j

∂ μχ(O2)
1

∂η j
and δη j = 1

η j

∂ μχ(O2)
1

∂ξ j
, (11)

we identify the most important (near) mean-motion resonance terms corresponding to the
harmonic k ·λ. Given a polydisk of radius � around the origin, ��, and adopting the weighted
Fourier norm, we define the quantities

δξ∗
j = max

k
(‖δξ (k)

j ‖�) and δη∗
j = max

k
(‖δη(k)

j ‖�)

needed for the computation of the δ-parameter given by δ = max(δ1, δ2) where δ j =
min(δξ∗

j , δη
∗
j ) for j = 1, 2. The δ-parameter is a measure of the change from the original

secular variables to the averaged ones. The actual computation of the δ-parameter is quite
cumbersome, but is more reliable than just looking at the semi-major axes ratio, since it holds
information about the nonlinear character of the system.

In particular, in Libert and Sansottera (2013), we defined an heuristic criterion based on
the computation of the δ-parameter to discriminate between three different regimes: (i) if
δ < 2.6 × 10−3, the system is far from the mean-motion resonance, so the first-order secular
approximation describes the long-term evolution of the system with great accuracy; (ii) if
2.6 × 10−3 < δ ≤ 2.6 × 10−2, a secular Hamiltonian at order two in the masses is required
to describe the long-term evolution; and (iii) if δ > 2.6 × 10−2, the system is too close to a
mean-motion resonance and a secular approximation is not enough to describe the long-term
evolution.

3.4 Resonant variables

The resonant Hamiltonians at order one and two in the masses,H(O1)
res andH(O2)

res , respectively,
reduce the problem to two degrees of freedom. To highlight this point, we introduce the
canonical resonant variables associated with a k∗

1 : k∗
2 mean-motion resonance (see for

instance Beaugé and Michtchenko (2003)). The canonical change of coordinate TR is given
by

J1 = L1 + k∗
2

k∗
1 − k∗

2
(I1 + I2), λ1,

J2 = L2 − k∗
1

k∗
1 − k∗

2
(I1 + I2), λ2,

I1 = √
2�1

√
1 −

√
1 − e2

1, σ1 = − k∗
2

k∗
1 − k∗

2
λ1 + k∗

1

k∗
1 − k∗

2
λ2 − ω1,

I2 = √
2�2

√
1 −

√
1 − e2

2, σ2 = − k∗
2

k∗
1 − k∗

2
λ1 + k∗

1

k∗
1 − k∗

2
λ2 − ω2.

(12)

123



38 Page 8 of 20 M. Sansottera, A.-S. Libert

The resonant Hamiltonians (5) and (10) contain two types of terms only: (i) secular terms
which have no dependency in the fast angles; and (ii) resonant terms depending on the fast
angles through the resonant angles σ1 and σ2. As a result, J1 and J2 are constants of motions
and the resonant Hamiltonians have only two degrees of freedom (I1, σ1) and (I2, σ2). In the
next section, we investigate the limitations and/or improvements of the analytical expansion
detailed here in modeling the long-time dynamics of extrasolar systems really close to or in
a mean-motion resonance.

4 Application to (near-)resonant extrasolar systems

We selected eight extrasolar systems in the vicinity of a low-order mean-motion resonance
for which a full parameterization has been derived, namely GJ 876 (Laughlin and Chambers
(2001)), HD 128311 (Vogt et al. (2005)), HD 73526 (Wittenmyer et al. (2014)) and HD 82943
(Tan et al. (2013)) for the 2:1 mean-motion resonance, HD 45364 (Correia et al. (2009)) for the
3:2 resonance, HD 60532 (Laskar and Correia (2009)) for the 3:1 resonance, and HD 108874
(Wright et al. (2009)) and GJ 3293 (Astudillo-Defru et al. (2015)) for the 4:1 resonance.

As previously explained, the convergence of the Laplace-Lagrange expansion of the
disturbing function is not guaranteed for high planetary eccentricities. Despite the high
eccentricities of the planets, the expansion made of the secular terms only, when pushed
to high order in eccentricities, can represent the orbits of non-resonant extrasolar systems
with enough accuracy, as shown by, e.g., Libert and Henrard (2005) for the expansion at
first order in the masses and Libert and Sansottera (2013) for the second-order expansion.
However, in the Hamiltonians (5) and (10), additional resonant terms are present and could
restrain the convergence domain.

To check the validity of the expansion for the eight extrasolar systems considered here, we
have computed the boundaries of the domain of convergence of the Laplace-Lagrange expan-
sion of the disturbing function, as given by the Sundman’s criterion (Sundman (1916), see
also Ferraz-Mello (1994)). The criterion for the absolute convergence of the planar Laplace-
Lagrange expansion is

a1F1(e1) < a2F0(e2) (13)

with real functions F1(g) = √
1 + g2 cosh w + g + sinh w and F0(g) = √

1 + g2 cosh w −
g − sinh w, where w = g cosh w.

The boundaries of the convergence domain in (e1, e2) space given by the Sundman’s
criterion are shown in Fig. 1 for several semi-major axes ratios. The selected extrasolar
systems are indicated on the graph with the value of their semi-major axes ratio in parenthesis.
The convergence domain of each system is the domain below the curve corresponding to the
semi-major axes ratio of the system. We observe that the eccentricities of HD 60532 and
HD 108874 systems are located well inside the convergence domain, while GJ 876 and
GJ 3293 systems are slightly above the boundary curve. On the contrary, the four remaining
systems, HD 128311, HD 73526, HD 82943 and HD 45364, have eccentricities too large
to be located inside their Sundman’s convergence domain, and the use of the expansion is
not appropriate. In the following, we will then focus on the long-term evolutions of the four
systems fulfilling the Sundman’s criterion. Their physical and orbital parameters are given
in Table 1. The last column of Table 1 gives an indication of the proximity of the system to
the mean-motion resonance (see Sect. 3.3). The value of the δ-parameter clearly shows that
GJ 876 and HD 60532 systems are in the third category of systems, asking for a resonant
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Fig. 1 Sundman’s convergence domain for the selected extrasolar systems. The lines represent the boundary
(in eccentricities) delimitation of the convergence domain (below area), for different semi-major axis ratios.
Initial parameters of several extrasolar systems are shown, with the planetary semi-major axis ratio given in
parenthesis

Table 1 Parameters of GJ 876 (Laughlin and Chambers (2001)), HD 60532 (Laskar and Correia (2009)),
HD 108874 (Wright et al. (2009)) and GJ 3293 (Astudillo-Defru et al. (2015)) extrasolar systems

System m (MJup) a e ω (deg) M (deg) δ

GJ 876c 0.92 0.1291 0.252 198.30 308.80 1.6

GJ 876b 3.08 0.2067 0.046 176.80 174.30

HD 60532b 3.1548 0.7606 0.278 352.83 21.950 6.8 × 10−1

HD 60532c 7.4634 1.5854 0.038 119.49 197.53

HD 1008874b 1.34 1.053 0.128 219.49 0.0 2.3 × 10−2

HD 1008874c 1.064 2.77 0.273 10.0 267.43

GJ 3293b 0.0812 0.1434 0.09 282.3 0.0 2.1 × 10−2

GJ 3293c 0.0705 0.364 0.37 322.0 230.50

approach, while HD 108874 and GJ 3293 systems are only near the 4:1 resonance, being
close to the upper limit of the second regime. Although a secular approach at order two in
the masses already gives a good approximation of the dynamical evolution for these last two
systems, we aim to see whether the resonant approach yields to further improvements.
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4.1 Validation of the resonant approximations

To assess the validity of the resonant Hamiltonians in describing the long-term evolution of
the planetary orbits, we will compare the Runge-Kutta integration of the equations of motion
associated with the Hamiltonians (5) and (10) with the direct numerical integration of the
full problem (adopting the SBAB3 symplectic scheme, see Laskar and Robutel (2001)).

We introduce the compact notations C(O1) and C(O2) for the composition of the canonical
transformations defined in Sect. 2, namely

C(O1) = TF ◦ TR and C(O2) = TF ◦ TO2 ◦ TR. (14)

Given initial values of the orbital elements
(
a(0),λ(0), e(0),ω(0)

)
, we compute their evo-

lution by exploiting the resonant Hamiltonian at order two in the masses as follows

(
a(0),λ(0), e(0),ω(0)

)

(
C(O2)

)−1 ◦ E−1

−−−−→ (I(0) , σ (0))

⏐⏐⏐�

(
a(t),λ(t), e(t),ω(t)

) E ◦ C(O2)

←−−−− (I(t) , σ (t))

, (15)

where (�,λ, ξ , η) = E−1(a(0),λ(0), e(0),ω(0)) is the non-canonical change of coordi-
nates (2). Of course, the same scheme holds for the resonant Hamiltonian at order one in the
masses with the change of C(O1) in place of C(O2).

In the following sections, we detail the comparison of the long-term evolutions of the
eccentricities and possibly resonant angles given by our analytical approach and by direct
numerical integration for each of the four considered extrasolar systems.

4.2 GJ 876

One of the first detected resonant extrasolar systems was GJ 876 system locked in a 2:1
mean-motion resonance (Marcy et al. (2001); Laughlin and Chambers (2001)). The dynam-
ical evolution of the two-planet system was carefully studied in Beaugé and Michtchenko
(2003), where they used an analytical expansion specifically devised for high-eccentricity
planetary three-body problem. Moreover, Veras (2007) showed the limitations of a resonant
Hamiltonian expanded up to order four in the eccentricities. Here, we aim to perform a similar
study of GJ 876 system using the resonant Hamiltonian at order two in the masses.2

In Fig. 2, we show the evolution of the eccentricities (left panels) and the resonant angles
(right panels) of the two-planet (c–b pair) GJ 876 system, as given by our analytical approach.
The parameters KS and KF have been fixed so as to include the effects up to the third resonant
harmonics, namely KS = 3 and KF = 9. The blue curves indicate the orbital evolutions
obtained with the Hamiltonian expansion at first order in the masses, while the evolution
with the second-order expansion is given in red. Figure 2 shows that both resonant angles of
GJ 876 planetary system librate, confirming that the system is locked in a 2:1 mean-motion
resonance.

2 Let us note that Rivera et al. (2010) have revealed the presence of an additional planet in a three-body
Laplace resonance with the previously two known giant planets.
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Fig. 2 Evolution of the eccentricities (left panels) and resonant angles (right panels) for GJ 876 system, given
by (i) direct numerical integration (green curves); (ii) second-order resonant approximation (red curves);
(iii) first-order resonant approximation (blue curves)

The accuracy of our Hamiltonian approximation is verified by comparison with a direct
numerical integration of the Newton equations (green curves). We observe in Fig. 2 that the
resonant Hamiltonian to first order in the masses, although giving a rather good approximation
of the frequencies of the motion, does not reproduce reliably the variation amplitudes of the
eccentricities and the resonant angles. On the contrary, the second-order approximation is very
efficient and the evolutions given by the analytical approach and the numerical integration
do superimpose nearly perfectly.

To analyze more deeply the dynamics of the two-planet GJ 876 system, we reproduce in
Fig. 3 (left panel) the level curves of the first-order Hamiltonian in the representative plane
(e1 sin σ1, e2 sin σ2), where both resonant angles are fixed to 0◦ in the positive part of the axis
and 180◦ in the negative part of the axis, as previously done by Beaugé and Michtchenko
(2003). We insist that this plane is neither a phase portrait nor a surface of section, since the
problem is four-dimensional. To find the stationary solutions of the (averaged) Hamiltonian,
we have computed the curves σ̇1 = 0 and σ̇2 = 0 on the representative plane (green and red
curves), since their intersections give the eccentricities of the stationary solutions. The star
symbol in Fig. 3 indicates the location of GJ 876 planetary system. We observe that the system
lies close to a stationary solution (also often denoted ACR, for apsidal corotation resonance,
see, e.g., Beaugé and Michtchenko (2003)), thus in a region where both resonant angles librate.

The stationary solutions of the Hamiltonian averaged over the short periods correspond
to periodic orbits of the full problem. Using our first-order approach, we have computed, in
Fig. 4, the family of periodic orbits corresponding to (σ1, σ2) = (0, 0) in the (e1, e2) plane, for
the mass ratio of GJ 876. Comparisons can be made with the works of Hadjidemetriou (2002)
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Fig. 3 Level curves of the first-order resonant Hamiltonian in the plane (e1 sin σ1, e2 sin σ2) for GJ 876 (left
panel) and in (e1 sin 2σ1, e2 sin �ω) for HD 60532 (right panel), with the angles fixed to 0◦ in the positive
part of the axis and 180◦ in the negative part of the axis. The stars indicate the locations of the extrasolar
systems. See text for more details

Fig. 4 Family of periodic orbits
of the 2:1 mean-motion
resonance corresponding to
(σ1, σ2) = (0, 0) in the (e1, e2)

plane for the mass ratio of
GJ 876, obtained with the
first-order resonant
approximation. The star indicates
the eccentricities of GJ 876
system, demonstrating its
proximity to the family of
periodic orbits
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and Beaugé and Michtchenko (2003), showing the accuracy of the analytical approximation.
As expected, we observe the proximity of GJ 876 system to the family of periodic orbits.

It is interesting to note that the approximation to first order in the masses is accurate
enough to compute both the dynamics on the representative plane and the family of periodic
orbits, giving a good qualitative representation of the dynamics. As a result, we can conclude
that, while the resonant Hamiltonian at first order in the masses gives a good indication on
the resonant dynamics of GJ 876 system, the second-order correction is needed to reproduce
carefully the orbital evolution of the system.

4.3 HD 60532

HD 60532 system consists of two giant planets in a 3:1 mean-motion resonance (Desort et al.
2008). Two exhaustive dynamical analyses of the system have been performed by Laskar and
Correia (2009) and Alves et al. (2015). Likewise the previous study, the evolutions of the
eccentricities and resonant angles are reported in Fig. 5. The parameters KS and KF have
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Fig. 5 Same as Fig. 2 for HD 60532 system

been fixed so as to include the effects up to the second resonant harmonics, namely KS = 4
and KF = 8. Figure 5 shows that both the resonant angle σ1 and the difference of the longi-
tudes �ω librate, confirming that the system is locked in a 3:1 mean-motion resonance. This
can also be deduced from Fig. 3 (right panel), which shows the level curves of the resonant
Hamiltonian at first order in the masses, in the representative plane (e1 sin 2σ1, e2 sin �ω),
where both resonant angles are fixed to 0◦ in the positive part of the axis and 180◦ in the
negative part of the axis. Again, a perfect agreement with the results presented in Alves et al.
(2015) is observed.

The same conclusions can be drawn on the accuracy of the analytical approach, as for
GJ 876 system. The resonant Hamiltonian at order one in the masses gives already a good
approximation of the long-term evolutions in Fig. 5, while the one at order two reliably
reproduces the frequencies of the motion and the variation amplitudes of the orbital elements.

4.4 HD 108874

HD 108874 system (e.g., Butler et al. (2003), Vogt et al. (2005), Wright et al. (2009)) is
composed of two giant planets very close to the 4:1 mean-motion resonance, as previously
deduced from the δ-parameter value of the system (see the discussion at the beginning of
Sect. 4). Secular Hamiltonian expansions both at first and second orders in the masses were
considered in our previous contribution (Libert and Sansottera 2013), showing a good agree-
ment for the amplitudes of the long-term evolutions of the eccentricities, but not for the
secular frequencies of the motion (see the black curves in Fig. 6).

The results obtained with the resonant Hamiltonian formulations are reported in Fig. 6.
The parameters KS and KF have been fixed so as to include the effects up to the second
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Fig. 6 Same as Fig. 2 for HD 108874 system

resonant harmonics, namely KS = 6 and KF = 10. The resonant angles circulate; thus,
HD 108874 planetary system is not locked in a 4:1 mean-motion resonance.3 The difference
of the longitudes �ω librates. We see that a resonant Hamiltonian approach is needed in order
to accurately reproduce the long-term dynamics of the system. In particular, the resonant
approximation at order two in the masses is the most efficient, and the evolutions given by
this analytical approach superimpose with the direct numerical integration. As a result, we
conclude that, for systems very close to a mean-motion resonance, the resonant approach is
required to reproduce perfectly the secular frequencies of the motion.

4.5 GJ 3293

Astudillo-Defru et al. (2015) reported the detection of two Neptune-like planets around
GJ 3293 with periods near the 4:1 commensurability. Let us note that the parameters of
GJ 3293 b and c have slightly changed with the discovery of two additional super-Earths in
the system (Astudillo-Defru et al. 2017); however, the dynamical analysis of the four-body
system is beyond the scope of the present work.

GJ 3293 system behaves similarly to HD 108874, also being very close to the same mean-
motion resonance. However, the smaller value of the δ-parameter indicates that the system
is less close to the resonance. As a result, a resonant Hamiltonian at order one in the masses
already describes accurately the long-term evolutions of the orbits, as illustrated in Fig. 7.
Still, looking more closely to the orbital evolutions, we can appreciate the improvements due
to the second-order approximation.

3 Let us stress that, to better visualize the evolution of σ1, we plot the evolution on a much smaller timescale.
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Fig. 7 Same as Fig. 2 for GJ 3293 system

5 Conclusions

In the present work, we have analyzed the long-term evolution of four exoplanetary systems
by using two different approximations: the resonant Hamiltonians at order one and two in the
masses. Both approximations include the (near-)resonant harmonics, extending the classical
Lagrange-Laplace secular approximation adopted to describe the long-term evolution of
non-resonant systems. This allows us to treat the systems which are really close to or in
a mean-motion resonance, and for which the secular approximation failed in Libert and
Sansottera (2013). Let us note that we only consider here planetary systems for which the
Sundman’s criterion is fulfilled. We assess the proximity of a system to the resonance by
using the δ-parameter. This criterion reveals accurate and confirms the need of a resonant
Hamiltonian at order two in the masses for high values of the δ-parameter (δ > 2.6 × 10−2),
while a resonant Hamiltonian at order one in the masses gives a good approximation of the
long-term evolution of the system for 2.0 × 10−2 < δ < 2.6 × 10−2.

We considered two systems, HD 108874 and GJ 3293, which are really close to a 4:1 mean-
motion resonance, but not in the resonance. For these systems, the resonant Hamiltonian at
order one already gives a good approximation, while the resonant Hamiltonian at order two
perfectly represents the long-time evolution of these systems.

The second-order approximation, due to the careful treatment of the contribution of
low-order fast harmonics, gives a substantial impact when dealing with resonant systems.
This was illustrated in the study of GJ 876 and HD 60532 systems, where the difference
between resonant approximations at order one and two in the masses is much more notice-
able.
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A Appendix Low-order expansions ofH(O1)
res andH(O2)

res for GJ 876

We report here the low-order expansion of H(O1)
res = H(T ) + H̃(T ) and H(O2)

res = H(O2) +
H̃(O2) (see (5) and (10), respectively) for GJ 876. We refer to Table 1 for the physical and
orbital parameters of the system and Subsect. 4.2 for a complete description of the system
(Tables 2, 3).

Table 2 Low-order secular contributions of the resonant Hamiltonians at order one and two in the masses,

namely H(T )
and H(O2)

L1 L2
sin
cos(λ1 λ2) ξ1 ξ2 η1 η2 Coefficient order 1

order 2

0 0 cos(0 0) 0 0 0 0 −3.3464020777229581e+00−3.3464563762212642e+00

0 0 cos(0 0) 2 0 0 0 −1.0357954358101849e−01−1.5743993289438937e−01

0 0 cos(0 0) 1 1 0 0 7.7180750141755586e−02
1.5099105592771100e−01

0 0 cos(0 0) 0 0 2 0 −1.0357954358101849e−01−1.5743993289438937e−01

0 0 cos(0 0) 0 0 1 1 7.7180750141755586e−02
1.5099105592771100e−01

0 0 cos(0 0) 0 2 0 0 −2.6285032427253777e−02−5.1442194373599197e−02

0 0 cos(0 0) 0 0 0 2 −2.6285032427253777e−02−5.1442194373599197e−02

1 0 cos(0 0) 0 0 0 0 7.5441751449930875e+01
7.5437939181811231e+01

0 1 cos(0 0) 0 0 0 0 3.7825543474951097e+01
3.7826365596719974e+01

1 0 cos(0 0) 2 0 0 0 −2.7620769522807734e+01−5.1880019095053086e+01

0 1 cos(0 0) 2 0 0 0 9.6542831681610277e+00
1.5932534382562174e+01

1 0 cos(0 0) 1 1 0 0 2.6339667486758934e+01
5.7583867417714245e+01

0 1 cos(0 0) 1 1 0 0 −8.6550508609898422e+00−1.6429487543265010e+01

1 0 cos(0 0) 0 0 2 0 −2.7620769522807734e+01−5.1880019095053086e+01

0 1 cos(0 0) 0 0 2 0 9.6542831681610277e+00
1.5932534382562174e+01

1 0 cos(0 0) 0 0 1 1 2.6339667486758934e+01
5.7583867417714245e+01

0 1 cos(0 0) 0 0 1 1 −8.6550508609898422e+00−1.6429487543265010e+01
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Table 2 continued

L1 L2
sin
cos(λ1 λ2) ξ1 ξ2 η1 η2 Coefficient order 1

order 2

1 0 cos(0 0) 0 2 0 0 −7.8909142498375440e+00−1.8090303237027724e+01

0 1 cos(0 0) 0 2 0 0 2.6736770713809226e+00
5.1709156508143646e+00

1 0 cos(0 0) 0 0 0 2 −7.8909142498375440e+00−1.8090303237027724e+01

0 1 cos(0 0) 0 0 0 2 2.6736770713809226e+00
5.1709156508143646e+00

Table 3 Low-order resonant contributions of the resonant Hamiltonians at orders one and two in the masses,
namely H̃(T ) and H̃(O2)

L1 L2
sin
cos(λ1 λ2) ξ1 ξ2 η1 η2 Coefficient order 1

order 2

0 0 cos( 1 − 2) 1 0 0 0 5.5376484645283615e−02
5.7238823791435821e−02

0 0 sin(−1 2) 0 0 1 0 −5.5376484645283615e−02−5.7238823791435821e−02

0 0 cos( 1 − 2) 0 1 0 0 −9.8782747719408249e−03−1.1153891516908212e−02

0 0 sin(−1 2) 0 0 0 1 9.8782747719408249e−03
1.1153891516908212e−02

0 0 cos( 2 − 4) 2 0 0 0 −4.5217344035489809e−01−4.8651258965168032e−01

0 0 sin(−2 4) 1 0 1 0 9.0434688070979619e−01
9.7302517930336063e−01

0 0 cos( 2 − 4) 1 1 0 0 6.7028607445890176e−01
7.2398694788154001e−01

0 0 sin(−2 4) 1 0 0 1 −6.7028607445890176e−01−7.2398695137503255e−01

0 0 cos( 2 − 4) 0 0 2 0 4.5217344035489809e−01
4.8651258965168032e−01

0 0 sin(−2 4) 0 1 1 0 −6.7028607445890176e−01−7.2398695137503255e−01

0 0 cos( 2 − 4) 0 0 1 1 −6.7028607445890176e−01−7.2398694788154001e−01

0 0 cos( 2 − 4) 0 2 0 0 −2.4544612025031667e−01−2.6718668544376162e−01

0 0 sin(−2 4) 0 1 0 1 4.9089224050063335e−01
5.3437364957117151e−01

0 0 cos( 2 − 4) 0 0 0 2 2.4544612025031667e−01
2.6718668544376162e−01

1 0 cos( 1 − 2) 1 0 0 0 9.3088616131547308e+00
9.3325713373268862e+00

0 1 cos( 1 − 2) 1 0 0 0 −3.5407106603304044e+00−3.5483602184707737e+00

1 0 sin(−1 2) 0 0 1 0 −9.3088616131547308e+00−9.3325713373268862e+00

0 1 sin(−1 2) 0 0 1 0 3.5407106603304044e+00
3.5483602184707737e+00

1 0 cos( 1 − 2) 0 1 0 0 −5.7283159393729672e+00−5.7368751996508980e+00

0 1 cos( 1 − 2) 0 1 0 0 1.6638688261793673e+00
1.6659529830384545e+00

1 0 sin(−1 2) 0 0 0 1 5.7283159393729672e+00
5.7368751996508980e+00

0 1 sin(−1 2) 0 0 0 1 −1.6638688261793673e+00−1.6659529830384545e+00

1 0 cos( 2 − 4) 2 0 0 0 −1.3443610498475394e+02−1.4382396459577518e+02
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Table 3 continued

L1 L2
sin
cos(λ1 λ2) ξ1 ξ2 η1 η2 Coefficient order 1

order 2

0 1 cos( 2 − 4) 2 0 0 0 4.5662300692010547e+01
4.7951527384253403e+01

1 0 sin(−2 4) 1 0 1 0 2.6887220996950788e+02
2.8764825455632791e+02

0 1 sin(−2 4) 1 0 1 0 −9.1324601384021094e+01−9.5902937120616485e+01

1 0 cos( 2 − 4) 1 1 0 0 1.6623038850909461e+02
1.7920631597850823e+02

0 1 cos( 2 − 4) 1 1 0 0 −5.9300450505275727e+01−6.2736552403780614e+01

1 0 sin(−2 4) 1 0 0 1 −1.6623038850909461e+02−1.7920631008500678e+02

0 1 sin(−2 4) 1 0 0 1 5.9300450505275727e+01
6.2736534976756516e+01

1 0 cos( 2 − 4) 0 0 2 0 1.3443610498475394e+02
1.4382396459577515e+02

0 1 cos( 2 − 4) 0 0 2 0 −4.5662300692010547e+01−4.7951527384253410e+01

1 0 sin(−2 4) 0 1 1 0 −1.6623038850909461e+02−1.7920631008500683e+02

0 1 sin(−2 4) 0 1 1 0 5.9300450505275727e+01
6.2736534976756509e+01

1 0 cos( 2 − 4) 0 0 1 1 −1.6623038850909461e+02−1.7920631597850829e+02

0 1 cos( 2 − 4) 0 0 1 1 5.9300450505275727e+01
6.2736552403780600e+01

1 0 cos( 2 − 4) 0 2 0 0 −4.8820026145600778e+01−5.3339208015605962e+01

0 1 cos( 2 − 4) 0 2 0 0 1.8656715340550328e+01
1.9991782463540289e+01

1 0 sin(−2 4) 0 1 0 1 9.7640052291201556e+01
1.0667882985908244e+02

0 1 sin(−2 4) 0 1 0 1 −3.7313430681100655e+01−3.9983785581166615e+01

1 0 cos( 2 − 4) 0 0 0 2 4.8820026145600778e+01
5.3339208015605955e+01

0 1 cos( 2 − 4) 0 0 0 2 −1.8656715340550328e+01−1.9991782463540289e+01
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