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Abstract
We classify the full set of convex central configurations in the Newtonian planar four-body
problem. Particular attention is given to configurations possessing some type of symmetry or
defining geometric property. Special cases considered include kite, trapezoidal, co-circular,
equidiagonal, orthodiagonal, and bisecting-diagonal configurations. Good coordinates for
describing the set are established. We use them to prove that the set of four-body convex
central configurations with positive masses is three-dimensional, a graph over a domain D
that is the union of elementary regions in R+3

.

Keywords Central configuration · n-Body problem · Convex central configurations

1 Introduction

The study of central configurations in the Newtonian n-body problem is an active subfield of
Celestial Mechanics. A configuration is central if the gravitational force on each body is a
common scalar multiple of its position vector with respect to the center of mass. Perhaps the
mostwell-known example is the equilateral triangle solution of Lagrange, discovered in 1772,
consisting of three bodies of arbitrary mass located at the vertices of an equilateral triangle
(Lagrange 1772). Released from rest, any central configuration will collapse homothetically
toward its center of mass, ending in total collision. In fact, any solution of the n-body problem
containing a collision must have its colliding bodies asymptotically approaching a central
configuration (Saari 2005). On the other hand, given the appropriate initial velocities, a planar
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central configuration can rotate rigidly about its center of mass, generating a periodic solution
known as a relative equilibrium. These are some of the only explicitly known solutions in the
n-body problem. For more background on central configurations and their special properties,
see Albouy and Chenciner (1998), Meyer and Offin (2017), Moeckel (1990; 2015), Saari
(2005), Schmidt (2002), Wintner (1941) and the references therein.

In this paper, we focus on four-body planar central configurations that are convex. A
configuration is convex if no body lies inside or on the convex hull of the other three bodies
(e.g., a rhombus or a trapezoid); otherwise, it is called concave. Most of the results on four-
body central configurations are either for a specific choice of masses or for a particular
geometric type of configuration. For instance, Albouy proved that all of the four-body equal
mass central configurations possess a line of symmetry. This in turn allows for a complete
solution to the equal mass case (Albouy 1995, 1996). Albouy, Fu, and Sun showed that a
convex central configurationwith two equalmasses opposite each other is symmetric,with the
equalmasses equidistant from the line of symmetry (Albouy et al. 2008).Recently, Fernandes,
Llibre, and Mello proved that a convex central configuration with two pairs of adjacent equal
masses must be an isosceles trapezoid (Fernandes et al. 2017). A numerical study for the
number of central configurations in the four-body problemwith arbitrary masses was done by
Simó in Simó (1978). Other studies have focused on examples with one infinitesimal mass,
solutions of the planar restricted four-body problem (Barros and Leandro 2011, 2014).

In terms of restricting the problem to a particular shape, Cors and Roberts classified the
four-body co-circular central configurations in Cors and Roberts (2012), while Corbera et al.
recently studied the trapezoidal solutions (Corbera et al. 2019) (see also Santoprete 2018).
Symmetric central configurations are often the easiest to analyze. The regular n-gon (n ≥ 4)
is a central configuration as long as themasses are all equal. A kite is a symmetric quadrilateral
with two bodies lying on the axis of symmetry, and the other two bodies positioned equidistant
from it. A kite may either be convex or concave. Leandro showed that the number of kite
central configurations (equivalence classes) ranges between one and five (Leandro 2003).
A more recent investigation of the kite central configurations was carried out in Érdi and
Czirják (2016).

One of the major results in the study of convex central configurations is that they exist.
MacMillan and Bartky showed that for any four masses and any ordering of the bodies, there
exists a convex central configuration (MacMillan and Bartky 1932). This was proven again
later in a simpler way by Xia (2004). It is an open question as to whether this solution must
be unique. This is problem 10 on a published list of open questions in Celestial Mechanics
(Albouy et al. 2012). Uniqueness has been verified when restricting to the case of convex
kite configurations (Leandro 2003). Hampton showed that for any four positive masses,
there exists a concave central configuration (Hampton 2002). Uniqueness does not hold in
the concave setting as the example of an equilateral triangle with an arbitrary mass at the
center illustrates. Long studied the possible shapes of convex and concave four-body central
configurations, obtaining bounds on the interior angles (Long 2003). Finally, Hampton and
Moeckel showed that given four positivemasses, the number of equivalence classes of central
configurations under rotations, translations, and dilations is finite (Hampton and Moeckel
2006).

Here we study the full space of four-body convex central configurations, focusing on
how various geometrically defined classes fit within the larger set. We introduce simple
yet effective coordinates to describe the space up to an isometry, rescaling, or relabeling
of the bodies. Three radial coordinates a, b, and c represent the distance from three of the
bodies, respectively, to the intersection of the diagonals. The remaining coordinate θ is the
angle between the two diagonals. Positivity of the masses imposes various constraints on the
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coordinates. We find a simply connected domain D ⊂ R
+3
, the union of four elementary

regions, such that for any (a, b, c) ∈ D, there exists a unique angle θ which makes the
configuration central with positive masses. The angle θ = f (a, b, c) is a differentiable
function on the interior of D. Thus, the set of convex central configurations with positive
masses is the graph of a function of three variables. We also prove that π/3 < θ ≤ π/2, with
θ = π/2 if and only if the configuration is a kite.

One of the surprising features of our coordinate system is the simple linear and quadratic
equations that define various classes of quadrilaterals. The kite configurations lie on two
orthogonal planes that intersect in the family of rhombi solutions. These planes form a
portion of the boundary of D. The co-circular and trapezoidal configurations each lie on
saddles in D, while the equidiagonal solutions are located on a plane. These three types of
configurations intersect in a line corresponding to the isosceles trapezoid family. Our work
provides a unifying structure for the set of convex central configurations and a clear picture
of how the special subcases are situated within the broader set.

The paper is organized as follows. In the next section, we develop the equations for a four-
body central configuration using mutual distance coordinates. In Sect. 3 we introduce our
coordinate system and study the important domain D, proving that θ is a differentiable func-
tion on D. We also verify the bounds on θ and show that it increases with c. Section 4 focuses
on four special cases—kite, trapezoidal, co-circular, and equidiagonal configurations—and
how they fit together within D.

Figure 3 and all of the three-dimensional plots in this paper were created using MATLAB
(2016). All other figures were made using the open-source software SageMath (2016).

2 Four-body planar central configurations

Let qi ∈ R
2 and mi denote the position and mass, respectively, of the i th body. We will

assume that mi > 0 ∀i , while recognizing that the zero-mass case is important for defining
certain boundaries of our space. Let ri j = ||qi − q j || represent the distance between the i th
and j th bodies. If M = ∑n

i=1 mi is the sum of the masses, then the center of mass is given
by c = 1

M

∑n
i=1 miqi . The motion of the bodies is governed by the Newtonian potential

function

U (q) =
n∑

i< j

mim j

ri j
.

The moment of inertia with respect to the center of mass is given by

I (q) =
n∑

i=1

mi‖qi − c‖2 = 1

M

∑

i< j

mim jr
2
i j .

This can be interpreted as a measure of the relative size of the configuration.
There are several ways to describe a central configuration. We follow the topological

approach.

Definition 2.1 A planar central configuration (q1, . . . , qn) ∈ R
2n is a critical point of U

subject to the constraint I = I0, where I0 > 0 is a constant.

It is important to note that, due to the invariance ofU and I under isometries, any rotation,
translation, or scaling of a central configuration still results in a central configuration.
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2.1 Mutual distance coordinates

Our derivation of the equations for a four-body central configuration follows the nice
exposition of Schmidt (2002). In the case of four bodies, the six mutual distances
r12, r13, r14, r23, r24, r34 turn out to be excellent coordinates. They describe a configuration
in the plane as long as the Cayley–Menger determinant

V =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1

1 0 r212 r213 r214
1 r212 0 r223 r224
1 r213 r223 0 r234
1 r214 r224 r234 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

vanishes and the triangle inequality ri j + r jk > rik holds for any choice of indices with
i �= j �= k. The constraint V = 0 is necessary for locating planar central configurations;
without it, the only critical points of U restricted to I = I0 are regular tetrahedra (a spatial
central configuration for any choice of masses). Therefore, we search for critical points of
the function

U + λ(I − I0) + μV (1)

satisfying I = I0 and V = 0, where λ and μ are Lagrange multipliers.
A useful formula involving the Cayley–Menger determinant is

∂V

∂r2i j
= −32 Ai A j , (2)

where Ai is the signed area of the triangle whose vertices contain all bodies except for the
i th body. Formula (2) holds only when restricting to planar configurations.

Differentiating (1) with respect to ri j and applying formula (2) yield

mim j (si j − λ
′
) = σ Ai A j , (3)

where si j = r−3
i j , λ

′ = 2λ/M, and σ = −64μ. Arranging the six equations of (3) as

m1m2(s12 − λ′) = σ A1A2, m3m4(s34 − λ′) = σ A3A4,

m1m3(s13 − λ′) = σ A1A3, m2m4(s24 − λ′) = σ A2A4,

m1m4(s14 − λ′) = σ A1A4, m2m3(s23 − λ′) = σ A2A3,

(4)

and multiplying together pairwise yield the well-known Dziobek relation (Dziobek 1900)

(s12 − λ
′
)(s34 − λ

′
) = (s13 − λ

′
)(s24 − λ

′
) = (s14 − λ

′
)(s23 − λ

′
). (5)

This assumes that the masses and areas are all nonzero. Eliminating λ
′
from (5) produces the

important equation
(
r324 − r314

) (
r313 − r312

) (
r323 − r334

) = (
r312 − r314

) (
r324 − r334

) (
r313 − r323

)
. (6)

In some sense, Eq. (6) is the defining equation for a four-body central configuration. It or
some equivalent variation can be found in many papers and texts (e.g., see p. 278 of Wintner
(1941).) Equation (6) is clearly necessary given the above derivation. However, it is also
sufficient assuming the six mutual distances describe an actual configuration in the plane.
The only other restrictions required on the ri j are those that insure solutions to system (4)
yield positive masses, as explained in the next section.
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2.2 Restrictions on themutual distances

For the remainder of the paper, we will restrict our attention to four-body convex central
configurations. We will assume the bodies are ordered consecutively in the counterclockwise
direction. This implies that the lengths of the diagonals are r13 and r24, while the four exterior
side lengths are r12, r23, r14, and r34.With this choice of labeling, we always have A1, A3 > 0
and A2, A4 < 0. We will also assume, without loss of generality, that the largest exterior side
length is r12.

First, note that σ �= 0. If this was not the case, then Eq. (3) and nonzero masses would
imply that all ri j are equal, which is the regular tetrahedron solution. If σ < 0, then system
(4) and positive masses imply

r12, r14, r23, r34 <
1

3
√

λ′ < r13, r24 . (7)

This means the two diagonals are strictly longer than any of the exterior sides. On the other
hand, if we assume that σ > 0, then the inequalities in (7) would be reversed. But such a
configuration is impossible since it violates geometric properties of convex quadrilaterals
such as r13 + r24 > r12 + r34 (see Lemma 2.3 in Hampton et al. 2014). The fact that σ < 0 is
also proven in Albouy (2003) (see Proposition 9) where Dziobek configurations of arbitrary
dimension are studied.

In addition to (7), further restrictions on the exterior side lengths follow from the Dziobek
equation

(s12 − λ
′
)(s34 − λ

′
) = (s14 − λ

′
)(s23 − λ

′
). (8)

Since r12 is the largest exterior side length, we have r12 ≥ r14 and s14 −λ′ ≥ s12 −λ′ > 0. It
follows that s34 − λ′ ≥ s23 − λ′; otherwise, Eq. (8) is violated. We conclude that r23 ≥ r34.
A similar argument shows that r12 ≥ r23 implies that r14 ≥ r34. Hence, the shortest exterior
side is always opposite the longest one, with equality only in the case of a square. In sum, for
our particular arrangement of the four bodies, any convex central configuration with positive
masses must satisfy

r13, r24 > r12 ≥ r14, r23 ≥ r34. (9)

According to the Dziobek Eq. (5),

λ′ = s12s34 − s13s24
s12 + s34 − s13 − s24

= s12s34 − s14s23
s12 + s34 − s14 − s23

= s13s24 − s14s23
s13 + s24 − s14 − s23

.

These expressions generate nice formulas for the ratios between the masses. From system
(4), a short calculation gives

m2

m1
= − A2(s14 − s13)

A1(s23 − s24)
,

m3

m1
= A3(s14 − s12)

A1(s34 − s23)
,

m4

m1
= − A4(s12 − s13)

A1(s34 − s24)
(10)

and

m3

m2
= − A3(s12 − s24)

A2(s34 − s13)
,

m4

m2
= A4(s23 − s12)

A2(s34 − s14)
,

m4

m3
= − A4(s23 − s13)

A3(s14 − s24)
. (11)

Due to Eq. (6), these formulas are consistent with each other. They are all well defined for
configurations satisfying the inequalities in (9) unless s34 = s23 (and thus s12 = s14), or
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s34 = s14 (and thus s12 = s23). For these special cases, which correspond to symmetric kite
configurations, we use the alternative formulas

m3

m1
= A3(s12 − s13)(s14 − s24)

A1(s23 − s13)(s34 − s24)
and

m4

m2
= A4(s23 − s13)(s12 − s24)

A2(s34 − s13)(s14 − s24)
. (12)

The formulas obtained for the mass ratios explain why Eq. (6) is also sufficient for obtain-
ing a central configuration. If the mutual distances ri j satisfy both (9) and (6), then the
mass ratios (which are positive) are given uniquely by (10), (11), or (12). We can then work
backward and check that system (4) is satisfied so that the configuration is indeed central.

3 The set of convex central configurations

We now describe the full set of convex central configurations with positive masses, showing
it is three-dimensional, the graph of a differentiable function of three variables.

3.1 Good coordinates

We begin by defining simple, but extremely useful coordinates. Since the space of central
configurations is invariant under isometries, we may apply a rotation and translation to place
bodies 1 and 3 on the horizontal axis, with the origin located at the intersection of the two
diagonals. It is also permissible to rescale the configuration so that q1 = (1, 0). This alters
the value of the Lagrange multipliers, but preserves the special trait of being central.

Define the remaining three bodies to have positions q2 = (a cos θ, a sin θ), q3 = (−b, 0),
and q4 = (−c cos θ,−c sin θ), where a, b, c are radial variables and θ ∈ (0, π) is an angular
variable (see Fig. 1). If one or more of the three radial variables are negative, then the
configuration becomes concave or the ordering of the bodies changes. If one or more of
the radial variables vanish, then the configuration contains a subset that is collinear or some
bodies coalesce (e.g., b = c = 0 implies r34 = 0). Thus, wewill assume throughout the paper
that a > 0, b > 0, and c > 0. The coordinates (a, b, c, θ) turn out to be remarkably well
suited for describing different classes of quadrilaterals that are also central configurations
(see Sect. 4).

In our coordinates, the six mutual distances are given by

r212 = a2 − 2a cos θ + 1, r223 = a2 + 2ab cos θ + b2, r13 = b + 1, (13)

r214 = c2 + 2c cos θ + 1, r234 = b2 − 2bc cos θ + c2, r24 = a + c. (14)

Based on Eq. (6), define F to be the function

F(a, b, c, θ) = (
r324 − r314

) (
r313 − r312

) (
r323 − r334

) − (
r312 − r314

) (
r324 − r334

) (
r313 − r323

)
,

where each mutual distance is treated as a function of the variables a, b, c, and θ .
The previous discussion justifies the following lemma.

Lemma 3.1 Let C and E denote the sets

C = {(a, b, c, θ) ∈ R
+3 × (0, π) : r13, r24 > r12 ≥ r14, r23 ≥ r34},

E = {s = (a, b, c, θ) ∈ R
+3 × (0, π) : s ∈ C and F(s) = 0}.
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Fig. 1 Coordinates for a convex
configuration of four bodies:
three radial variables a, b, c > 0
and an angular variable
θ ∈ (0, π)

Any point in E corresponds to a four-body convex central configuration with positive masses.
Moreover, up to an isometry, rescaling, or relabeling of the bodies, E contains all such
configurations.

3.2 Defining the domain D

We will find a set D ⊂ R
+3

such that for each (a, b, c) ∈ D, there exists a unique angle θ

whichmakes the configuration central. Specifically, we prove that there exists a differentiable
function θ = f (a, b, c)with domain D, whose graph is equivalent to E . In order to define D,
we use the mutual distance inequalities in (9) to eliminate the angular variable θ .

Lemma 3.2 The inequalities in (9) imply the following conditions on the positive variables
a, b, c:

r12 ≥ r14 and r23 ≥ r34 �⇒ a ≥ c, (15)

r12 ≥ r23 and r14 ≥ r34 �⇒ b ≤ 1, (16)

r13 > r12 ≥ r14 �⇒ c <
1

a
(b2 + 2b), (17)

r13 > r12 ≥ r23 and a > 1 �⇒ b >
1

2

(
−1 +

√
4a2 − 3

)
, (18)

r24 > r12 ≥ r14 and 0 < a < 1 �⇒ c >
1

2

(
−a +

√
4 − 3a2

)
, (19)

r24 > r12 ≥ r23 �⇒ c > −a +
√
a2 + b . (20)
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Proof From Eqs. (13) and (14), we compute that

r212 − r214 = (a + c)(a − c − 2 cos θ), (21)

r212 − r223 = (1 + b)(1 − b − 2a cos θ), (22)

r223 − r234 = (a + c)(a − c + 2b cos θ), (23)

r214 − r234 = (1 + b)(1 − b + 2c cos θ). (24)

Since a, b, and c are all positive, r12 ≥ r14 and r23 ≥ r34 together imply that

a − c ≥ max{2 cos θ,−2b cos θ} ≥ 0. (25)

Similarly, r12 ≥ r23 and r14 ≥ r34 imply

1 − b ≥ max{2a cos θ,−2c cos θ} ≥ 0. (26)

This proves implications (15) and (16).
Next, Eqs. (13) and (14) yield

r213 − r212 = b2 + 2b − a2 + 2a cos θ and (27)

r224 − r212 = c2 + 2ac − 1 + 2a cos θ. (28)

Since r12 ≥ r14, Eq. (21) gives a − 2 cos θ ≥ c or a2 − 2a cos θ ≥ ac. Then r13 > r12
implies that

b2 + 2b > a2 − 2a cos θ ≥ ac, (29)

which verifies (17).
Similarly, r12 ≥ r23 and Eq. (22) yield −2a cos θ ≥ b − 1. Then r13 > r12 implies that

b2 + 2b − a2 > −2a cos θ ≥ b − 1, (30)

which yields

b2 + b + 1 − a2 > 0. (31)

Since b and a are both positive, inequality (31) clearly holds if a ≤ 1. However, for any
fixed choice of a > 1, the value of b must be chosen strictly greater than the largest root of
the quadratic Qa(b) = b2 + b + 1 − a2. This root is 1

2 (−1 + √
4a2 − 3), which verifies

implication (18).
Next, r24 > r12 ≥ r14 yields

c2 + 2ac − 1 + a2 > −2a cos θ + a2 ≥ ac, (32)

which in turn gives

c2 + ac + a2 − 1 > 0. (33)

Since a and c are both positive, inequality (33) clearly holds if a ≥ 1. However, for any fixed
choice of a ∈ (0, 1), the value of c must be chosen strictly greater than the largest root of the
quadratic Qa(c) = c2 + ac + a2 − 1. This root is 1

2 (−a + √
4 − 3a2), which proves (19).

Finally, r24 > r12 ≥ r23 implies that

c2 + 2ac − 1 > −2a cos θ ≥ b − 1, (34)

which gives

c2 + 2ac − b > 0. (35)
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Since b > 0, c must be chosen greater than the largest root of the quadratic Qa,b(c) =
c2 + 2ac − b. This root is −a + √

a2 + b, which verifies (20) and completes the proof. �

The combined inequalities between the radial variables a, b, and c given in (15) through
(20), along with a > 0, b > 0, and c > 0, define a bounded set D ⊂ R

+3
. We will show that

this set is the domain of the function θ = f (a, b, c) and the projection of E into abc-space.

Definition 3.3 Let D = D1 ∪ D2 denote the three-dimensional region, where

D1 =
{
(a, b, c) ∈ R

+3 : 0 < c ≤ a, a ≤ 1, 0 < b ≤ 1,

1

2

(
−a +

√
4 − 3a2

)
< c <

1

a
(b2 + 2b), c > −a +

√
a2 + b

}
,

D2 =
{
(a, b, c) ∈ R

+3 : 0 < c ≤ a, a > 1, 0 < b ≤ 1, c <
1

a
(b2 + 2b),

b >
1

2

(
−1 +

√
4a2 − 3

)
, c > −a +

√
a2 + b

}
.

Note that D is simply connected. Using inequalities (31), (33), c ≤ a, and b ≤ 1, it is
straightforward to check that D is contained within the box

1√
3

≤ a ≤ √
3, 0 ≤ b ≤ 1, 0 ≤ c ≤ √

3 .

Let D denote the closure of D. A plot of the boundary of D is shown in Fig. 2. It
contains five vertices, six faces, and nine edges (six curved, three straight), in accordance
with Poincaré’s generalization of Euler’s formula V − E + F = 2. The vertices of D are

P1 = (1, 0, 0), P2 =
(

1√
3
,
2 − √

3√
3

,
1√
3

)

, P3 =
(

1√
3
, 1,

1√
3

)

,

P4 =
(√

3, 1,
√
3
)

, and P5 =
(√

3, 1, 2 − √
3
)

,

each of which corresponds to a symmetric central configurationwith at least two zeromasses.
P3 and P4 are rhombi with one diagonal congruent to the common side length, while P2
and P5 are kites with horizontal and vertical axes of symmetry, respectively. The point P1
corresponds to an equilateral triangle with bodies 3 and 4 sharing a common vertex.

3.3 Configurations on the boundary of D

We now focus on points lying on the boundary of D. The next lemma shows that these points
correspond to configurations where two or more of the mutual distance inequalities in (9)
become equalities. Moreover, the only points for which this is true lie on the boundary of D.
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34 Page 10 of 27 M. Corbera et al.

Fig. 2 The faces and vertices of D (face III not shown to improve the perspective). Faces II and V are vertical.
For each point (a, b, c) ∈ D, there exists a unique angle θ that makes the corresponding configuration central

Lemma 3.4 Suppose that (a, b, c, θ) are chosen so that r13, r24 ≥ r12 ≥ r14, r23 ≥ r34 with
a ≥ 1/

√
3, b ≥ 0, and c ≥ 0. Then

r12 = r14 and r23 = r34 if and only if a = c, (36)

r12 = r23 and r14 = r34 if and only if b = 1, (37)

r13 = r12 = r14 if and only if c = 1

a
(b2 + 2b), (38)

r24 = r12 = r14 if and only if c = 1

2

(
−a +

√
4 − 3a2

)
, (39)

r13 = r12 = r23 if and only if b = 1

2

(
−1 +

√
4a2 − 3

)
, (40)

r24 = r12 = r23 if and only if c = −a +
√
a2 + b . (41)

Proof We first note that under the assumptions of the lemma, the inequalities on a, b, and c
from Lemma 3.2 are still valid, except that the inequalities are no longer strict.

If r12 = r14 and r23 = r34, then Eqs. (21) and (23) imply a − c = 2 cos θ and a − c =
−2b cos θ , respectively. This yields (1 + b) cos θ = 0 from which it follows that cos θ = 0
and a = c. Conversely, if a = c, (25) implies that either cos θ = 0 or b = 0. In the former
case, θ = π/2 and then r12 = r14 and r23 = r34 follows quickly. In the latter case, inequality
(17) and a = c implies that a = c = 0, which contradicts a ≥ 1/

√
3. Thus, b > 0 and

r12 = r14 and r23 = r34, proving (36).
If r12 = r23 and r14 = r34, then Eqs. (22) and (24) imply 1 − b = 2a cos θ and 1 − b =

−2c cos θ , respectively. Thus, (a + c) cos θ = 0. Since a ≥ 1/
√
3 and c ≥ 0, we must have

cos θ = 0 and hence b = 1. Conversely, if b = 1, (26) implies that either cos θ = 0, or
cos θ < 0 and c = 0. In the former case, θ = π/2 and then r12 = r23 and r14 = r34 follows
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Table 1 The six faces on the boundary of D along with their key attributes

Face Equation Mutual distances Masses Vertices

I c = a r12 = r14 and r23 = r34 m2 = m4 P2, P3, P4
II b = 1 r12 = r23 and r14 = r34 m1 = m3 P3, P4, P5

III c = 1
a (b2 + 2b) r13 = r12 = r14 m2 = m3 = m4 = 0 P1, P2, P4

IV c = 1
2 (−a +

√
4 − 3a2 ) r24 = r12 = r14 m3 = 0 P1, P2, P3

V b = 1
2 (−1 +

√
4a2 − 3 ) r13 = r12 = r23 m4 = 0 P1, P4, P5

VI c = −a +
√
a2 + b r24 = r12 = r23 m1 = m3 = m4 = 0 P1, P3, P5

Each point on the boundary has a unique angle θ that makes the configuration central. On faces I and II,
θ = π/2 (kites). On faces III and IV, θ = cos−1( a−c

2 ), while on faces V and VI, θ = cos−1( 1−b
2a )

quickly. The latter case is impossible, since c = 0 and b = 1 contradict inequality (20). This
proves (37).

If r13 = r12, then Eq. (30) gives a − 2 cos θ = 1
a (b2 + 2b). Likewise, if r12 = r14, then

a−2 cos θ = c. Thus, r13 = r12 = r14 implies c = 1
a (b2+2b). Conversely, if ac = b2+2b,

then both inequalities in (29) become equalities. From this, we deduce that r13 = r12 = r14,
which verifies (38).

If r24 = r12, then Eq. (31) gives a(c + 2 cos θ) = 1 − c2 − ac. Likewise, if r12 = r14,
then c + 2 cos θ = a. Thus, r24 = r12 = r14 implies c2 + ac + a2 − 1 = 0. The quadratic
Qa(c) = c2+ac+a2−1 has real roots for 1/

√
3 ≤ a ≤ 2/

√
3, but the smaller root is always

negative for these a-values. Thus, cmust be taken to be the larger root of Qa(c). Conversely,
if c = 1

2 (−a + √
4 − 3a2 ), then c2 + ac+ a2 − 1 = 0 and both inequalities in (32) become

equalities. From this, we deduce that r24 = r12 = r14, which verifies (39). The proof of (40)
and (41) follows in a similar fashion, using inequalities (30) and (34), respectively. �

Lemma 3.4 shows that the six faces on the boundary of D, labeled I through VI, are given
by the six equations (36) through (41), respectively. The first two faces are the only ones
belonging to D (positive masses) and contain all of the kite configurations, where θ = π/2.
The remaining four faces on the boundary of D correspond to cases with one or three zero
masses (see Table 1). Points on these faces are interpreted as limiting solutions of a sequence
of central configurations with positive masses. Themass values shown in Table 1 follow from
formulas (10), (11), and (12). Here we assume that the limiting solution lies in the interior
of the given face.

For example, suppose there is a sequence of points xε = (aε, bε, cε) in the interior of D
converging to a point x = (a, b, c) located on the interior of face V. This corresponds to a
sequence of central configurations, each with positive masses, that limits on a configuration
with r13 = r12 = r23. Since x does not lie on any of the other faces on the boundary of D,
the other three limiting mutual distances, r24, r14, and r34, must be distinct from r13 and each
other. Moreover, the limiting values of the areas Ai do not vanish because a, b, and c are all
strictly positive. Using either (10) or (11), it follows that the limiting mass value form4 must
vanish, while the other limiting mass values are strictly positive. A similar argument applied
to the other faces determines which masses must vanish in the limit.

Configurations on face IVorV, respectively, correspond to equilibria of the planar, circular,
restricted four-body problem with infinitesimal mass m3 or m4, respectively (Barros and
Leandro 2014, 2011; Kulevich et al. 2009). Configurations on face III or VI, respectively,
correspond to relative equilibria of the (1 + 3)-body problem, where a central mass (body 1
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or 2, respectively) is equidistant from three infinitesimal masses (Corbera et al. 2015; Hall
1988; Moeckel 1994). Note that we have not made any assumptions on the relative size of
the masses. Each of the six faces satisfies either r12 = r14 or r12 = r23. Using Eqs. (21)
and (22), it follows that there is a unique value of θ for each point on the boundary of D,
θ = cos−1( a−c

2 ) if r12 = r14 or θ = cos−1( 1−b
2a ) if r12 = r23.

The masses at the vertices of D are not well defined because there are more options for
the path of a limiting sequence. For example, the point P4 represents a rhombus with one
diagonal (r13) congruent to all of the exterior sides. Approaching P4 along the line (a, 1, a)

as a → √
3 (a sequence of rhombi central configurations) yields the limiting mass values

m2 = m4 = 0 andm1 = m3 �= 0. On the other hand, it is possible to construct a sequence of
kite central configurations on face I with masses m1 = 1,m2 = m4 = ε2, and m3 = ε that
limits on P4 as ε → 0. The first sequence has two limiting mass values that vanish, while
the second sequence has three. The difference occurs because the mass ratio m3/m1 at P4 is
undefined in either formula (10) or (12).

Regardless of the particular limiting sequence, all five vertices of D will have at least
two mass values that vanish in the limit. For P1, this follows from Proposition 2 in Moeckel
(1997). For the other four vertices, this fact is a consequence of formulas (10) and (11).
In general, note that a limiting sequence with precisely two zero masses can only occur at
vertices P1, P3, or P4. This somewhat surprising restriction is a consequence of Propositions
3 and 4 in Moeckel (1997) and the fact that the non-collinear critical points of the restricted
three-body problem must form an equilateral triangle with the non-trivial masses.

3.4 The projection of D onto the ab-plane

The set D can be written as the union of four elementary regions in abc-space, where c is
bounded by functions of a and b. The projection of D onto the ab-plane is shown in Fig. 3.
It is determined by 1√

3
≤ a ≤ √

3 and l(a) ≤ b ≤ 1, where l(a) is the piecewise function

l(a) =
{
l1(a) if 1√

3
≤ a ≤ 1

l2(a) if 1 ≤ a ≤ √
3 .

Here, l1(a) = −1+ 1
2 (a + √

4 − 3a2 ) is the projection of the intersection between faces III

and IV, and l2(a) = 1
2 (−1 + √

4a2 − 3 ) is the projection of the vertical face V. The edge
a = 1√

3
is the projection of the intersection between faces I and IV, while the edge b = 1 is

the projection of the vertical face II.
The decreasing dashed curve in Fig. 3 is the projection of the intersection of faces I and III,

given by b = −1+ √
1 + a2 , 1√

3
≤ a ≤ √

3. The increasing dashed curve is the projection

of the intersection of faces IV and VI, given by b = 1 − 3
2a

2 + a
2

√
4 − 3a2 , 1√

3
≤ a ≤ 1.

These curves divide the projection into four subregions over which c is bounded by different
functions of a and b, as indicated below:

(i) −a + √
a2 + b ≤ c ≤ a

(ii) 1
2

(
−a + √

4 − 3a2
)

≤ c ≤ a

(iii) 1
2

(
−a + √

4 − 3a2
)

≤ c ≤ 1
a (b2 + 2b)

(iv) −a + √
a2 + b ≤ c ≤ 1

a (b2 + 2b) .
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Fig. 3 The projection of D into the ab-plane. The dashed red curves divide the region into four subregions
over which c is bounded by functions of a and b. The orientation of the a-axis has been reversed to match
Fig. 2

3.5 E is a graph� = f(a, b, c) over D

We now prove our main result, showing that for each (a, b, c) ∈ D, there exists a unique
angle θ that makes the configuration central. In general, for any point (a, b, c) in the interior
of D, there is an interval of possible angles θ for which the mutual distance inequalities (9)
hold. According to the identities given in Eqs. (21)–(24) and (27), (28), θ must be chosen to
satisfy

max
{c − a

2b
,
b − 1

2c
,
a2 − b2 − 2b

2a
,
1 − c2 − 2ac

2a

}

≤ cos θ ≤ min
{a − c

2
,
1 − b

2a

}
(42)

in order for (9) to be true. The following lemma shows that condition (42) is not vacuous on
the interior of D.

Lemma 3.5 For any point (a, b, c) in the interior of D, define the constants k1 and k2 by

k1 = max
{c − a

2b
,
b − 1

2c
,
a2 − b2 − 2b

2a
,
1 − c2 − 2ac

2a

}
,

k2 = min
{a − c

2
,
1 − b

2a

}
.

Then −1 < k1 < k2 < 1.
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Proof On the interior of D, the first two quantities in the definition of k1 are strictly negative,
while the two quantities defining k2 are strictly positive. The inequality (a2−b2−2b)/(2a) <

(a−c)/2 follows from c < (b2+2b)/a. The inequality (a2−b2−2b)/(2a) < (1−b)/(2a)

is equivalent to b2 + b+ 1− a2 > 0, which is clearly valid for a ≤ 1. It also holds for a > 1
because b > 1

2 (−1+ √
4a2 − 3 ). Likewise, (1− c2 − 2ac)/(2a) < (a − c)/2 is equivalent

to c2 + ac + a2 − 1 > 0, which is clearly satisfied for a ≥ 1. It also holds for 0 < a < 1
since c > 1

2 (−a + √
4 − 3a2 ). Finally, (1 − c2 − 2ac)/(2a) < (1 − b)/(2a) is satisfied

because c > −a + √
a2 + b. This verifies that k1 < k2.

Since a <
√
3 < 2 + c and 1 < 2√

3
< 2a + b on the interior of D, we see that k2 < 1.

Finally, (1− c2 −2ac)/(2a) > −1 holds if c < 1. But if c ≥ 1, then b > 0 > 1−2c implies
that (b − 1)/(2c) > −1. Thus, at least one of the quantities in the definition for k1 is larger
than −1. This shows that k1 > −1. �

Lemma 3.5 shows that for any point (a, b, c) in the interior of D, there is an interval of
θ -values for which (9) holds. More specifically, if we let θl = cos−1(k2) and θu = cos−1(k1),
with k1, k2 defined as in Lemma 3.5, then for any θ ∈ (θl , θu), we have (a, b, c, θ) ∈ C.

Recall that

F(a, b, c, θ) = (
r324 − r314

) (
r313 − r312

) (
r323 − r334

) − (
r312 − r314

) (
r324 − r334

) (
r313 − r323

)
,

and that E = {s = (a, b, c, θ) ∈ R
+3 × (0, π) : s ∈ C and F(s) = 0} represents the set of

convex central configurations with positive masses.

Theorem 3.6 Suppose that (a, b, c) ∈ D. Then there exists a unique angle θ such that
(a, b, c, θ) determines a central configuration. More precisely, the set of four-body convex
central configurations with positive masses is the graph of a differentiable function θ =
f (a, b, c). The domain of this function is D, which is the projection of E onto abc-space.

Proof Fix a point (a, b, c) in the interior of D and treat F = F(θ) as a one-variable function.
We will show that F has a unique root θ satisfying the inequalities in (42).

(i) Existence: Suppose that θ is taken to be θl = cos−1(k2). This is the smallest possible
value for θ . If cos θ = (a − c)/2, then Eq. (21) gives r12 = r14 and thus

F = (
r324 − r314

) (
r313 − r312

) (
r323 − r334

)
> 0,

since (a, b, c) is in the interior of D. (If any of the differences above also vanished, then
(a, b, c)would be on the boundary of D due toLemma3.4.) Similarly, if cos θ = (1−b)/(2a),
then Eq. (22) gives r12 = r23 and we compute that

F = (
r313 − r312

) [(
r324 − r314

) (
r312 − r334

) − (
r312 − r314

) (
r324 − r334

)]

= (
r313 − r312

) [−r324r
3
34 − r314r

3
12 + r312r

3
34 + r314r

3
24

]

= (
r313 − r312

) (
r324 − r312

) (
r314 − r334

)
> 0,

since (a, b, c) is in the interior of D. In either case, we see that F(a, b, c, θ = θl) > 0.
Next, suppose that θ is chosen to be θu = cos−1(k1). This is the largest possible value

for θ . If cos θ = (c − a)/(2b), then Eq. (23) gives r23 = r34 and thus

F = − (
r312 − r314

) (
r324 − r334

) (
r313 − r323

)
< 0.
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If cos θ = (b − 1)/(2c), then Eq. (24) gives r14 = r34 and we find that

F = (
r324 − r314

) [(
r313 − r312

) (
r323 − r314

) − (
r312 − r314

) (
r313 − r323

)]

= (
r324 − r314

) [
r313r

3
23 + r312r

3
14 − r312r

3
13 − r314r

3
23

]

= (
r324 − r314

) (
r313 − r314

) (
r323 − r312

)
< 0,

where the strict inequality follows once again from Lemma 3.4. If cos θ = (a2 − b2 −
2b)/(2a), then Eq. (27) gives r13 = r12 and thus

F = − (
r312 − r314

) (
r324 − r334

) (
r313 − r323

)
< 0.

Finally, if cos θ = (1 − c2 − 2ac)/(2a), then Eq. (28) gives r24 = r12 and we find that

F = (
r312 − r314

) [(
r313 − r312

) (
r323 − r334

) − (
r312 − r334

) (
r313 − r323

)]

= (
r312 − r314

) [
r313r

3
23 + r312r

3
34 − r312r

3
13 − r334r

3
23

]

= (
r312 − r314

) (
r313 − r334

) (
r323 − r312

)
< 0.

In all four cases, we find that F(a, b, c, θ = θu) < 0. Since F is a continuous function with
opposite signs at θ = θl and θ = θu , the intermediate value theorem implies that there exists
an angle θ ∈ (θl , θu) such that F(a, b, c, θ) = 0.
(ii) Uniqueness: To see that this solution is unique, we show that ∂F

∂θ
< 0 for any (a, b, c)

in the interior of D and any θ ∈ (θl , θu). From Eqs. (13) and (14), we have

∂r12
∂θ

= a sin θ

r12
,

∂r23
∂θ

= −ab sin θ

r23
,

∂r14
∂θ

= −c sin θ

r14
,

∂r34
∂θ

= bc sin θ

r34
, and

∂r13
∂θ

= ∂r24
∂θ

= 0.

Then we compute

∂F

∂θ
= −3 sin θ (ar12 α1 + abr23 α2 + cr14 α3 + bcr34 α4) ,

where

α1 = (
r324 − r314

) (
r323 − r334

) + (
r324 − r334

) (
r313 − r323

)
,

α2 = (
r324 − r314

) (
r313 − r312

) + (
r324 − r334

) (
r312 − r314

)
,

α3 = (
r324 − r334

) (
r313 − r323

) − (
r313 − r312

) (
r323 − r334

)
,

α4 = (
r324 − r314

) (
r313 − r312

) − (
r312 − r314

) (
r313 − r323

)
. (43)

By (9) and Lemma 3.4, both α1 and α2 are strictly positive. After adding and subtracting r623
to α3, we can rewrite that expression as

α3 = (
r324 − r323

) (
r313 − r323

) + (
r312 − r323

) (
r323 − r334

)
, (44)

which is also strictly positive on the interior of D. Finally, we find that

α1 + α4 = (
r324 − r314

) (
r313 − r312 + r323 − r334

) + (
r313 − r323

) (
r324 − r312 + r314 − r334

)
,

which is strictly positive by (9). The conditions a > c, 1 > b, and r12 > r34, which are valid
on the interior of D, combine to yield ar12 > bcr34. Then we have
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ar12 α1 + bcr34 α4 > bcr34 α1 + bcr34 α4 = bcr34(α1 + α4) > 0.

This shows that ∂F
∂θ

< 0, which proves uniqueness.
By the implicit function theorem, there exists a differentiable function θ = f (a, b, c) on

the interior of D such that F(a, b, c, f (a, b, c)) = 0. The point (a, b, c, θ = f (a, b, c))
describes a convex central configuration with positive masses. Since k2 −k1 approaches zero
as (a, b, c) approaches the boundary of D, we may extend the function f continuously to
the boundary of D, where it is defined as θ = θl = θu .

Finally, if (a, b, c) /∈ D, thenLemma3.2 shows that one of themutual distance inequalities
in (9) will be violated. For example, if c > a, then either r12 < r14 or r23 < r34. Likewise,
if c ≥ 1

a (b2 + 2b), then either r12 < r14 or r13 ≤ r12. In any case, such a configuration,
assuming it is central, will contain a negative or zero mass. It follows that D is precisely
the domain of the implicitly defined function f and that the projection of E into abc-space
equals D. �

3.6 Properties of the angle between the diagonals

Next we focus on the possible values of the angle θ between the two diagonals, showing that
it is always between 60◦ and 90◦. Moreover, the value of θ increases as the radial variable c
increases.

Lemma 3.7 Suppose that (a, b, c) ∈ D and θ = π/2. Then r312 + r334 ≥ r314 + r323.

Proof When θ = π/2, the formulas in (13) and (14) reduce to r212 = a2 + 1, r214 = c2 +
1, r223 = a2 + b2, and r234 = b2 + c2. Define the function G(a, b, c) = r312 + r334 − r314 − r323.
Note thatG(a, b, c = a) = 0 since r12 = r14 and r23 = r34 when c = a (a kite configuration).
We compute that

∂G

∂c
= 3r234

∂r34
∂c

− 3r214
∂r14
∂c

= 3c(r34 − r14) ≤ 0,

because b ≤ 1 on D. Since G(a, b, c = a) = 0, it follows that G(a, b, c < a) ≥ 0, as
desired. �
Theorem 3.8 For a convex central configuration with positive masses, the angle θ between
the two diagonals satisfies π/3 < θ ≤ π/2. If θ = π/2, the configuration must be a kite.

Proof We first show that θ ≤ π/2. For any point (a, b, c) ∈ D, we have r34 ≤ r14 and
r23 ≤ r12. If θ = π/2, we also have r323 − r334 ≤ r312 − r314 by Lemma 3.7. Thus, when
θ = π/2, we have

(
r324 − r314

) (
r313 − r312

) (
r323 − r334

) ≤ (
r324 − r334

) (
r313 − r323

) (
r312 − r314

)
, (45)

since all factors in (45) are nonnegative and each factor on the left-hand side of the inequality
is less than or equal to the corresponding factor on the right. This shows that F(a, b, c, θ =
π/2) ≤ 0. From the proof of Theorem 3.6, ∂F/∂θ < 0 on the interior of D × [θl , θu]. Thus,
for a fixed point (a, b, c) in the interior of D, the unique solution to F(a, b, c, θ) = 0 must
satisfy θ ≤ π/2.

Next, from (42), we have that 2 cos θ ≤ a − c and 2a cos θ ≤ 1− b. We have just shown
that cos θ ≥ 0, and since b > 0 and c > 0 on the interior of D, we conclude that
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2 cos θ < 2 cos θ + c ≤ a ≤ 1 − b

2 cos θ
<

1

2 cos θ
. (46)

It follows that cos2 θ < 1/4, which means θ > π/3.
Finally, inequality (45) is strict unless r14 = r34 and r12 = r23, or a factor on each

side of the inequality vanishes. By Lemma 3.4, this can only occur if (a, b, c) lies on the
boundary of D. Thus, F(a, b, c, θ = π/2) < 0 on the interior of D. Since θ = cos−1( a−c

2 )

or θ = cos−1( 1−b
2a ) on the boundary of D, we see that a central configuration with θ = π/2

must satisfy either a = c or b = 1. By (36) or (37), the configuration must be a kite. �
Remark 3.9 1. The fact that a convex central configuration with perpendicular diagonals

must be a kite was proven earlier by the authors in Corbera et al. (2018).
2. If θ = π/3, then all inequalities in (46) must become equalities. This can only hap-

pen at the point P1 = (1, 0, 0), a vertex of D corresponding to an equilateral triangle
configuration with bodies 3 and 4 coinciding (r34 = 0).

3. A related result proven by Long (2003) is that every interior angle of a convex central
configuration must lie between π/3 and 5π/6.

Next we show that the value of θ increases as we move upward (increasing in c) through
the domain D.Wewill need the following lemma. Recall that E is the set of four-body convex
central configurations with positive masses in our particular coordinate system.

Lemma 3.10 Consider the following three quantities:

β1 = (
r313 − r312

) (
r323 − r334

) − (
r313 − r323

) (
r312 − r314

)
,

β2 = (
r313 − r323

) (
r324 − r334

) − (
r313 − r312

) (
r323 − r334

)
,

β3 = (
r313 − r323

) (
r312 − r314

) − (
r313 − r312

) (
r324 − r314

)
.

Then, β1 ≥ 0, β2 > 0, β3 < 0, and β2 + β3 ≥ 0 for any configuration in E.

Proof Since we are working in E , the equation F = 0 implies

(
r313 − r323

) (
r312 − r314

) =
(
r324 − r314

) (
r313 − r312

) (
r323 − r334

)

r324 − r334
. (47)

Then we have

β1 = (
r313 − r312

) (
r323 − r334

)
(

1 − r324 − r314
r324 − r334

)

=
(
r313 − r312

) (
r323 − r334

) (
r314 − r334

)

r324 − r334
,

which is nonnegative due to the inequalities in (9).
Note that the quantity β2 is identical to α3 used in the proof of Theorem 3.6 (Eq. 43). By

Eq. (44), we see that β2 > 0 on E .
Next, using Eq. (47), we have

β3 = (
r313 − r312

) (
r324 − r314

)
(
r323 − r334
r324 − r334

− 1

)

= −
(
r313 − r312

) (
r324 − r314

) (
r324 − r323

)

r324 − r334
,

which is strictly negative due to the inequalities in (9).
Finally, we compute that

β2 + β3 = (
r313 − r323

) (
r312 + r324 − r314 − r334

) − (
r313 − r312

) (
r323 + r324 − r314 − r334

)

= r313
(
r312 − r323

) − r323
(
r324 − r314 − r334

) + r312
(
r324 − r314 − r334

)

= (
r312 − r323

) (
r313 + r324 − r314 − r334

)
,
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which is nonnegative on E . This completes the proof. �
Theorem 3.11 On the interior of D, the angle θ between the two diagonals increases with c.
In other words, ∂θ

∂c > 0 on the interior of D.

Proof Recall that the angle θ = f (a, b, c) is a differentiable function on the interior of D,
determined by the solution to the equation F(a, b, c, f (a, b, c)) = 0. Using the implicit
function theorem, we have ∂θ

∂c = − ∂F
∂c / ∂F

∂θ
. From the proof of Theorem 3.6, ∂F

∂θ
< 0. Thus,

it suffices to show that ∂F
∂c > 0, where the partial derivative is evaluated at (a, b, c, θ =

f (a, b, c)) ∈ E with (a, b, c) in the interior of D.
Using Eqs. (13) and (14), we have that

∂r14
∂c

= c + cos θ

r14
,

∂r34
∂c

= c − b cos θ

r34
,

∂r24
∂c

= 1, and
∂r12
∂c

= ∂r13
∂c

= ∂r23
∂c

= 0.

Then we compute

∂F

∂c
= 3r224β1 + 3r14(c + cos θ)β2 + 3r34(c − b cos θ)β3 , (48)

where the βi is given as in Lemma 3.10. Since we are working in the interior of D, the
central configuration is not a kite and Theorem 3.8 implies that cos θ > 0. Hence, applying
Lemma 3.10, each term on the right-hand side of (48) is nonnegative except for 3r34cβ3.
However, since r14 ≥ r34 and β2 > 0, we have

3r14cβ2 + 3r34cβ3 = 3c(r14β2 + r34β3)

≥ 3c(r34β2 + r34β3)

= 3cr34(β2 + β3)

≥ 0

byLemma3.10.This shows that ∂F
∂c > 0.The inequality is strict because the term3r14β2 cos θ

is strictly positive on the interior of D. This completes the proof. �
Remark 3.12 1. Regarding Fig. 1, if we fix the values of a and b, then one interpretation of

Theorem3.11 is that as the configurationwidens in thevertical direction (c increasing), the
diagonals become closer and closer to perpendicular. If (a, b) is chosen from subregion
i or ii (see Fig. 3), then the angle θ increases monotonically to π/2 where c = a (a
kite configuration). On the other hand, if (a, b) belongs to subregion iii or iv, then θ is
bounded above by cos−1( a−c̄

2 ) < π/2 where c = 1
a (b2 + 2b) < a.

2. For kite configurations lying on the vertical face II (b = 1, r12 = r23, and r14 = r34), it
is straightforward to check that ∂F

∂c = 0. This in turn implies that ∂θ
∂c = 0, which agrees

with the fact that θ is constant (θ = π/2) on all of face II. Thus, the strict inequality of
Theorem 3.11 only holds on the interior of D.

4 Special classes of central configurations

In this section, we use our coordinates in D to classify different types of quadrilaterals that
are also central configurations. The analysis and defining equations are remarkably simple in
our coordinate system, resulting in only linear or quadratic equations in a, b, and c. Certain
cases can be handled quickly due to the constraints on the mutual distances given by (9). For
example, the only parallelogram that can be a central configuration is a rhombus. Likewise,
the only possible rectangle is a square.
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Fig. 4 Twokite central configurationswith different axes of symmetry.Kiteswith a horizontal axis of symmetry
(kite13) lie in the plane c = a, while those with a vertical axis of symmetry (kite24) lie in the plane b = 1. All
kites have θ = π/2; these are the only possible convex central configurations with perpendicular diagonals

4.1 Kites

The kite configurations play a particularly important role in the overall classification of
convex central configurations, occupying two of the six boundary faces of D. Recall that a
kite configuration is a symmetric quadrilateral with two bodies lying on the axis of symmetry
and two bodies located equidistant from that axis. The diagonals are always perpendicular,
and the two bodies not lying on the axis of symmetry must have equal mass.

Based on our ordering of the bodies, there are two possible types of kite configurations. A
kite with bodies 1 and 3 on the axis of symmetry, denoted kite13, is symmetric with respect
to the x-axis and must satisfy c = a (left plot in Fig. 4). These kites lie on face I and have
m2 = m4, as can be verified by the middle formula in (11). A kite with bodies 2 and 4 on the
axis of symmetry, denoted kite24, is symmetric with respect to the y-axis and must satisfy
b = 1 (right plot in Fig. 4). These kites occupy face II and require m1 = m3, as can be
checked using the middle formula in (10).

It is important to note that due to statements (36) and (37) in Lemma 3.4, any point
in D lying on one of the two planes c = a or b = 1 must correspond to a kite central
configuration. While two pairs of mutual distances must be congruent in order to distinguish
a kite configuration from a general convex quadrilateral, only one equation is required to
imply a kite when restricting to the set of convex central configurations. An alternative
interpretation of this fact is the following theorem.

Theorem 4.1 A convex central configuration with one diagonal bisecting the other must be
a kite.

Proof In our coordinate system, if one of the diagonals bisects the other, then either a = c or
b = 1. By (36) and (37) in Lemma 3.4, either case must correspond to a kite configuration.

�
Remark 4.2 Theorem 4.1 also follows directly fromConley’s perpendicular bisector theorem
(Moeckel 1990).

The intersection of the planes c = a and b = 1 is a line that corresponds to the one-
dimensional family of rhombi central configurations. This line is an edge on the boundary
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Fig. 5 Trapezoidal central configurations lie on the surface c = ab. The isosceles trapezoid family (right
figure) lies on the line formed by the intersection of the planes a = 1 and c = b

of D between vertices P3 and P4. We regard a as a parameter describing this family, with
1/

√
3 < a <

√
3. From (10) and (11), we have m1 = m3,m2 = m4, and

m2

m1
= 8a3 − a3(a2 + 1)3/2

8a3 − (a2 + 1)3/2
.

Note that m1 and m3 vanish as a → 1/
√
3, while m2 and m4 approach 0 as a → √

3 . The
length of the diagonal r24 increases with a, stretching the rhombus in the vertical direction.
The point a = 1 corresponds to the equalmass square configurationwith congruent diagonals
(r13 = r24 = 2).

4.2 Trapezoids

Nextwe consider the twopossible types of trapezoids. Letqiq j denote the side of the trapezoid
between vertices i and j . If exterior sides q1q2 and q3q4 are parallel, then we have

a sin θ

a cos θ − 1
= c sin θ

c cos θ − b
,

which reduces to (ab−c) sin θ = 0. Since sin θ �= 0, c = ab is both necessary and sufficient
to have a trapezoid of this kind (left plot in Figure 5). On the other hand, if q1q4 is parallel to
q2q3, then we quickly deduce that a = bc. However, since a ≥ c and 1 ≥ b on D, we have
a ≥ bc always, with equality only if both a = c and b = 1 are satisfied. It follows that the
only trapezoid of this type is necessarily a rhombus, a subset of the first type of trapezoids.
This proves the following theorem.

Theorem 4.3 Suppose that s is a central configuration in E. Then s = (a, b, c, θ) is a
trapezoid if and only if c = ab. The exterior sides q1q2 and q3q4 are always parallel.

Remark 4.4 Theorems 3.6 and 4.3 together show that the set of trapezoidal central config-
urations with positive masses is two-dimensional, a graph over the surface c = ab in D (a
portion of a saddle). This concurs with the recent results in Corbera et al. (2019).

123



Classifying four-body convex central configurations Page 21 of 27 34

Fig. 6 The trapezoidal central
configurations (purple) lie on the
surface c = ab within D. The
violet line shows the isosceles
trapezoid central configurations,
where a = 1 and c = b

Figure 6 demonstrates how the surface of trapezoidal central configurations lies within
the full space D. This surface intersects the boundary of D along the straight edge between
vertices P3 and P4 corresponding to the rhombi family (the intersection of faces I and II). It
also meets the boundary of D in two curves of relative equilibria for the restricted four-body
problem, one curve on face V connecting vertices P1 and P4 and the other on face IV joining
vertices P1 and P3.

Next, suppose that s ∈ E is a trapezoid. If we substitute c = ab into Eqs. (13) and (14),
we obtain

r223 − r214 = (a2 − 1)(1 − b2) . (49)

If b = 1, then c = ab implies c = a and hence s is a rhombus. Assuming that b < 1, it
follows from Eq. (49) that r23 > r14 for a > 1, and r14 > r23 when a < 1. The border
between these two cases is the isosceles trapezoids, where r23 = r14 (right plot in Fig. 5).
In other words, the isosceles trapezoid family of central configurations corresponds to a line
formed by the intersection of the planes a = 1 and c = b. This line slices through the interior
of D, crossing from the degenerate equilateral triangle at (1, 0, 0) to the square at (1, 1, 1)
(violet line in Fig. 6). By Theorem 3.11, the angle between the diagonals monotonically
increases from π/3 to π/2 as c increases from 0 to 1. The family of isosceles trapezoids was
studied in Cors and Roberts (2012) and Xie (2012).

4.3 Co-circular configurations

Another interesting class of central configurations is those where the four bodies lie on a
common circle, a co-circular central configuration (see Fig. 7). One of the main results in
Cors and Roberts (2012) is that the set of four-body co-circular central configurations is a
two-dimensional surface, a graph over two of the exterior side lengths. We reproduce that
result here, showing that the co-circular central configurations are a graph over the saddle
b = ac in D.
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Fig. 7 A co-circular central
configuration, where the bodies
all lie on a common circle, must
satisfy b = ac

Theorem 4.5 Suppose that s is a central configuration in E. Then s = (a, b, c, θ) is a
co-circular central configuration if and only if b = ac.

Proof Wemake use of the cross-ratio1 from complex analysis (Ahlfors 1979). The cross-ratio
of four points z1, z2, z3, z4 is defined as the image of z1 under the linear transformation that
maps z2 to 1, z3 to 0, and z4 to ∞. It is given by the expression

(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
. (50)

One of the nice properties of the cross-ratio is that it is real if and only if the four points
lie on a circle or a line. Regarding the position of each body as a point in C, we have
z1 = 1, z2 = aeiθ , z3 = −b, and z4 = −ceiθ . Substituting into (50), we find the cross-ratio
to be

(a + c)(b + 1)

aceiθ + be−iθ + a + bc
,

which is real if and only if sin θ(ac − b) = 0. Since θ ∈ (π/3, π/2], we obtain b = ac as a
necessary and sufficient condition for the four bodies to be lying on a common circle. �

In Fig. 8 we plot the surface of co-circular central configurations within D. This surface
intersects the boundary of D on four faces. On face I we have co-circular kite configurations
(kite13) defined by the parabola c = a, b = a2, 1/

√
3 < a ≤ 1. We also have co-circular

kites on face II with the opposite axis of symmetry (kite24), lying on the hyperbola b = 1, c =
1/a, 1 ≤ a <

√
3. This latter curve of co-circular kites is equivalent to the family studied

in Mello and Fernandes (2011) after rescaling and relabeling the configuration. The surface
b = ac also intersects faces IV and V, tracing out curves of relative equilibrium solutions to
the restricted four-body problem.

Substituting b = ac into Eqs. (13) and (14), we find that r23 = a r14 and r34 = c r12.
The line a = 1 (violet line in Fig. 8) divides the surface b = ac into two pieces. As was

1 Thanks to Richard Montgomery for suggesting this idea to the third author at the 2018 Joint Math Meetings.
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Fig. 8 Co-circular central configurations lie on the surface b = ac (light red) in D. The violet line corresponds
to the isosceles trapezoid family, where a = 1 and b = c

the case for the trapezoids, if 1 < a <
√
3, then we have co-circular central configurations

with r23 > r14, while if 1/
√
3 < a < 1, then r14 > r23. Configurations on the line a = 1

are isosceles trapezoids, where r14 = r23. Since r12 ≥ r34, the equation r34 = c r12 implies
that c ≤ 1 for any co-circular central configuration. The maximum value of c occurs at the
square a = b = c = 1.

4.4 Equidiagonal configurations

The final class of convex central configurations we choose to explore is equidiagonal quadri-
laterals, where the two diagonals are congruent (left plot in Fig. 9). These configurations are
characterized by the equation r13 = r24, which is the plane a−b+ c = 1 in our coordinates.
This plane intersects the boundary of D in four places (right plot in Fig. 9). On face I we find
equidiagonal kites (kite13) along the line c = a, b = 2a−1, 1/

√
3 < a ≤ 1. Similarly, there

is a line of equidiagonal kites (kite24) on face II parameterized by b = 1, c = 2−a, 1 ≤ a <√
3. These two kite families intersect at the square a = b = c = 1. The equidiagonal plane

also meets the boundary of D along two curved edges, one where faces III and IV intersect
and the other where faces V and VI meet. This follows directly from the equations given in
Table 1.

Aswith the trapezoidal and co-circular cases, the isosceles trapezoid family (a = 1, b = c)
divides the equidiagonal plane into two regions distinguished by whether r23 > r14 (when
1 < a <

√
3) or r14 > r23 (when 1/

√
3 < a < 1).
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Fig. 9 Equidiagonal central configurations (left) are located on the plane a − b + c = 1 in D (right). The
violet line consists of the isosceles trapezoids (a = 1 and b = c)

Table 2 Some special classes of central configurations and their surprisingly simple defining equations in
abc-space

Configuration type Equation(s) Mutual distances Figure in D

Kite13 c = a r12 = r14 and r23 = r34 Plane

Kite24 b = 1 r12 = r23 and r14 = r34 Plane

Rhombus a = c and b = 1 r12 = r14 = r23 = r34 Line

Trapezoid c = ab q1q2 parallel to q3q4 Saddle

Isosceles trapezoid a = 1 and b = c r13 = r24 and r14 = r23 Line

Co-circular b = ac r13r24 = r12r34 + r14r23 Saddle

Equidiagonal a − b + c = 1 r13 = r24 Plane

4.5 Summary

Table 2 summarizes the different classes of configurations alongwith their defining equations
in abc-space or in themutual distance variables ri j . In addition to the simplicity of the defining
equations, perhaps one of the more striking features of Table 2 is that all of the configurations
shown are defined by linear or quadratic equations. Moreover, due to Theorem 3.6, the
dimension of each set is equivalent to the dimension of the corresponding geometric figure
in abc-space. Each type of configuration can be represented as the graph of a function over
a one- or two-dimensional set in D, where the function is θ = f (a, b, c) restricted to the
given set.

Figure 10 illustrates how the surfaces corresponding to trapezoidal, co-circular, and equidi-
agonal configurations liewithin D. All three intersect at the line corresponding to the isosceles
trapezoid configurations. For 1 < a <

√
3, the trapezoids are located above the co-circular

configurations, which in turn lie above the equidiagonal solutions. This is a consequence of
comparing the c-values on each surface. Since b ≤ 1 < a, we have

ab >
b

a
> 1 − a + b . (51)
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Fig. 10 The left figure shows how the trapezoidal (purple) and co-circular (red) central configurations lie
within D, while the right figure demonstrates how the co-circular (red) and equidiagonal (brown) central
configurations fit together in D. All three classes of central configurations intersect at the isosceles trapezoid
family (a = 1 and b = c)

On the other hand, for the portion of D with 1/
√
3 < a < 1, the inequalities in (51) are

reversed and the equidiagonal configurations lie above the co-circular solutions, which lie
above the trapezoids.

The symmetric configurations play a particularly important role in the overall structure
of D, occupying two boundary faces (kites), a boundary edge (rhombi), or a line of inter-
section between three classes of configurations (isosceles trapezoids). Two classes of convex
quadrilaterals must be kites in order to be central configurations. Configurations with either
orthogonal or bisecting diagonals must be kites by Theorems 3.8 and 4.1, respectively.

5 Conclusion and future work

We have established simple, yet effective coordinates for describing the space E of four-body
convex central configurations.Using these coordinates,weprove that E is a three-dimensional
set, the graph of a differentiable function over three radial variables. The domain D of this
function has been carefully defined, analyzed, and plotted in R

+3
. Our coordinates provide

elementary descriptions of several important classes of central configurations, including kite,
rhombus, trapezoidal, co-circular, and equidiagonal configurations. The dimension and loca-
tion of each of these classes within D have been explored in detail. We have also shown that
the angle between the diagonals of a four-body convex central configuration lies between 60◦
and 90◦. As the configuration widens, the diagonals become closer and closer to orthogonal.
The diagonals are perpendicular if and only if the quadrilateral is a kite.

In future research, we intend to investigate the values of the masses as a function over the
domain D. The mass ratios in (10) and (11) reduce fairly nicely in our coordinate system,
although the dependence on the angle θ = f (a, b, c) is complicated. Nevertheless, we hope
to build on our current work to show that themassmap from D intoR+3

(suitably normalized)
is injective. Given a particular ordering of the bodies, this would prove that there is a unique
convex central configuration for any choice of four positive masses.
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