
Celestial Mechanics and Dynamical Astronomy (2019) 131:35
https://doi.org/10.1007/s10569-019-9912-6

ORIG INAL ART ICLE

A frequency portrait of Low Earth Orbits

Giulia Schettino1 · Elisa Maria Alessi1 · Alessandro Rossi1 ·
Giovanni B. Valsecchi1,2

Received: 13 September 2018 / Revised: 26 June 2019 / Accepted: 10 July 2019 / Published online: 23 July 2019
© The Author(s) 2019

Abstract
In this work, we deepen and complement the analysis on the dynamics of Low Earth Orbits
(LEO), carried out by the authors within the H2020 ReDSHIFT project, by characterising
the evolution of the eccentricity of a large set of orbits in terms of the main frequency
components. Decomposing the quasi-periodic time series of eccentricity of a given orbit by
means of a numerical computation of Fourier transform, we link each frequency signature
to the dynamical perturbation which originated it in order to build a frequency chart of the
LEO region. We analyse and compare the effects on the eccentricity due to Solar radiation
pressure, lunisolar perturbations and high-degree zonal harmonics of the geopotential both
in the time and frequency domains. In particular, we identify the frequency signatures due
to the dynamical resonances found in LEO, and we discuss the opportunity to exploit the
corresponding growth of eccentricity in order to outline decommissioning strategies.

Keywords LEO · Frequency analysis · SRP · Lunisolar perturbations

1 Introduction

It is known that the proliferation of space debris in the Low Earth Orbit (LEO) region has
already become a critical issue to handle. In this context, as part of the H2020 ReDSHIFT
(Revolutionary Design of Spacecraft through Holistic Integration of Future Technologies)
project (Rossi 2017, 2018), a deep analysis to search for passive deorbiting solutions in LEO
was carried out, by performing an accurate mapping of the phase space in order to identify
stable and unstable regions. A detailed description of the results of the LEO cartography was
presented by the authors in Alessi et al. (2018a), while in Alessi et al. (2018b), a general
analysis on the role that resonances induced by Solar radiation pressure (SRP) can play in
assisting the deorbiting was provided.

In general, the key idea investigated in those works was to identify the orbits and the
associatedmechanisms, where dynamical perturbations can induce a significant growth of the
orbital eccentricity, in order to facilitate passive disposal. Indeed, our numerical study showed

B Giulia Schettino
g.schettino@ifac.cnr.it

1 IFAC-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy

2 IAPS-INAF, via Fosso del Cavaliere 100, 00133 Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10569-019-9912-6&domain=pdf
http://orcid.org/0000-0003-0819-5052


35 Page 2 of 22 G. Schettino et al.

that specific perturbations can induce periodical variations in eccentricity and inclination,
which can potentially be exploited. Accordingly with our findings, we concluded that in the
case of a typical intact object in LEO, with an area-to-mass ratio of the order of A/m =
10−2 m2/kg, perturbations such as SRP, lunisolar effects and high-degree zonal harmonics
cannot ensure the re-entry on their own but only in combination with the atmospheric drag.
If the spacecraft is, instead, equipped with an area augmentation device, which increases the
effective A/m by, e.g. two orders of magnitude, then we concluded that SRP alone can drive
the dynamics, if the initial inclination of the orbit is close enough to a resonant inclination,
given semi-major axis and eccentricity. In particular, in Alessi et al. (2018b), we presented a
simplified analysis of the role of the SRP resonances on the eccentricity evolution in LEO.
In that work, we derived an analytical upper limit to the maximum eccentricity variation
achievable for a given orbit under the SRP perturbation. This limit can be compared with the
numerical findings of the propagations described in Alessi et al. (2018a).

In the present work, we make a deeper analysis of the role of the resonances which act
in the LEO dynamics, by characterising the eccentricity of a set of orbits in terms of peri-
odic components. Starting from the quasi-periodic time series of eccentricity, computed for
a dense grid of initial conditions, we decompose the series in the main spectral components
by means of a numerical computation of the Fourier transform. Then, we link each frequency
component with the dynamical perturbation responsible for that signature. In this way, we
have an additional tool to explore the relative importance of each given gravitational or non-
gravitational perturbation in LEO as a function of the initial orbital elements. Indeed, the
amplitude of the spectral signature induced by a perturbation on a given orbit gives an estimate
of the associated eccentricity variation; this quantity can be compared with the numerical
results, in the case that the dynamics is driven by SRP, with the analytical expression found in
Alessi et al. (2018b), in order to give a comprehensive and more robust picture of the eccen-
tricity evolution. The final goal of such analysis is to support the cartography in identifying
the orbits where a significant growth of eccentricity, led by one or more perturbations, can
assist the passive disposal of objects at their end of life. The same analysis can also serve to
identify the periodic drifts that operational orbits could experience.

In the past, the study of the chaotic dynamics within the Solar system led (Laskar 1990)
to devise a method for a numerical estimation of the size of the chaotic zones, based on the
variation in time of the main frequencies of the system. Since then, the algorithm for the fre-
quency analysis was developed to study the stability of the orbits in many multi-dimensional
conservative systems, in order to provide a global representation of the dynamics (Laskar
et al. 1992; Dumas and Laskar 1993). The frequency map analysis algorithm (numerical
analysis of fundamental frequencies–NAFF) is based on a refined and iterative numerical
search for a quasi-periodic Fourier approximation of the solution of the system over a finite
time span (Laskar 1993). Considering, in particular, the issue of optimal design of artificial
satellite survey missions around a non-axisymmetric body, (Noullez et al. 2015) proposed an
alternative method with respect to the standard Fourier transform approach to characterise
satellite orbits by computing the periodic components in order to identify regular orbits,
meant as orbits whose inclination and eccentricity do not vary significantly over a given
time scale. Concerning in particular the LEO region, (Celletti and Galeş 2018) studied the
dynamics of resonances in LEO with the aim of identifying the location of equilibrium posi-
tion and their stability. Within the common scope of defining suitable post-mission disposal
orbits, they studied analytically, by means of a toy model, whether an object is located in a
stable or chaotic region. In such a way, the identification of stable orbits in LEO suggests the
detection of possible graveyard orbits. In this paper, we focus on the possibility of exploiting
the eccentricity growth induced by one or more dynamical perturbations at given orbits to
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facilitate the end-of-life re-entry, and we deepen this analysis by characterising the eccentric-
ity evolution in terms of its main frequency components. A comprehensive characterisation
of the dynamical evolution of the eccentricity is a key ingredient in order to identify, among
other things, possible disposal strategies for operational and future spacecraft.

The paper is organised as follows: in Sect. 2, we briefly describe the dynamical model
adopted for the numerical propagation, andwe introduce themethod to identify the frequency
signatures which characterise the eccentricity evolution of a set of LEO orbits. In Sect. 3,
we outline the results of our analysis, comparing the results of numerical propagation in the
time domain with the findings of the frequency characterisation. Finally, in Sect. 4, we draw
some conclusions.

2 Dynamical model andmethods

As mentioned before, within the scope of ReDSHIFT, we performed an extensive mapping
of the LEO phase space by propagating more than 3 million orbits, as described in Alessi
et al. (2017a, b, 2018a),1 spanning from 500 to 3000 km of altitude over the Earth surface,
considering a wide range of eccentricities, e ∈ [0 : 0.28], and inclinations, from 0◦ to
120◦, 16 different (Ω,ω) configurations and two initial epochs. Two possible values of the
area-to-mass ratio were considered: A/m = 0.012m2/kg, selected as a reference value
for typical intact objects in LEO, and A/m = 1m2/kg, a representative value for a small
satellite equipped with an area augmentation device, as a Solar sail (Colombo et al. 2017).
The results of the cartography can be displayed in contour maps showing the lifetime or the
maximum eccentricity over the propagation interval as a function of the initial inclination
and eccentricity, for each initial semi-major axis. A large set of maps can be found on the
ReDSHIFTwebsite.2 In the following sections, some examples will be provided. Throughout
the text, we will limit our analysis to the case of right ascension of the ascending node, Ω ,
and argument of perigee, ω, both equal to 0◦, with the initial epoch set to 21 June 2020.

The orbital propagation to obtain the dynamical mapping was carried out over a time
span of 120 years by means of the semi-analytical orbital propagator FOP (Fast Orbit Prop-
agator, see Anselmo et al. 1996; Rossi et al. 2009 for details). In a nutshell, FOP applies a
singly averaged formulation, by numerically integrating the Lagrange or the Gauss planetary
equations applied to the gravitational and non-gravitational perturbations, which act on a
body orbiting the Earth. The formulation is non-singular for circular orbits and singular for
equatorial orbits. The disturbing potential or the equations of motion are averaged over the
mean anomaly of the satellite and propagated using a multi-step, variable step-size and order
integrator (Shampine and Gordon 1975).

The perturbations included in FOP are: geopotential harmonics up to degree and order 5;
SRP, assuming the cannonball model and accounting for shadows; lunisolar perturbations;
atmospheric drag below 1500 km of altitude, adapting the Jacchia–Roberts density model
assuming an exospheric temperature of 1000 K and a variable Solar flux at 2800 MHz
(obtained by means of a Fourier analysis of data corresponding to the interval 1961–1992).
In particular, for the SRP and lunisolar perturbations, object of the analysis of this paper, the
disturbing potentials considered in FOP are the following.

1 All the papers related to the project are available on the ReDSHIFT website at http://redshift-h2020.eu/
documents/.
2 http://redshift-h2020.eu/results/leo.
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For SRP, we have

RSRP = −cS
A

m
r cos S,

where cS is a coefficient accounting for the Solar radiation pressure at the Earth distance
and the reflectivity properties of the satellite, A and m represent the area and the mass of
the satellite, respectively, r is the Earth–spacecraft distance and S is the planet-centred angle
between the Sun and the spacecraft.

For Solar and Lunar gravitational perturbations, instead, the averaged potential is given
by

RB = μB

aB

nmax∑

n=2

(
a

aB

)n n∑

m=0

Knm

n∑

p=0

Fnmp(i)Hnpq(e)
n∑

h=0

Fnmh(iB)

×
jmax∑

j=− jmax

Gnhj (eB)Snmqhj ,

where the index B refers to the Sun or the Moon; Knm is a number depending on n and
m; q = 2p − n, because it is a singly averaged formulation; Fnmp and Fnmh are the Kaula
inclination functions; Hnpq and Gnhj are related to the Hansen coefficients; Snmqhj depends
on the argument of pericentre, right ascension of the ascending node and mean anomaly of
the third body, and on the eccentricity, argument of pericentre and right ascension of the
ascending node of the satellite. Note that Snmqhj only depends on five indexes because it is
written in a non-singular formulation; all the details can be found in Kwok (1986). For the
computation in Alessi et al. (2018a), we assumed nmax = 3 and jmax = 3.

2.1 Dynamics in the time domain

We are particularly interested in studying the time evolution of the eccentricity. Indeed,
within the search for passive disposal solutions in LEO, the identification of orbits which can
experience a significant growth of eccentricity becomes crucial, since in this case the lowering
of the orbital perigee helps drag in being effective.Moreover, a variation in eccentricity causes
an altitude variation which could become an issue also at the operational stage, for instance
in the case of a large constellation.

Lagrange planetary equations (e.g. Roy 1982) show that SRP, lunisolar perturbations
and high-degree zonal harmonics3 cause long-term periodic variations in the evolution of
eccentricity, when coupled with the oblateness effect, which become quasi-secular in the
vicinity of a resonance involving the rate of the right ascension of the ascending node, Ω ,
and the argument of perigee, ω. In particular, assuming that the instantaneous variation of
the eccentricity for a given orbit is driven by a single perturbative effect, we can write the
rate of e in the general form:

de

dt
= T (a, e, i) sinψ(Ω,ω, λS) , (1)

where T is a coefficient which depends on (a, e, i) and on specific constants according to
the given perturbation. The argument ψ can be written in general terms as:

ψ = αΩ + βω + γ λS , (2)

3 The oblateness of the Earth in the first-order approximation, J2, does not affect the evolution of the eccen-
tricity over long term (e.g. Roy 1982).
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Table 1 List of the main
resonances expected to be found
in LEO: argument ψ j , values of
the coefficients α, β, γ and
corresponding index j .
Resonances from j = 1 to j = 6
are due to SRP; resonances 7 and
8 are singly averaged Solar
gravitational resonances;
resonances from 9 to 11 are
doubly averaged lunisolar
resonances

Argument ψ j α β γ Index j

Ω + ω − λS 1 1 −1 1

Ω − ω − λS 1 −1 −1 2

ω − λS 0 1 −1 3

ω + λS 0 1 1 4

Ω + ω + λS 1 1 1 5

Ω − ω + λS 1 −1 1 6

Ω + 2ω − 2λS 1 2 −2 7

2Ω + 2ω − 2λS 2 2 −2 8

ω 0 1 0 9

Ω + 2ω 1 2 0 10

2Ω + 2ω 2 2 0 11

where α, β, γ = 0,±1,±2 depending on the perturbation and λS is the longitude of the
Sun with respect to the ecliptic plane, set as λS = 90.086◦ at the starting epoch. A resonance
occurs when the condition ψ̇ � 0 is satisfied.

The list of the resonances expected from the examination of the disturbing function and
found by means of the LEO cartography (Alessi et al. 2018a) are shown in Table 1, where
the corresponding expression for ψ and the value of α, β, γ are highlighted, together with
an index ( j = 1, . . . , 11) associated with each resonance. Resonances indexed from 1 to 6
correspond to the condition

ψ̇ = ᾱΩ̇ ± ω̇ ± λ̇S � 0 , (3)

with ᾱ = 0, 1, and are associated with the zero-order expansion of the SRP disturbing
function (e.g. Hughes 1977; Krivov et al. 1996). Resonances 7 and 8 are singly averaged
Solar gravitational resonances (e.g. Hughes 1980; Breiter 1999), i.e. they occur when the
dynamics is averaged with respect to the mean anomaly of the satellite, while resonances
from 9 to 11 are associated with doubly averaged lunisolar gravitational perturbations (e.g.
Hughes 1980), i.e. they occur when the dynamics is averaged also with respect to the mean
anomaly of the Sun or Moon (see, e.g. Roy 1982). The rate of Ω and ω can be found by
applying the Lagrange planetary equations and accounting in principle for both the effects
of J2 and SRP, while the effect of lunisolar perturbations can be neglected for the range
of altitudes considered here (e.g. Milani et al. 1987). The explicit expressions have been
given, for instance, in Alessi et al. (2018b). In practice, in Alessi et al. (2018b)-Eq. (5), we
have shown that, for an initial orbit with Ω = ω = 0◦, at the assumed initial epoch (which
corresponds to λS ≈ 90◦), the rate of Ω and ω due to SRP vanishes, since they are both
proportional to cosψ j .

In Fig. 1, we display the behaviour of |ψ̇ j | for each perturbing term highlighted in Table 1
( j = 1, . . . , 11) as a function of the inclination i ∈ [0◦ : 120◦] for the case of a quasi-circular
orbit (e = 0.001) with a semi-major axis a = 7978 km. The location of the resonances on
the x−axis is identified by the resonant condition ψ̇ j � 0. The curves have been computed
numerically with a tolerance of 10−8. The figure shows that curves associated with different
perturbations may intersect and overlap within our sampling of the phase space, creating a
dense network of resonances in the phase space. The location of different resonances may not
exactly occur at the same inclination value, but they can be very close in some cases (e.g. in the
vicinity of i = 40◦, 56◦, 110◦). Thus, depending on the given inclination, it may be hard to
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Fig. 1 Behaviour of |ψ̇ | for each
perturbing term j = 1, . . . , 11 as
a function of the inclination, for
e = 0.001 and a = 7978, km, in
the case A/m = 1m2/kg

distinguish between the concurrent effect of different perturbations and to link the dynamical
effect to the perturbationwhich produces it. To overcome this problem,we can take advantage
of the fact that the adopted orbital propagator is set up in such a way that each dynamical
perturbation in the model can be individually turned on or off. Since we aim at identifying
the specific effect of a given perturbation on the eccentricity evolution and at characterising
it in the frequency domain, we consider two simplified models, which fit our purposes:

– model I: SRP on; lunisolar perturbations and drag off; geopotential: only J2;
– model II: SRP off; lunisolar perturbations and drag on; geopotential: 5 × 5.

Model I is particularly suitable to study the SRP effects on the eccentricity in the case
of high A/m objects, when only SRP and drag play a primary role in the evolution. In the
case of A/m = 1m2/kg, atmospheric drag is effective in driving a re-entry within 25 years
for pericentre altitudes up to 1050 km (see Alessi et al. 2018a; Schettino et al. 2019). Since
this is a relatively high value, in order to focus on the effect due to SRP, we have decided to
switch off the perturbation due to the atmospheric drag.

Model II, instead, is appropriate to study the effects led by lunisolar perturbations and high-
degree zonal harmonics: removing from the model the presence of SRP, we avoid the chance
of mismodelling, since the resonant inclinations corresponding to lunisolar perturbations and
geopotential can be close to those associated with SRP, as appears from Fig. 1. In this case,
adopting the low or the high value of A/m does not affect the eccentricity evolution.

2.2 Frequency characterisation of the eccentricity

The starting point for the frequency characterisation is to process the discrete eccentricity time
series of a given initial orbit to obtain the discrete Fourier transform through a standard fast
Fourier transform (FFT) algorithm (e.g.OppenheimandSchafer 2010).Given the eccentricity
time series, e(tk), for a set of times tk from t1 = 1 to tN = 2K with K integer,4 computed
at time steps of 	t = 1 day, the frequency interval f j is defined from f1 = 1 up to
fr = (

tN
2 − 1) fS

tN
, where fS = 1/	t is the sampling frequency. We define the discrete

Fourier transform of e(ti ), Fe, as

4 The Cooley–Tukey algorithm (see later) to compute FFT is optimised for series whose length is a power of
2, and thus, depending on the duration of the eccentricity series, the series is suitably truncated each time to
the nearest power of 2.
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Fe( f j ) = 1

2π tN fS

tN∑

k=1

e(tk) exp

[
−i

2π

tN
( j − 1)(k − 1)

]
.

The computation ismade by anFFTalgorithmbased on the standardCooley–Tukey algorithm
(Cooley and Tukey 1965). Our aim is, then, to identify the frequency and the amplitude of
the main spectral features in the frequency series. The criterion we adopt is to account for
any signature in the spectrum whose FFT value is, at least, 10 times stronger than the mean
value over the whole spectrum: for each of these signatures, we record the corresponding
spectral amplitude and frequency.

A first issue to be considered concerns the time sampling 	t of the input series to be
transformed. Indeed, from Nyquist theorem, it follows that fs/2 is the highest frequency we
can capture from our analysis. Since the perturbations we are interested in have periodicity
of the order of months to years,5 the sampling	t = 1 day, adopted in Alessi et al. (2017a, b,
2018a), is fully reasonable. On the other side, a more critical issue involves the lowest
detectable frequency by our analysis, which is limited by 2/tN . This means that with the
adopted time span of 120 years, signatures with periodicity up to 60 years would be, in
principle, identified. In practice, signatures due to perturbations with periodicity of more
than some years are poorly sampled by definition. Thus, we propagate the set of orbits of
interest for a longer time span, 600 years, in order to catch unambiguously signatures with
periodicity of some tens of years, as expected in the vicinity of a resonance.

3 Analysis of the numerical results

The general results of the LEO dynamical mapping was already extensively described in
Alessi et al. (2018a). In the following, we present the results obtained by assuming the two
simplified dynamical models, described in Sect. 2.1. First, we consider the case of model
I, i.e. we focus on the effect of SRP in the case of the augmented A/m ratio: we briefly
recall the main findings in terms of time evolution of the eccentricity, and then we discuss
the results of the characterisation in terms of frequency components. Next, we present the
same analysis in the case of model II, focusing on the effects of lunisolar perturbations and
high-degree zonal harmonics.

3.1 Model I

3.1.1 Analysis in the time domain

We recall that the model accounts, in this case, only for the effect of SRP and J2, while drag
and lunisolar perturbations are turned off.We propagate the orbits assuming A/m = 1m2/kg
and we look for the inclinations where a growth of eccentricity due to SRP occurs. Some
illustrative results are shown in Fig. 2: on the left we show themaximumeccentricity achieved
over 600 years of propagation as a function of the initial inclination and eccentricity, for initial
a = 7978 km (top) and a = 8578 km (bottom), respectively. On the right panels, we display
the corresponding lifetime, in years. We recall that the atmospheric drag is effective up to
1050 km of altitude for the adopted A/m ratio. Thus, we selected on purpose two reference

5 We recall that moving close to a resonant orbit, the period of the perturbation acting on the eccentricity
becomes gradually longer, up to quasi-secular if the orbital inclination corresponds exactly to a resonant
condition.
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Fig. 2 Maximum eccentricity (left column) and lifetime over 600 years (right column; in the color bar: in
years) as a function of the initial inclination at steps of 	i = 0.5◦ and e at steps of 	e = 0.001, assuming
model I and A/m = 1 m2/kg, for the initial orbits at a = 7978 km (top) and a = 8578 km (bottom), with
Ω = ω = 0◦ and initial epoch 21 June 2020

values for the initial semi-major axis which are significantly above the region where drag
plays a role. If the effect of SRP is able to lower the perigee below 1050 km, then the removal
of the drag from the model allows to check if the chance to re-enter or not can be ascribed
solely to SRP. In our analysis, we are interested in the extended LEO region, up to 3000 km
of altitude, in order to include graveyard orbits. This fact motivates the choice of the semi-
major axis a = 8578 km as a representative one. Moreover, the detailed cartography carried
out within the scope of ReDSHIFT helped us in the choice of the two representative values
of semi-major axis for the following analysis: we do not expect to find further significant
resonances to drive the dynamics in LEO other than the ones identified at these two altitudes.

The lifetime panels show that, in the case an area augmentation device is available on-
board, even for high-altitude quasi-circular orbits, a re-entry driven by SRP alone is feasible
for inclinations in the vicinity of 40◦, which corresponds to the resonant condition:

ψ̇1 = Ω̇ + ω̇ − λ̇S � 0 .

In the case of initial a = 7978 km, re-entry can be achieved in about 7 years for initial e
ranging from 0.0001 to 0.009 thanks to SRP alone, for an initial orbit at i = 39.5◦. In the
case of initial a = 8578 km, SRP allows to re-enter within 10 years at initial i = 37.5◦ and
in about 16 years for i = 38◦. The other resonances due to SRP, although not able to drive
a re-entry, cause, anyway, a remarkable growth in eccentricity, as can be seen from the left
panels of Fig. 2, which can be exploited to lower the perigee of the orbit. Referring also to
Figure 1 in Alessi et al. (2018b), which shows the location of the 6 main SRP resonances as
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Fig. 3 Lifetime (in the color bar:
in years) as a function of the
initial inclination at steps of
	i = 0.5◦ and e at steps of
	e = 0.001, assuming model I
with atmospheric drag and
A/m = 1m2/kg, for the initial
orbit at a = 7978 km, with
Ω = ω = 0◦ and initial epoch 21
June 2020

Table 2 Resonant inclination ires
and lifetime (in years) for each of
the six main SRP resonances, in
the case of initial a = 7978 km
and e = 0.001, assuming model I
with the addition of atmospheric
drag

Resonance ires Lifetime (year)

1 39.5◦ 6.5

2 79.0◦ 13.5

3 58.0◦ 261

4,6 70.0◦ 99

5 53.5◦ 545

a function of i and a, we can identify the following resonances corresponding to the bright
inclination “corridors”:

– ψ̇1 � 0 around i = 40◦ (and i = 113◦);
– ψ̇2 � 0 around i = 80◦;
– ψ̇3 � 0 and ψ̇5 � 0 around i = 58◦ and i = 54◦, respectively, in the top panel (a = 7978

km), while they intersect around i = 56◦ at a = 8578 km;
– ψ̇4 � 0 and ψ̇6 � 0, both occurring in the vicinity i = 70◦.

Moreover, we can recognise other features at specific inclinations, appearing as fainter,
but still visible, signatures. They can be associated with higher-order terms in the expansion
of the SRP disturbing function (e.g. Hughes 1977): in Sect. 3.1.2, their identification will be
assisted by the analysis in terms of frequencies.

For completeness, turning on the contribution due to the atmospheric drag in the model,
we find that the synergic effect of SRP and drag can support re-entry also at different values
of inclinations (resonances) but, typically, only over long time scales. This is shown in Fig. 3,
in the case of an initial orbit at a = 7978 km and e = 0.001, assuming now model I with
the further contribution of the drag. For the same initial orbit, Table 2 shows the lifetime
associated with the initial inclination corresponding to the six SRP resonances. The table
points out that the addition of the drag in the model can assist the re-entry at inclinations
close to the resonant ones, but only in the case of resonance 2 (in addition to resonance 1)
the re-entry can take place in less than 25 years.
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Table 3 List of the first-order
terms, expanding the SRP
disturbing function up to
first-order (e.g. Hughes 1977):
argument ψ j , values of the
coefficients α, β, γ and
corresponding index j

Argument ψ j α β γ Index j

ω − 2λS 0 1 −2 12

ω + 2λS 0 1 2 13

Ω + ω − 2λS 1 1 −2 14

Ω + ω 1 1 0 15

Ω − ω − 2λS 1 −1 −2 16

Ω + ω + 2λS 1 1 2 17

3.1.2 Analysis in the frequency domain

The analysis of the maximum eccentricity maps (Fig. 2-left panels) shows that, in addition
to the six resonances due to the zero-order expansion of the SRP disturbing function, other
fainter signatures can be observed at given inclinations. Thus, to build a complete picture of
the eccentricity evolution in the LEO phase space, we need to include the first-order terms in
the expansion of the SRP disturbing function (e.g. Hughes 1977), which are listed in Table
3.

Following the procedure depicted in Sect. 2.2, we identified the main frequency signatures
associatedwith the eccentricity, at each initial condition available. The frequency components
detected at each inclination for the two illustrative cases of an initial orbit at a = 7978 km
and a = 8578 km in the case of initial e = 0.001, with A/m = 1m2/kg, are shown in Fig. 4.
Each square in the plot represents a detected frequency component; the color bar refers to
the relative amplitude of the frequency signature,6 intended as the corresponding intensity
peak in the computed Fourier spectrum. Each coloured curve represents the behaviour of
the argument |ψ̇ j | as a function of the inclination, with a cusp at the resonant inclination.
As it can be seen, the detected signatures match almost exactly the theoretical curves. We
also point out that the amplitude of the signatures gradually grows approaching a resonant
inclination. In particular, the effects of SRPfirst-order terms at given inclinations,which could
be only partially inferred from the maximum eccentricity maps, can be clearly identified in
the frequency chart.

The signatures detected by means of the frequency analysis match the bright corridors
detected in the maximum eccentricity maps in the left of Fig. 2. In particular, resonances
3 and 5 (see Table 1), which intersect for a = 8578 km, can be individually identified for
a = 7978 km both in the contour map and in the frequency chart. Moreover, the frequency
chart for a = 8578 km shows a signature around i = 86◦ corresponding to the first-order ψ̇17

term, which does not appear for a = 7978 km neither in the contour map nor in the frequency
chart. Finally, the a = 7978 km chart shows a signature with singularity at i = 90◦ which
can be associated with the rate of Ω , appearing in the second-order expansion of the SRP
disturbing function (see, e.g. Hughes 1977).

From the lifetime maps in the right panels of Fig. 2, we know that only in the case of
resonance 1 SRP alone can drive a re-entry. Nevertheless, the maximum eccentricity maps
show that in the vicinity of a resonance a certain growth of eccentricity occurs anyway. Thus,
in the perspective of designing passive disposals and when dealing with operational issues, it
is crucial to consider the timescale over which the eccentricity variation takes place.With this
in mind, assessing the change in eccentricity led by a perturbation without performing the

6 The amplitude of each signature is normalised to the maximum detected amplitude, found in this case at the
resonance ψ̇1 � 0.
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Fig. 4 Frequency signatures
(filled squares) detected at each
inclination for the initial orbit at
a = 7978 km (top) and
a = 8578 km (bottom), for initial
e = 0.001, with A/m = 1m2/kg.
The |ψ̇ j | curves are those
associated with SRP resonances,
shown in Tables 1 and 3. The
color bar refers to the relative
amplitude of the frequency
signature normalised to the
maximum detected amplitude

numerical propagation, i.e. by characterising the LEO phase space in terms of frequencies,
represents a very powerful tool.

In Alessi et al. (2018b), we presented a simplified model including only the zero-order
SRP resonances, namely ranked from j = 1 to j = 6. Assuming that the dynamics is driven
by a single resonance, say j , the eccentricity variation was written as [all details can be found
in Alessi et al. (2018b)]

de

dt
= −3

2
PCR

A

m

√
1 − e2

na
T j

∂ cosψ j

∂ω
, (4)

where T j depends on the inclination of the orbit with respect to the equatorial plane. From the
above expression, it turns out that the rate of e is proportional to sinψ j ; thus, by integrating
Eq. (4) over time, we showed that the upper limit to the eccentricity variation over the
propagation time interval is given by

	e j =
∣∣∣∣∣
3

2
PCR

A

m

√
1 − e2

na

T j

ψ̇ j

∣∣∣∣∣ =
∣∣∣∣
Tj (a, e, i)

ψ̇ j

∣∣∣∣ . (5)

The validity of Eq. (5) has been discussed in Alessi et al. (2018b). We recall that in the
present paper we are considering the special case where Ω = ω = 0◦ and λS = 90◦. On the
other side, the amplitude associated with each detected frequency signature in the Fourier
transform gives an estimate of the eccentricity increment, as well. Both these values can be
compared with the numerically computed maximum eccentricity over 600 years: the three
estimates are expected to comply with each other.
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Fig. 5 Theoretical amplitude |Tj /ψ̇ j | with j = 1, . . . , 6 for the six zero-order SRP resonances (solid lines),
maximum variation in eccentricity over propagation computed with FOP (red circles) and the frequency
signatures detected by our analysis (filled squares; the color bar refers to the corresponding periodicity) as a
function of the inclination, for the initial orbit at a = 7978 km and e = 0.001

Fig. 6 Comparison between theoretical amplitude |Tj /ψ̇ j | ( j = 1 on the top, j = 2 on the bottom), maximum
variation in eccentricity over propagation computed with FOP (left panels) and the frequency amplitudes
detected by our analysis (right panels) as a function of the inclination, for the initial orbit at a = 7978 km and
e = 0.001 in the case of model I

A general comparison for the initial orbit at a = 7978 km and e = 0.001 is shown in
Fig. 5: as a function of i , we show the theoretical amplitude |Tj/ψ̇ j |with j = 1, . . . , 6 for the
six zero-order SRP resonances, the maximum variation in eccentricity,	emax, achieved over
the numerical propagation (red circles) and the amplitude of frequency signatures detected
by our analysis (filled squares; the color bar refers to the corresponding periodicity, i.e. the
inverse of the detected frequency). A similar example for an orbit at a = 8578 km is shown
in Schettino et al. (2017).

The match is very good; moreover, we can observe that, as expected, the brighter squares,
associatedwith signatureswith longer periodicity, are foundonly in the vicinity of resonances.

Looking at the maximum variation in eccentricity achieved during propagation with FOP
(red circles), some fainter features can be noticed at inclinations different from those corre-
sponding to the six main resonances. Comparing the inclination of these signatures with the
resonant inclinations corresponding to the arguments shown in Table 3, these fainter features
can be associated with the first-order terms in the expansion of the SRP disturbing function.
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Fig. 7 Eccentricity (top) and
inclination (bottom) evolution
over 100 years for initial
condition a = 7978 km,
e = 0.001, i = 79◦ in the case of
model I. The inclination
computed by propagation (blue
line) is compared with the
theoretical inclination (red
circles) derived from Eq. (7)

In Fig. 6, we show a detailed (i, e) zoom around the two main resonances found at this
altitude: ψ̇1 corresponding to i ∼ 40◦ and ψ̇2 in the vicinity of i ∼ 80◦. Themaximum eccen-
tricity displayed on the y-axis corresponds to the eccentricity needed to lower the perigee
down to 120 km, e120km = 0.185. Both the squares corresponding to the numerical maximum
eccentricity (left panels) and the amplitude of the frequency signatures (right panels) lie on
the theoretical curves for |T1/ψ̇1| and |T2/ψ̇2|. This further confirms that the three quanti-
ties (theoretical amplitude, numerical maximum eccentricity and amplitude of the frequency
signature) provide the same information, and thus one can be adopted in place of the other.

We can notice, however, in the bottom panel on the left of Fig. 6, a disagreement between
the theory and the numerical propagation: according to the theory, the maximum eccentricity
variation for initial i = 79◦ should be sufficient to lead to re-enter, while the	emax computed
with FOP turns out to be lower than e120km. The explanation for such a behaviour is that during
the propagation also the inclination experiences a variationwhichmoves the object away from
the resonance, making the SRP perturbation less effective. In Fig. 7, we show the evolution
of e and i over 100 years for the initial condition a = 7978 km, e = 0.001, i = 79◦. Both
eccentricity and inclination show a periodicity of about 28 years but they are out of phase:
the eccentricity starts to grow led by the SRP perturbation; at the same time, the inclination
starts to decrease so that when the eccentricity reaches the maximum value emax = 0.14,
the inclination is at its minimum, imin = 78.3◦, where, as can be inferred from Fig. 6, the
perturbation due to the resonant term ψ2 is no longer effective in driving the re-entry.

This fact shows that the rate of i should be taken into account to provide a full description
of this case based on the dynamics. It is beyond the scope of this work to provide a full
description on this scenario based on the dynamical systems theory, but we can provide a
basic tool to obtain an a priori indication on whether the orbit will exit from the resonance
domain before achieving a re-entry.

In Fig. 7, in the panel showing the evolution of the inclination, it is also displayed the
behaviour predicted by the theory developed inDaquin et al. (2016) for lunisolar gravitational
resonances, which can be applied also in the case of SRP, as shown in Alessi et al. (2018b).
In particular, it is demonstrated that there exists an integral of motion, corresponding to

(β cos i − α)
√

μa(1 − e2) = constant, (6)
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Fig. 8 Comparison of the
eccentricity (left) and inclination
(right) evolution over 30 years,
computed by propagation
assuming model I (blue curve)
and including all the
perturbations provided by FOP
(red curve). The initial orbit is for
both cases: a = 7978 km,
e = 0.001, i = 79◦

Fig. 9 Predicted inclination variation as a function of the initial inclination, assuming model I, a = 7978 km,
e = 0.001. Left: resonance 1. Right: resonance 2

whereα, β are as defined in Eq. (2). In other words, assuming that themotion of the spacecraft
is governed only by the Earth’s monopole, the Earth’s oblateness and the Solar radiation
pressure, at any instant we can recover the inclination value from

i = ± arccos

(
constant

β
√

μa(1 − e2)
+ α

β

)
, (7)

where the constant can be obtained by evaluatingEq. (6) at the initial epoch. For completeness,
in Fig. 8, we show a comparison over 30 years of the eccentricity and inclination evolution
computed by propagation assuming model I (blue curve) with the behaviour obtained by
assuming the complete dynamical model (red curve), which includes all the perturbations
provided by FOP. The initial orbit is the same as in Fig. 7.We can observe that the twomodels
predict the same behaviour, except that, in the second case, the re-entry is ensured (in 13.6
years) by the atmospheric drag.

In Fig. 9, we show the behaviour predicted for the inclination by Eq. (7), by assuming a
maximum variation in eccentricity as in Eq. (5), for resonances 1 and 2. We can notice that in
the first case, when we consider an initial inclination in the resonance domain, the variation
is not relevant if compared with the curves in the top panel of Fig. 6). In the second case,
the variation is instead important, of about 1◦ and moves the dynamics towards the edges of
the interval where the resonance is effective (compare with the curves in the bottom panel of
Fig. 6).

The above discussion showed that the assumption that Tj is a function of the initial values
of eccentricity and inclination may provide a misleading information. Figure 10 shows the
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Fig. 10 Evolution of
	e2 = T2/|ψ̇2| over 60 years,
computed by means of Eq. (5) on
the e and i values obtained by
propagation with FOP in case of
model I, for an initial
a = 7978 km

evolution of	e2 = T2(a, e, i)/|ψ̇2|, according to Eq. (5), assuming the values of eccentricity
and inclination computed at each given time by propagation with FOP, in case of model I,
for initial a = 7978 km, e = 0.001, i = 79◦. The y-axis upper limit corresponds to a perigee
altitude of 120 km. As it can be seen, for the initial value of e and i , the growth of eccentricity
	e2 is such that the re-entry driven by resonance 2 is feasible (the curve is not visible in the
figure because it is higher than the eccentricity required to re-entry). On the contrary, after
only 5 years, the inclination has moved from its initial value (compare with Fig. 7) enough
that the corresponding growth in eccentricity due to resonance 2 alone is no more capable to
assure the re-entry.

Finally, similarly to Fig. 6, the comparison between theoretical amplitude, maximum
variation in eccentricity computed with FOP and amplitude of the frequency signatures for
a = 7978 km and e = 0.001 in the cases of resonances 3, 4, 5, 6 due to SRP is shown in
Fig. 11. Also in these cases, the agreement is noticeable.

3.2 Model II

3.2.1 Analysis in the time domain

Model II is particularly suitable to study the perturbation on eccentricity due to lunisolar
effects and high-degree terms in geopotential, since SRP has been removed in this case. The
effective area-to-mass ratio of the object does not play a role in driving the dynamics, contrary
to the case of the previous model, and thus we assume A/m = 0.012m2/kg for simulations.

In analogy to the left panels of Fig. 2, Fig. 12 shows the maximum eccentricity as a
function of the initial inclination and eccentricity for an orbit at a = 7978km (left) and
a = 8578 km (right), respectively. In this case, we do not show the corresponding lifetime
maps: at these altitudes and for quasi-circular orbits the maps would result blank since
neither lunisolar perturbations nor high-degree terms of geopotential are capable to induce a
growth of eccentricity such that the perigee is lowered down to altitudes where drag becomes
effective. The synergic effect of drag and other perturbations can be possibly exploited at
these altitudes only for initial eccentricities higher than 0.1.7 The most evident signatures
in the maximum eccentricity maps are those at i = 63.4◦, 116.6◦, also known as critical

7 Contour maps similar to Fig. 12 including eccentricities up to 0.28 can be found on the project website.
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Fig. 11 Comparison between theoretical amplitude |Tj /ψ̇ j | ( j = 3, 4, 5, 6), maximum variation in eccentric-
ity over propagation computed with FOP (left panels) and the frequency amplitudes detected by our analysis
(right panels) as a function of the inclination, for the initial orbit at a = 7978 km and e = 0.001 in case of
model I

Fig. 12 Maximum eccentricity as a function of the initial inclination at steps of 	i = 0.5◦ and e at steps of
	e = 0.001, assuming model II and A/m = 0.012m2/kg, for the initial orbits at a = 7978 km (left) and
a = 8578 km (right), with Ω = ω = 0◦ and initial epoch 21 June 2020

inclinations (e.g. Beutler 2005), which corresponds to the condition ω̇ = 0 (resonance 9 in
Table 1).

Figure 13 depicts the time evolution of different orbits with initial a = 7978 km, con-
sidering two different initial inclinations: i = 63.4◦ (top), which corresponds exactly to the
resonant inclination for the condition ω̇ = 0, and i = 63.5◦ (bottom), i.e. only 0.1◦ degrees
next to the resonant value. The initial eccentricity varies from 0.001 to 0.15: on the left, we
show the evolution of eccentricity over 200 years, in the middle, the pericentre altitude and
on the right, the apocentre altitude. As it can be seen, the behaviour is different if the initial
inclination corresponds exactly to the resonant value or not. Up to initial e = 0.1, for both
inclinations, the eccentricity does not experience a sufficient growth to lower the perigee
in order to re-enter. Indeed, for the case of an initial quasi-circular orbit (e = 0.001), at
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Fig. 13 Time evolution of eccentricity (left), perigee altitude (middle) and apogee altitude (right) over 200
years of propagation with FOP, for initial a = 7978 km and i = 63.4◦ (top), i = 63.5◦ (bottom), for 7 different
initial eccentricities: e = 0.001, 0.01, 0.05, 0.10, 0.13, 0.14, 0.15 in the case of model II, assuming as initial
epoch 21 June 2020

resonance the perigee lowers only by 70 km after 10 years and 177 km after 25 years, while
for i = 63.5◦ the decrease in the perigee is 58 km after 10 years and 115 km after 25 years.

At resonance, we can observe that the characteristic period of the eccentricity evolution
is clearly longer than in the neighbourhood of the resonance. For example, for i = 63.4◦
and e = 0.001, the eccentricity shows a period of 137 years, while for i = 63.5◦, it reduces
to 76 years. For higher eccentricities, such as e = 0.13 and e = 0.14, at i = 63.4◦ the
initial growth of eccentricity induced by the perturbation lowers the perigee down to an
altitude where atmospheric drag becomes effective. Conversely, for i = 63.5◦ the apogee
starts to lower, while the perigee is not low enough for drag to be effective in less than 200
years. Finally, for e = 0.15 the perigee is low enough that re-entry is feasible at both initial
inclinations thanks to the atmospheric drag.

Looking at Fig. 12, other fainter signatures at given inclinations can be recognised:

– at i � 40◦, 113◦, in the a = 7978 km panel, corresponding to the well-known evection
resonance (e.g. Brouwer and Clemens 1961) ψ̇8 = 2(Ω̇ + ω̇ − λ̇S) � 0;

– at i � 56◦, visible in the a = 8578 km panel, corresponding to the condition ψ̇10 =
Ω̇ + 2ω̇ � 0;

– at i � 70◦, clearly recognisable at a = 8578 km while distinguishable only for very low
eccentricities at a = 7978 km, which corresponds to the resonant condition Ω̇ −2ω̇ � 0,
as will be discussed in Sect. 3.2.2.

3.2.2 Analysis in the frequency domain

The frequency components detected at each inclination for the initial orbits at a = 7978 km
and a = 8578 km, assuming initial e = 0.001, with A/m = 0.012m2/kg are shown in
Fig. 14, where each frequency signature corresponds to a filled square and the color bar
refers to the relative amplitude found in the Fourier spectrum.

The solid curves in the figure represent the resonant arguments ψ j , with j = 7, . . . , 11,
associated with Solar gravitational and lunisolar perturbations, shown in Table 1; the dashed
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Fig. 14 Frequency signatures
(filled squares) detected at each
inclination for the initial orbits at
a = 7978 km (top) and
a = 8578 km (bottom), assuming
initial e = 0.001, with
A/m = 0.012m2/kg. The |ψ̇ j |
curves are those associated with
lunisolar resonances, shown in
Tables 1 and 4. The color bar
refers to the relative amplitude of
the frequency signature
normalised to the maximum
detected amplitude

curves refer, instead, to fainter, but still detectable, signatures listed in Table 4. They cor-
respond to the arguments ψ j with j = 18, . . . , 20 associated with singly averaged Solar
gravitational resonances, and to the argument ψ21 associated with doubly averaged lunisolar
perturbations (Hughes 1980).

The main signature in both frequency charts is the one at i = 63.5◦ associated with
resonance 9, which corresponds also to the brightest corridor in the eccentricity contour
maps of Fig. 12. Concerning resonance 8, around i = 40◦, the contour maps showed that
it is not expected to be relevant for e = 0.001, while it becomes more important for more
eccentric orbits. Indeed, it is only partially detectable in the e = 0.001 frequency charts
of Fig. 14, while its role becomes more evident in the frequency charts of Fig. 15, which
correspond to the same initial orbits of Fig. 14 but with e = 0.01. Comparing the frequency
charts corresponding to the two values of eccentricity, we can notice also that resonances
7 , 8 , 11 and the higher order resonances shown in Table 4 are only partially detectable in
the e = 0.001 frequency charts, while they are clearly recognisable for the e = 0.01 ones. In
particular, the signature due to the ψ̇21 term is clearly visible in the a = 8578 km maximum
eccentricity map of Fig. 12 as the bright corridor at i = 69◦, and it appears also in the
corresponding frequency chart.

Figure 12 showed that the growth of eccentricity that can be reached thanks to high-degree
zonal harmonics and/or lunisolar perturbations, for the initial eccentricities considered, is, at
most, one order of magnitude less than exploiting SRP in the case of an area augmentation
device.

The most favourable case is found in proximity of resonance 9 (ω̇ � 0), where 	emax �
0.02 can be achieved. As already noticed, the frequency analysis shown in Fig. 14 confirms
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Fig. 15 Frequency signatures
(filled squares) detected at each
inclination for the initial orbits at
a = 7978 km (top) and
a = 8578 km (bottom), assuming
initial e = 0.01 and
A/m = 0.012m2/kg. The |ψ̇ j |
curves are those associated with
lunisolar resonances, shown in
Tables 1 and 4. The color bar
refers to the relative amplitude of
the frequency signature
normalised to the maximum
detected amplitude

Table 4 List of the other detected
resonances due to lunisolar
perturbations (Hughes 1980):
argument ψ j , values of the
coefficients α, β, γ and
corresponding index j

Argument ψ j α β γ Index j

Ω + 2ω + 2λS 1 2 2 18

Ω − 2ω − 2λS 1 −2 −2 19

2Ω − 2ω − 2λS 2 −2 −2 20

Ω − 2ω 1 −2 0 21

this finding for both altitudes: the main signature appears at i = 63.5◦, corresponding to
the cusp of the |ψ̇9| curve. Figure 16 compares the behaviour of the numerical maximum
eccentricity over propagation (cyan squares) and the amplitude found through the frequency
analysis (blue squares) around i = 63.5◦ for an initial orbit with a = 7978 km and e = 0.001.
As for the case of model I, there is a very good agreement between the two quantities. We
can notice that the growth of eccentricity at i = 63.5◦ is mainly due to the perturbing effect
of J5. Indeed, if we consider only a 3 × 3 geopotential instead of 5 × 5, the increment
of eccentricity decreases from 	e5×5 = 0.017 to 	e3×3 = 0.002, while if only lunisolar
perturbations and 2 × 2 geopotential are included in the dynamical model, the eccentricity
does not experience any variation at this inclination. These results are shown in Fig. 17,
which displays the evolution of eccentricity for initial a = 7978 km and i = 63.5◦ for three
different models, all including drag and lunisolar perturbations: (i) 5 × 5 geopotential, (ii)
3 × 3 geopotential, (iii) 2 × 2 geopotential.

Although at high altitudes in LEO the growth of eccentricity induced by geopotential or
lunisolar perturbations is not capable to drive the re-entry, the variation in e can be, anyway,
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Fig. 16 Comparison between the
maximum variation in
eccentricity over propagation
computed with FOP (cyan
squares) and amplitude of the
frequency signatures detected by
our analysis (blue squares) in the
case of resonance 9, for the initial
orbit at a = 7978 km and
e = 0.001

Fig. 17 Evolution of e for initial
a = 7978 km and i = 63.5◦ for
three different models, all
including drag and lunisolar
perturbations: (I) 5 × 5
geopotential, (II) 3 × 3
geopotential, (III) 2 × 2
geopotential

not negligible. Indeed, the perigee and apogee of the orbit can experience an oscillationwhich
should be taken into account if we are dealing with issues as the stability of an operational
orbit. This happens, for example, in the considered case of initial a = 7978 km and e = 0.001
and assuming a 5×5 geopotential as inmodel II-(i): the perigee undergoes a 76 years periodic
evolution with a maximum oscillation of 130 km; after 10 years it experiences a variation of
55 km, while as much as 115 km after 25 years.

4 Conclusions

In this paper we studied the evolution of the eccentricity of a large set of orbits both in the
time and frequency domains, deepening the work already presented by the authors in Alessi
et al. (2018a), Alessi et al. (2018b).

First, we considered the role of SRP in driving the dynamics for an object equipped with
an area augmentation device. We found that, for quasi-circular orbits, SRP can be exploited,
possibly in concurrence with the atmospheric drag, to lead the disposal within 25 years, but
only if the initial orbital inclination is close enough to the resonant inclinations associated
with the condition ψ̇ = Ω̇ ± ω̇ − λ̇S � 0 (resonances 1 and 2). In the vicinity of the other
zero-order resonances (indexed from 3 to 6), but also in correspondence of the first-order
SRP resonances (indexed from 12 to 17), a growth of eccentricity due to SRP takes place in
any case but over longer time scales, of the order of tens to hundreds of years. Although this
variation of eccentricity cannot be exploited for disposal, it needs to be taken into account for
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operational purposes in the perspective of identifying long-term stable orbits within LEO.
We also point out that, although we adopted a singly averaged dynamics for our analysis,
it has been demonstrated that the same results hold in the case of non-averaged dynamics
(Schaus et al. 2019).

Moreover, inAlessi et al. (2018b), we presented a simplified theory to analytically evaluate
the growth of eccentricity induced by the six main SRP resonances. Here, we showed that the
assumption to consider the variation of eccentricity only as a function of the initial (e, i) state
could be coarse and that, for given initial orbits, also the role of the variation of inclination
over time should be considered, to give a coherent picture of the dynamics.

Then, we focused on the role of lunisolar perturbations and high-degree zonal harmonics.
In this case, the growth of eccentricity induced by the perturbations does not cause a low-
ering of the perigee leading to a re-entry, in the case of quasi-circular orbits. In particular,
we analysed the case of the well-known critical inclination, corresponding to the resonant
condition ω̇ � 0, for an initial quasi-circular orbit at a = 7978 km. We verified that the
computed growth of eccentricity of about two orders of magnitude after 40 years is mainly
due to the J5 perturbation, confirming the results found in Alessi et al. (2018a).

Lastly, we point out that a detailed analysis of the libration regions is beyond the scope of
this paper. Rather, the analysis performed here is the basis to develop the analytical model
on equilibrium points and corresponding stability, associated with the detected frequencies
(see, e.g. Alessi et al. 2019).
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