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Abstract
We address the expressions for the rates of the Keplerian orbital elements within a two-body
problem perturbed by the tides in both partners. Formulae for these rates appeared in the
literature in various forms, at times with errors. We reconsider, from scratch, the derivation
of these rates and arrive at the Lagrange-type equations which, in some details, differ from the
corresponding equations obtained previously by Kaula (Rev Geophys 2:661–684, 1964). We
alsowrite down detailed expressions for da/dt , de/dt and di/dt , to order e4. They differ from
Kaula’s expressions which contain a redundant factor ofM/(M+M ′), withM andM ′ being
the masses of the primary and the secondary. As Kaula was interested in the Earth–Moon
system, this redundant factor was close to unity and was unimportant in his developments.
This factor, however, must be removed when Kaula’s theory is applied to a binary composed
of partners of comparable masses. We have found that while it is legitimate to simply sum
the primary’s and secondary’s inputs in da/dt or de/dt , this is not the case for di/dt . So our
expression for di/dt differs from that of Kaula in two regards. First, the contribution due to
the dissipation in the secondary averages out when the apsidal precession is uniform. Second,
we have obtained an additional term which emerges owing to the conservation of the angular
momentum: a change in the inclination of the orbit causes a change of the primary’s plane
of equator.
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1 Motivation

The Darwin–Kaula theory of bodily tides is a fundamental development with many rami-
fications. It provides the means for calculating spin-orbit evolution of planets and moons,
including their entrapment in spin-orbit resonances (e.g. Correia et al. 2003; Correia and
Laskar 2003; Makarov et al. 2012; Noyelles et al. 2013) and the final obliquities (Cunha
et al. 2015; Ferraz-Mello et al. 2008). In the situations where tidal heating is intensive, an
approach based on this theory gives the key to the thermal histories of celestial bodies (e.g.
Peale and Cassen 1978; Efroimsky and Makarov 2014; Efroimsky 2018; Makarov et al.
2018). This theory also enables one to calculate the influence of the lunisolar tides on the
orbital motion of an artificial spacecraft (Pucacco and Lucchesi 2018).

In the current paper, we address the orbit evolution within a two-body problem perturbed
by the tides in both partners. Specifically, we are interested in the tidal rates da/dt , de/dt
and di/dt to order e4 (the symbols being used as defined in Table 1). Formulae for these rates
appeared in the literature in various forms, usually to a lower precision and sometimes with
mistakes. So we compare our expressions with those suggested in some other publications,
including the cornerstone work by Kaula (1964).

For the additional tidal potential of a disturbed body, Kaula (1964) developed an expansion
valid for an arbitrary rheology (i.e. for an arbitrary frequency dependence of the quality
function kl/Ql ). Kaula’s derivation was terse and omitted several steps as self-evident. We
accurately fill in these gaps and point out a step at which Kaula made a tacit approximation
M � M ′, where M and M ′ are the masses of the primary and the secondary. Owing to that
assumption, Kaula’s expressions for the orbital elements’ rates contain a redundant factor of
M/(M +M ′). Since Kaula was concerned with the Earth–Moon system, this approximation
made little difference as the factor was close to unity. However, in the case of a binary
composed of bodies of comparable masses, this redundant factor must be removed from
these expressions.

We also reexamine from scratch Kaula’s derivation of the rates da/dt , de/dt , and di/dt .
We find that while it is legitimate to simply sum the primary’s and secondary’s inputs in da/dt
or de/dt, this is not the case for di/dt. It turns out that in the expression for the primary’s
di/dt the contribution due to the dissipation in the secondary averages out when the apsidal
precession is uniform. Also, in that expression we obtain an additional term emerging from
the conservation of the angular momentum: a change in the inclination of the orbit causes a
change of the primary’s plane of equator. For these two reasons, our formula for di/dt differs
considerably from that of Kaula.

2 Basics

2.1 The two-body problem perturbed by tides

Consider two near-spherical bodies. One, called “planet” or “primary”, has a mass M and an
inertial position ρ. Another, named “secondary”, has a mass M ′ and is residing in ρ ′. We are
interested in the orbital evolution of this system,with tides in both partners taken into account.
Within this setting, Kaula (1964) expressed the perturbing gravitational potential through the
Keplerian elements of the mutual orbit, which allowed him to describe the evolution of
the system by Lagrange’s planetary equations. Three caveats are in order regarding Kaula’s
development.
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Table 1 Symbol key

Variable Explanation References

ρ Inertial position of the primary

ρ ′ Inertial position of the secondary

r Position of the secondary in the pri-
mary’s equatorial frame

Eq. (5)

r ′ Position of the primary in the sec-
ondary’s equatorial frame

Eq. (5)

U Tidal potential of the deformed pri-
mary

F Tidal force acting on the secondary

due to the primary’s deformation Eq. (124)

U ′ Tidal potential of the deformed sec-
ondary

F ′ Tidal force acting on the primary

due to the secondary’s deformation Eq. (125)

M Mass of the primary

M ′ Mass of the secondary

R Radius of the primary

R ′ Radius of the secondary

ρ Mean density of the primary

ρ ′ Mean density of the secondary

θ Rotation angle of the primary

θ ′ Rotation angle of the secondary

a Semimajor axis of the mutual orbit

e Eccentricity of the mutual orbit

i Orbit inclination on the primary’s
equator

i ′ Orbit inclination on the secondary’s
equator

� Longitude of the ascending node on
the primary’s equator

� ′ Longitude of the ascending node on
the secondary’s equator

ω Argument of the pericentre on the pri-
mary’s equator

ω ′ Argument of the pericentre on the sec-
ondary’s equator

M Mean anomaly

n ≡ Ṁ Anomalistic mean motion

Flmp(i) Inclination functions Eq. (134)

Glpq (e) Eccentricity function Eq. (134)

ωlmpq Fourier modes of the tides in the pri-
mary

Eq. (140)

χlmpq ≡ | ωlmpq | Forcing frequencies excited in the pri-
mary

εl = εl (ωlmpq ) Tidal phase lags in the primary
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Table 1 continued

Variable Explanation References

kl = kl (ωlmpq ) Dynamical Love numbers of the pri-
mary

Kl (ωlmpq ) ≡ kl (ωlmpq ) sin εl (ωlmpq ) Quality functions of the primary

ω ′
lmpq Fourier modes of the tides in the sec-

ondary
Eq. (142)

χ ′
lmpq ≡ | ω ′

lmpq | Forcing frequencies excited in the sec-
ondary

ε ′
l = ε ′

l (ω
′
lmpq ) Tidal phase lags in the secondary

k ′
l = kl (ωlmpq ) Dynamical Love numbers of the sec-

ondary

K ′
l (ωlmpq ) ≡ k ′

l (ωlmpq ) sin ε ′
l (ωlmpq ) Quality functions of the primary

G Gravitational constant

First of all, by definition of a mutual orbit, the position of the secondary is measured with
respect to the primary’s centre of mass. Let F be the force exerted by the primary on the
secondary. By virtue of Newton’s third law of motion, the secondary simultaneously exerts
a force − F on the primary. Hence, the mutual acceleration reads as

a = ρ̈ ′ − ρ̈ = F
M ′ − (− F)

M
= M + M ′

M M ′ F . (1)

In the limit of the secondary being a test particle (M � M ′), the above relation becomes
simply a = F/M ′, which was the tacit approximation accepted by Kaula. We in our study
shall rely on the general expression (1) and therefore shall employ the reducedmass β defined
as

β = M M ′

M + M ′ . (2)

Secondly, it shouldbenoted thatwithinKaula’s formalism the elements (a, e, i, M, ω,�)

of themutual orbit are defined in an inertially fixed frame coinciding with the primary’s equa-
tor at the instant when the equations of motion are computed. To simplify the interpretation
of the Keplerian elements, we here assume that they are defined in a frame coprecessing with
the primary’s equator. 1 The perturbing forces showing up in this setting include the inertial
forces associated with the non-Galilean nature of the coprecessing frame. An important fea-
ture of these forces is that they depend not only on the positions but also on velocities. As
was pointed out in Efroimsky (2005a, b), for such kind of disturbances the Lagrange- and
Delaunay-type planetary equations in their standard form render orbital elements which are
not osculating. To be more precise, if we wish the orbital element to osculate the orbit defined
in a non-inertial frame, not only must we amend the disturbing function, but we should also
insert in the Lagrange- and Delaunay-type equations additional terms that are not part of
the disturbing function. If, however, we choose only to amend the disturbing function, the
orbital equations will give us Keplerian orbital elements which will not osculate with the

1 In this frame, the role of the origin of longitude is played by the descending node of the primary’s equator
on an inertial plane.
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orbit defined in the non-inertial frame, but will instead osculate with the orbit as seen in the
inertial frame. 2

While the treatment in the coprecessing frame has its advantages, there exists alternatives
to it: both the orbital motion and the primary’s spin can be described in the Laplace plane
(e.g. Boué et al. 2016; Rubincam 2016), or the primary’s spin can be reckoned from the
orbital plane whose Keplerian elements are given in the Laplace plane (e.g. Néron de Surgy
and Laskar 1997; Correia et al. 2003; Correia and Laskar 2003, 2010).

Lastly, a complete description of motion requires not only the aforementioned set of
the Keplerian elements relative to the primary’s equator, but also a set of the elements
(a ′, e ′, i ′, M ′, ω ′, � ′) relative to the secondary’s equator. 3 Therefore, the equations of
motion must satisfy the relations existing between these two sets.

With all these details taken into account, we now derive the Lagrange-type planetary
equations compatible with Kaula’s (1964) formalism.

2.2 Lagrangian formalism

2.2.1 Lagrangian function

Let �n be the primary’s inertia matrix and � the rotation matrix, function of the Euler
(3,− 1, 3) angles 	 = (ψ, ε, θ), describing orientation in an inertial frame. More explicitly,

� ≡ �3(ψ) �1(−ε) �3(θ), (3)

where�1 and�3 represent the rotation matrices around the first and third axes, respectively:

�1(ϕ) =
⎡
⎣
1 0 0
0 cosϕ − sin ϕ

0 sin ϕ cosϕ

⎤
⎦ , �3(ϕ) =

⎡
⎣
cosϕ − sin ϕ 0
sin ϕ cosϕ 0
0 0 1

⎤
⎦ . (4)

The angle ψ is thus the longitude of the descending node of the equator with respect to the
inertial frame, ε the inclination of the spin axis in the same inertial frame, and θ the rotation
angle around the body’s figure axis (see Fig. 1). This convention is chosen for θ to be reckoned
from the descending node of the equator, as in Kaula (1964). We similarly denote by � ′n and
� ′(� ′ = (ψ ′, ε ′, θ ′) ) the inertia and rotation matrices of the secondary, respectively.
The planetocentric position of the secondary will be denoted with r , when expressed in the
body-fixed frame of the primary, or with r ′, when expressed in the body-fixed frame of the
secondary:

2 Such orbital elements are sometimes called contact elements, in order to distinguish them from their
osculating counterparts. For example, the semimajor axis aosc and eccentricity eosc osculating in the non-

inertial frame wherein the orbit is defined are linked via β (r × ṙ) = β

√
G(M + M ′) aosc (1 − e2osc) ŵosc

to the relative position r and the velocity ṙ in that same non-inertial frame. At the same time, the contact
elements a and e (those rendered by the Lagrange- or Delaunay-type equations with only the disturbing
function amended) are connected through r × p = β

√
G(M + M ′) a (1 − e2) ŵ with the relative position

r and the momentum p which is equal to the reduced mass multiplied by the velocity in the inertial frame:
p = β (ṙ + μ × r) .
In these formulae, μ is the precession rate of the non-inertial frame relative the inertial one, while ŵosc and ŵ
denote the unit vector in the direction of the orbital angular momentum, as seen in the non-inertial and inertial
frames, correspondingly.
For comprehensive treatment, see Efroimsky (2005a, b) and references therein.
3 As we shall see below, in the paragraph after Eq. (42), the instantaneous ellipses, as seen from the primary’s
and secondary’s equator, will have the same shape, with a = a ′ and e = e ′ (and also with M = M ′).
Generally, though, these equalities are not obligatory—see an example in Footnote 2 above.
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30 Page 6 of 46 G. Boué, M. Efroimsky

Fig. 1 Definition of the Euler (3, −1, 3) angles (ψ, ε, θ). The inertial frame is denoted with (iR, jR, kR),
and the reference plane (iR, jR) is represented by the horizontal great circle. The origin of longitude, labelled
AR, is the intersection of iR with the unit sphere. The projection of the primary’s equatorial plane on the
unit sphere is the great circle whose descending node on the reference plane is V . The point N is the orbit’s
ascending node on the equator, while A defines a reference meridian. The intersection of the orbital plane with
the unit sphere is represented by the thick great circle passing through N . The orientation of the primary on
the reference plane is parameterised by three angles: the precession angle ψ measured between AR and V ,
the tilt ε of the figure axis, and the rotation angle θ defining the angular separation of A from V . Analogous
quantities (ψ ′, ε′, θ ′) are defined for the secondary (not shown in the figure). When the orbit is described in
the corotating frame of the primary, its longitude of ascending node, �̄, is the angular separation of N from
A, while its inclination on the primary’s equator is i

r = T�(ρ ′ − ρ), r ′ = T� ′(ρ ′ − ρ), (5)

where T(·) denotes the transposition operator. Notice that we do not strictly follow Kaula’s
convention because, to represent the orbit, we are employing the corotating frames instead
of the coprecessing ones. At the end of the derivation, we explain how to switch between
these two classes of frames.

For the state of the system to be entirely defined, we also introduce the primary’s and
secondary’s angular velocities � and � ′, respectively. These vectors are expressed in their
respective body-fixed frame.

The LagrangianL = T −V of the system is a function of (�, � ′, ṙ , r, r ′). Specifically,
the kinetic energy T (�, � ′, ṙ, r) is given by

T = 1

2
� · �n� + 1

2
� ′ · � ′n� ′ + 1

2
β ‖ṙ + � × r ‖2 , (6)

where β = MM ′/(M + M ′) is the reduced mass of the system. As for the potential energy
V (r, r ′), we decompose it into the point mass potential energy V0(r) = −GMM ′/r and a
perturbation V1(r, r ′), whose expression will be specified later on:

V (r, r ′) = V0(r) + V1(r, r ′) . (7)
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To this Lagrangian function, we have to add the constraint �r = � ′r ′ which links two
expressions of the same quantity ρ ′ − ρ. This constraint will enter the Lagrangian, accom-
panied with Lagrange multipliers � ∈ R

3, thus leading to a new Lagrangian

F = L + � · (�r −� ′r ′) . (8)

Note that this Lagrangian also depends on the additional variables (�, � ′).

2.2.2 Spin operator

To derive the Euler–Poincaré–Lagrange equations of motion for this Lagrangian, let us first
introduce the spin operator Ĵ ≡ � ∂/∂�, where � is a matrix yet to be defined (e.g. Boué
2017; Boué et al. 2017). On the one hand, by definition of the spin operator, 4 the time
derivative of an arbitrary function f (�) can be written as

d

dt
f (�) = � · Ĵ( f ) = � · � ∂ f

∂�
, (9)

with � the angular velocity expressed in the same frame as Ĵ , which here is the body-fixed
frame. On the other, applying the chain rule for the time derivative of f (�), we get

d

dt
f (�) = �̇ · ∂ f

∂�
. (10)

By identification of (9) and (10), we deduce that � is the matrix such that �̇ = T��, or
equivalently, � = T�−1�̇.

Knowing that the components of � in the body-fixed frame (rotated with respect to an
inertial frame according to 3) are

�X = −ψ̇ sin ε sin θ − ε̇ cos θ, (11)

�Y = −ψ̇ sin ε cos θ + ε̇ sin θ, (12)

�Z = ψ̇ cos ε + θ̇ , (13)

we get

� =

⎡
⎢⎢⎢⎣

− sin θ

sin ε
− cos θ sin θ cot ε

−cos θ

sin ε
sin θ cos θ cot ε

0 0 1

⎤
⎥⎥⎥⎦ . (14)

The matrix � ′ is equivalently defined for the secondary.
In the following, we also have to determine the image of the function� �→ � ·�r by the

spin operator Ĵ which, by definition, evaluates the variation of a function under infinitesimal
rotation of the primary (therefore the rotation matrix � alone is affected by the operator Ĵ
and r shall be taken constant in this calculation). Using T��̇ v = � × v for any vector
v ∈ R

3, we get

d

dt
(� ·�r) = � · �̇r = � ·�T��̇r = (T��) · (� × r) = � · (r × (T��)

)
. (15)

Identifying (9) with (15), we obtain

Ĵ(� ·�r) = r × (T��). (16)

4 For a detailed introduction in the theory of the spin operator, see Varshalovich et al. (1988).
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2.2.3 Equations of motion

Using the matrices � and � ′ defined hereinabove, the Euler–Poincaré–Lagrange equations of
motion read (e.g. Boué 2017; Boué et al. 2017)

d

dt

∂F
∂�

= ∂F
∂�

× � + � ∂F
∂�

, (17)

d

dt

∂F
∂� ′ = ∂F

∂� ′ × � ′ + � ′ ∂F
∂� ′ , (18)

d

dt

∂F
∂ ṙ

= ∂F
∂ r

, (19)

d

dt

∂F
∂ ṙ ′ = ∂F

∂ r ′ = 0 . (20)

Notice that the Euler–Lagrange equation (20) is equal to zero. This is due to the fact that the
Lagrangian does not depend on ṙ ′. Let us now rewrite the equations of motion (17–20) in
terms of the original Lagrangian L :

d

dt

∂L
∂�

= ∂L
∂�

× � + � ∂L
∂�

+ r × (T��
)
, (21)

d

dt

∂L
∂� ′ = ∂L

∂� ′ × � ′ + � ′ ∂L
∂� ′ − r ′ × (T� ′�

)
, (22)

d

dt

∂L
∂ ṙ

= ∂L
∂ r

+ T��, (23)

d

dt

∂L
∂ ṙ ′ = ∂L

∂ r ′ − T� ′� = 0, (24)

with, for the problem studied in this paper, ∂L/∂� = ∂L/∂� ′ = 0. To derive the first two
equations, we made use of relation (16).

From the equation ofmotion (24), we determine the expression of the Lagrangemultiplier,
namely

� = � ′ ∂L
∂ r ′ . (25)

Substituting this expression in the other equations of motion (21–23), we get

d

dt

∂L
∂�

= ∂L
∂�

× � + � ∂L
∂�

+ T�� ′
(
r ′ × ∂L

∂ r ′

)
, (26)

d

dt

∂L
∂� ′ = ∂L

∂� ′ × � ′ + � ′ ∂L
∂� ′ − r ′ × ∂L

∂ r ′ , (27)

d

dt

∂L
∂ ṙ

= ∂L
∂ r

+ T�� ′ ∂L
∂ r ′ . (28)

In the first equation of motion, we made use of the relations r = T�� ′r ′ and (�u×�v) =
�(u× v). In the last equation of motion, we recognise the force F ′ ≡ ∂L/∂ r ′ written in the
body-fixed frame of the primary thanks to the rotation matrix T�� ′. Moreover, in the first
two equations of motion, we observe the presence of the torque r ′ × F ′ expressed in the
body-fixed frame of the primary in Eq. (26) and in the body-fixed frame of the secondary in
Eq. (27).
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Inserting the expressions for the kinetic energy (6) and the potential energy (7) in Eq. (28),
we get

r̈ + G(M + M ′)
r3

r = −�̇ × r − 2� × ṙ − � × (� × r) − 1

β

(
∂V1
∂ r

+ T�� ′ ∂V1
∂ r ′

)
. (29)

Were the right-hand side equal to zero, we would have obtained the equation of motion of the
classical two-body problem. But here this is not the case. The first three terms of the right-
hand side account for the inertial forces of the non-Galilean frame in which r is expressed,
while the last two terms represent the perturbation induced by tides. It is common to name the
quantity − V1/β as the perturbing function and to denote it withR. In this notation, Eq. (29)
reads:

r̈ + G(M + M ′)
r3

r = −�̇ × r − 2� × ṙ − � × (� × r) +
(

∂R
∂ r

+ T�� ′ ∂R
∂ r ′

)
. (30)

2.3 Hamiltonian formalism

To get the Hamiltonian form of the equations of motion, we apply a Legendre transformation
on the Lagrangian. Let �, � ′ and p be the generalised momenta given by

� ≡ ∂L
∂�

= �n� + βr × (ṙ + � × r), (31)

� ′ ≡ ∂L
∂� ′ = � ′n� ′, (32)

p ≡ ∂L
∂ ṙ

= β(ṙ + � × r). (33)

� = �+� is the sumof the angularmomenta of the primary (�) and of the orbit (� = r× p),
� ′ is the angular momentum of the secondary and p is the linear orbital momentum with
respect to the inertial frame but expressed in the body-fixed frame of the primary.

The Hamiltonian H ≡ � · � + � ′ · � ′ + p · ṙ − L can be written as H = T + V with

T = 1

2
(� − r × p) · �−1

n (� − r × p) + 1

2
� ′ · �′−1

n � ′ + ‖ p‖2
2β

. (34)

The equations of motion deduced from the Legendre transformation are

d�

dt
= � × ∂H

∂�
− � ∂H

∂�
− T�� ′

(
r ′ × ∂H

∂ r ′

)
, (35)

d� ′

dt
= � ′ × ∂H

∂� ′ − � ′ ∂H
∂� ′ + r ′ × ∂H

∂ r ′ , (36)

d p
dt

= −∂H
∂ r

− T�� ′ ∂H
∂ r ′ . (37)

The kinematic equations of motion are

d�

dt
= T�

∂H
∂�

, (38)

d� ′

dt
= T� ′ ∂H

∂� ′ , (39)

dr
dt

= ∂H
∂ p

, (40)
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Fig. 2 Orientation of the orbit as seen from both partners. The projection of the primary’s equatorial plane on
the unit sphere is the great circle passing through A—the reference meridian—and N—the orbit ascending
node. Equivalent points are defined on the projection of the secondary’s equator on the unit sphere and are
denoted A ′ and N ′, respectively. The intersection of the orbital plane with the unit sphere is represented by the
thick great circle passing through N , N ′ and P—the direction of the pericentre. When the orbit is described in
the corotating frame of the primary, its longitude of ascending node, denoted �̄, is the angular separation of N
from A. Otherwise, in the corotating frame of the secondary, the longitude of ascending node, denoted �̄ ′, is
measured between A ′ and N ′. The angle between N and N ′ is equal to the difference ω−ω ′ between the two
arguments of the orbit pericentre reckoned from N and N ′, respectively. i and i ′ are the orbital inclinations
with respect to the primary’s and secondary’s equator, respectively

dr ′

dt
= T� ′�

(
∂H
∂ p

− r × ∂H
∂�

)
+ r ′ × ∂H

∂� ′ . (41)

Recall that these expressions are general. In our case, the two-body problem perturbed by
tides,H is independent of � and � ′. So the partial derivatives of the Hamiltonian over these
two quantities in equations (35) and (36) become zero.

2.4 Elliptical elements

In Kaula’s work, the equations of motion are written in terms of elliptical elements (a, e,
i , M, ω, �) reckoned from an inertial frame instantaneously comoving with the primary’s
precessing equator. 5 This set of variables becomes singular at zero inclination or zero eccen-
tricity. We will nevertheless provide the equations of motion in this set of variables for an
easier comparisonwith previousworks.Here,we define elliptical elements (a, e, i,M, ω, �̄)

(represented in Fig. 2) as a change of variable from the conjugated variables ( p, r). There-
fore, they describe the instantaneous ellipse E constructed from the position vector r and its
inertial velocity ṙ+�× r , both defined in the primary body-fixed frame. Our set of Keplerian
elements differs from Kaula’s by the frame in which it is defined. This choice only impacts

5 The frame employed by Kaula (1964) should be termed “instantaneously comoving”, not coprecessing,
because in his equations of motion the inertial forces were omitted.
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the longitude of the ascending node, hence the introduction of a new symbol �̄. The two
longitudes of ascending node are related to each other by

�̄ = � − θ . (42)

As for the couple ( p, r), to the position vector r ′ we associate the elliptical elements
(a ′, e ′, i ′,M ′, ω ′, �̄ ′) of the ellipse E ′ defined by r ′ and its inertial velocity, both expressed
in the secondary body-fixed frame. Thus, both ellipses E and E ′ are same up to a rotation,
i.e. a = a ′, e = e ′ andM = M ′. To get the relation between (�̄ ′, i ′, ω ′) and (�̄, i, ω), we
consider the following function with values in SO(3) :

� = �3(�̄)�1(i)�3(ω − ω ′)�1(−i ′)�3(−�̄ ′) . (43)

We have � = T�� ′. Hence, for fixed orientation of the bodies (as in Eqs. 37 and 40), we get
d� = 0 and therefore d� T� = 0. Let us denote by K , i , k, i ′, K ′ the unit vectors of the
rotations of angle �̄, i , ω − ω ′, −i ′, and −�̄ ′, respectively. K and K ′ are the primary’s and
secondary’s figure axes, respectively, i and i ′ are the directions of the orbit ascending node
relative to the primary’s and the secondary’s equatorial plane, respectively, and k is the orbit
normal (see Fig. 2). In the orbital reference frame, we have in particular

k =
⎛
⎝
0
0
1

⎞
⎠ , i =

⎛
⎝
1
0
0

⎞
⎠ , i ′ =

⎛
⎜⎜⎝
cos(ω − ω ′)

sin(ω − ω ′)

0

⎞
⎟⎟⎠ ,

K =
⎛
⎝

0
sin i
cos i

⎞
⎠ , K ′ =

⎛
⎜⎜⎝

− sin i ′ sin(ω − ω ′)

sin i ′ cos(ω − ω ′)

cos i ′

⎞
⎟⎟⎠ . (44)

The product d� T� belongs to the Lie algebra so(3). Let d� ≡ �1(−i)�3(−�̄) d� T�

�3(�̄)�1(i) be its expression in the orbit frame. We have (see Appendix “A”)

d� = K̂d�̄ + îdi + k̂(dω − dω ′) − î
′
di ′ − K̂

′
d�̄ ′ , (45)

where the hat over any vector v = (vx , vy, vz) denotes the skew-symmetric matrix6

v̂ =
⎡
⎣

0 −vz vy
vz 0 −vx

−vy vx 0

⎤
⎦ . (46)

Applying to d� = 0 the canonical bijection from so(3) to R
3 (i.e. the inverse of the hat

application), we get

Kd�̄ + idi + kdω = K ′d�̄ ′ + i ′di ′ + kdω ′. (47)

We now replace the vectors K , i , k, i ′, K ′ by their coordinates and get
⎡
⎣

0 1 0
sin i 0 0
cos i 0 1

⎤
⎦
⎛
⎝
d�̄

di
dω

⎞
⎠ =

⎡
⎣

− sin i ′ sin(ω − ω ′) cos(ω − ω ′) 0
sin i ′ cos(ω − ω ′) sin(ω − ω ′) 0

cos i ′ 0 1

⎤
⎦
⎛
⎝
d�̄ ′
di ′
dω ′

⎞
⎠ . (48)

6 The skew-symmetric matrix is so defined that for any two vectors a, b ∈ R
3, their vector product a × b is

equal to âb.
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We finally deduce the Jacobian �1 of the transformation (�̄ ′, i ′, ω ′) → (�̄, i, ω), which
reads

�1 ≡ ∂(�̄, i, ω)

∂(�̄ ′, i ′, ω ′)
=
⎡
⎢⎣

sin i ′ cos(ω − ω ′)
sin i

sin(ω − ω ′)
sin i

0

− sin i ′ sin(ω − ω ′) cos(ω − ω ′) 0
cos i ′ − sin i ′ cot i cos(ω − ω ′) − cot i sin(ω − ω ′) 1

⎤
⎥⎦ , (49)

and thus,

� ≡ ∂(a, e, i,M, ω, �̄)

∂(a ′, e ′, i ′,M ′, ω ′, �̄ ′)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos(ω − ω ′) 0 0 − sin i ′ sin(ω − ω ′)
0 0 0 1 0 0
0 0 − cot i sin(ω − ω ′) 0 1 cos i ′ − sin i ′ cot i cos(ω − ω ′)

0 0
sin(ω − ω ′)

sin i
0 0

sin i ′ cos(ω − ω ′)
sin i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

2.5 Equations of motion of the Keplerian elements

Planetary equations of motion for (a, e, i,M, ω, �̄) are deduced from the canonical equa-
tions of motion satisfied by Delaunay variables (rescaled by the reduced mass)

⎧⎪⎪⎨
⎪⎪⎩

L = β
√G(M + M ′)a, l = M,

G = L
√
1 − e2, g = ω,

H = G cos i, h = �̄.

(51)

Let X = T(L,G, H), x = T(l, g, h), Y = T(a, e, i) and y = T(M, ω, �̄). We have

d

dt

(
X
x

)
=
⎡
⎣
0 −�d

�d 0

⎤
⎦
⎛
⎜⎝

∂H
∂X
∂H
∂x

⎞
⎟⎠ , (52)

thus

d

dt

(
Y
y

)
=�−1

[
0 −�d
�d 0

]
T�−1

⎛
⎜⎜⎝

∂H
∂Y
∂H
∂ y

⎞
⎟⎟⎠ , (53)

where� is the Jacobian defined as

� ≡ ∂(X, x)

∂(Y , y)
=
[
�1 0
0 �d

]
, �1 =

⎡
⎢⎢⎢⎢⎢⎣

L

2a
0 0

G

2a
− Ge

1 − e2
0

H

2a
− He

1 − e2
−G sin i

⎤
⎥⎥⎥⎥⎥⎦

. (54)
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The result, written in a matrix form, reads

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎝

a
e
i
M
ω

�̄

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −2a

L
0 0

0 0 0 −1 − e2

Le

1 − e2

Ge
0

0 0 0 0 − cos i

G sin i

1

G sin i
2a

L

1 − e2

Le
0 0 0 0

0 −1 − e2

Ge

cos i

G sin i
0 0 0

0 0 − 1

G sin i
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

∂H/∂a
∂H/∂e
∂H/∂i

∂H/∂M
∂H/∂ω

∂H/∂�̄

⎞
⎟⎟⎟⎟⎟⎟⎠

. (55)

These are the classical planetary equations in the form of Lagrange. Let us denote by 	 the
Poisson matrix, i.e. the matrix standing before the gradient of the Hamiltonian in Eq. (55). In
the problem under consideration, an adjustment to this equation has to be made. Owing to
the constraint between r and r ′, we have to add the contribution from (�̄ ′, i ′, ω ′) to the time
derivative of the state vector, see Eq. (37). This is done through the medium of the Jacobian
� as follows (see Appendix “B”):

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎝

a
e
i
M
ω

�̄

⎞
⎟⎟⎟⎟⎟⎟⎠

= 	

⎛
⎜⎜⎜⎜⎜⎜⎝

∂H/∂a
∂H/∂e
∂H/∂i

∂H/∂M
∂H/∂ω

∂H/∂�̄

⎞
⎟⎟⎟⎟⎟⎟⎠

+�	 ′

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

∂H/∂i ′
0

∂H/∂ω ′
∂H/∂�̄ ′

⎞
⎟⎟⎟⎟⎟⎟⎠

, (56)

where 	 ′ is the equivalent of the matrix 	 but written as a function of (a, e, i ′) instead of
(a, e, i). After some algebra, we arrive at

da

dt
= −2a

L

∂H
∂M , (57)

de

dt
= −1 − e2

Le

∂H
∂M + 1 − e2

Ge

(
∂H
∂ω

+ ∂H
∂ω ′

)
, (58)

di

dt
= 1

G sin i

(
∂H
∂�̄

− cos i
∂H
∂ω

)
+ sin(ω − ω ′)

G

∂H
∂i ′

+cos(ω − ω ′)
G sin i ′

(
∂H
∂�̄ ′ − cos i ′ ∂H

∂ω ′

)
, (59)

dM
dt

= 2a

L

∂H
∂a

+ 1 − e2

Le

∂H
∂e

, (60)

dω

dt
= −1 − e2

Ge

∂H
∂e

+ cos i

G sin i

∂H
∂i

+ cos i cos(ω − ω ′)
G sin i

∂H
∂i ′

+cos i sin(ω − ω ′)
G sin i sin i ′

(
cos i ′ ∂H

∂ω ′ − ∂H
∂�̄ ′

)
, (61)

d�̄

dt
= − 1

G sin i

∂H
∂i

− cos(ω ′ − ω)

G sin i

∂H
∂i ′ − sin(ω − ω ′)

G sin i sin i ′

(
cos i ′ ∂H

∂ω ′ − ∂H
∂�̄ ′

)
. (62)
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2.6 Perturbed two-body problem

Here, we split the Hamiltonian as H = H0 + V1 with H0 = T + V0, i.e.

H0 = 1

2
(� − r × p) · �−1

n (� − r × p) + 1

2
� ′ · �′−1

n � ′ + ‖ p‖2
2β

− GMM ′

r
. (63)

We shall now write this Hamiltonian in terms of the elliptical elements (a, e, i,M, ω, �̄).
First, we recognise the Keplerian energy of the two-body problem

‖ p‖2
2β

− GMM ′

r
= −GMM ′

2a
. (64)

Then, r × p is the orbital angular momentum, thus

r × p ≡ � = G

⎛
⎝

sin i sin �̄

− sin i cos �̄

cos i

⎞
⎠ . (65)

Moreover, we recall that �−1
n (� − r × p) is equal to the primary’s angular velocity � =

T(�X ,�Y ,�Z ). The gradient of the Hamiltonian H0 is then

∂H0

∂a
= GMM ′

2a2
− G

2a

(
(�X sin �̄ − �Y cos �̄) sin i + �Z cos i

)
, (66)

∂H0

∂e
= Ge

1 − e2
(
(�X sin �̄ − �Y cos �̄) sin i + �Z cos i

)
, (67)

∂H0

∂i
= −G

(
(�X sin �̄ − �Y cos �̄) cos i − �Z sin i

)
, (68)

∂H0

∂M = 0, (69)

∂H0

∂ω
= 0, (70)

∂H0

∂�̄
= −G(�X cos �̄ + �Y sin �̄) sin i . (71)

Let n = (G(M+M ′)/a3)1/2 be theKeplerianmeanmotion. The equations ofmotion become

da

dt
= −2a

L

∂V1
∂M , (72)

de

dt
= −1 − e2

Le

∂V1
∂M + 1 − e2

Ge

(
∂V1
∂ω

+ ∂V1
∂ω ′

)
, (73)

di

dt
= −(�X cos �̄ + �Y sin �̄) + 1

G sin i

(
∂V1
∂�̄

− cos i
∂V1
∂ω

)
+ sin(ω − ω ′)

G

∂V1
∂i ′

+cos(ω − ω ′)
G sin i ′

(
∂V1
∂�̄ ′ − cos i ′ ∂V1

∂ω ′

)
, (74)

dM
dt

= n + 2a

L

∂V1
∂a

+ 1 − e2

Le

∂V1
∂e

, (75)

dω

dt
= −�X sin �̄ − �Y cos �̄

sin i
− 1 − e2

Ge

∂V1
∂e

+ cos i

G sin i

∂V1
∂i

+ cos i cos(ω − ω ′)
G sin i

∂V1
∂i ′

+cos i sin(ω − ω ′)
G sin i sin i ′

(
cos i ′ ∂V1

∂ω ′ − ∂V1
∂�̄ ′

)
, (76)
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d�̄

dt
= (�X sin �̄ − �Y cos �̄) cot i − �Z − 1

G sin i

∂V1
∂i

− cos(ω ′ − ω)

G sin i

∂V1
∂i ′

− sin(ω − ω ′)
G sin i sin i ′

(
cos i ′ ∂V1

∂ω ′ − ∂V1
∂�̄ ′

)
. (77)

Using the expressions L = βna2 and G = L(1− e2)1/2 and substituting V1 by −βR, these
equations of motion read

da

dt
= 2

na

∂R
∂M , (78)

de

dt
= 1 − e2

na2e

∂R
∂M − (1 − e2)1/2

na2e

(
∂R
∂ω

+ ∂R
∂ω ′

)
, (79)

di

dt
= −(�X cos �̄ + �Y sin �̄) − 1

na2(1 − e2)1/2 sin i

(
∂R
∂�̄

− cos i
∂R
∂ω

)

− sin(ω − ω ′)
na2(1 − e2)1/2

∂R
∂i ′ − cos(ω − ω ′)

na2(1 − e2)1/2 sin i ′

(
∂R
∂�̄ ′ − cos i ′ ∂R

∂ω ′

)
, (80)

dM
dt

= n − 2

na

∂R
∂a

− 1 − e2

na2e

∂R
∂e

, (81)

dω

dt
= −�X sin �̄ − �Y cos �̄

sin i
+ (1 − e2)1/2

na2e

∂R
∂e

− cos i

na2(1 − e2)1/2 sin i

∂R
∂i

− cos i cos(ω − ω ′)
na2(1 − e2)1/2 sin i

∂R
∂i ′ − cos i sin(ω − ω ′)

na2(1 − e2)1/2 sin i sin i ′

(
cos i ′ ∂R

∂ω ′ − ∂R
∂�̄ ′

)
,

(82)

d�̄

dt
= (�X sin �̄ − �Y cos �̄) cot i − �Z + 1

na2(1 − e2)1/2 sin i

∂R
∂i

+ cos(ω ′ − ω)

na2(1 − e2)1/2 sin i

∂R
∂i ′ + sin(ω − ω ′)

na2(1 − e2)1/2 sin i sin i ′

(
cos i ′ ∂R

∂ω ′ − ∂R
∂�̄ ′

)
.

(83)

Had we defined the Keplerian elements in the coprecessing frame of the primary rather than
in its corotating frame, the longitude of the ascending node would have been � = �̄ + θ .
Then, in all the equations of motion, �̄ would have been replaced by �− θ , and in particular
the last equation of motion would have become

d�

dt
= (�X sin(� − θ) − �Y cos(� − θ)) cot i − (�Z − θ̇ ) + 1

na2(1 − e2)1/2 sin i

∂R
∂i

+ cos(ω ′ − ω)

na2(1 − e2)1/2 sin i

∂R
∂i ′ + sin(ω − ω ′)

na2(1 − e2)1/2 sin i sin i ′

(
cos i ′ ∂R

∂ω ′ − ∂R
∂� ′

)
.

(84)
Let us now compare Eqs. (78–83) with the well-known Lagrange planetary equations. As the
Keplerian elements are here defined with respect to a moving frame, the resulting equations
of motion for i , ω and �̄ contain driving terms which are functions of the components
(�X ,�Y ,�Z ) of the angular velocity � of this frame. Furthermore, we observe that the
equations of motion are not symmetric in (i, ω, �̄) and in (i ′, ω ′, �̄ ′). This is due to the
rotation matrix T�� ′ between the frames in which the two sets of Keplerian elements are
defined. We nevertheless recover the lost symmetry in the equations of motion when this
matrix T�� ′ becomes a single rotation around the third axis (i.e. when i = i ′ and ω = ω ′).
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2.7 Rotation equations of motion

Equations (78–83) are the equivalent of the Lagrange planetary equations. For completeness,
we now provide the explicit equations of motion for the rotation of the two bodies, given
by Eqs. (35–36) and (38–39). While these equations should involve the spin operators repre-
sented by the matrices � and � ′, we discard those terms as the perturbing potential energy is
independent of� and� ′. The equations also involve the orbital angular momentum operator

L̂
′ = r ′ × ∂r ′ expressed by a matrix 
 ′ such that

L̂
′
( f ) = 
 ′

⎛
⎝

∂ f /∂�̄ ′
∂ f /∂i ′
∂ f /∂ω ′

⎞
⎠ (85)

for all functions f (a ′, e ′, i ′, M ′, ω ′, �̄ ′). Applying the same approach as in Sect. 2.2,
we arrive at


 ′ =

⎡
⎢⎢⎢⎣

− sin �̄ ′ cot i ′ cos �̄ ′ sin �̄ ′

sin i ′

cos �̄ ′ cot i ′ sin �̄ ′ −cos �̄ ′

sin i ′
1 0 0

⎤
⎥⎥⎥⎦ . (86)

Developing the matrix products, we obtain the following dynamical equations of motion:
d�X

dt
= �Y �Z − �Z �Y + cos �̄ sin(ω − ω ′) + sin �̄ cos i cos(ω − ω ′)

sin i ′
∂V1
∂�̄ ′

− (
cos �̄ cos(ω − ω ′) − sin �̄ cos i sin(ω − ω ′)

) ∂V1
∂i ′

− (
(cos �̄ sin(ω − ω ′) + sin �̄ cos i cos(ω − ω ′)) cot i ′ + sin �̄ sin i

) ∂V1
∂ω ′ , (87)

d�Y

dt
= �Z �X − �X �Z + sin �̄ sin(ω − ω ′) − cos �̄ cos i cos(ω − ω ′)

sin i ′
∂V1
∂�̄ ′

− (
sin �̄ cos(ω − ω ′) + cos �̄ cos i sin(ω − ω ′)

) ∂V1
∂i ′

− (
(sin �̄ sin(ω − ω ′) − cos �̄ cos i cos(ω − ω ′)) cot i ′ − cos �̄ sin i

) ∂V1
∂ω ′ , (88)

d�Z

dt
= �X �Y − �Y �X − sin i cos(ω − ω ′)

sin i ′
∂V1
∂� ′ − sin i sin(ω − ω ′) ∂V1

∂i ′

+ (
sin i cos(ω − ω ′) cot i ′ − cos i

) ∂V1
∂ω ′ , (89)

d� ′
X

dt
= � ′

Y � ′
Z − � ′

Z� ′
X − sin �̄ ′ cot i ′ ∂V1

∂�̄ ′ + cos �̄ ′ ∂V1
∂i ′ + sin �̄ ′

sin i ′
∂V1
∂ω ′ , (90)

d� ′
Y

dt
= � ′

Z � ′
X − � ′

X � ′
Z + cos �̄ ′ cot i ′ ∂V1

∂�̄ ′ + sin �̄ ′ ∂V1
∂i ′ − cos �̄ ′

sin i ′
∂V1
∂ω ′ , (91)

d� ′
Z

dt
= � ′

X � ′
Y − � ′

Y � ′
X + ∂V1

∂�̄ ′ , (92)

and the associated kinematic equations of motion:

dψ

dt
= − sin θ

sin ε
�X − cos θ

sin ε
�Y , (93)

dε

dt
= − cos θ �X + sin θ �Y , (94)

dθ

dt
= sin θ cot ε �X + cos θ cot ε �Y + �Z , (95)
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dψ ′

dt
= − sin θ ′

sin ε ′ � ′
X − cos θ ′

sin ε ′ � ′
Y , (96)

dε ′

dt
= − cos θ ′ � ′

X + sin θ ′ � ′
Y , (97)

dθ ′

dt
= sin θ ′ cot ε ′ � ′

X + cos θ ′ cot ε ′ � ′
Y + � ′

Z . (98)

Recall that in these equations, � = �−1
n (� − r × p) and � ′ = � ′n −1

� ′.

2.8 The gyroscopic approximation and the approximation of constant inertia
matrices

In the equations of motion derived above, the inertial forces are expressed in terms of the
components of the rotation vectors � and � ′. To simplify these dependencies, we carry out
two steps.

(a) We employ the gyroscopic approximation, i.e. assume that the rotation about the axis of
maximal inertia is much faster than any change in this axis’ orientation. Mathematically,
this implies:

| θ̇ | � |ψ̇ |, | ε̇| and | θ̇ ′ | � | ψ̇ ′ |, | ε̇ ′ | . (99)

(b) We neglect the variation of the inertiamatrices in the expressions for the angularmomenta
� and � ′. This approximation is nontrivial because, after all, the tidal theory is about
deformation. So one always needs to justify accurately why on one occasion the defor-
mations must be taken into account and neglected on other. This justification is provided
in Frouard & Efroimsky (2017b, Section 3.1 and Footnote 6).

Let us denote the partners’ principalmoments of inertiawith (A, B, C) and (A ′, B ′, C ′).
Then, the angular momentum of the primary can be written as

�X = A�X = A
(−ψ̇ sin ε sin θ − ε̇ cos θ

)
, (100)

�Y = B�Y = B
(−ψ̇ sin ε cos θ + ε̇ sin θ

)
, (101)

�Z = C�Z = C
(
ψ̇ cos ε + θ̇

)
. (102)

In the afore-explained approximation, its rate becomes

�̇X ≈ A�Z�Y , (103)

�̇Y ≈ −B�Z�X , (104)

�̇Z = C�̇Z . (105)

Similar formulae will be valid for the secondary.
The rate of the angular momentum,

�̇ = �̇ − �̇ = �̇ −
(

∂�

∂a

da

dt
+ ∂�

∂e

de

dt
+ ∂�

∂i

di

dt
+ ∂�

∂�

dω

dt

)
(106)

will, owing to Eqs. (65), (72–77), and (87–88), be equal to

�̇X = �Y�Z − �Z�Y − sin �̄ cot i
∂V1
∂�̄

+ cos �̄
∂V1
∂i

+ sin �̄

sin i

∂V1
∂ω

, (107)

�̇Y = �Z�X − �X�Z + cos �̄ cot i
∂V1
∂�̄

+ sin �̄
∂V1
∂i

− cos �̄

sin i

∂V1
∂ω

, (108)
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�̇Z = �X�Y − �Y�X + ∂V1
∂�̄

. (109)

Naturally, the evolution rate of � has a form analogous to that of � ′, Eqs. (90–92). Inserting
the exact expressions (100–102) and the approximate expressions (103–105) in Eqs. (107–
109), we exclude the components of the angular momentum, to be left with the components
of the angular velocity only:

�X ≈ 1

(C − A + B)�Z

(
− cos �̄ cot i

∂V1
∂�̄

− sin �̄
∂V1
∂i

+ cos �̄

sin i

∂V1
∂ω

)
, (110)

�Y ≈ 1

(C + A − B)�Z

(
− sin �̄ cot i

∂V1
∂�̄

+ cos �̄
∂V1
∂i

+ sin �̄

sin i

∂V1
∂ω

)
, (111)

�̇Z ≈ 1

C

∂V1
∂�̄

, (112)

with �Z ≈ θ̇ . Similarly, for the secondary we have

� ′
X ≈ 1

(C ′ − A ′ + B ′)� ′
Z

(
− cos �̄ ′ cot i ′ ∂V1

∂�̄ ′ − sin �̄ ′ ∂V1
∂i ′ + cos �̄ ′

sin i ′
∂V1
∂ω ′

)
, (113)

� ′
Y ≈ 1

(C ′ + A ′ − B ′)� ′
Z

(
− sin �̄ ′ cot i ′ ∂V1

∂�̄ ′ + cos �̄ ′ ∂V1
∂i ′ + sin �̄ ′

sin i ′
∂V1
∂ω ′

)
, (114)

�̇ ′
Z ≈ 1

C ′
∂V1
∂�̄ ′ . (115)

We can now rewrite the equations of motion (78–83) where �X and �Z are substituted by
their expressions (110,111). Furthermore, we make the approximations C � (B − A) and
�Z ≈ θ̇ and we replace �̄ with (� − θ). We get

da

dt
= 2

na

∂R
∂M , (116)

de

dt
= 1 − e2

na2e

∂R
∂M − (1 − e2)1/2

na2e

(
∂R
∂ω

+ ∂R
∂ω ′

)
, (117)

di

dt
= β

C θ̇ sin i

(
∂R
∂ω

− cos i
∂R
∂�

)
− 1

na2(1 − e2)1/2 sin i

(
∂R
∂�

− cos i
∂R
∂ω

)

− sin(ω − ω ′)
na2(1 − e2)1/2

∂R
∂i ′ − cos(ω − ω ′)

na2(1 − e2)1/2 sin i ′
(

∂R
∂� ′ − cos i ′ ∂R

∂ω ′
)

, (118)

dM
dt

= n − 2

na

∂R
∂a

− 1 − e2

na2e

∂R
∂e

, (119)

dω

dt
= − β

C θ̇ sin i

∂R
∂i

+ (1 − e2)1/2

na2e

∂R
∂e

− cos i

na2(1 − e2)1/2 sin i

∂R
∂i

− cos i cos(ω − ω ′)
na2(1 − e2)1/2 sin i

∂R
∂i ′ − cos i sin(ω − ω ′)

na2(1 − e2)1/2 sin i sin i ′
(
cos i ′ ∂R

∂ω ′ − ∂R
∂� ′

)
, (120)

dω

dt
= β cos i

C θ̇ sin i

∂R
∂i

+ β cos ε

C θ̇ sin ε

(
sin� cot i

∂R
∂�

− cos�
∂R
∂i

− sin�

sin i

∂R
∂ω

)

+ 1

na2(1 − e2)1/2 sin i

∂R
∂i

+ cos(ω ′ − ω)

na2(1 − e2)1/2 sin i

∂R
∂i ′ + sin(ω − ω ′)

na2(1 − e2)1/2 sin i sin i ′
(
cos i ′ ∂R

∂ω ′ − ∂R
∂� ′

)
. (121)

To close the system, we have to add the equations

dε

dt
= − β

C θ̇

(
cos� cot i

∂R
∂�

+ sin�
∂R
∂i

− cos�

sin i

∂R
∂ω

)
, (122)
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d2θ

dt2
= − β

C

∂R
∂�

. (123)

Be mindful that in Eq. (121) we employed the relation �Z − θ̇ = ψ̇ cos ε = − (�X sin θ +
�Y cos θ) cot ε, while in Eq. (122) the relation ε̇ = −�X cos θ +�y sin θ was used. Besides,
we would emphasise that Eqs. (116–123) have been obtained under the gyroscopic approxi-
mation; for that reason, it would be illegitimate to consider the limit of θ̇ −→ 0. Therefore,
the presence of θ̇ in the denominator in Eqs. (118) and (120–121) produces no singularity. In
the cases where the gyroscopic approximation is invalid, one has to rely on the equations of
motion (78–83) instead.

2.9 Comparison with Kaula (1964)

In his 1964 paper, Kaula was mainly interested in the evolution of the semimajor axis, the
eccentricity and the inclination. The derivation of the equations (38) in Kaula (1964) should
thus only be comparedwith our formulae (116), (117) and (118). Although the evolution rates
of a and e are identical in both approaches up to the definition of the disturbing function (see
Sect. 3.2), the two expressions of the time derivative of the inclination i display important
dissimilarities. This difference of behaviour between (a, e), on the one hand, and i , on the
other, is due to the fact that only i is affected by a rotation of the reference frame. Let us
recall that in Kaula (1964) elliptical elements are defined with respect to a fixed reference
frame coinciding with the primary’s equator at the time when the equations of motion are
evaluated, whereas our set of Eqs. (116–121) is written in the coprecessing frame of the
primary. Therefore, Eq. (118) contains an inertial force leading to a term in 1/(C θ̇ ) which
is absent in Kaula (1964, eqn 38). But these two equations have also distinct dependencies
with respect to the primed Keplerian elements. In fact, Kaula erroneously assumed that
the planetary and satellite contributions in di/dt could simply be summed up. Within our
formalism, this naive (and wrong) assumption is equivalent to omission of the rotation T�� ′
in Eqs. (29) and (30). Under this omission, the components of both forces (−∂V1/∂ r and
−∂V1/∂ r ′) would have been illegitimately summed up, ignoring the fact that they were
written in different coordinate systems: by construction, ∂V1/∂ r is expressed in the primary’s
frame, while ∂V1/∂ r ′ is expressed in the secondary’s.

3 Tidal potential energy

3.1 General expression

Within the Darwin–Kaula theory (Kaula 1964; Efroimsky 2012; Efroimsky and Makarov
2013), it is taken into account that in the general case the secondary body “feels” the tides
which may be generated in the primary not only by the secondary itself but also by some
other perturber located in r ∗. Then, in an arbitrary exterior point r (which is implied to be the
position of the secondary), the tidally deformed planet generates an additional tidal potential
U (r, r ∗), both vectors r and r ∗ being planetocentric and parametrised by their Keplerian
elements (a, e, i,M, ω,�) and (a∗, e∗, i∗,M∗, ω∗,�∗), respectively. In a situation where
the secondary coincides with the perturber (and, thereby, is “feeling” the tides it itself is
causing in the primary), the potential of the secondary in this field is equal to the value of
U (r, r ∗) taken for r ∗ = r . We, however, shall also need the gradient of the potential. To
calculate it, we start out from a general expression with r ∗ �= r , then differentiate with
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respect to r , and only thereafter set r ∗ and r equal. Hence, the tidal force (expressed in the
inertial frame) acting on the perturber due to the distortion of the primary is

FT = − M ′ � ∂U (r, r ∗)
∂ r

∣∣∣
r ∗=r

. (124)

Likewise, the tidally deformed secondary generates the additional tidal potential
U ′(− r ′, r �), where − r ′ is pointing from the centre of mass of the secondary to that
of the primary, while r � is pointing from the centre of mass of the secondary to that of the
fictitious perturber to be identified with the primary body, both vectors being expressed in
the body-fixed frame of the secondary. Accordingly, the tidal force (expressed in the inertial
frame) acting on the primary due to the tidal distortion of the secondary is 7

F ′
T = − M � ′ ∂U ′(− r ′, r �)

∂(−r ′)

∣∣∣
r �=−r ′ = M � ′ ∂U ′(− r ′, − r �)

∂ r ′
∣∣∣
r �=r ′ . (125)

We endow this forcewith a prime, because it emerges owing to the distortion of the secondary.
F0 being the Newtonian force (written in the inertial frame), the equations of the orbital

motion in the inertial frame are: 8

M ′ ρ̈ ′ = − F0 + FT − F ′
T, (126)

M ρ̈ = F0 + F ′
T − FT. (127)

Together, they render:

M M ′

M + M ′
(
ρ̈ ′ − ρ̈

) = − F0 + FT − F
′
T

= − G M ′ M
| ρ ′ − ρ |3

(
ρ ′ − ρ

) + FT − F
′
T (128)

or, equivalently:

(
ρ̈ ′ − ρ̈

)+ G M + M ′
|ρ ′ − ρ|3

(
ρ ′ − ρ

)

= M + M ′
M M ′

(
FT − F ′

T
)

= − M + M ′
M M ′

[
M ′� ∂U (r, r ∗)

∂ r

∣∣∣
r ∗=r

+ M � ′ ∂U ′(− r ′, − r �)

∂ r ′
∣∣∣
r �=r ′

]
, (129)

where we employed expressions (124) and (125). Recall that the vectors r and r ′ are defined
in corotating frames and are related to the inertial vector ρ ′ − ρ via formulae (5).

The contributions from the two partners enter our expression (129) in a symmetricmanner,
despite the negative signs of the arguments in the second term on the right-hand side. The
easiest way to understand the origin of these negative signs is to imagine a situation where
both partners are non-rotating (i.e. maintain a constant orientation with respect to an inertial

7 Deriving the right-hand side expression of Eq. (125), we substituted r � with−r �. This change is acceptable
because r � does not show up in the final answer anyway—after the differentiation, r � must be set equal to
r ′.
8 Up to notation, our Eqs. (126–127) agree with equations (97) in Ferraz-Mello et al. (2008). The negative
signs of the arguments in the second term in our Eq. (125) correspond to the π -rotation in equation (99) in
Ferraz-Mello et al. (2008).
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frame). In this case, both rotation matrices in the definition (5) of r and r ′ can be chosen
equal to the unity matrix, and we simply have r = r ′ = ρ ′ − ρ. The fact that both
these vectors point from the primary to the secondary explains the difference between the
arguments’ signs in the two gradients in (129).

Let us nowwrite Eq. (129) in the corotating frame of the primary, i.e. with ρ −ρ ′ replaced
by � r . Successive differentiations of the rotation matrix � with respect to time produce the
classical inertial forces:

r̈ + G(M + M ′)
r3

r = −M + M ′

M M ′

[
M ′ ∂U (r, r ∗)

∂ r

∣∣∣
r ∗=r

+ M T�� ′ ∂U ′(− r ′, − r �)

∂ r ′
∣∣∣
r �=r ′

]

−� × (� × r) − 2� × ṙ − �̇ × r. (130)

A direct comparison with Eq. (29) shows that the total tidal potential energy of the system is

V1 = M ′ U (r, r ∗)
∣∣∣
r ∗=r

+ M U ′(− r ′, − r �)

∣∣∣
r �=r ′ , (131)

and that the disturbing function, which should be inserted in the Lagrange- or Delaunay-type
planetary equations, is related to the physical potential energy viaR = − V1/β. This gives
us:

R = − M + M ′

M M ′
[
M ′ U (r, r ∗)

∣∣∣
r ∗=r

+ M U ′(− r ′, − r �)

∣∣∣
r �=r ′

]
, (132)

where it is implied that in the planetary equations the differentiation of R should be carried
out before r ∗ (resp. r �) is set equal to r (resp. r ′).

3.2 Comparison with Kaula (1964)

In his developments, however, Kaula (1964) used the approximation

Kaula (1964) : R ≈ −
[
U (r, r ∗)

∣∣∣
r ∗=r

+ M

M ′ U
′(− r ′, − r �)

∣∣∣
r �=r ′

]
.

(133)

Thence, Kaula’s expressions for the orbital elements’ tidal rates acquired a redundant factor
of M/(M + M ′). Tolerable for the Earth–Moon system (which Kaula was having in mind),
this approximation is unacceptable for a binary comprising partners of comparable masses.
So, Kaula’s expressions for the rates must be multiplied by (M + M ′)/M , to compensate
for that oversight. 9

This redundant factor of M/(M + M ′) has become a source of inaccuracy in many
publications. At the same time, the overall factor is given correctly in some works, such as
Ferraz-Mello et al. (2003) or Ferraz-Mello et al. (2008).

9 Aside from that, in the general case it is necessary to take into account the tidally-generated change in the
orientation of the equator. As we shall see below, this will yield an additional term in the expression for di/dt ,
see Eq. (162).
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3.3 Expansion of the additional tidal potential

Let the perturber reside in the point r ∗ relative to the centre of a deformable near-spherical
primary. In an exterior point r , the tidally deformed body generates the additional tidal
potential calculated by Kaula (1964) 10

U (r, r ∗) = −
∞∑
l=2

(
R

a

)l+1 G M ′

a∗

(
R

a∗

)l l∑
m=0

(l − m)!
(l + m)!

(2 − δ0m)

l∑
p=0

Flmp(i
∗)

∞∑
q=−∞

Glpq(e
∗)

l∑
h=0

Flmh(i)
∞∑

j=−∞
Glhj (e) kl(ωlmpq)

cos
[(

v∗
lmpq − mθ∗)− (

vlmhj − mθ
)− εl(ωlmpq)

]
, (134)

where G = 6.674 × 10−11 m3 kg−1 s−2 is Newton’s gravity constant. As ever, the orbital
elements with and without asterisk pertain to r∗ and r , correspondingly, while

v ∗
lmpq ≡ (l − 2p) ω ∗ + (l − 2p + q)M ∗ + m � ∗,

vlmhj ≡ (l − 2h) ω + (l − 2h + j)M + m �. (135)

In the expressions (134–135), we assume that, generally, the perturber located at r ∗ does
not coincide with the secondary residing in r . In the special case, when they are the same
body, we must first carry out the differentiation over r and only then set r ∗ = r .

Both the dynamical Love numbers kl and the phase lags εl are functions of the tidal Fourier
modes ωlmpq = (l − 2p) ω̇ ∗ + (l − 2p + q) n ∗ + m (�̇ ∗ − θ̇ ∗ ). After the secondary
and the fictitious perturber are set to be the same body, and r ∗ is set equal to r , the modes
become11

ωlmpq = (l − 2p) ω̇ + (l − 2p + q) n + m (�̇ − θ̇ ) ≈ (l − 2p + q) n − m θ̇ .

(136)

Interestingly, Kaula himself never addressed the Fourier modes in his works, probably
(mis-)assuming that both the dynamical Love numbers kl and the phase lags εl are fre-
quency independent. The later development of geophysics demonstrated that the forms of
the frequency dependencies of kl and εlmpq play an important role in many situations. Hence,
there is the necessity to introduce the Fourier modes ωlmpq (Efroimsky 2012).

For a reader-friendly introduction to the Kaula theory, see Efroimsky andMakarov (2013).
It can be understood from equation (15) in that paper that the tidal modes’ absolute values,

χlmpq ≡ | ωlmpq | , (137)

are the physical forcing frequencies excited in the tidally deformed body.

10 A partial sum of this series, with l, |q|, | j | ≤ 2 and p = h = 0, was developed by Darwin (1879). In
modern notation, his derivation is discussed by Ferraz-Mello et al. (2008). Mind that in Ibid. The convention
on the meaning of the notations r and r ∗ is opposite to ours.
11 While in Sect. 2.6 wewere using the osculatingmeanmotion (defined in a standard way on the line between
equations 71 and 72), here and hereafter we are using the anomalistic mean motion defined as in Table 1.
We assume that the two are close, and therefore we interchangeably use the same notation n for both. The
legitimacy of this is discussed in Efroimsky and Makarov (2014, Appendix B).
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4 Tidal evolution of the semimajor axis

4.1 The general formula

In the Lagrange-type planetary equation for the semimajor axis rate (116), we should insert
formula (132) and should perform differentiation over the mean motion. We further average
the result over the mean anomaly and over the argument of pericentre as in Kaula (1964).
This work, carried out in Appendix “C”, leads to:

da

dt
= − 2 a n

∞∑
l=2

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m )

l∑
p=0

∞∑
q=−∞

G 2
lpq (e) (l − 2p + q)

⎡
⎣
(
R

a

)2l+1
M ′
M

F 2
lmp(i) Kl (ωlmpq ) +

(
R ′
a

)2l+1
M

M ′ F 2
lmp(i

′) K ′
l (ω ′

lmpq )

⎤
⎦ , (138)

where we employed a shortened notation for the quality functions of the primary:

Kl(ωlmpq) ≡ kl(ωlmpq) sin εl(ωlmpq) , (139)

the Fourier tidal modes excited in the primary being

ωlmpq ≡ (l − 2p)ω̇ + (l − 2p + q)n + m (�̇ − θ̇ ) ≈ (l − 2p + q)n − m θ̇ .

(140)

Likewise, for the quality functions of the secondary we introduced the notation

K ′
l (ω

′
lmpq) ≡ k ′

l (ω
′
lmpq) sin ε ′

l (ω
′
lmpq) , (141)

the Fourier tidal modes excited in the secondary being

ω ′
lmpq ≡ (l − 2p)ω̇ ′ + (l − 2p + q)n + m (�̇ ′ − θ̇ ′ ) ≈ (l − 2p + q)n − m θ̇ ′ .

(142)

Here �, i , ω are the Euler angles of the orbit on the primary’s equator, while � ′, i ′, ω ′ are
those on the secondary’s. The rotation rates of the primary and secondary are θ̇ and θ̇ ′.

Our expression (138) differs from its counterpart in Kaula (1964) by the factor of (M +
M ′)/M . The reason for this is explained above, in Sect. 3.2.

Finally, we would mention that our expression (138) behaves well when M ′ → 0 or
M → 0, because Kl = O(M 2). This can be proven via formulae (31), (40b) and (42) from
Efroimsky (2015).

4.2 The leading inputs

By the formulae derived in “Appendix G”, the quadrupole part of the major semiaxis’ rate is

(
da

dt

)

l=2
= −3 a n

(
1 − 5 e2 + 63

8
e4
)[

M ′
M

(
R

a

)5
K2(2n − 2θ̇ ) + M

M ′
(
R ′
a

)5
K ′
2(2n − 2θ̇ ′)

]

− 9

4
a n e2

(
1 + 9

4
e2
)[

M ′
M

(
R

a

)5
K2(n) + M

M ′
(
R ′
a

)5
K ′
2(n)

]

− 3

8
a n e2

(
1 − 1

4
e2
)[

M ′
M

(
R

a

)5
K2(n − 2θ̇ ) + M

M ′
(
R ′
a

)5
K ′
2(n − 2θ̇ ′)

]
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− 441

8
a n e2

(
1 − 123

28
e2
)[

M ′
M

(
R

a

)5
K2(3n − 2θ̇ ) + M

M ′
(
R ′
a

)5
K ′
2(3n − 2θ̇ ′)

]

− 867

2
a n e4

[
M ′
M

(
R

a

)5
K2(4n − 2θ̇ ) + M

M ′
(
R ′
a

)5
K ′
2(4n − 2θ̇ ′)

]

− 81

8
a n e4

[
M ′
M

(
R

a

)5
K2(2n) + M

M ′
(
R ′
a

)5
K ′
2(2n)

]

+ O(i 2) + O(i ′ 2) + O(e 6) . (143)

This long formula can obviously be split into two parts:

(
da

dt

)

l=2
=

(
da

dt

)(prim)

l=2
+

(
da

dt

)(sec)

l=2
. (144)

where the first part is due to the tides in the primary and comprises the terms with K2(ωlmpq).
The second part is due to the tides in the secondary and comprises the terms with K ′

2(ω
′
lmpq).

4.3 The case when the spin of neither partner is synchronised

If none of the partners is synchronised and both i and i ′ are small, the leading terms are
semidiurnal, i.e. those with {lmpq} = {2200}. Approximated with these terms, the major
semiaxis’ rate is:

(
da

dt

)

l=2
= − 3 n a

⎡
⎣
(
R

a

)5
M ′

M
K2(ω2200) +

(
R ′

a

)5
M

M ′ K ′
2(ω

′
2200)

⎤
⎦

+ O(i 2) + O(i ′ 2) + O(e 2). (145)

To compare the inputs, write the above as

da

dt
≈ − 3 n a

M ′

M

(
R

a

)5 [
K2(ω2200) +

(
R ′

R

)5 ( M

M ′

)2

K ′
2(ω

′
2200)

]
(146a)

= − 3 n a
M ′

M

(
R

a

)5

K2(ω2200)

[
1 + ρ ′ −2 R ′ −1

ρ −2 R−1

K ′
2(ω

′
2200)

K2(ω2200)

]
, (146b)

ρ and ρ ′ being the mean densities of the primary and the secondary, correspondingly.
When the role of the secondary is negligible, we are left with

da

dt
= − 3 n a

M ′

M

(
R

a

)5

K2(ω2200) + O(i 2) + O(e 2) . (147)

In the case when the spin is faster than orbiting, the Fourier mode ω2200 = 2 (n − θ̇ ) is
negative, and so is the phase lag 12 ε2200 ≡ ε2(ω2200). Then, the above expression becomes:

da

dt
≈ 3 n a

M ′

M

(
R

a

)5
k2
Q2

, (148)

12 Recall that the lag εl is an odd function of the Fourier mode ωlmpq .
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where Q2 is the quadrupole tidal quality factor defined through

1

Q2
= | sin ε2(ω2200) | . (149)

We reiterate that in expression (148) the quality function k2/Q2, mass M and radius R are
those of the partner tides wherein are dominant (the primary). The mass M ′ is that of the
secondary (the tides wherein we neglected in Eqs. 147–148).

Approximations (146–147) contain only one tidal mode, the semidiurnal one. So this
approximation looks the same, no matter what the frequency dependence K2(ω2mpq). For
this reason, our Eq. (147) agrees with the corresponding formulae by both Hut (1981, eqn 9)
and Emelyanov (2018, eqn 18) who used the CTL (constant time lag) model. It also coincides
with equation (A1) from Lainey et al. (2012) who relied on the CPL (constant phase lag)
tidal model.

4.4 The case when the primary is not synchronised, while the secondary is

If the primary is not synchronised (θ̇ �= n), the part (da/dt)(prim)

l=2 is approximated with
formulae (147–148). If the secondary is synchronised (θ̇ ′ = n), the terms with K ′

2(2n−2θ̇ ′)
and K ′

2(n − θ̇ ′) in Eq. (143) get nullified. In their absence, we are left with

(
da

dt

)(sec)

l=2
= − 57 a n e2

(
R ′

a

)5
M

M ′ K ′
2(n) + O(i ′2) + O(e4) , (150)

where we took into account that K ′
2 is an odd function.

As expression (150) contains only one tidal mode, n, the form of this expression is inde-
pendent of the shape of the frequency dependence K ′

2(ω2mpq). So our answer coincides with
equation (28) from Emelyanov (2018) and also with equation (9) from Hut (1981) if we
set � = n in Hut’s equation. Our answer, however, differs from the first equation (A2) in
the paper by Lainey et al. (2012), which contains an erroneous factor of − 21 instead of
− 57. The same oversight is contained in equation (1) in Barnes et al. (2008) and in the first
equation (40) in Shoji and Kurita (2014).

Together, the tides in both the primary and the secondary generate the rate da/dt obtained
by summing up the rates (147) and (150):

da

dt
≈ − 3 n a

M ′

M

(
R

a

)5 [
K2(ω2200) + 19 e2

(
R ′

R

)5 ( M

M ′

)2

K ′
2(n)

]

(151a)

= − 3 n a
M ′

M

(
R

a

)5

K2(ω2200)

[
1 + 19 e2

ρ ′ −2 R ′ −1

ρ −2 R−1

K ′
2(n)

K2(ω2200)

]
.

(151b)

The dissipation rate in a synchronised satellite (and the corresponding input in the ele-
ments’ rates) may be considerably amplified by longitudinal librations, when the satellite has
a pronounced dynamical triaxiality (Frouard and Efroimsky 2017a; Efroimsky 2018).
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4.5 Beyond quadrupole

Bills et al. (2005) argued that to attain a high precision in the modelling of Phobos’ tidal
dynamics the knowledge of k3 and perhaps even k4 may be needed. Later, Taylor andMargot
(2010) suggested that for very close asteroidal binaries the degrees l up to 6 may matter.

In the quadrupole (l = 2) approximation (143), the smallest terms taken into account are
of order (R/a)5 e4. Now, if we choose to go beyond the quadrupole approximation and take
into account the l = 3 terms, the largest of those will be of order (R/a)7 e0 i0 = (R/a)7.
Such are the terms with {lmpq} = {3300} and {3110}. We may neglect them insofar as

(R/a)7 � (R/a)5 e4 ⇐⇒ R/a � e2 , (152)

a somewhat stringent condition not necessarily obeyed by all close-in binaries.
At the same time, had we kept in expression (143) only the terms up to (R/a)5e2, the

neglect of the l = 3 would be justified under a more relaxed condition

(R/a)7 � (R/a)5 e2 ⇐⇒ R/a � e . (153)

4.6 Final caveat

In both Sects. 4.3 and 4.4, we passingly dropped the terms containing e4 K2(2n) and
e4 K ′

2(2n), see the last line in Eq. (143). At first glance, this is legitimate when the eccentric-
ity is not too high. In reality, the issue is subtle owing to the extremely sharp shapes of the
frequency dependencies of both K2(2n) and K ′

2(2n). When the peak frequency happens to
be equal or very close to 2n, these terms may become prominent, even for modest values of
e.

5 Tidal evolution of the eccentricity

The planetary equation for the eccentricity evolution is given in Eq. (117). The insertion
of expressions (132), (185a) and (187b) in this equation and the removal of the short- and
long-period oscillating terms give us

de

dt
= − 1 − e2

e
n

1

M M ′
∞∑
l=2

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m )

l∑
p=0

∞∑
q=−∞

G 2
lpq (e) (l − 2p + q)

⎡
⎣
(
R

a

)2l+1

M ′ 2 F 2
lmp(i) Kl (ωlmpq ) +

(
R ′
a

)2l+1

M2 F 2
lmp(i

′) K ′
l (ω ′

lmpq )

⎤
⎦

+ (1 − e2)1/2

e
n

1

M M ′
∞∑
l=2

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

∞∑
q=−∞

G 2
lpq (e) (l − 2p)

⎡
⎣
(
R

a

)2l+1

M ′ 2 F 2
lmp(i) Kl (ωlmpq ) +

(
R ′
a

)2l+1

M2 F 2
lmp(i

′) K ′
l (ω ′

lmpq )

⎤
⎦

, (154)

where we used the shortened notation (139) and (141).
As expected (see Sect. 3.2 above), our expression (154) differs from the corresponding

formula in Kaula (1964, eqn 38) by a factor of (M + M ′)/M .
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The quadrupole part of expression (154) reads (see “Appendix H”):

(
de

dt

)

l=2
=

(
de

dt

)(prim)

l=2
+

(
de

dt

)(sec)

l=2

= − n e
M ′

M

(
R

a

)5 [
−
(
1 − e2

4

)
3

16
K2(n − 2θ̇ )

−3

4

(
1 − 21

4
e2
)

K2(2n − 2θ̇ )

+147

16

(
1 − 179

28
e2
)

K2(3n − 2θ̇ ) + 867

8
e2 K2(4n − 2θ̇ )

+ 9

8

(
1 + 5

4
e2
)

K2(n) + 81

16
e2 K2(2n)

]

− n e
M

M ′

(
R ′

a

)5 [
−
(
1 − e2

4

)
3

16
K ′
2(n − 2θ̇ ′)

− 3

4

(
1 − 21

4
e2
)

K ′
2(2n − 2θ̇ ′)

+147

16

(
1 − 179

28
e2
)

K ′
2(3n − 2θ̇ ′) + 867

8
e2 K ′

2(4n − 2θ̇ ′)

+ 9

8

(
1 + 5

4
e2
)

K ′
2(n) + 81

16
e2 K ′

2(2n)

]

+ O(e5) + O(i2) + O(i ′ 2) , (155)

where the contribution (de/dt)(prim) comprises all the primary-generated terms (those with
K2), while (de/dt)(sec) comprises the secondary-generated terms (those with K ′

2).

5.1 The case when neither partner is synchronised

When the spin of neither body is synchronised, while both inclinations are small, the leading
terms in the above equation are those linear in e :

(
de

dt

)

l=2
= − n e

M ′

M

(
R

a

)5 [
− 3

16
K2(n − 2θ̇ ) − 3

4
K2(2n − 2θ̇ )

+ 147

16
K2(3n − 2θ̇ ) + 9

8
K2(n)

]

− n e
M

M ′

(
R ′

a

)5 [
− 3

16
K ′
2(n − 2θ̇ ′) − 3

4
K ′
2(2n − 2θ̇ ′)

+ 147

16
K ′
2(3n − 2θ̇ ′) + 9

8
K ′
2(n)

]

+ O(e2) + O(i2) + O(i ′ 2) , (156)
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Specifically, when both partners satisfy the constant time lag (CTL) model (i.e. when both
K2 and K ′

2 are linear in the tidal mode), the above expression becomes

(CTL)
(
de

dt

)

l=2

= 3

4
n e

⎡
⎣ M ′

M

(
R

a

)5
11 θ̇ − 18 n

θ̇ − n
K2(2n − 2θ̇ )

+ M

M ′

(
R ′

a

)5
11 θ̇ ′ − 18 n

θ̇ ′ − n
K ′
2(2n − 2θ̇ ′)

⎤
⎦

+ O(e2) + O(i2) + O(i ′ 2) . (157)

This agrees with equations (10) from Hut (1981) and (19) from Emelyanov (2018). Apart
from the aforementioned factor of (M+M ′)/M , this also agreeswith the first line of equation
(46) from Kaula (1964). (On the second line, Kaula lost the factor of 4 in the denominator.)

When both partners satisfy the constant phase lag (CPL) model (so both K2 and K ′
2 are

constants) and both θ̇ and θ̇ ′ exceed 3n/2, we have:

K2(n) = − K2(n − 2θ̇ ) = − K2(2n − 2θ̇ ) = − K2(3n − 2θ̇ ) = k2/Q

and

K ′
2(n) = − K ′

2(n − 2θ̇ ′) = − K ′
2(2n − 2θ̇ ′) = − K ′

2(3n − 2θ̇ ′) = k ′
2/Q

′ ,

wherefrom

(CPL)
(
de

dt

)

l=2
= 57

8
n e

⎡
⎣ M ′

M

(
R

a

)5
k2
Q

+ M

M ′

(
R ′

a

)5
k ′
2

Q ′

⎤
⎦

+ O(e2) + O(i2) + O(i ′ 2) . (158)

This is in agreement with the second expression in equation (A1) from Lainey et al. (2012),
but differs from the corresponding formulae in some other works.

5.2 The case when the primary is not synchronised, while the secondary is

If the primary is not synchronised (θ̇ �= n), the part (de/dt)(prim)

l=2 is still approximated
by the no-asterisk terms from the expressions above. If at the same time the secondary is
synchronised (θ̇ ′ = n), then in formula (156) the term with K ′

2(2n − 2θ̇ ′) must be set zero.
Thence,

(
de

dt

)(sec)

l=2
= − n e

M

M ′

(
R ′

a

)5 [
− 3

16
K ′
2(−n) + 147

16
K ′
2(n) + 9

8
K ′
2(n)

]

+ O(e2) + O(i ′ 2)

= − 21

2
n e

M

M ′

(
R ′

a

)5

K ′
2(n) + O(e2) + O(i ′ 2) , (159)

where we took into consideration that K ′
2 is an odd function.
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Containing only one frequency, expression (159) bears no dependence on the shape of
the frequency dependence of K ′

2. So it coincides with the corresponding expressions from
Emelyanov (2018, eqn 29) and Hut (1981, eqn 10) both of whom employed the CTL model.
It also is in agreement with equation (A2) by Lainey et al. (2012) who used the CPL model.

5.3 Beyond quadrupole

Under what condition may the degree-3 terms be ignored in the expression for de/dt?
In the quadrupole (l = 2) approximation (155), the smallest terms taken into account

are of order (R/a)5 e3. Had it been our intention to include there also the l = 3 terms,
the largest of those would be the ones with {lmpq} = 3300 and 3110. Being of order
(R/a)7 e1 i0 = (R/a)7 e, they may be ignored if

(R/a)7 e � (R/a)5 e3 ⇐⇒ R/a � e . (160)

Had we kept in expression (155) only the terms up to (R/a)5e, the neglect of the l = 3
would be justified in all realistic situations:

(R/a)7 e � (R/a)5 e ⇐⇒ R/a � 1 . (161)

6 Tidal evolution of the inclination

In the Lagrange-type equation for the inclination rate (118), we should insert expression
(132), perform the differentiation over ω, ω ′, �, � ′ and i ′ and then extract the secular terms
by averaging over M, ω and ω ′ to be consistent with Kaula (1964) who also removed the
oscillating part. This work is carried out in Appendices “D”, “E”, and “J”, the result being

di

dt
= − n√

1 − e2
M ′

M

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

(l − 2p) cos i − m

sin i
F 2
lmp(i)

∞∑
q=−∞

G 2
lpq(e) Kl(ωlmpq)

+ β n2a2

C θ̇

M ′

M

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

m cos i − (l − 2p)

sin i
F 2
lmp(i)

∞∑
q=−∞

G 2
lpq(e) Kl(ωlmpq) . (162)

Apart from the multiplier of (M + M ′)/M discussed previously (see Sect. 3.2), the first
term of the above expression coincides with the first term of the expression (38) in Kaula
(1964), while the second term in our formula differs from that in Kaula (1964, eqn 38)
considerably. The second term in Kaula (1964, eqn 38) is the equivalent of the first with
primed Keplerian elements. However, as explained in Sect. 3.2, the rotation matrix T�� ′
from the secondary’s frame to the primary’s frame breaks the symmetry between primed
and unprimed Keplerian elements in di/dt . According to Eq. (118), the primed equivalent
of the first line of Eq. (162) is multiplied by the slow oscillating cos(ω − ω ′) and vanishes
once averaged over the argument of pericentresω andω ′ (see the non-averaged expression in
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“Appendix J”).Moreover, in our derivation of the inclination rate, the second line of Eq. (162)
is an inertial force due to the non-Galilean nature of the coprecessing frame of the primary.
More explicitly, this term expresses the variation of the orbital inclination with respect to the
primary’s equator induced by the motion of the primary’s spin axis.

We would emphasise that the apparent lack of symmetry between the two components
in the expression of di/dt is due to the fact that the inclination i is reckoned from the
primary’s equatorial plane. Unlike a and e which have the same definition in both body
frames and whose rates are symmetric in primed and unprimed variables, here the symmetry
is recovered by writing the time derivatives of the orbital inclination with respect to the
secondary’s equatorial plane, namely

di ′

dt
= − n√

1 − e2
M

M ′
∞∑
l=2

(
R ′

a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

(l − 2p) cos i ′ − m

sin i ′ F 2
lmp(i

′)
∞∑

q=−∞
G 2

lpq(e) K
′
l (ω

′
lmpq)

+ β n2a2

C ′θ̇ ′
M

M ′
∞∑
l=2

(
R ′

a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

m cos i ′ − (l − 2p)

sin i ′ F 2
lmp(i

′)
∞∑

q=−∞
G 2

lpq(e) K
′
l (ω

′
lmpq) . (163)

In addition, it shall be reminded that neither the expression (162) for di/dt nor the expression
(163) for di ′/dt allows, by itself, to deduce the motion of the orbital plane with respect to
the inertial frame. For example, if the inclination rate di/dt happens to be zero, the orbit is
fastened to the primary’s equator, and its orientation in the inertial frame is then governed by
its longitude of the ascending node � and the primary’s Euler angles (ψ, ε). Reciprocally,
when di/dt is nonzero, the orbit can still remain at rest in the inertial frame, in which case the
apparent inclination evolution is only due to themotion of the primary’s spin axis. This would
have precisely been the situation if most of the total angular momentum of the system were
associated with the orbital motion. Nevertheless, as in Kaula (1964), we are not interested in
the motion of the orbit plane relative to the inertial frame. This is why the orientation of the
orbit is measured either in the primary’s or in the secondary’s frame. The presence of two
inclinations to represent the orientation of a single orbit plane might seem odd at first sight;
however, the angles i and i ′ can also be interpreted as the obliquities of the bodies relative
to the orbit.

In a situationwhere the orbital angularmomentum ismuch lower than the angularmomen-
tum of the primary’s spin, and where the dissipation in the perturber can be neglected,
our result coincides with that of Kaula (1964, eqn 38), up to the aforementioned factor of
(M + M ′)/M .

The quadrupole inputs of expression (162) read:

(
di

dt

)

l=2
= n sin i

M ′

M

(
R

a

)5

[
243

64
(1 + �)e4K2(−2n − θ̇ ) + 27

16
e2
[
1 + � +

(
11

4
+ 9

4
�

)
e2
]
K2(−n − θ̇ )
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+3

4

[
1 + � +

(
7

2
+ 3�

)
e2 +

(
63

8
+ 6�

)
e4
]
K2(−θ̇ )

+ 3

16
e2
[
1 − � + 1

4
(1 + �) e2

]
K2(n − 2θ̇ )

+3

2
e2
[
1 + � +

(
49

16
+ 41

16
�

)
e2
]
K2(n − θ̇ ) + 3

4

[
1 − � −

(
9

2
− 5�

)
e2

+
(
23

4
− 63

8
�

)
e4
]
K2(2n − 2θ̇ )

−3

4

[
1 + � −

(
9

2
+ 5�

)
e2 +

(
11

16
+ 45

16
�

)
e4
]
K2(2n − θ̇ )

+147

16
e2
[
1 − � −

(
109

28
− 123

28
�

)
e2
]
K2(3n − 2θ̇ )

−147

16
e2
[
1 + � −

(
109

28
+ 123

28
�

]
e2
)
K2(3n − θ̇ ) + 867

16
(1 − �) e4K2(4n − 2θ̇ )

−867

16
(1 + �) e4K2(4n − θ̇ )

]

+ O(i3) + O(e6) , (164)

with � = β n a2/(C θ̇ ). For a very small eccentricity, a cruder approximation is acceptable

(
di

dt

)

l=2

= 3

4
n sin i

M ′

M

(
R

a

)5 [
(1 + �)K2(−θ̇ ) + (1 − �)K2(2n − 2θ̇ )

−(1 + �)K2(2n − θ̇ )

]
+ O(i3) + O(e2) . (165)

Without loss of precision, sin i may be changed to i in both Eqs. (164) and (165).
In many realistic situations, the inclination is stabilised in the sense that di/dt ∝ −i .

Specifically, it can be seen from Eq. (165) that at small eccentricities stabilisation is taking
place for a synchronous orbit (θ̇ = n), for the 2:1 spin-orbit resonance (θ̇ = 2n), and for
fast prograde rotation (θ̇ � n). For other values of the angular velocity, however, it is not
possible to determine the sign of di/dt which, generally, depends on the rheology and on the
value of the parameter �.

7 Tidal evolution of!,Ä andM0

Tidal evolution of ω, � and M0 can be described by the same tools.
Be mindful, though, that the rate of these angles contains an input due to the oblateness of

the primary (see, for example, Efroimsky 2005a). Therefore, even if a total rate is measured,
it will not be easy to single out the tidal input in it. Also, for dω/dt of a very close-in planet,
the relativistic correction may supersede the tidal effect, like in the case of Mercury.
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8 Conclusions

In this paper, we have revisited the theory of Kaula (1964) basing our calculation on a non-
canonical Hamiltonian formalism with constraint. We have written down the rates da/dt ,
de/dt and di/dt to order e4, inclusively. They differ from Kaula’s expressions which contain
a redundant factor of M/(M + M ′), with M and M ′ being the masses of the primary and
the secondary. Since Kaula was interested in the Earth–Moon system, this redundant factor
was close to unity and was unimportant. This omission, however, must be corrected when
Kaula’s theory is applied to a binary composed of partners of comparable masses.

We have pointed out that while it is legitimate to simply sum the primary’s and secondary’s
inputs in da/dt or de/dt , this is not the case for di/dt , so our expression for the inclination rate
di/dt differs from that of Kaula in two regards. First, in the expression for the primary’s di/dt
the contribution due to the dissipation in the secondary averages out completely, provided
the apsidal precession is uniform. Second, we have an additional term which emerges owing
to the conservation of the angular momentum: a change in the inclination of the orbit causes
a change of the primary’s plane of equator.

We have carried out our developments in the gyroscopic approximation (which implies
that the spin of a body is much faster than the evolution of the spin axis’ orientation). As a
by-product, our work also provides a full set of equations of motion, as it reads before the
said approximation is applied.
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Appendix

A Differential of the rotationmatrix � = T��′

Let �1(ϕ) and �3(ϕ) be the rotation matrices of angle ϕ around the first axis i = T(1, 0, 0)
and around the third one k = T(0, 0, 1), respectively:

�1(ϕ) =
⎡
⎣
1 0 0
0 cosϕ − sin ϕ

0 sin ϕ cosϕ

⎤
⎦ , �3(ϕ) =

⎡
⎣
cosϕ − sin ϕ 0
sin ϕ cosϕ 0
0 0 1

⎤
⎦ . (166)

The derivatives of these matrices read

d�1(ϕ) =
⎡
⎣
0 0 0
0 − sin ϕ − cosϕ

0 cosϕ − sin ϕ

⎤
⎦ dϕ , d�3(ϕ) =

⎡
⎣

− sin ϕ − cosϕ 0
cosϕ − sin ϕ 0
0 0 0

⎤
⎦ dϕ . (167)

A direct calculation gives

d�1(ϕ) T�1(ϕ) =
⎡
⎣
0 0 0
0 0 −1
0 1 0

⎤
⎦ dϕ , d�3(ϕ) T�3(ϕ) =

⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦ dϕ . (168)
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We introduce the hat operator which associates with any vector v = T(x, y, z) ∈ R
3 the

skew-symmetric matrix v̂ defined as

v̂ =
⎡
⎣

0 −z y
z 0 −x

−y x 0

⎤
⎦ . (169)

This skew-symmetric matrix is such that for any two vectors a, b ∈ R
3, their vector product

a × b reads âb. From Eq (168), one notices that

d�1(ϕ) T�1(ϕ) = î dϕ , d�3(ϕ) T�3(ϕ) = k̂ dϕ . (170)

Let us recall the definition of the rotation matrix �:

� = �3(�̄)�1(i)�3(ω − ω ′)�1(−i ′)�3(−�̄ ′) . (171)

Applying the rule (170), we get

d� = k̂ �3(�̄)�1(i)�3(ω − ω′)�1(−i ′)�− 3(−�̄′) d�̄

+�3(�̄) î �1(i)�3(ω − ω′)�1(−i ′)�3(−�̄′) di

+�3(�̄)�1(i) k̂ �3(ω − ω′)�1(−i ′)�3(−�̄′) d(ω − ω′)

−�3(�̄)�1(i)�3(ω − ω′) î �1(−i ′)�3(−�̄′) di ′

−�3(�̄)�1(i)�3(ω − ω′)�1(−i ′) k̂ �3(−�̄′) d�̄′ .

(172)

To simplify the result, we introduce the vectors i ′, K , K ′ defined as

i ′ = �3(ω − ω′) i , K = �1(−i) k , K ′ = �3(ω − ω′)�1(−i ′)k . (173)

The associated skew-symmetric matrices î
′
, K̂ and K̂

′
are given by

î
′ = �3(ω − ω′) î T�3(ω − ω′) , K̂ = �1(−i) k̂ T�1(−i),

K̂
′ = �3(ω − ω′)�1(−i ′)k̂ T�1(−i ′)T�3(ω − ω′).

(174)

A direct calculation shows that d�, defined as �1(−i)�3(−�̄) (d� T�) �3(�̄)�1(i), is
equal to

d� = K̂d�̄ + îdi + k̂d(ω − ω′) − î
′
di ′ − K̂

′
d�̄′ . (175)

B Equations of motion in terms of the Keplerian elements

Let �C/C ′ be the Jacobian ∂( p, r)/∂( p ′, r ′) describing the transition between the two
Cartesian coordinate systems and given by

�C/C ′ =
[
T�� ′ 0
0 T�� ′

]
. (176)

As shown by Eqs. (37) and (40) in the main text, the Hamiltonian equations for ( p, r) are

d

dt

(
p
r

)
=
[
0 −�d
�d 0

]
⎛
⎜⎜⎝

∂H
∂ p
∂H
∂ r

⎞
⎟⎟⎠+�C/C ′

[
0 −�d
�d 0

]
⎛
⎜⎜⎝

∂H
∂ p ′
∂H
∂ r ′

⎞
⎟⎟⎠ . (177)
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We shall precise that in our problem H bears not dependence on p ′, wherefore
∂H/∂ p ′ = 0. Now, let �K/C and �K ′/C ′ be the Jacobian matrices ∂(Y , y)/∂( p, r) and
∂(Y ′, y ′)/∂( p ′, r ′), respectively, where Y = (a, e, i) and y = (M, ω, �̄). These matri-
ces describe transitions to Keplerian (K) variables from the Cartesian (C) ones, hence the
notation. Applying the chain rule, we have

d

dt

(
Y
y

)
=�K/C

d

dt

(
p
r

)

=�K/C

[
0 −�d
�d 0

]
T�K/C

⎛
⎜⎜⎝

∂H
∂Y
∂H
∂ y

⎞
⎟⎟⎠+�K/C�C/C ′

[
0 −�d
�d 0

]
T�K ′/C ′

⎛
⎜⎜⎝

∂H
∂Y ′
∂H
∂ y ′

⎞
⎟⎟⎠ .

(178)

Then, we define the Poisson matrices 	 and 	 ′ as

	 ≡�K/C

[
0 −�d
�d 0

]
T�K/C , 	 ′ ≡�K ′/C ′

[
0 −�d
�d 0

]
T�K ′/C ′ , (179)

and introduce the total Jacobian matrix

� ≡ ∂(Y , y)
∂(Y ′, y ′)

= ∂(Y , y)
∂( p, r)

∂( p, r)
∂( p ′, r ′)

∂( p ′, r ′)
∂(Y ′, y ′)

= �K/C�C/C ′ (�K ′/C ′)−1 . (180)

Combined, Eqs. (178–180) render us

d

dt

(
Y
y

)
= 	

⎛
⎜⎜⎝

∂H
∂Y
∂H
∂ y

⎞
⎟⎟⎠+�	 ′

⎛
⎜⎜⎝

∂H
∂Y ′
∂H
∂ y ′

⎞
⎟⎟⎠ . (181)

C Differentiation ofRwith respect to themeanmotion

First, we differentiate U with respect to the mean motion M:

∂

∂M U (r, r∗) = −
∞∑
l=2

(
R

a

)l+1 G M ′
a∗

(
R

a∗
)l l∑

m=0

(l − m)!
(l + m)!

(2 − δ0m )

l∑
p=0

Flmp(i
∗)

∞∑
q=−∞

Glpq (e∗)

l∑
h=0

Flmh(i)
∞∑

j=−∞
Glhj (e) (l − 2h + j) kl sin

[(
v∗
lmpq − mθ∗)− (

vlmhj − mθ
)− εlmpq

]
.

(182)

After we set r and r∗ equal to one another (and drop the now-redundant asterisks), the secular
part of the above derivative will become

∂U

∂M =
∞∑
l=2

(
R

a

)2l+1 G M ′

a

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i)

∞∑
q=−∞

G 2
lpq(e) (l − 2p + q) kl sin εlmpq . (183)
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Similarly, the secular part of the derivative of the potential created by the tidally deformed
secondary, at the place where the primary resides, will read:

∂U ′

∂M =
∞∑
l=2

(
R ′

a

)2l+1
G M

a

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i

′)

∞∑
q=−∞

G 2
lpq(e) (l − 2p + q) k ′

l sin ε ′
lmpq . (184)

While in Eq. (183) i stands for the secondary’s inclination on the planetary equator, in
Eq. (184) i ′ denotes the inclination of the primary’s apparent orbit on the secondary’s equator.
Likewise, while kl sin εlmpq is the quality function of the primary, k ′

l sin ε ′
lmpq is that of the

secondary.
According to formula (132), the sum of the primary’s and secondary’s inputs in the deriva-

tive of the disturbing function over M will be

∂R
∂M = M + M ′

M M ′
∂

∂M
(− M ′ U − M U ′)

= − M + M ′

M M ′
∞∑
l=2

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

∞∑
q=−∞

G 2
lpq(e) (l − 2p + q) (185a)

×
⎡
⎣
(
R

a

)2l+1 G M ′ 2

a
F 2
lmp(i) kl sin εlmpq +

(
R ′

a

)2l+1
G M2

a
F 2
lmp(i

′) k ′
l sin ε ′

lmpq

⎤
⎦

= − n2 a2
∞∑
l=2

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

∞∑
q=−∞

G 2
lpq(e) (l − 2p + q)

×
⎡
⎣
(
R

a

)2l+1
M ′

M
F 2
lmp(i) kl sin εlmpq +

(
R ′

a

)2l+1
M

M ′ F
2
lmp(i

′) k ′
l sin ε ′

lmpq

⎤
⎦

.

(185b)

D Differentiation ofRwith respect to the argument of the pericentre

Differentiation of U over ω renders us

∂

∂ω
U (r, r∗) = −

∞∑
l=2

(
R

a

)l+1 G M ′
a∗

(
R

a∗
)l l∑

m=0

(l − m)!
(l + m)! (2 − δ0m )

l∑
p=0

Flmp(i
∗)

∞∑
q=−∞

Glpq (e∗)

l∑
h=0

Flmh(i)
∞∑

j=−∞
Glhj (e) (l − 2h) kl sin

[(
v∗
lmpq − mθ∗)− (

vlmhj − mθ
)− εlmpq

]
.

(186)
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For r = r∗, the secular part of the derivative reduces to

∂U

∂ω
=

∞∑
l=2

(
R

a

)2l+1 G M ′

a

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i)

∞∑
q=−∞

G 2
lpq(e) (l − 2p) kl sin εlmpq .

Equivalently, the secular part of the derivative of the potential created by the tidally deformed
secondary and acting on the primary is:

∂U ′

∂ω ′ =
∞∑
l=2

(
R ′

a

)2l+1
G M ′

a

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i

′)

∞∑
q=−∞

G 2
lpq(e) (l − 2p) k ′

l sin ε ′
lmpq ,

where i ′, ω ′ and � ′ denote the inclination, the argument of the pericentre, and the longitude
of the node of the planet’s apparent orbit as seen from the perturber.

Combining the last two equations with expression (132) forR as a function ofU andU ′,
we obtain:

∂R
∂ω

+ ∂R
∂ω ′ = M + M ′

M M ′

(
∂

∂ω

(− M ′ U
) + ∂

∂ω ′
(− M U ′ )

)

= − M + M ′

M M ′
∞∑
l=2

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

∞∑
q=−∞

G 2
lpq(e) (l − 2p) (187a)

⎡
⎣
(
R

a

)2l+1 G M ′ 2

a
F 2
lmp(i) kl sin εlmpq +

(
R ′

a

)2l+1
G M2

a
F 2
lmp(i

′) k ′
l sin ε ′

lmpq

⎤
⎦

= − n2 a2
∞∑
l=2

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

∞∑
q=−∞

G 2
lpq(e) (l − 2p)

⎡
⎣
(
R

a

)2l+1
M ′

M
F 2
lmp(i) kl sin εlmpq +

(
R ′

a

)2l+1
M

M ′ F 2
lmp(i

′) k ′
l sin ε ′

lmpq

⎤
⎦

.

(187b)

E Differentiation ofRwith respect to the longitude of the node

Differentiation of U over � gives us

∂

∂�
U (r, r∗) = −

∞∑
l=2

(
R

a

)l+1 G M ′

a∗

(
R

a∗

)l l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

Flmp(i
∗)

∞∑
q=−∞

Glpq(e
∗)

123



Tidal evolution of the Keplerian elements Page 37 of 46 30

l∑
h=0

Flmh(i)
∞∑

j=−∞
Glhj (e) m kl sin

[(
v∗
lmpq − mθ∗)− (

vlmhj − mθ
)− εlmpq

]
.

(188)

For r = r∗, the secular part of the above expression becomes

∂U

∂�
=

∞∑
l=2

(
R

a

)2l+1 G M ′

a

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i)

∞∑
q=−∞

G 2
lpq(e) m kl sin εlmpq . (189)

Combined with Eq. (132), the above formula yields:

∂R
∂�

= M + M ′

M M ′
∂

∂�

(− M ′ U − M U ′ ) = − M + M ′

M

∂U

∂�
. (190)

In this situation,

∂R
∂�

= − M + M ′

M

∞∑
l=2

(
R

a

)2l+1 G M ′

a

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i)

∞∑
q=−∞

G 2
lpq(e) m kl sin εlmpq

= − n2 a2
M ′

M

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i)

∞∑
q=−∞

G 2
lpq(e) m kl sin εlmpq . (191)

Similarly, differentiation over the longitude of the node� ′ reckoned from the secondary’s
equator gives

∂R
∂� ′ = − M + M ′

M ′
∞∑
l=2

(
R ′

a

)2l+1
G M

a

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i

′)

∞∑
q=−∞

G 2
lpq(e) m k ′

l sin ε ′
lmpq

= − n2 a2
M

M ′
∞∑
l=2

(
R ′

a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

F 2
lmp(i

′)

∞∑
q=−∞

G 2
lpq(e) m k ′

l sin ε ′
lmpq . (192)
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F Differentiation ofRwith respect to the inclination

The derivative of U with respect to i is

∂

∂i
U (r, r∗) = −

∞∑
l=2

(
R

a

)l+1 G M ′

a∗

(
R

a∗

)l

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

Flmp(i
∗)

∞∑
q=−∞

Glpq(e
∗)

l∑
h=0

dFlmh(i)

di

∞∑
j=−∞

Glhj (e) kl(ωlmpq)

cos
[(

v∗
lmpq − mθ∗)− (

vlmhj − mθ
)− εl(ωlmpq)

]
, (193)

For r = r∗, the secular part of this expression takes the form of

∂U

∂i
= −

∞∑
l=2

(
R

a

)l+1 G M ′

a

(
R

a

)l l∑
m=0

(l − m)!
(l + m)!

2 − δ0m

2

l∑
p=0

dF2
lmp(i)

di

∞∑
q=−∞

G2
lpq(e) kl(ωlmpq) cos εl(ωlmpq) . (194)

It should be noted that in the differentiation ofU with respect to i , the effect of the primary’s
oblateness J2 does not average out as it was the case in the differentiation over M, ω or �.
Combining this with formula (132), we obtain:

∂R
∂i

= M + M ′

M M ′
∂

∂i

(− M ′ U − M U ′ ) = − M + M ′

M

∂U

∂i
,

which gives

∂R
∂i

= M + M ′

M

∞∑
l=2

(
R

a

)2l+1 G M ′

a

l∑
m=0

(l − m)!
(l + m)!

2 − δ0m

2

l∑
p=0

dF 2
lmp(i)

di

∞∑
q=−∞

G 2
lpq(e) m kl cos εlmpq

= n2 a2
M ′

M

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!
(l + m)!

2 − δ0m

2

l∑
p=0

dF 2
lmp(i)

di

∞∑
q=−∞

G 2
lpq(e) m kl cos εlmpq . (195)

Similarly, the secular part of the derivative of the potential created by the tidally deformed
secondary and acting on the primary is:
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∂R
∂i ′ = n2 a2

M

M ′
∞∑
l=2

(
R ′

a

)2l+1 l∑
m=0

(l − m)!
(l + m)!

2 − δ0m

2

l∑
p=0

dF 2
lmp(i

′)
di ′

∞∑
q=−∞

G 2
lpq(e) m k ′

l cos ε ′
lmpq .

G Details of the calculation of da/dt

Writing da/dt in the leading order over the inclination requires the knowledge of the squares
of the inclination functions F2

201 = 1
4 + O(i2) and F2

220 = 9 + O(i2) , the other F2
lmp(i)

being of order O(i2) or higher. So we shall work with the sets of integers (lmpq) = (201q)

and (lmpq) = (220q) . The corresponding eccentricity functions are:

G21,−2(e) = G212(e) = 9

4
e2

(
1 + 7

9
e2
)

+ O(e6)

G21,−1(e) = G211(e) = 3

2
e

(
1 + 9

8
e2
)

+ O(e5), G210(e) = (1 − e2)−3/2,

G20,−1(e) = − 1

2
e

(
1 − 1

8
e2
)

+ O(e5), G201(e) = 7

2
e − 123

16
e3 + O(e5)

G20,−2(e) = 0 , G202(e) = 17

2
e2 + O(e4) ,

G200(e) = 1 − 5

2
e2 + 13

16
e4 + O(e6). (196)

Also mind that for (lmpq) = (2010) the expression (2−2p+q) is zero—and so is the input (da/dt)2010.
Below is an inventory of the relevant inputs:

(
da

dt

)

201,−2
= 81

16
a n

M ′
M

e4
[(

R

a

)5
K2(−2n)

+
(

M

M ′
)2 ( R ′

a

)5
K ′
2(−2n)

]
+ O(i2) + O(e6), (197)

(
da

dt

)

201,−1
= 9

8
a n

M ′
M

e2
(
1 + 9

4
e2
) [(

R

a

)5
K2(−n)

+
(

M

M ′
)2 ( R ′

a

)5
K ′
2(−n)

]
+ O(i2) + O(e6), (198)

(
da

dt

)

2010
= 0, (199)

(
da

dt

)

2011
= − 9

8
a n

M ′
M

e2
(
1 + 9

4
e2
) [(

R

a

)5
K2(n)

+
(

M

M ′
)2 ( R ′

a

)5
K ′
2(n)

]
+ O(i2) + O(e6), (200)

(
da

dt

)

2012
= − 81

16
a n

M ′
M

e4
[(

R

a

)5
K2(2n)

+
(

M

M ′
)2 ( R ′

a

)5
K ′
2(2n)

]
+ O(i2) + O(e6), (201)
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(
da

dt

)

220,−1
= − 3

8
a n

M ′
M

e2
(
1 − 1

4
e2
) [(

R

a

)5
K2(n − 2θ̇ )

+
(

M

M ′
)2 ( R ′

a

)5
K ′
2(n − 2θ̇ ′)

]
+ O(i2) + O(e6), (202)

(
da

dt

)

2200
= − 3 a n

M ′
M

(
1 − 5 e2 + 63

8
e4
) [(

R

a

)5
K2(2n − 2θ̇ )

+
(

M

M ′
)2 ( R ′

a

)5
K ′
2(2n − 2θ̇ ′)

]
+ O(i2) + O(e6), (203)

(
da

dt

)

2201
= − 441

8
a n

M ′
M

e2
(
1 − 123

28
e2
) [(

R

a

)5
K2(3n − 2θ̇ )

+
(

M

M ′
)2 ( R ′

a

)5
K ′
2(3n − 2θ̇ ′)

]
+ O(i2) + O(e6), (204)

(
da

dt

)

2202
= − 867

2
a n

M ′
M

e4
[(

R

a

)5
K2(4n − 2θ̇ )

+
(

M

M ′
)2 ( R ′

a

)5
K ′
2(4n − 2θ̇ ′)

]
+ O(i2) + O(e6), (205)

where we made use of notation (139) and (141).

H Details of the calculation of de/dt

In notation (139–142), our expression (154) becomes

de

dt
= − (1 − e2)1/2

e
n

∞∑
l=2

l∑
m=0

(l − m)!
(l + m)! (2 − δ0m )

l∑
p=0

∞∑
q=−∞

G 2
lpq (e)

[
(l − 2p + q) (1 − e2)1/2

− (l − 2p) ]

⎡
⎣ M ′

M

(
R

a

)2l+1

F 2
lmp(i) Kl (ωlmpq ) + M

M ′
(
R ′
a

)2l+1

F 2
lmp(i

′) K ′
l (ω ′

lmpq )

⎤
⎦

,

(206)

its quadrupole part being

(
de

dt

)

l=2
= − n

2∑
m=0

(2 − m)!
(2 + m)! (2 − δ0m)

l∑
p=0

∞∑
q=−∞

G 2
2pq(e)

(2 − 2p + q) (1 − e2) − (2 − 2p) (1 − e2)1/2

e⎡
⎣ M ′

M

(
R

a

)2l+1

F 2
lmp(i) Kl(ωlmpq)

+ M

M ′

(
R ′

a

)2l+1

F 2
lmp(i

′) K ′
l (ω

′
lmpq)

⎤
⎦

. (207)

Towrite expression (207) in the leadingorder over the inclination,we shall need the squares
of the two relevant Flmp(i) functions: F2

201 = 1
4 + O(i2) and F2

220 = 9 + O(i2) , all the
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other F2
lmp(i) being of order O(i2) or higher. This way, we shall be interested in the following

sets of integers: (lmpq) = (201q) and (lmpq) = (220q) . The relevant eccentricity
functions are given by Eq. (196) above.

For (lmpq) = (2010) , both the expressions (2− 2p+ q) and (2− 2p) vanish—and
so does the (de/dt)2010 input, up to higher-order terms in the inclinations:

(
de

dt

)

2010
= 0 + O(i2) + O(i ′ 2) . (208)

Thence, of the sets (lmpq) = (201q) , only those with q = −2, −1, 1, 2 are important:

(
de

dt

)

201,−1
=

(
de

dt

)

2011
= − 9

16
n e

(
1 + 5

4
e2
) ⎡
⎣M ′

M

(
R

a

)5

K2(n)

+ M

M ′

(
R ′

a

)5

K ′
2(n)

⎤
⎦ + O(e5) + O(i2) + O(i ′ 2) , (209)

(
de

dt

)

201,−2
=

(
de

dt

)

2012

= − 81

32
n e3

⎡
⎣M ′

M

(
R

a

)5

K2(2n) + M

M ′

(
R ′

a

)5

K ′
2(2n)

⎤
⎦

+ O(e5) + O(i2) + O(i ′ 2) . (210)

Of the sets (lmpq) = (220q), we shall be interested in the ones with q = −1, 0, 1, 2 :

(
de

dt

)

220,−1
= 3

16
n e

(
1 − e2

4

) ⎡
⎣ M ′

M

(
R

a

)5

K2(n − 2θ̇ )

+ M

M ′

(
R ′

a

)5

K ′
2(n − 2θ̇ ′)

⎤
⎦ + O(e5) + O(i2) + O(i ′ 2) , (211)

(
de

dt

)

2200
= 3

4
n e

(
1 − 21

4
e2
) ⎡
⎣ M ′

M

(
R

a

)5

K2(2n − 2θ̇ )

+ M

M ′

(
R ′

a

)5

K ′
2(2n − 2θ̇ ′)

⎤
⎦ + O(e5) + O(i2) + O(i ′ 2) , (212)

(
de

dt

)

2201
= − 147

16
n e

(
1 − 179

28
e2
) ⎡
⎣M ′

M

(
R

a

)5

K2(3n − 2θ̇ )

+ M

M ′

(
R ′

a

)5

K ′
2(3n − 2θ̇ ′)

⎤
⎦ + O(e5) + O(i2) + O(i ′ 2) , (213)
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(
de

dt

)

2202
= − 867

8
n e3

⎡
⎣M ′

M

(
R

a

)5

K2(4n − 2θ̇ )

+ M

M ′

(
R ′

a

)5

K ′
2(4n − 2θ̇ ′)

⎤
⎦ + O(e5) + O(i2) + O(i ′ 2) , (214)

where notation (139–142) was employed.

I Details of the calculation of di/dt

According to Eq. (118), the evolution rate of the inclination involves derivatives of the per-
turbing function with respect to ω, ω ′, �, � ′ and i ′. Nevertheless, in the secular expression
(162), only differentiations over ω and � remain. These are given in Appendices “D” and
“E”.

Towrite expression (162) in the leading order over the inclination, we should keep inmind
that in this expression the squared inclination functions F 2

lmp(i) are accompanied by a factor
of either αlmp = [(l − 2p) cos i − m] / sin i or βlmp = [m cos i − (l − 2p)] / sin i . The
functions F 2

201(i) and F 2
220(i) are both of order O(i 0), but for (lmp) = (201), the two factors

α201 and β201 vanish. In the case (lmp) = (220), we have

α220 = β220 = − sin i + O(i 3) . (215)

Here, we also have to consider the functions F 2
lmp(i) of order O(i 2), namely F 2

210 =
9

4
sin i 2 + O(i 4) and F 2

211 = 9

4
sin i 2 + O(i 4), all the other F2

lmp(i) being of order

O(i 4). The corresponding factors are α210 = 1/ sin i + O(i), α211 = − 1/ sin i + O(i),
β210 = −1/ sin i + O(i), β211 = 1/ sin i + O(i).
Therefore, we shall be interested in the following sets of integers: (lmpq) = (220q),

(lmpq) = (210q) and (lmpq) = (211q), the corresponding eccentricity functions being
given by Eq. (196) above. Below we provide the resulting contributions. Deriving these, we
used 1/

√
1 − e2 = 1 + e2/2 + 3e4/8 + O(e6) and then, in each contribution, truncated

this expansion as necessary to keep the overall answer precise up to e4, inclusively.
(
di

dt

)

220,−2
= 0 , (216)

(
di

dt

)

220,−1
= − 3

16
n e2

(
1 − 1

4
e2
)

sin i
M ′

M

(
R

a

)5

[
β n a2

C θ̇
−
(
1 + 1

2
e2
)]

K2(n − 2θ̇ ) + O(i3) + O(e6) , (217)

(
di

dt

)

2200
= − 3

4
n

(
1 − 5e2 + 63

8
e4
)

sin i
M ′

M

(
R

a

)5

[
β n a2

C θ̇
−
(
1 + 1

2
e2 + 3

8
e4
)]

K2(2n − 2θ̇ ) + O(i3) + O(e6) ,

(218)(
di

dt

)

2201
= − 147

16
n e2

(
1 − 123

28
e2
)

sin i
M ′

M

(
R

a

)5
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[
β n a2

C θ̇
−
(
1 + 1

2
e2
)]

K2(3n − 2θ̇ ) + O(i3) + O(e6) , (219)

(
di

dt

)

2202
= − 867

16
n e4 sin i

M ′

M

(
R

a

)5 [
β n a2

C θ̇
− 1

]

K2(4n − 2θ̇ ) + O(i3) + O(e6) , (220)(
di

dt

)

210,−2
= 0 , (221)

(
di

dt

)

210,−1
= − 3

16
n e2

(
1 − 1

4
e2
)

sin i
M ′

M

(
R

a

)5 [
β n a2

C θ̇
+
(
1 + 1

2
e2
)]

K2(n − θ̇ ) + O(i3) + O(e6) , (222)(
di

dt

)

2100
= − 3

4
n

(
1 − 5 e2 + 63

8
e4
)

sin i
M ′

M

(
R

a

)5

[
β n a2

C θ̇
+
(
1 + 1

2
e2 + 3

8
e4
)]

K2(2n − θ̇ ) + O(i3) + O(e6) ,

(223)(
di

dt

)

2101
= − 147

16
n e2

(
1 − 123

28
e2
)

sin i
M ′

M

(
R

a

)5

[
β n a2

C θ̇
+
(
1 + 1

2
e2
)]

K2(3n − θ̇ ) + O(i3) + O(e6) , (224)

(
di

dt

)

2102
= − 867

16
n e4 sin i

M ′

M

(
R

a

)5

[
β n a2

C θ̇
+ 1

]
K2(4n − θ̇ ) + O(i 3) + O(e 6) , (225)

(
di

dt

)

211,−2
= 243

64
n e4 sin i

M ′

M

(
R

a

)5 [
β n a2

C θ̇
+ 1

]

K2(−2n − θ̇ ) + O(i3) + O(e6) , (226)(
di

dt

)

211,−1
= 27

16
n e2

(
1 + 9

4
e2
)

sin i
M ′

M

(
R

a

)5 [
β n a2

C θ̇
+
(
1 + 1

2
e2
)]

K2(−n − θ̇ ) + O(i3) + O(e6) , (227)(
di

dt

)

2110
= 3

4
n
(
1 + 3e2 + 6e4

)
sin i

M ′

M

(
R

a

)5 [
β n a2

C θ̇
+
(
1 + 1

2
e2 + 3

8
e4
)]

K2(−θ̇ ) + O(i3) + O(e6) , (228)(
di

dt

)

2111
= 27

16
n e2

(
1 + 9

4
e2
)

sin i
M ′

M

(
R

a

)5 [
β n a2

C θ̇
+
(
1 + 1

2
e2
)]

K2(n − θ̇ ) + O(i3) + O(e6) , (229)(
di

dt

)

2112
= 243

64
n e4 sin i

M ′

M

(
R

a

)5 [
β n a2

C θ̇
+ 1

]

K2(2n − θ̇ ) + O(i 3) + O(e 6) . (230)

Without loss of precision, in all these formulae sin i may be changed to i .
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J Long-period oscillating terms in the inclination rate

To derive the inclination rate di/dt non-averaged over the long-period oscillating terms, it is
necessary to include the contribution due to the J2 in the potential energy:13

U (r, r ∗) = J2
G M

a

(
R

a

)2 2∑
h=0

F20h(i)
∞∑

j=−∞
G2hj (e) cos v20hj

−
∞∑
l=2

(
R

a

)l+1 G M ′

a∗

(
R

a∗

)l l∑
m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑
p=0

Flmp(i
∗)

∞∑
q=−∞

Glpq(e
∗)

l∑
h=0

Flmh(i)
∞∑

j=−∞
Glhj (e) kl(ωlmpq)

cos
[(

v∗
lmpq − mθ∗)− (

vlmhj − mθ
)− εl(ωlmpq)

]
. (231)

To calculate di/dt , we insert the above in the formula (132) for R, then plug the result in
the orbital equation (118) and finally perform averaging over the mean anomaly M. This
entails:

di

dt
= n

βna2

C θ̇ sin i
J2

(
R

a

)2 2∑
h=0

(2 − 2h) F20h(i)G2hj (e) sin(2 − 2h)ω

+ n cos i

(1 − e2)1/2 sin i
J2

(
R

a

)2 2∑
h=0

(2 − 2h)F20h(i)G2hj (e) sin(2 − 2h)ω

+ n
sin(ω − ω ′)
(1 − e2)1/2

J ′
2

(
R ′
a

)2 2∑
h=0

dF20h(i ′)
di ′ G2hj (e) cos(2 − 2h)ω ′

+ n
cos(ω − ω ′) cos i ′
(1 − e2)1/2 sin i ′ J ′

2

(
R ′
a

)2 2∑
h=0

(2 − 2h) F20h(i ′) G2hj (e) sin(2 − 2h)ω ′

+ n
βna2

C θ̇

M ′
M

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m )

l∑
p=0

Flmp(i)
∞∑

q=−∞
Glpq (e)

×
l∑

h=0

(l − 2h) − m cos i

sin i
Flmh(i)G2hr (e)kl (ωlmpq ) sin[2(h − p)ω − εl (ωlmpq )]

− n
1

(1 − e2)1/2
M ′
M

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m )

l∑
p=0

Flmp(i)
∞∑

q=−∞
Glpq (e)

×
l∑

h=0

m − (l − 2h) cos i

sin i
Flmh(i)G2hr (e)kl (ωlmpq ) sin[2(h − p)ω − εl (ωlmpq )]

− n
sin(ω − ω ′)
(1 − e2)1/2

M

M ′
∞∑
l=2

(
R ′
a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m )

l∑
p=0

Flmp(i
′)

∞∑
q=−∞

Glpq (e)

×
l∑

h=0

dFlmh(i ′)
di ′ G2hr (e)k

′
l (ωlmpq ) cos[2(h − p)ω ′ − ε ′

l (ω
′
lmpq )]

13 This contribution comprises the lmhj = 20hj terms from the expansion for the potential energy (Frouard
and Efroimsky 2017a, Eqn. 115).
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− n
cos(ω − ω ′)
(1 − e2)1/2

M

M ′
∞∑
l=2

(
R ′
a

)2l+1 l∑
m=0

(l − m)!
(l + m)! (2 − δ0m )

l∑
p=0

Flmp(i
′)

∞∑
q=−∞

Glpq (e)

×
l∑

h=0

m − (l − 2h) cos i ′
sin i ′ Flmh(i ′) G2hr (e) k

′
l (ω

′
lmpq ) sin[2(h − p)ω ′ − ε ′

l (ωlmpq )],

(232)

with j = 2h − 2 and r = 2(h − p) + q .
The subsequent averaging over the apsidal precession will nullify all the sine and cosine

terms involving any linear combination of ω and ω ′, while the surviving terms will come out
proportional to sin εl(ωlmpq). Thus, Eq. (162) will emerge.

References

Barnes, R., Raymond, S.N., Jackson, B., Greenberg, R.: Tides and the evolution of planetary habitability.
Astrobiology 8, 557–568 (2008)

Bills, B.G., Neumann, G.A., Smith, D.E., Zuber, M.T.: Improved estimate of tidal dissipation within Mars
from MOLA observations of the shadow of Phobos. J. Geophys. Res. Planets 110, Article id. E07004
(2005)

Boué, G.: The two rigid body interaction using angular momentum theory formulae. Celest. Mech. Dyn.
Astron. 128, 261–273 (2017)

Boué, G., Correia, A.C.M., Laskar, J.: Complete spin and orbital evolution of close-in bodies using a Maxwell
viscoelastic rheology. Celest. Mech. Dyn. Astron. 126, 31–60 (2016)

Boué, G., Rambaux, N., Richard, A.: Rotation of a rigid satellite with a fluid component: a new light onto
Titan’s obliquity. Celest. Mech. Dyn. Astron. 129, 449–485 (2017)

Correia, A.C.M., Laskar, J.: Long term evolution of the spin of Venus-II. Numerical simulations. Icarus 163,
24–45 (2003)

Correia, A.C.M., Laskar, J.: Tidal evolution of exoplanets. In: Seager S. (ed.) Exoplanets, pp. 239–266 .
University of Arizona Press, Tuson. ISBN 978-0-8165-2945-2 (2010)

Correia, A.C.M., Laskar, J., Nèron de Surgy, O.: Long term evolution of the spin of Venus-I. Theory. Icarus
163, 1–23 (2003)

Cunha, D., Correia, A.C.M., Laskar, J.: Spin evolution of Earth-sized exoplanets, including atmospheric tides
and core-mantle friction. Int. J. Astrobiol. 14, 233–254 (2015)

Darwin, G.H.: On the precession of a viscous spheroid and on the remote history of the Earth. Philos. Trans.
R. Soc. Lond. 170, 447–530 (1879)

Efroimsky, M.: Long-term evolution of orbits about a precessing oblate planet. 1. The case of uniform preces-
sion. Celest. Mech. Dyn. Astron. 91, 75–108 (2005a)

Efroimsky, M.: Gauge freedom in orbital mechanics. Ann. N. Y. Acad. Sci. 1065, 346–374 (2005b)
Efroimsky, M.: Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112, 283–330 (2012)
Efroimsky, M.: Tidal evolution of asteroidal binaries. Ruled by viscosity. Ignorant of rigidity. Astron. J. 150,

id. 98 (2015). ERRATA: AJ, Vol. 151, article id. 130 (2016)
Efroimsky, M.: Dissipation in a tidally perturbed body librating in longitude. Icarus 306, 328–354 (2018)
Efroimsky, M., Makarov, V.V.: Tidal friction and tidal lagging. Applicability limitations of a popular formula

for the tidal torque. Astrophys. J. 764, Article id. 26 (2013)
Efroimsky, M., Makarov, V.V.: Tidal dissipation in a homogeneous spherical body. I. Methods. Astrophys. J.

795, 6 (2014)
Emelyanov, N.: Influence of tides in viscoelastic bodies of planet and satellite on the satellite’s orbital motion.

Mon. Not. R. Astron. Soc. 479, 1278–1286 (2018)
Ferraz-Mello, S., Beaugé, C., Michtchenko, T.A.: Evolution of migrating planet pairs in resonance. Celest.

Mech. Dyn. Astron. 87, 99–112 (2003)
Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal friction in close-in satellites and exoplanets. The Darwin

theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008)
Frouard, J., Efroimsky, M.: Tides in a body librating about a spin-orbit resonance: generalisation of the

Darwin–Kaula theory. Celest. Mech. Dyn. Astron. 129, 177–214 (2017a)
Frouard, J., Efroimsky, M.: Precession relaxation of viscoelastic oblate rotators. Mon. Not. R. Astron. Soc.

473, 728–746 (2017b)

123



30 Page 46 of 46 G. Boué, M. Efroimsky

Hut, P.: Tidal Evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)
Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–684

(1964)
Lainey, V., Karatekin, Ö., Desmars, J., Charnoz, S., Arlot, J.-E., Emelyanov, N., et al.: Strong tidal dissipation

in Saturn and constraints on Enceladus’ thermal state from astrometry. Astrophys. J. 752, Article id. 14
(2012)

Makarov, V.V., Berghea, C., Efroimsky, M.: Dynamical evolution and spin-orbit resonances of potentially
habitable exoplanets: the case of GJ 581d. Astrophys. J. 761, Article id. 83 (2012) ERRATA: ApJ,
763: 68 (2013)

Makarov, V.V., Berghea, C., Efroimsky, M.: Spin-orbital tidal dynamics and tidal heating in the TRAPPIST-1
multi-planet system. Astrophys. J. 857, 142 (2018)

Néron de Surgy, O., Laskar, J.: On the long term evolution of the spin of the Earth. Astron. Astrophys. 318,
975–989 (1997)

Noyelles, B., Frouard, J., Makarov, V.V., Efroimsky, M.: Spin-orbit evolution ofMercury revisited. Icarus 241,
26–44 (2013)

Peale, S.J., Cassen, P.: Contribution of tidal dissipation to lunar thermal history. Icarus 36, 245–269 (1978)
Pucacco, G., Lucchesi, D.M.: Tidal effects on the LAGEOS-LARES satellites and the LARASE program.

Celest. Mecha. Dyn. Astron. 130, Article id. 66 (2018)
Rubincam,D.P.: Tidal friction in the Earth–Moon system and Laplace planes: Darwin redux. Icarus 266, 24–43

(2016)
Shoji, D., Kurita, K.: Thermal-orbital coupled tidal heating and habitability ofMartian-sized extrasolar planets

around M stars. Astrophys. J. 789, Article id. 3 (2014)
Taylor, P.A., Margot, J.-L.: Tidal evolution of close binary asteroid systems. Celest. Mech. Dyn. Astron. 108,

315–338 (2010)
Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World

Scientific, Singapore (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Tidal evolution of the Keplerian elements
	Abstract
	1 Motivation
	2 Basics
	2.1 The two-body problem perturbed by tides
	2.2 Lagrangian formalism 
	2.2.1 Lagrangian function
	2.2.2 Spin operator
	2.2.3 Equations of motion

	2.3 Hamiltonian formalism
	2.4 Elliptical elements
	2.5 Equations of motion of the Keplerian elements
	2.6 Perturbed two-body problem
	2.7 Rotation equations of motion
	2.8 The gyroscopic approximation and the approximation of constant inertia matrices
	2.9 Comparison with Kaula64

	3 Tidal potential energy
	3.1 General expression
	3.2 Comparison with Kaula64 
	3.3 Expansion of the additional tidal potential

	4 Tidal evolution of the semimajor axis
	4.1 The general formula
	4.2 The leading inputs
	4.3 The case when the spin of neither partner is synchronised
	4.4 The case when the primary is not synchronised, while the secondary is
	4.5 Beyond quadrupole
	4.6 Final caveat

	5 Tidal evolution of the eccentricity
	5.1 The case when neither partner is synchronised
	5.2 The case when the primary is not synchronised, while the secondary is
	5.3 Beyond quadrupole

	6 Tidal evolution of the inclination
	7 Tidal evolution of ω, Ω and mathcalM0 
	8 Conclusions
	Acknowledgements
	Appendix
	A Differential of the rotation matrix mathbbF = T mathbbR mathbbR'
	B Equations of motion in terms of the Keplerian elements 
	C Differentiation of mathcalR with respect to the mean motion
	D Differentiation of mathcalR with respect to the argument of the pericentre
	E Differentiation of mathcalR with respect to the longitude of the node
	F Differentiation of mathcalR with respect to the inclination
	G Details of the calculation of da/dt
	H Details of the calculation of de/dt

	I Details of the calculation of di/dt
	J Long-period oscillating terms in the inclination rate 
	References







