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Abstract
We look for triple collision orbits which are collisionless before triple collision. We devel-
oped a procedure of fixing the positions of these orbits inside the initial condition plane of
the free-fall three-body problem as a natural consequence of the use of symbol sequences.
Before looking for these orbits, an error regarding the relation between triple collision points
and binary collision curves is corrected, that is, we confirmed that the intersections of binary
collision curves of different generations (see the text for definition) are not the initial points
of triple collision orbits but of the orbits with plural binary collisions along their trajec-
tories. Then, we numerically established that a triple collision point (i.e., a point of the
initial condition plane whose orbit ends at triple collision) can be found as an intersection of
three cylinders of the same generation. We do not obtain triple collision orbits with symbol
sequences shorter than eight digits. We obtained 11 triple collision points inside the initial
condition plane. The orbits starting from these points have finite lengths in the future and in
the past since the problem is free fall. These orbits start at triple collision, expand the size
until the free-fall states, and go back to triple collision. Thus, these are time symmetric with
respect to the time of free fall. Two types of triple collision orbits are identified. One type
of orbits starts with a positive triangle formed with three bodies and ends at triple collision
also with a positive triangle. The other type starts with a positive triangle and ends with a
negative triangle.

Keywords Three-body problem · Triple collision orbits · Numerical search

1 Introduction andmotivation

The free-fall three-body problem is a forumof the three-body problem inwhich the systematic
numerical studies have been done for various kinds of orbits including periodic orbits, escape
orbits, triple collisions, oscillatory orbits, and so on. As for the free-fall problem itself, the
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celebrated paper by Agekyan and Anosova (1967) has done a small number of numerical
integrations of the initial condition plane. So, no discussion on the global and local structures
of the plane was possible. Anosova continued the numerical investigation of the problem
(Anosova 1986; Anosova et al. 1994). Tanikawa et al. (1995) started systematic integrations
of orbits in the initial condition plane of the free-fall problem with a fast computer focusing
on the search for collision orbits. The number of integrated orbits amounted to a million. The
number was more than a million in Tanikawa (2000). Then gradually, some of the structure
of the phase space of the free-fall problem became known. Of course, the structure turned
out extremely complicated so that it becomes evident that to go farther, the survey of the
network of intermediate objects bridging the global and local structures is necessary. These
objects are periodic orbits, binary collision orbits, triple collision orbits, and escape orbits.

Recently, searches for periodic orbits are popular (Rose and Dullin 2013; Iasko and Orlov
2014; Dmitras̆inović and S̆uvakov 2015; Rose 2015; Tanikawa 2016; Li and Liao 2017)
and lots of them are found. On the other hand, search for collision orbits requires rather
special numerical techniques equipped with efficient regularizations (Tanikawa et al. 1995).
Triple collision requires more severe conditions because the dimensionality of the triple
collision is small compared with binary collision, that is, binary collisions form curves in a
certain section of the phase space, while triple collisions form points in the same section. In
addition, a numerical difficulty of orbit integrations with respect to triple collision requires
regularization of more efficient kind.

In the present paper, we overcome the above two difficulties and obtain triple collision
orbits by using symbol sequences (Tanikawa and Mikkola 2008, 2015) and by using our
regularizing techniques (Mikkola and Tanikawa 1999, 2013b). So far, we obtained triple
collision orbits with symmetry. Thus, Tanikawa andMikkola (2000a, b, 2015) obtained triple
collision orbits in the collinear three-body problem, and Tanikawa and Umehara (1998),
Umehara and Tanikawa (2000), and Tanikawa and Mikkola (2015) obtained isosceles and
collinear triple collision orbits. This time, we obtain triple collision orbits of general starting
triangles.

The authors made mistakes in the former publications saying “the cross points of the
binary collision curves of different types are triple collision points” (Tanikawa 2000, Fig. 4).
In fact, crosses inside the initial condition plane are not necessarily triple collision points, but
they are collision points whose orbits have plural binary collisions along their trajectories.
We correct this error in Sect. 4.1.

2 Equations of motion and the algorithmic regularization

The algorithmic regularization is a result of the marriage of symplectic integration and reg-
ularization. In general, a symplectic integration assumes a constant time step, whereas the
regularization requires the time-step shortening when the gravitational attraction is large and
the velocity changes are large. This marriage was almost simultaneously carried out in two
articles (Mikkola and Tanikawa 1999; Preto and Tremaine 1999). The method has later been
implemented (Mikkola and Tanikawa 2013a, b).

The idea of symplectic integration is to consider the evolution of solution in time of the
equations of motion as the canonical transformation of the coordinates and momenta at some
time t to a later time t ′. The symplecticmethod then uses a series of canonical transformations
to propagate the system forward in time. This means the integration is accurate compared
with those not taking into account the symplecticity. The idea of regularization is to keep
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the same accuracy even in the close approach of gravitating bodies. In the N -body problem,
close approaches of bodies frequently take place. The integration scheme of regularization
comprises the coordinate transformation and shortening of the step size of integration. The
symplectic integration does not like the step-size change, whereas the regularization needs
step-size changes.

The algorithmic integration, to begin with, extends the phase space and introduces a new
Hamiltonian in this space. Let p be the momenta of the coordinates q. Let further T (p) be
the kinetic energy and U (q, t) the force function such that the Hamiltonian is H = T − U .
If the time t is also considered to be a coordinate and the corresponding momentum is B,
then for this system the function

� = log(T + B) − log(U )

can be used as a Hamiltonian in the extended phase space. The equations of motion derived
from � are

p′ = Uq/U , q′ = Tp/(T + B), B ′ = Ut/U , t ′ = 1/(T + B), (1)

where the prime denotes differentiation with respect to the new independent variable s and
partial derivatives are denoted by subscripts. U is the potential with

U = G

(
m2m3

r23
+ m1m3

r13
+ m1m2

r12

)
. (2)

We use interparticle vectors for the labeling of the relative coordinates

R1 = r3 − r2; R2 = r1 − r3; R3 = r2 − r1, (3)

as new coordinates and the velocities are Vk = Ṙk . Denoting Ri = |Ri | and taking units so
that G = 1, we have the potential

U = m2m3/R1 + m1m3/R2 + m1m2/R3 (4)

and the kinetic energy

T = 1

2M

(
m2m3|V1|2 + m1m3|V2|2 + m1m2|V3|2

)
. (5)

One obtains the following

Ṙk = Vk; V̇k = −M
Rk

|Rk |3 + mk

∑
ν

Rν

|Rν |3 , (6)

with M = m1 + m2 + m3. Then, Eq. (1) becomes

t ′ = 1/(T + B); R′
k = Vk/(T + B); V′

k = V̇k/U , (7)

since B = U − T is a constant. This form is suitable for the leapfrog algorithm. Time and
coordinates move with the ‘subroutine’ X(h):

dt = h/(T + B), (8)

t → t + dt, (9)

Rk → Rk + dtVk (k = 1, 2, 3), (10)

and velocities with the ‘subroutine’ V(h):

S =
∑
k

Rk/|Rk |3, (11)
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δt = h/U , (12)

Vk → Vk + δt(−MRk/|Rk |3 + mkS) (k = 1, 2, 3). (13)

It is possible to write the final leapfrog algorithm over n steps, so that the total “macro” step
has the length = n h. Then, we obtain the leapfrog over long intervals in the form

X(h/2)[V(h)X(h)]n−1V(h)X(h/2), (14)

where the power (n−1)means repetition of the operations. These leapfrogs, withmany values
of the step size h, can be used in the Bulirsch and Stoer (1966) extrapolation algorithm. The
above leapfrog is regular even in point mass collisions and gives correct trajectories for
two-body problems.

3 Definition of the free-fall problem

We consider the free-fall problem with equal masses. The problem belongs to the class of
the planar three bodies with zero angular momentum. The triple systems of this problem
are considered most unstable compared with the systems with nonzero angular momentum
because of the existence of triple collisions. In particular, the equal mass case may be the
most unstable among other combinations of masses. There is no proof for this statement.
However, there is evidence. In fact, the problem reduces to the restricted three-body problem
if the mass of one of the bodies tends to zero, in which problem there are so many stable
periodic orbits. If two of the masses tend to zero, the problem reduces to the superposition
of two two-body problems and is integrable; hence, orbits are stable.

The definition of the problem is simple (see, e.g., Agekyan and Anosova 1967; Tanikawa
et al. 1995). We put body 2 of mass m2 at A(−0.5, 0) and body 3 of mass m3 at B(0.5, 0)
both on the x-axis of the (x, y)-plane. We put body 1 of mass m1 at any place P in

D = {
(x, y) : x ≥ 0; y ≥ 0; (x + 0.5)2 + y2 ≤ 1

}
.

Then, in the triangle formed by the three bodies, always AB is the longest, PA the second
longest, and PB the shortest. We consider the equal mass case, i.e., m1 = m2 = m3 = 1.
Then, the triangles exhaust all possible form of triangles if P moves in D (Fig. 1a). This initial
condition region is sometimes called Anosova’s region. More generally, suppose that three
masses are different. In this case, Anosova’s region does not exhaust the form of triangles.We
need larger areas (see Fig. 1b). In this figure, D11 corresponds to Anosova’s region. The other
regions represent different forms of triangles. As an example, in region D12, edge lengths
satisfy PA ≥ AB ≥ PB, and triple systems correspond to different initial conditions from
those of D11. The plane formed with Di j is called the shape plane. We obtain the shape
sphere if we glue D13, D43, D23, and D33 at infinity (Moeckel et al. 2012; Montgomery
1996; Kuwabara and Tanikawa 2010).

We integrate equations of motion with the AR (algorithmic regularization) code (Mikkola
and Tanikawa 1999, 2013b).

3.1 Symbols and symbol sequences

Let us define symbols and symbol sequences (Tanikawa and Mikkola 2008, 2015; Mont-
gomery 1998). In the planar three-body problem, three bodies generally form a triangle
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(a) (b)

Fig. 1 The geometry of the free-fall problem. aThe initial condition plane.bThe shape space. D11 corresponds
to the D-shaped domain in Fig. 1a. The other Di j are obtained by reflections. As examples, D21 is the mirror
image of D11 with respect to the y-axis; D12 is the mirror image of D11 with respect to their boundary circle
(cf. Tanikawa and Mikkola 2015)

(two-dimensional simplex, or 2-simplex), and occasionally they form a collinear configura-
tion (one-dimensional simplex, or 1-simplex). Montgomery (2007) proved that all solutions
to the zero angular momentum, negative energy Newtonian three-body problem admit a
collinear configuration (syzygy) except for the Lagrange homothetic solutions. There will
be an infinite sequence of collinear configurations unless the orbit ends in triple collision.
Considering this property of the three-body problem, we give a symbol to an orbit each time
when three bodies form a 1-simplex, or become a syzygy state.

We give the orientations to the simplex (triangle) so that it is positive when three bodies
1, 2, and 3 are arranged counterclockwise around their gravity center, while it is negative
when clockwise (Tanikawa and Mikkola 2015). We sometime call the triangle itself positive
or negative.

Until the preceding paper, the authors defined the symbols and symbol sequences as
follows: We give symbol 1 if a positive 2-simplex degenerates into a 1-simplex with body 1
at center, symbol 2 if a positive 2-simplex into a 1-simplex with body 2 at center, and symbol
3 if a positive 2-simplex into a 1-simplex with body 3 at center. We give symbols 4, 5, and
6 if a negative 2-simplex degenerates into a 1-simplex, respectively, with center at bodies 1,
2, and 3.

In this stage, the authors did not take into account the resulting symbolic dynamics. This
time, RichardMontgomery kindly read ourmanuscript and suggested that the number of sym-
bols should be not six but three. Six symbols are redundant. The authors are convinced. The
authors have experience of an elementary symbolic dynamics in the case of collinear three-
body problem (Tanikawa and Mikkola 2000b). There the authors introduced two symbols
and effectively treated the symbols sequences, and discussed elementary symbolic dynamics.

Now we introduce three symbols 1, 2, and 3. The redundancy came with the introduction
of the front and back sides of triangles and with the consideration of the discrimination
of the syzygy crossings from the front and back sides. However, these two crossings can be
identified in the symbol sequences at either even or odd digits because two different crossings
alternate.
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Now neglecting the difference of crossings from the frontside and backside, we give
symbol 1 when a 2-simplex degenerates into a 1-simplex with body 1 at center, symbol 2
when a 2-simplex into a 1-simplex with body 2 at center, and symbol 3 when a 2-simplex
into a 1-simplex with body 3 at center.

We denote a symbol sequence s by

s = . . . s−3s−2s−1•s1s2s3 . . . , (15)

where si is either 1, 2, or 3. As time goes on, positive and negative 2-simplexes alternate.
In our setting, symbols s1, s3, s5, . . . , s−2, s−4, s−6, . . . correspond to the syzygy crossings
from the front to back sides, whereas symbols s2, s4, s6, . . . , s−1, s−3, s−5, . . . correspond to
the syzygy crossings from the back to front sides. The period (•) separates the past and future.
The part of the sequence to its right represents the future sequence, while the sequence to its
left represents the past sequence. s1 is the symbol for the present. We integrate the orbits to
the future. So, we as a rule consider the future symbol sequence:

s =• s1s2s3 . . . . (16)

A finite sequence of symbols is called a word. The word is called a k-word if the length
of the word is k. The set of symbol sequences which contain a k-word in a fixed position
is called a k-cylinder. In the present paper, we consider the k-cylinder which contains its
k-word at the initial k-digits, i.e.,

s =• s1s2s3 . . . sk ∗ ∗∗, (17)

where *** represents an arbitrary (infinite) sequence of symbols.

3.2 Division of the initial condition plane

By abuse of notation, we will also say that an initial condition is in a particular k-cylinder if
its symbol sequence lies in that cylinder. The k-cylinders then form open sets of the initial
condition plane, which, together with their boundaries, partition the initial condition plane
for a fixed k. As we will soon see, these boundaries are curves separating one cylinder
from another and correspond to initial conditions having binary collisions. For example, the
3-cylinders 123 and 121 are separated from each other by initial conditions lying in the 2-
cylinder 12 which have, at their third collinearity, a 1–3 binary collision. These domains, and
the bounding curves, cover all of the initial condition plane with the exception of the triple
collision initial conditions which will lie at intersections of some binary collision curves. The
reason all of the plane is so partitioned, for a given k, is that the only initial condition having
the empty symbol sequence is the Lagrange orbit corresponding to the point C in Fig. 1.

For illustration, we show in Fig. 2 two divisions of Anosova’s region by the set of 3-
cylinders (Fig. 2a) and 4-cylinders (Fig. 2b). For conciseness sake, we denote a cylinder,
say, •s1s2s3s4 . . . simply by s1s2s3s4. As shown in the figure, the set of 3-cylinders divide
Anosova’s region into two and the set of 4-cylinders into five. T1 and T2 are the initial points of
triple collision orbits on the circular boundary of Anosova’s region (Tanikawa and Umehara
1998, Fig. 4). T1, in particular, represents the Lagrange equilateral triple collision. A circle
on the x-axis is the initial point of a collinear triple collision orbit (see Tanikawa andMikkola
2015, Table 2 for a sequence of triple collision points).

In Tanikawa et al. (1995), we introduced the types of collision. The collision point is of
type 3 if the point is the initial positions of the orbit for which bodies 1 and 2 collide, the
collision point is of type 1 if the point is the initial positions of the orbit for which bodies
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Fig. 2 The structure of the initial
condition plane. a 3-cylinders
•132 . . . and •131 . . ., b division
by 4-cylinders, •1321 . . .,
•1323 . . ., •1321 . . ., •1311 . . .,
and •1313 . . .. The circle on the
x-axis denotes a triple collision
point (see Sect. 5)
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2 and 3 collide, and the collision point is of type 2 if the point is the initial positions of the
orbit for which bodies 3 and 1 collide. We also introduced the types of collision curves. The
collision curve is of type 3 if it comprises collision points of type 3, the collision curve is of
type 1 if it comprises collision points of type 1, and the collision is of type 2 if it comprises
collision points of type 2. This definition applies in the present paper.

It is to be noted here that there are structures of small scale close to the y-axis with
|x | < 0.01. We need a special treatment for this region. We neglect this part of Anosova’s
region in the present report and will treat it elsewhere.

4 Collision curves

Let us introduce some terminology. A point in the initial condition plane is called a binary
collision point (BCP) if it is a starting position of the orbit which experiences a binary
collision. BCPs usually form curves in the initial condition plane (Tanikawa et al. 1995;
Tanikawa 2000; Tanikawa and Mikkola 2015). We call these the binary collision curves
(BCCs), or frequently simply the collision curves. Collision curves are the sections (by the
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initial condition plane) of the stable and unstable manifolds of the binary collision manifold
(Llibre 1982) if the past and future symbol sequences are used. In our case, collision curves
are the sections of the stable manifolds since only the future sequences are used. However, in
the case of the free-fall problem, the future and the past are identical. So, the collision curves
are also the sections of the unstable manifolds.

Property 1 Boundaries of cylinders are formed with collision curves. (Tanikawa et al. 1995;
Tanikawa and Mikkola 2008, 2015).

Proof Suppose that k-cylinders (k > 0) A =• · · · 1∗∗∗ and B =• · · · 2∗∗∗ have a common
boundary. In A, body 1 passes through between bodies 2 and 3, while in B, body 2 passes
through between bodies 1 and 3 (see the figure below). Then at the boundary, bodies 1 and
2 necessarily collide. The other combinations of the last digits can be treated similarly. ��

*———*———* +——+———-+

3 1 2 1 2 3

A B

The boundary collision curve of cylinders A =• · · · 1∗∗∗ and B =• · · · 2∗∗∗ is a type-3
curve. Similarly, the boundary curve between A =• · · · 1 ∗ ∗∗ and C =• · · · 3 ∗ ∗∗ a type-2
curve, and B =• · · · 2 ∗ ∗∗ and C =• · · · 3 ∗ ∗∗ a type-1 curve. Thus, different from the case
of Tanikawa et al. (1995), types of collision curves are specified by the last digit of symbols
of the neighboring two cylinders. As an example, in Fig. 2a, the boundary collision curve of
cylinders 132 and 131 is of type 3.

4.1 Orbits which have plural binary collisions along their trajectories

As we have announced in the last paragraph of Introduction, we correct and modify the
erroneous statement on triple collision points. Let us introduce new terminology. The bound-
ary collision curves of k-cylinders (k > 0) will be called the (collision) curves of the kth
generation. Let us state a caution. Frequently, a boundary curve of a (k + 1)-cylinder is a
boundary curve of a k-cylinder, that is, some part of the boundaries of cylinders does not
change as the number of digits increases. In this case, we call the corresponding boundary
the kth generation. If there are given one or more k-cylinders, we sometimes say that these
cylinders are of the same (kth) generation.

True triple collision points inside the initial condition plane are shown in Fig. 11 of
Tanikawa (2000) and will be treated in the following section.

Assertion. Intersections of collision curves of different generations are the initial points
of orbits which have plural collisions along their trajectories.

Let us show the example orbits. One is the orbit starting at (x, y) = (0.09775, 0.5504),
and the other is the orbit starting at (0.04273, 0.400). The former point is on the boundary
curve of 4-cylinders 1321 and 1323, hence on the curve of the fourth generation, while the
latter point is on the boundary curve of 6-cylinders 132311 and 132312, hence on the curve
of the sixth generation. We plot the trajectories of both orbits in Fig. 3. The initial conditions
are similar. So the forms of the trajectories are close to each other. There are differences. The
trajectory in Fig. 3a has a binary collision between body 1 and body 3 at t = 0.6559 . . ., while
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Fig. 3 a A collision orbit on the
collision curve of type 2 and of
the fourth generation. It forms the
boundary of cylinders 1321 and
1323. b A collision orbit on the
collision curve of type 3 and of
the sixth generation. It forms the
boundary of cylinders 132311
and 132312
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Boundary orbit bewteein 132311 and 132312

collision

the trajectory in Fig. 3b has a binary collision between body 1 and body 2 at t = 1.0051 . . ..
We see two binary collisions are at different places, at different times, and between different
pairs of bodies.

The boundary curves of 4-cylinders 1321 and 1323 and 6-cylinders 132311 and 132312
intersect at point (0.110361, 0.567465). We show the trajectories of the orbit starting at this
point in Fig. 4. The trajectories experience collisions at t = 0.67383 and at t = 1.40746.
We see two (consecutive) collisions along the trajectories. For the moment, we do not have
a point where three or more collision curves of different generations cross.

It is to benoted that 4-cylinder 1321has twocomponents (Fig. 2b). The twocomponents are
disconnected also in the shape space as can be seen easily. This phenomenonmay complicate
in future the study of symbolic dynamics of our three-body problem.

5 Triple collisions inside the initial condition plane

We know that triple collision orbits on the boundary of the initial condition plane have a
special property that a lot of (possibly an infinite number of) collision curves pass through
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"132131", "132311", "132312, and "132132"

collision-1

collision-2

Fig. 4 An orbit with two collisions as a boundary of cylinders 132131, 132311, 132312, and 132132. The
initial point is the intersection of two collision curves

their initial points (see, e.g., Fig. 7 of Tanikawa 2000). We have a candidate of triple collision
orbits inside the initial condition plane from our previous work. In Fig. 11a and b of Tanikawa
(2000), curves of types 1, 2, and 3 meet at a point. We did not confirm that the orbit starting
at this point actually ends at triple collision by drawing trajectories. This orbit is included in
the present paper.

We denote the initial point of a triple collision orbit by a triple collision point (TCP). The
corrections for the erroneous statement of the former papers continue. In this section, we try
to make clear the conditions of triple collision points in the initial condition plane.

Property 4 Triple collision points are obtained as intersections of different types of collision
curves of the same generation.

Proof Suppose that a collision curve in which bodies i and j collide and a collision curve of
the same generation in which bodies i and k collide intersect. Then at intersections, bodies
i , j , and k collide at the same instant.

Let us show the division of the initial condition plane by the set of cylinderswith increasing
digits. We have already shown the divisions by the set of 3- and 4-cylinders in Fig. 2. There,
intersections of boundary collision curves are only on the boundaries of the plane. In Fig. 2a,
the collision curve of type 3 as the boundary cylinders 132 and 131 crosses the circular
boundary of type 2. The intersection is the isosceles triple collision point T2 which we
mentioned in the end of “Introduction.” In Fig. 2b, two curves of type 2 cross the circular
boundary also of type 2. The intersections are not triple collision points. One of the curves
starting at point T2 crosses the x-axis at x = 0.18058 . . .. This is a collinear TCP (see
Tanikawa and Mikkola 2015).

We see that 3-cylinder 131 is bounded by three curves: the arc of the circular boundary
connecting T2 and point B, the arc of the x-axis connecting the cross (×) and B, and a curve
connecting T2 and the cross. These are all collision curves. 3-cylinder 132 is bounded by four
arcs of collision curves neglecting the structure close to the y-axis. 4-Cylinders in Fig. 2b are
also bounded by arcs of collision curves. We do not any more raise the names of collision
curves of higher generations. It is a cumbersome work.
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Fig. 5 Divisions of Anosova’s
region. a Division by the set of
6-cylinders. There is only one
intersection inside Anosova’s
region between collision curves.
This is the cross point of curves
of generations 4 and 6, which
means the point is not a triple
collision point. b Division by the
set of 7-cylinders. There is only
one collision curve of generation
7. In this case also, there is not a
triple collision point

 0

 0.3

 0.6

 0.9

 0  0.1  0.2  0.3  0.4  0.5

132131

132312

132132

132132

132311

Division by 6-cylinders

x

y
(a)

 0

 0.3

 0.6

 0.9

 0  0.1  0.2  0.3  0.4  0.5

1321313

1323121

1321321

1321321

1323112

1323113

1321312

Division by 7-cylinders

x

y
(b)

The division of the initial condition plane by the set of 6- and 7-cylinders is depicted in
Fig. 5.We note that no new regions appear in the division by the set of 5-cylinders. We expect
that the shadowed region may contain triple collision points. However, in the present paper,
we do not treat the region. This region is divided into an infinite sequence of regions (see,
e.g., Fig. 2 of Tanikawa and Umehara 1998). Each of these regions is considered to have a
similar phase space structure to our region of the present paper.

In Fig. 5a, a thick curve is the type-3 collision curve of the sixth generation, while thin
curves are of younger generations. There are no intersections between curves of the sixth
generation. There is an intersection (denoted by +) of curves of the fourth and sixth genera-
tions in the upper part of the plane. This point is the starting point of the orbit which has two
collisions along its trajectories. We describe this orbit in Sect. 4.1 and show its trajectories
in Fig. 4.

In Fig. 5b, the division of the initial condition plane by the set of 7-cylinders is shown.
There is only one new curve of the seventh generation. As before, we show it by a thick curve,
and the curves of younger generations by thin curves. This time, there arise necessarily no
triple collision points since there are no intersections between collision curves of the seventh
generation.
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Fig. 6 Cylinders in Anosova’s
region: 8-cylinders. Boundary
curves for digit-8 are illustrated
with thick curves. Boundary
curves of younger generations are
with thin curves. The upper and
left cylinders have small areas.
So we do not inscribe the symbol
sequences

 0

 0.2

 0.4

 0.6

 0.8

 0  0.1  0.2  0.3  0.4  0.5

13213131 13213132

13231212

13213212

13213211

13231131

13213213

13213213

13231213

Division by 8-cylinders

Finally, we find triple collision points in the division by the set of 8-cylinders. We show
the results in Figs. 6 and 7. In Fig. 6, we have four curves of the eighth generation. Two upper
thick curves do not intersect each other though they intersect with other curves of younger
generations. The lower two curves of the eighth generation intersect each other. The structure
in the upper part of Fig. 6 is complicated, so we enlarge in Fig. 7a the region inside the larger
box of Fig. 6. In the figure, regions denoted (a), (b), (c), (d), (e), and (f) are 8-cylinders
13231131, 13231123, 13213123, 13231211, 13231121, and 13213213, respectively.

Figure 7b is an enlargement of the small box in Fig. 6. There are four curves.
Three thick curves are those of the eighth generation, while one thin curve is of the
third generation. Three thick curves intersect at two points (0.19208270, 0.3093601), and
(0.22202750, 0.30096440). We find that collision curves of the same generation and of the
three types meet at a triple collision point. In other words, three cylinders of the same gen-
eration meet at a point. In fact, for the case of the left triple collision point, three 8-cylinders
13213211, 13213212, and 13213213 meet at this point. The same is true for the right triple
collision point. We show in Fig. 8a and b the trajectories of the orbits starting at these two
points.

6 Other triple collision orbits

Now, we are convinced that triple collision points can be found in the regions where three
collision curves of the same generation meet. For the moment, our search will be not sys-
tematic. We look for the structures at which three cylinders meet. We find eight places. We
show in Fig. 9 the places enclosed by boxes. Let us show the structure inside each box one
by one.

In Fig. 10a, three 10-cylinders 13213212-11, 12, and 13 meet at (0.15567083,
0.33309483). For conciseness, we denote the cylinder regions by using the last two digits. The
same convention will be used in what follows. In Fig. 10b, three 14-cylinders 132312121212-
11, 12, and 13 meet at two points (0.09012264, 0.38213664) and (0.10106723, 0.37459122)
denoted by ×. In Fig. 10c, three 12-cylinders 1323121212-11, 12, and 13 meet at
(0.08212247, 0.41682453). In Fig. 10d, three 10-cylinders 13231212-11, 12, and 13 meet
at (0.08875296, 0.45639865). In Fig. 10e, three 8-cylinders 132312-11, 12, and 13 meet at
(0.10677930, 0.52012268). In Fig. 10f, three 11-cylinders 132132132-11, 12, and 13 meet
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Fig. 7 8-Cylinders in Anosova’s
region. a Enlargement of the
larger box in the former figure.
Cylinders named a–f have the
following symbol sequences. a:
13231131; b: 13231123; c:
13213123; d: 13231211; e:
13231121; f: 13213213. b
Enlargement of the smaller box
in the former figure. Two crosses
represent the triple collision
points whose orbits are
collisionless until triple collision.
The coordinates are
(0.19208270, 0.30936018), and
(0.22202750, 0.30096440)
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at (0.15882908, 0.64735217). In Fig. 10g, three 13-cylinders 13231213213-21, 22, and 23
meet at (0.19095011, 0.58286178). Finally, in Fig. 10h, three 13-cylinders 13231213213-
21, 22, and 23 meet at (0.27949737, 0.57593177).

We summarize the coordinates of the above triple collision points in Table 1. Here, we
provide the coordinates in the precision of eight digits, in contrast to, for example, 25 digits of
the figure-8 orbit obtained bySimó (2002)with the aid of, perhaps,multi-precision arithmetic.
Weuse standard double-precision arithmetic and provide the reliable initial eight digits,which
are in fact sufficient to reproduce our results.

We added four data. t is the time of approach to triple collision.We cannot obtain the exact
collision time. The time in the table is that the integration is available.Our experience says that
the integration with the extrapolation method takes much time to return the result if the time
exceeds this value. Column “Digits” shows when in the symbol sequence the triple collision
takes place. The shortest digits are eight. We do not say that the triple collision points with
symbol sequences of length equal to or less than 14 are exhausted because our survey is not
complete. Column “Side” shows the side of the triangle formed by three bodies toward triple
collision. All orbits start with the front side. Eight of them end with the backside triangle.
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Fig. 8 Trajectories of triple
collision orbits on the boundaries
of the 8-cylinders. The initial
points are illustrated by two +’s
in Fig. 7. a The orbit starting at
(0.19208270, 0.30936018); b the
orbit starting at
(0.22202750, 0.30096440)
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Fig. 9 Boxes containing triple
collision points in the initial
condition plane. Some of the
collision curves up to and
including the eighth generation
are inscribed for reference.
Represented are the coordinates
of the lower left and upper right
corners of the boxes. Box 1:
(0.145, 0.325), (0.165, 0.345);
Box 2: (0.08, 0.365), (0.105,
0.385); Box 3: (0.075, 0.41),
(0.085, 0.42); Box 4: (0.08,
0.445), (0.095, 0.465); Box 5:
(0.10, 0.515), (0.115, 0.525); Box
6: (0.145, 0.635), (0.165, 0.655);
Box 7: (0.18, 0.575), (0.20,
0.595); and Box 8: (0.27, 0.565),
(0.29, 0.585)
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Fig. 10 The division of the plane in the boxes of Fig. 9. Three curves meet at a triple collision point. Thin
curves are boundary curves of younger generations
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Table 1 Triple collision points

No x y t Digits Side Figures

1 0.19208270 0.30936018 1.35458 8 Back 7b, 8a

2 0.22202750 0.30096440 1.30831 8 Back 7b, 8b

3 0.10677930 0.52012268 1.83657 8 Back 10e, 11e

4 0.08875296 0.45639865 1.99380 10 Back 10d, 11d

5 0.15567083 0.33309483 1.67790 10 Back 10a, 11a

6 0.15882908 0.64735217 2.90464 11 Front 10f, 11f

7 0.08212247 0.41682453 2.16131 12 Back 10c, 11c

8 0.27949737 0.57593177 3.04707 13 Front 10h, 11h

9 0.19095011 0.58286178 3.08930 13 Front 10g, 11g

10 0.09012264 0.38213664 2.30804 14 Back 10b, 12a

11 0.10106723 0.37459122 2.28158 14 Back 10b, 12b

The initial coordinates, the time of collision, digits of symbol sequences, the side of the triangle at triple
collision, and the serial numbers of figures

Finally, column “Figures” indicates the serial numbers of figures in which the positions of the
triple collision points and trajectories are shown. Thus, for example, for No. 1 triple collision,
the positions are shown in Fig. 7b and trajectories are shown in Fig. 8a.

We find two types of triple collision points as listed in Table 1. One type is shown in
Figs. 7b and 10a–e. The other type is shown in Fig. 10f–h. The differences are apparent. One
is the difference of angles which cylinders make at the triple collision point. The cylinders
with ’11’ at the last two digits have narrow width toward the cross point in the former case.
This structure may reflect the dynamics. The other is the difference at which digit the triple
collision takes place. In Figs. 7b and 10a–e, triple collision takes place at even digits, whereas
in Fig. 10f–h, triple collision takes place at odd digits. Geometrically, the orientation of the
triangle is negative in the former case just before the triple collision, whereas the orientation is
negative in the latter case.One can confirm this looking at the trajectories inFigs. 8, 11, and12.
For the moment, we do not have a good explanation.

We see a similarity in the structure of divisions of Figs. 7b and 10b. In both cases, two
triple collision points are near the top of the tongue-like structure extended from the x-axis.
There are a lot of tongue-like structures nested each other or neighboring each other. So, we
expect that a lot of (possibly an infinite number of) triple collision points exist in our area.

We show the trajectories of the remaining nine triple collision orbits. Seven of them are
shown in Fig. 11. Each of the trajectories is named (a) ∼ (h) which corresponds the triple
collision point in Fig. 10 of the same name. We show in Fig. 12 two trajectories of orbits
corresponding to the points of Fig. 10b.

7 Discussions

We expect that the number of triple collision points inside Anosova’s region be infinite. There
can be at least two kinds of sequences of these orbits. One sequence comes from the infinite
similar structures of Anosova’s region to the lower right point B. The other sequence is inside
our region. We already pointed out that the number of tongue-like structures extending from
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Fig. 11 The trajectories of triple collision orbits whose initial conditions are shown in Fig. 10

the x-axis may be infinite, and each of these structures may contain triple collision points
near the top as in Figs. 7 and 10b.

The next target of research will be the systematic search for the triple collision points.
Individual tasks are simple: To find places in the initial condition plane where three cylinders
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Fig. 12 The trajectories of triple
collision orbits whose initial
conditions are shown in Fig. 10b
and in Table 1
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of the same generation meet. How to automatically find this place? This seems not easy.
Another direction of study will be to search for triple collision orbits with nonzero initial
velocities and yet with zero angular momentum.

The collision curves cross the x-axis perpendicularly because of the symmetry of the
problem. So, the structure of the phase plane near the x-axis is expected to be not so much
complex. On the other hand, our preliminary study shows that the phase plane near the y-axis
has rich structure. This area is worth to be investigated.

Richard Montgomery raised a few questions concerning the characters of symbol
sequences for bi-asymptotic solutions to triple collision (Montgomery 2007). One of them is
whether any finite symbol sequence is possible or not. The related question is what symbol
sequences are possible. The present paper is a first step to answer his questions.

8 Conclusions

In this paper, we give symbols 1, 2, or 3 along an orbit each time when the triangle formed
with three bodiesm1,m2,m3 becomes collinear. Due to the theorem of Montgomery (2007),
except for the Lagrange equilateral configuration, all triple systems of any form experience
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collinear configuration until infinite future or until triple collision, if any. So, the symbol
sequence is given to all orbits of the initial points of the free-fall problem except point C of
Fig. 1. If we truncate the symbol sequences at the kth digit, k-cylinders (k > 0) are obtained.
For each k, the set of k-cylinders together with their boundaries divide the initial condition
plane without gaps.

1. We numerically established that a triple collision point (i.e., a point of the initial condition
planewhose orbit ends at triple collision) can be found as an intersection of three cylinders
of the same generation. We do not obtain triple collision orbits with symbol sequences
shorter than eight digits.

2. We obtained 11 triple collision points inside Anosova’s region. The orbits starting from
these points have finite lengths in the future and in the past since the problem is free fall.
These orbits start at triple collision, expand the size until the free-fall states, and go back
to triple collision. Thus, these are time symmetric with respect to the time of free fall.

3. Two types of triple collision orbits are identified. One type of orbits starts with a positive
triangle formed with three bodies and ends at triple collision also with a positive triangle.
The other type starts with a positive triangle and ends with a negative triangle.

4. The intersections of binary collision curves of different generations are the initial points
of orbits with plural binary collisions along their trajectories.

Acknowledgements Authors are thankful to the two reviewers whose comments and suggestions have been
very useful in improving the manuscript.
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