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Abstract
This paper explores the rich dynamics of quasi-satellite orbits (QSOs) with out-of-plane
motions in the Earth–Moon and Mars–Phobos systems. The first part of the paper computes
families of spatial periodic QSOs in the circular restricted three-body problem via bifurca-
tion analyses and presents their orbital characteristics. We pay special attention to unstable
families of spatial periodic QSOs of weak instabilities. The second part of the paper presents
three applications of the obtained spatial unstable periodicQSOs to spacemission trajectories.
The first application is concerned with a ballistic landing concept on the surface of Phobos
via unstable manifolds emanating from spatial weakly unstable periodic QSOs. The second
application identifies stability regions of spatial, long-term stable, quasi-periodicQSOs based
on phase-space structures of invariant manifolds emanating from spatial unstable periodic
QSOs. The third application proposes a method of designing nearly ballistic, two-impulse
transfers from a low Earth orbit to a spatial, long-term stable, quasi-periodic QSO around
the Moon in the bicircular restricted four-body problem including solar perturbation.

Keywords Quasi-satellite orbit · Bifurcation analysis · Periodic and quasi-periodic orbits ·
Invariant manifolds · Circular restricted three- and four-body problems

1 Introduction

Co-orbital orbits such as quasi-satellite orbits (QSOs), tadpole orbits, and horseshoe orbits
have attracted interests in Celestial Mechanics as orbits where many asteroids reside (Murray
andDermott 1999). Recently, several studies (Llanos et al. 2013; Capdevila andHowell 2018)
investigated the use of co-orbital orbits as novel mission options due to their long-term stable
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Fig. 1 a Planar stable (black) and unstable (gray) periodic QSOs, which are sometimes called a distant
retrograde orbit and a period-three distant retrograde orbit, respectively, in the Sun-Jupiter rotating frame
(SJrf). b Corresponding locations of the periodic QSOs (triangles of the same colors as in a), and stable (blue)
and unstable (red) manifolds emanating from the planar unstable periodic QSO superimposed on regular
islands and chaotic sea (black dots) on the Poincaré section at y = 0, vy > 0

behavior. Future missions such as JAXA’s Martian Moons eXploration (MMX) plan to use
QSOs for close observations of Phobos (Kawakatsu et al. 2017).

Many researchers (Hénon 1970; Lam andWhiffen 2005; Demeyer and Gurfil 2007; Scott
and Spencer 2010; Capdevila et al. 2014) investigated the dynamics of planar QSOs in
the planar circular restricted three-body problem (CR3BP), where a Poincaré section is a
useful tool to visualize global phase-space structures in the three-dimensional energy surface.
Figure 1a shows planar stable and unstable periodic QSOs, which are sometimes called a
distant retrograde orbit and a period-three distant retrograde orbit, respectively. Figure 1b
shows the corresponding locations of the planar stable and unstable periodic QSOs in the
panel (a), and stable and unstable manifolds associated with the planar unstable periodic
QSO on the Poincaré section at y = 0, vy > 0 superimposed on regular islands and chaotic
sea. As noted in earlier works (Villac 2008; Scott and Spencer 2010; Capdevila et al. 2014),
invariant manifolds emanating from a planar unstable periodic QSO form a boundary of the
stability region. This significant role of the planar unstable periodic QSO and the associated
invariant manifolds may suggest extensions of them to higher-dimensional systems.

QSOs in higher-dimensional systems such as spatial or non-autonomous models have
attracted interests and require further investigation. Robin and Markellos (1980), Lara et al.
(2007), Vaquero and Howell (2014) revealed families of spatial periodic QSOs directly bifur-
cated from a planar stable periodic QSO. Lam and Whiffen (2005), Ming and Shijie (2009),
Bezrouk and Parker (2017) found spatial, long-term stable, quasi-periodic QSOs via grid
searches in some parts of the phase space. Russell (2006) globally searched for periodic
orbits including spatial QSOs via a grid search and a differential correction scheme. Lara
et al. (2007), Villac (2008) applied the method of fast Lyapunov indicator to identify sta-
bility regions of quasi-periodic QSOs. Cabral (2011), Canalias et al. (2017) developed a
semi-analytical approach to design spatial, long-term stable, quasi-periodic QSOs. Baresi
(2017), Scheeres et al. (2017), Oshima and Yanao (2017) generated quasi-periodic invariant
tori around a planar stable periodic QSO.
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In this paper, we pay special attention to unstable families of spatial periodic QSOs in the
Earth–Moon and Mars–Phobos CR3BPs. Our motivation stems from the significant role of
unstable periodic QSOs and associated invariant manifolds mentioned above. We perform
bifurcation analyses and present orbital characteristics of bifurcated families and show spatial
periodic QSOs of weak instabilities in each system. Based on the obtained families of spatial
unstable periodicQSOs,we explore three applications: The first application is concernedwith
a ballistic landing concept on the surface of Phobos via unstable manifolds emanating from
spatial weakly unstable periodic QSOs. The second application identifies stability regions of
spatial, long-term stable, quasi-periodic QSOs based on phase-space structures of invariant
manifolds emanating from spatial unstable periodic QSOs, which can be regarded as an
extension of the stability region in the planar problem in Fig. 1b to the spatial problem. The
third application develops a method of designing nearly ballistic, two-impulse transfers from
a low Earth orbit to a spatial, long-term stable, quasi-periodic QSO around the Moon in the
bicircular restricted four-body problem.

The remainder of this paper is organized as follows. Section 2 introduces mathematical
models. Section 3 summarizes a method of bifurcation analyses. Section 4 presents the
results of bifurcation analyses and orbital characteristics of each family of spatial periodic
QSOs. Section 5 explores three applications of spatial unstable periodic QSOs to spacecraft
trajectories.

2 Mathematical models

2.1 Circular restricted three-body problem (CR3BP)

The CR3BP is concerned with the motion of a massless particle, P3, under the gravitational
influences of two massive bodies, P1, P2 of masses m1, m2 (m1 > m2), respectively. The
model assumes that P1 and P2 revolve in circular orbits around their barycenter. The equations
of motion in the P1–P2 rotating frame are (Szebehely 1967)

ẍ − 2 ẏ = − Ū3x ,

ÿ + 2ẋ = − Ū3y,

z̈ = − Ū3z,
(1)

where

Ū3(x, y, z) := −1

2
(x2 + y2) − 1 − μ√

(x + μ)2 + y2 + z2
− μ√

(x − 1 + μ)2 + y2 + z2
,

(2)

and the lower alphabetic subscripts on the right-hand sides in Eq. (1) denote the partial
differentiations with respect to the subscripts, andμ := m2/(m1+m2) is themass parameter.

Equation (1) admits an energy integral of motion

E = 1

2
(ẋ2 + ẏ2 + ż2) + Ū3, (3)

and we also conventionally use the Jacobi energy C := − 2E .
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2.2 Bicircular restricted four-body problem (BCR4BP)

The BCR4BP (Simó et al. 1995; Koon et al. 2011) is concerned with the motion of a massless
particle, P3, under the gravitational influences of three massive bodies, P0, P1, P2 of masses
m0, m1, m2 (m0 > m1 > m2), respectively. The model assumes that P1 and P2 revolve in
circular orbits around their barycenter, and P0 revolves in a circular orbit around the P1–P2
barycenter in the same orbital plane as P1 and P2. In this paper, P0 is the Sun, P1 is the Earth,
and P2 is the Moon. The equations of motion in the P1-P2 rotating frame are

ẍ − 2 ẏ = −Ū4x ,

ÿ + 2ẋ = −Ū4y,

z̈ = −Ū4z,
(4)

where

Ū4(x, y, z, t) := Ū3 − ms√
(x − as cos θs)2 + (y − as sin θs)2 + z2

+ms

a2s
(x cos θs + y sin θs), (5)

and t is time, ms is the mass of the Sun, as is the distance from the Earth–Moon barycenter
to the Sun, and the phase angle of the Sun is θs(t) := θs0 + ωs t where θs0 is the phase angle
at t = 0; ωs is the relative angular velocity of the Sun.

Tables 1 and 2 summarize the physical constants used in this paper. We integrate Eq. (1)
or (4) by a variable step Runge–Kutta algorithm of orders 7 and 8 with absolute and relative
tolerances of 10−12. In the remainder, EMrf, MPrf, and SErf abbreviate Earth–Moon, Mars–
Phobos, and Sun–Earth rotating frames, respectively.

Table 1 Physical constants in the
Earth–Moon CR3BP and the
Earth–Moon–Sun BCR4BP
(Topputo 2013)

Parameter Value Unit

Mass parameter μ 0.012150668 –

Distance unit 384405 km

Time unit 4.34811305 day

Earth radius Re 6378 km

Moon radius Rm 1738 km

Mass of Sun ms 3.28900541 × 105 –

Orbital radius of Sun as 388.811143023 –

Angular velocity of Sun ωs − 0.925195985 –

Table 2 Physical constants in the
Mars–Phobos CR3BP

Parameter Value Unit

Mass parameter μ 1.652 × 10−8 –

Distance unit 9376 km

Time unit 0.0507561 day

Phobos radius Rp 11 km
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3 Bifurcation analysis

The following subsections summarize the procedure of the bifurcation analysis implemented
in this study. We confirmed that the method can successfully reproduce the known bifurcated
families of libration point orbits in the literature (Doedel et al. 2003; Grebow 2006).

3.1 Continuation

We use the pseudo-arclength continuation scheme (Keller 1977; Doedel et al. 2003) to
continue families of periodic orbits. Figure 2 shows a schematic comparison between a
parameter continuation and the pseudo-arclength continuation in terms of converged results
at the (i + 1)th step. The parameter continuation scheme, which continuously changes one
parameter (energy in the figure for example), may converge into a different family from the
original one at a bifurcation as shown in Fig. 2a, or may fail to converge when a fold exists as
shown in Fig. 2b. On the other hand, the pseudo-arclength continuation, which continuously
changes all the parameters u necessary to define a periodic orbit, can robustly continue along
a targeted family against a bifurcation and a fold by taking an initial guess in the tangential
direction ui

′
of the family and then converging perpendicularly.

In order to perform continuation more robustly, we adopt the multiple shooting scheme
(Keller 1968). Therefore, the parameters necessary to define a periodic orbit at the i th con-
tinuation step are

ui := (xij , T
i , λi ), j = 1, . . . , N . (6)

In the remainder of this paper, we omit the superscript when obvious. In this parameterization,
x j (1 ≤ j ≤ N ) is the state at the j th node, N is the total number of nodes, and nodes are
equally separated with respect to time. T is the period of an orbit and λ is an unfolding
parameter to vary the Jacobi energy (Giancotti et al. 2014), both of which are explicitly
added to the equations of motion (Doedel et al. 2003) of the CR3BP in Eq. (1) as

dx/dτ = T vx + λ∂E/∂x,

dy/dτ = T vy + λ∂E/∂ y,

dz/dτ = T vz + λ∂E/∂z,

dvx/dτ = T (2vy − Ū3x ) + λ∂E/∂vx ,

dvy/dτ = T (−2vx − Ū3y) + λ∂E/∂vy,

dvz/dτ = T (−Ū3z) + λ∂E/∂vz, (7)

Fig. 2 A schematic figure comparing converged results of a parameter continuation (red) and a pseudo-
arclength continuation (green) in the cases of a a bifurcation and b a fold. The black curves represent families
of periodic orbits, the solid arrows show initial guesses, and the dashed arrows represent convergence processes
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where τ := t/T is a scaled time. Note that λ �= 0 makes the system nonconservative and
prohibits the existence of periodic orbits in the vicinity of the original orbit. Therefore, λ

must be zero upon the convergence of each continuation step (Muñoz-Almaraz et al. 2003).
We use theMATLAB®’s fmincon function to solve Eq. (7) under the following constraints

by setting a tolerance of 10−10 for constraint violations in each convergence process:

ζ j := ϕ(x j , t j , t j+1) − x j+1 = 0, (8)

Ψ := x1 − xN = 0, (9)

Γ := (ui+1 − ui ) · ui ′ − Δs = 0, (10)

Θ := (xi+1
1 − xi1) · dx

i
1

dτ
= 0, (11)

where ζ j is the continuity condition in terms of states (position and velocity) at each node,
and ϕ(x j , t j , t j+1) represents the integration of the state x j at the j th node from the time t j
to t j+1. Ψ represents the periodicity condition that the states of the first and the final nodes
match. Γ is the pseudo-arclength condition that the converged direction ui+1 − (ui +ui

′
Δs)

is perpendicular to the initial guess ui
′
Δs, where ui

′
is the unit vector tangentially taken to

the path of solutions at ui (Doedel et al. 2003) with the prescribed continuation step Δs. Θ
is the phase condition (Giancotti et al. 2014) to uniquely determine the states of nodes by
fixing the phase of the first node.

3.2 Detection of bifurcation points

The monodromy matrix of a periodic orbit M := dϕ(x, T )/dx has one trivial pair of eigen-
values D = 1 in the CR3BP (Koon et al. 2011). The emergence of a nontrivial pair of
eigenvalues D = 1 is a signal of a bifurcation into a periodic orbit with the same period
as the original family, and that of D = −1 indicates a period-doubling bifurcation (Lara
et al. 2007; Nagata et al. 2015). We focus on these fundamental bifurcations, while other
bifurcations associated with higher-order resonances, such as those investigated in Robin
and Markellos (1980), Lara et al. (2007), are out of scope of this paper.

Figure 3 shows the change in real and imaginary parts of six eigenvalues of themonodromy
matrix in terms of the Jacobi energyC as a result of continuation of a planar unstable periodic
QSO in the Earth–Moon CR3BP. We start continuation from the orbit with the largest Jacobi
energy in the figure. The figure indicates that there are seven bifurcation points #1-#7 detected
by nontrivial pairs of unity eigenvalues.

3.3 Branch switching

At each bifurcation point, we perturb a periodic orbit in the direction of an eigenvector
associated with nontrivial unity eigenvalues and converge the perturbed orbit to a bifurcated
family by using the multiple shooting scheme. As shown in Fig. 4a, we perturb not only a
single point on a periodic orbit, but also multiple points, which correspond to nodes in the
multiple shooting scheme, to robustly switch from the original family to a bifurcated one.

Figure 4b shows an example result of branch switching from the bifurcation point #6 in
Fig. 3 to a spatial unstable periodic QSO family and subsequent continuation, where the
out-of-plane amplitude gradually increases from the planar unstable periodic QSO. Note that
Fig. 4b displays several spatial unstable periodic QSOs in the same family.
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Fig. 3 The change in real (red)
and imaginary (blue) parts of six
eigenvalues D of the monodromy
matrix in terms of the Jacobi
energy C as a result of
continuation of a planar unstable
periodic QSO in the Earth–Moon
CR3BP. Seven bifurcation points
#1-#7 detected by nontrivial pairs
of unity eigenvalues are indicated
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Fig. 4 a An example of an initial guess for a bifurcated family at the bifurcation point #6 in Fig. 3 perturbed
at multiple points (red) in the direction of eigenvectors associated with nontrivial unity eigenvalues of the
monodromy matrix. b A family of spatial unstable periodic QSOs computed by branch switching from the
bifurcation point #6 in Fig. 3 and subsequent continuation

4 Families of spatial periodic quasi-satellite orbits

This section presents families of spatial periodic QSOs in the Earth–Moon andMars-Phobos
CR3BPs.

4.1 Bifurcation analysis of QSOs in Earth–Moon system

Figure 5 shows the bifurcation diagram of periodic QSOs in the Earth–Moon CR3BP, where
families are represented in terms of the Jacobi energy C , the perilune altitude, and the out-
of-plane amplitude Az . The color denotes the maximum absolute value of eigenvalues of the
monodromy matrix, which indicates the strength of instability. Planar stable and unstable
QSOs correspond to the two curves with Az = 0 labeled as planar stable and planar unstable,
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Fig. 5 Bifurcation diagram of
periodic QSOs in the
Earth–Moon CR3BP. Families
are represented in terms of the
Jacobi energy C , the perilune
altitude, and the out-of-plane
amplitude Az . The color denotes
the maximum absolute value of
eigenvalues of the monodromy
matrix, which indicates the
strength of instability. The seven
bifurcation points of the planar
unstable family shown in Fig. 3
are indicated 0
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respectively, in Fig. 5, and the seven bifurcation points of the planar unstable family shown in
Fig. 3 are indicated. Among the seven bifurcation points, #1 and #4 correspond to bifurcations
to the planar stable family.

We obtained one spatial family from the planar stable family labeled as SQSO in Fig. 5,
and five spatial families at the bifurcation points #2, #3, #5, #6, and #7 from the planar
unstable one. (We call them the first generation bifurcated families because they directly
bifurcate from the planar families.) Figure 5 includes additional nine bifurcated families
from the spatial unstable families, which are highly complicated, unstable, and long-period
orbits, and are not investigated in this paper. In the computation, we focus on the range
2 < C < 4, which is considered to be wide enough, and stop continuation outside the range.

The following subsections show orbital characteristics of the first generation bifurcated
families in the Earth–Moon system. We use the notation EM-UQSO-#N for the name of a
family bifurcated from a bifurcation point with N th largest Jacobi energy of a planar unstable
periodic QSO.

4.1.1 EM-SQSO

Figure 6a shows the values of Jacobi energy C , the period T , and the perilune altitude of
the family EM-SQSO. This family is always linearly stable, being far from the Moon, and
exists in the range of relatively small C . Figure 6b shows a sample orbit of this family and
the symmetric counterpart with respect to the x-y plane propagated after inverting the signs
of z and vz at the initial condition.

4.1.2 EM-UQSO-#2

Figure 7a shows the values of Jacobi energy C , the period T , and the perilune altitude of
the family EM-UQSO-#2. This family emerges from a period-doubling bifurcation. The
instability of EM-UQSO-#2 is always weak and the orbit becomes linearly stable at the
minimumC where further continuation was impossible in our computation. Figure 7b shows
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Fig. 6 a The Jacobi energyC , the period T , and the perilune altitude, and b a sample orbit (blue) of EM-SQSO
and the symmetric counterpart with respect to the x-y plane (red) propagated after inverting the signs of z and
vz at the initial condition. The sample orbit shown in b corresponds to the red diamond in a
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Fig. 7 a The Jacobi energy C , the period T , and the perilune altitude and b a sample orbit of EM-UQSO-#2.
The sample orbit shown in b corresponds to the red diamond in a

a sample orbit of this family, and there is no symmetric counterpart of this family with respect
to the x-y plane.

4.1.3 EM-UQSO-#3

Figure 8a shows the Jacobi energy C , the period T , and the perilune altitude of the family
EM-UQSO-#3. This family emerges from a period-doubling bifurcation. The instability of
EM-UQSO-#3 is weak for relatively large C . Figure 8b shows a sample orbit of this family,
and there is no symmetric counterpart of this family with respect to the x-y plane.

4.1.4 EM-UQSO-#5

Figure 9a shows the Jacobi energy C , the period T , and the perilune altitude of the family
EM-UQSO-#5, which indicates the existence of a weak instability region. Figure 9b shows
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Fig. 9 a The Jacobi energy C , the period T , and the perilune altitude, and b a sample orbit (blue) of EM-
UQSO-#5 and the symmetric counterpart with respect to the x-y plane (red) propagated after inverting the
signs of z and vz at the initial condition. The sample orbit shown in b corresponds to the red diamond in a

a sample orbit of this family and the symmetric counterpart with respect to the x-y plane
propagated after inverting the signs of z and vz at the initial condition.

4.1.5 EM-UQSO-#6

Figure 10a shows the Jacobi energy C , the period T , and the perilune altitude of the family
EM-UQSO-#6. This family is highly unstable for the wide range of parameters. Figure 10b
shows a sample orbit of this family and the symmetric counterpart with respect to the x-y
plane propagated after inverting the signs of z and vz at the initial condition.

4.1.6 EM-UQSO-#7

Figure 11a shows the Jacobi energy C , the period T , and the perilune altitude of the fam-
ily EM-UQSO-#7. This family emerges from a period-doubling bifurcation. This family is
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Fig. 11 a The Jacobi energy C , the period T , and the perilune altitude and b a sample orbit of EM-UQSO-#7.
The sample orbit shown in b corresponds to the red diamond in a

always highly unstable and complicated. Figure 11b shows a sample orbit of this family, and
there is no symmetric counterpart of this family with respect to the x-y plane.

4.2 Bifurcation analysis of QSOs in Mars–Phobos system

Wealso explore spatial families ofQSOs in theMars–PhobosCR3BP.Weuse “MP” instead of
“EM” for the notation of families. Since MP-SQSO is always far from Phobos and similar to
EM-SQSO (see Sect. 4.1.1), we omit to report it. As in the Earth–Moon system, bifurcations
to the planar stable family occur at the bifurcation points #1 and #4. In our computation,
families corresponding to EM-UQSO-#6 and EM-UQSO-#7 were not found in the Mars–
Phobos system. We note that it is difficult to clearly see families in a bifurcation diagram in
the Mars–Phobos system because they are localized in the parameter space. Therefore, we
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separately plot the values of parameters of each family of spatial unstable periodic QSOs in
Figs. 12a, 13a, and 14a in the following subsections.

4.2.1 MP-UQSO-#2

Figure 12a shows the Jacobi energyC , the period T , and the periapsis altitude, and (b) shows
a sample orbit of the family MP-UQSO-#2. There is no symmetric counterpart of this family
with respect to the x-y plane. This family emerges from a period-doubling bifurcation. This
family is an analogue of EM-UQSO-#2, sharing similar properties such as theweak instability
and the linear stability at the minimum C .

4.2.2 MP-UQSO-#3

Figure 13a shows the Jacobi energyC , the period T , and the periapsis altitude, and (b) shows
a sample orbit of the family MP-UQSO-#3. There is no symmetric counterpart of this family
with respect to the x-y plane. This family emerges from a period-doubling bifurcation. This
family is an analogue of EM-UQSO-#3 given the similarities between Figs. 13a and 8a.

4.2.3 MP-UQSO-#5

Figure 14a shows the Jacobi energyC , the period T , and the periapsis altitude, and (b) shows a
sample orbit of the familyMP-UQSO-#5 and the symmetric counterpart with respect to the x-
y plane propagated after inverting the signs of z and vz at the initial condition. Figure 14a only
displays orbits of periapsis altitudes higher than −10 km, where the negative sign indicates
that the orbit is under the surface of Phobos. Note that this family is always very near or under
the surface of Phobos at its periapsis. This family is an analogue of EM-UQSO-#5 given the
similarities between Figs. 14a and 9a.

4.3 Relations to the solutions in the literature

This section discusses relations of the obtained families in Sects. 4.1 and 4.2 to the known
solutions in the literature. Vaquero and Howell (2014) found the family EM-SQSO in the
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Fig. 13 a The Jacobi energy C , the period T , and the periapsis altitude and b a sample orbit of MP-UQSO-#3.
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Fig. 14 a The Jacobi energy C , the period T , and the periapsis altitude, and b a sample orbit (blue) of MP-
UQSO-#5 and the symmetric counterpart with respect to the x-y plane (red) propagated after inverting the
signs of z and vz at the initial condition. The sample orbit shown in b corresponds to the red diamond in a

CR3BP and Voyatzis and Antoniadou (2018) identified it in the elliptic and general three-
body problems. Robin and Markellos (1980), Lara et al. (2007) revealed spatial families
directly bifurcated from resonant planar stable periodic QSOs, which are different from the
families in this paper because our families bifurcate from the planar unstable family. Russell
(2006) globally searched for periodic orbits in the Jupiter-Europa CR3BP by combining a
grid search and a differential correction scheme. Though the system was different, the global
nature of the search had made it possible to find spatial periodic QSOs corresponding to the
families computed in this paper, except for orbits that exhibit the symmetry with respect to
the x-z plane but does not exhibit the symmetry with respect to the x-axis due to the limitation
of the search space as noted in Russell (2006). The families EM-SQSO and EM-UQSO-#6
of the present study are classified into this exception because the values of y, z, and vx do
not become zero simultaneously. Therefore, EM-UQSO-#6 might be a new family found in
the present paper.
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5 Applications of spatial unstable periodic QSOs

This section presents three applications of the spatial unstable periodic QSOs obtained by
the bifurcation analyses in Sect. 4. The first part is concerned with a ballistic landing concept
on the surface of Phobos via unstable manifolds emanating from spatial unstable periodic
QSOs. The second part identifies stability regions of spatial, long-term stable, quasi-periodic
QSOs based on phase-space structures of invariantmanifolds emanating from spatial unstable
periodic QSOs. The third part proposes a method of designing nearly ballistic, two-impulse
transfer from a low Earth orbit to a spatial, long-term stable, quasi-periodic QSO around the
Moon.

5.1 Ballistic landing on Phobos

Wallace et al. (2012) investigated a ballistic landing/takeoff option on/from the surface of
Phobos via invariant manifolds emanating from halo orbits around Lagrange points in the
Mars-Phobos system. However, they found out that stationkeeping on an unstable halo orbit
far from the Earth is difficult because of the requirement of very frequent stationkeeping
maneuvers. Therefore, they proposed transfers between a halo orbit and a long-term stable
QSO before and after landing and takeoff.

Instead of using halo orbits which have strong instabilities, this study proposes the use
of the spatial unstable periodic QSOs obtained by the bifurcation analyses in Sect. 4 and
highlights the difference in characteristics between the families. Since the instability of MP-
UQSO-#2 and a part of MP-UQSO-#3 is much weaker than that of halo orbits, and they are
sufficiently close to the surface of Phobos (but not too close as in MP-UQSO-#5 avoiding
the danger of crashing), unstable manifolds emanating from these spatial weakly unstable
periodic QSOs could be useful to ballistically land on the surface of Phobos. Note that stable
manifolds can be similarly used for ballistic takeoff from the surface of Phobos.

Figure 15 shows the Jacobi energyC , the periapsis altitude, and the out-of-plane amplitude
Az of (a) MP-UQSO-#2 and (b) a part of MP-UQSO-#3 for relatively weak instabilities. The
values of the out-of-plane amplitude in Fig. 15 indicate that MP-UQSO-#2 could be more
favorable for exploring near-equatorial regions, whereas MP-UQSO-#3 could be advanta-
geous for exploring polar regions. Note that Fig. 15 does not assure that invariant manifolds
emanating from the QSOs can reach the surface of Phobos, and the reachability is inves-
tigated in the following numerical computations. We preliminarily investigate a concept of
ballistic landing on Phobos via unstable manifolds of MP-UQSO-#2 and MP-UQSO-#3 by
assuming Phobos as a sphere of 11 km radius and the point-mass gravity field. Note that a
more accurate model should be considered for realistic mission analyses.

In the case of MP-UQSO-#2, Fig. 16a shows the values of transfer time from the orbit
shown in Fig. 12b to the surface of Phobos and Δv necessary to escape the periodic QSO,
which corresponds to the perturbation given to the direction of the unstable eigenvector of the
monodromymatrix.We give perturbationwith themagnitude 5×10−5 in dimensionless units
only to the velocity components of the normalized unstable eigenvector in the computation
of unstable manifolds, which are sometimes called pseudo-unstable manifolds (Davis et al.
2013). Note that Fig. 16a does not include unstable manifolds not reaching the surface of
Phobos,many ofwhich escape from the vicinity of Phobos. The color indicates themagnitude
of velocity at the surface of Phobos. Transfer time and necessaryΔv are small and the landing
velocity could be feasible given that the planned landing velocity of OMOTENASHI, the
CubeSat lunar landing mission, is around 20 m/s (Hernando-Ayuso et al. 2017). Figure 16b
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Fig. 15 The Jacobi energy C , the periapsis altitude, and the out-of-plane amplitude Az of a MP-UQSO-#2
and b a part of MP-UQSO-#3 of relatively weak instabilities
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Fig. 16 a Transfer time from the orbit (MP-UQSO-#2) in Fig. 12b to the surface of Phobos and Δv to escape
the periodic QSO, colored according to the magnitude of the velocity at the surface. b The landing trajectory
(red) of the largest magnitude of the out-of-plane component |z| at the landing location among the results in
a, where the black thick curve represents the periodic QSO and the triangle represents the landing location.
The diamond in a corresponds to the trajectory in b

shows the landing trajectory of the largest magnitude of the out-of-plane component |z| at the
landing location among the results in Fig. 16a, which however results in the near-equatorial
region.

Figure 17 shows the results of computing unstable manifolds emanating from the family
MP-UQSO-#3 shown in Fig. 13b. The values of transfer time,Δv to escape the periodic QSO,
and the landing velocity are similar to those in Fig. 16a. On the other hand, the trajectory lands
on the polar region of Phobos. Therefore, the results indicate that the family MP-UQSO-#2
is more favorable for observing and landing on near-equatorial regions, whereas the family
MP-UQSO-#3 is advantageous for the exploration of polar regions.

123



23 Page 16 of 32 K. Oshima, T. Yanao

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

12

12.5

13

13.5

14

14.5

15

15.5

16

(a)

100

TOF = 4.89(days), DV = 0.0209(m/s), landing velocity = 13.8(m/s)

0
-40

-30

-20

-40

-10

0

10

20

30

40

-30 -20 -10 0 10 20 30 40-100

(b)

Fig. 17 a Transfer time from the orbit (MP-UQSO-#3) in Fig. 13b to the surface of Phobos and Δv to escape
the periodic QSO, colored according to the magnitude of the velocity at the surface. b The landing trajectory
(red) of the largest magnitude of the out-of-plane component |z| at the landing location among the results in
a, where the black thick curve represents the periodic QSO and the triangle represents the landing location.
The diamond in a corresponds to the trajectory in b

5.2 Spatial, long-term stable, quasi-periodic QSOs

This section explores the relationship between phase-space structures of invariant manifolds
emanating from spatial unstable periodic QSOs and stability regions of spatial, long-term
stable, quasi-periodic QSOs.

5.2.1 Earth–Moon system

Figure 18 shows crossing points of stable and unstable manifolds emanating from the family
EM-UQSO-#2 withC = 2.9 on (a) x-vx and (b) z-vz planes of the Poincaré section at y = 0,
vy > 0. We set eight initial values (i–viii) on the x-vx plane as shown in Fig. 18a and locate
initial values on grids on the z-vz plane around the invariant manifolds with C = 2.9. We
propagate the initial conditions and visualize escape time from the vicinity of theMoon (time
until reaching x = 0) in Fig. 19, where the number of each panel (i–viii) corresponds to the
number of each initial value on the x-vx plane in Fig. 18a.

Figure 19 indicates that stability regions lie around invariant manifolds emanating from
the spatial unstable periodic QSO. According to earlier works on libration point orbits by
Gómez et al. (2004), Ren and Shan (2012), Anderson et al. (2017), invariant manifolds
emanating from a set of unstable periodic QSOs and unstable quasi-periodic QSOs could
identify the stability boundary more accurately. Though the computation of unstable quasi-
periodic QSOs around the spatial unstable periodic QSOs is out of scope of this paper, our
result indicates that invariant manifolds emanating from the spatial unstable periodic QSO
could aid the search for spatial, long-term stable, quasi-periodic QSOs.

Figure 20 shows an example of spatial long-term stable quasi-periodic QSOs computed
by propagating the initial condition on the Poincaré section at y = 0, vy > 0, x = 0.75,
vx = 0, z = 0.02, vz = 0.04 with C = 2.9, for approximately 6 years. The initial values of
x and vx are those used in Fig. 19(ii). This kind of QSOs may be useful for observing and
exploring the Moon for a long period, and capturing asteroids around the Moon for a long
period in ARRM-like missions (Strange et al. 2013).
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Fig. 18 Crossing points of stable (blue) and unstable (red) manifolds emanating from EM-UQSO-#2 with
C = 2.9 on a x-vx and b z-vz planes of the Poincaré section at y = 0, vy > 0. Eight initial values (crosses)
on the x-vx plane for the subsequent propagation are indicated

Figure 21 shows the Poincaré section of approximately 119-year propagation of the spatial
long-term stable quasi-periodic QSO in Fig. 20, superimposed on the stable and unstable
manifolds of EM-UQSO-#2 in Fig. 18. We thus confirm that the corresponding trajectory
does not escape from the vicinity of the Moon for a long time.

5.2.2 Mars–Phobos system

We also investigate the relationship between the stability regions of spatial, long-term stable,
quasi-periodicQSOs and invariantmanifolds emanating from the familyMP-UQSO-#3 in the
Mars–Phobos CR3BP. Figure 22 shows the crossing points of stable and unstable manifolds
emanating from the familyMP-UQSO-#3withC = 2.999989 on (a) x-vx and (b) z-vz planes
of the Poincaré section at y = 0, vy > 0. Note that the stable and unstable manifolds almost
completely overlap.

We set eight initial values (i–viii) on the x-vx plane as shown in Fig. 22a and distribute
initial values on grids on the z-vz plane around the invariant manifolds with C = 2.999989.
We propagate the initial conditions and visualize escape time from the vicinity of Phobos
(time until reaching x = 0.9) in Fig. 23, where the number of each panel (i–viii) corresponds
to the number of each initial value on the x-vx plane in Fig. 22a. Similarly to Fig. 19, Fig. 23
indicates the existence of stability regions around invariant manifolds emanating from the
spatial unstable periodic QSO.

Figure 24 shows an example of spatial long-term stable quasi-periodic QSOs computed
by propagating the initial condition on the Poincaré section at y = 0, vy > 0, x = 0.99694,
vx = 0, z = − 0.0016, vz = − 0.0004 with C = 2.999989, for approximately 25 days.
The initial values of x and vx are those used in Fig. 23(ii). This kind of QSOs may be
useful for observing and exploring the high-latitude regions of Phobos inMMX-likemissions
(Kawakatsu et al. 2017).

Figure 25 shows the Poincaré section of approximately 1.4-year propagation of the spatial
long-term stable quasi-periodic QSO in Fig. 24, superimposed on the stable and unstable
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Fig. 19 Escape time from the vicinity of the Moon resulting from the propagation of initial values on grids
on the z-vz plane. Initial values of x and vx for each panel (i–viii) are those indicated in each label (i–viii)
in Fig. 18a. The upper bound of the color bar corresponds to the maximum propagation time (approximately
6 years), which includes trajectories not escaping within this time. The stable and unstable manifolds are
shown in black
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Poincaré section at y = 0, vy > 0, x = 0.75, vx = 0, z = 0.02, vz = 0.04 with C = 2.9, for approximately
6 years
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Fig. 21 Poincaré section (gray) of approximately 119-year propagation of the spatial long-term stable quasi-
periodic QSO in Fig. 20, superimposed on the stable (blue) and unstable (red) manifolds of EM-UQSO-#2 in
Fig. 18 on a x-vx and b z-vz planes of the Poincaré section at y = 0, vy > 0

manifolds of MP-UQSO-#3 in Fig. 22. We confirm that the corresponding trajectory does
not escape from the vicinity of Phobos.

5.3 Design of transfers from low Earth orbits to quasi-periodic QSOs around the
Moon

Modern space missions (Lo et al. 1998; Folta et al. 2012) have been utilizing instabilities of
dynamics around collinear Lagrange points to reduce insertionmaneuvers into libration point
orbits. However, stationkeeping maneuvers are necessary to stay around the orbits against
the instabilities. Stable orbits usually require substantial insertion maneuvers as shown in
Capdevila et al. (2014), Welch et al. (2015) for the cases of stable QSOs, whereas it is
possible to ballistically transfer into long-term stable, quasi-periodic orbits by exploiting
chaotic tangles of invariant manifolds (Scott and Spencer 2010; Oshima and Yanao 2015).
Recently, Parker et al. (2015) developed a method of designing ballistic transfers from low
Earth orbits (LEOs) to long-term stable, quasi-periodic QSOs in a high-fidelity ephemeris
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Fig. 22 Crossing points of stable (blue) and unstable (red) manifolds emanating from MP-UQSO-#3 with
C = 2.999989 on a x-vx and b z-vz planes of the Poincaré section at y = 0, vy > 0. Eight initial values
(crosses) on the x-vx plane for the subsequent propagation are indicated in a. The stable and unstablemanifolds
almost completely overlap in this figure

model. They perturbed x- and z-components of velocity of a reference planar stable periodic
QSO (distant retrograde orbit) and found desired transfers such that forward propagation
stays around the Moon and backward propagation reaches LEOs. However, it is still difficult
to efficiently guess sensitive forward-capture and backward-escape conditions in the high-
dimensional phase space. Additionally, it could be also difficult to find long-term stable,
quasi-periodic QSOswith relatively large out-of-planemotions by searching only the vicinity
of a planar stable periodic QSO.

This study proposes a method of designing nearly ballistic, two-impulse transfers from
LEOs to spatial, long-term stable, quasi-periodic QSOs around the Moon in the bicircular
restricted four-body problem (BCR4BP). Since our second application in Sect. 5.2 indicates
that stability regions of spatial quasi-periodic QSOs exist around invariant manifolds of
spatial unstable periodic QSOs, we firstly generate initial guesses of desired transfers as
stable manifolds emanating from a spatial unstable periodic QSO. We then extract stable
manifolds that can reach the vicinity of the Earth in backward propagation and can jump
from the periodic QSO into long-term stable orbits with small Δv, i.e., insertion maneuver,
in forward propagation. We finally optimize them to minimize total Δv, which are the sum
of a departure maneuver Δvi at a LEO and an insertion maneuver Δv f into a quasi-periodic
QSO. The following subsections explain each process of the method in detail and present
computational results.

5.3.1 Problem statement

We compute two-impulse transfers from an initial circular LEO of the altitude hi = 167 km
to a spatial, long-term stable, quasi-periodic QSO around the Moon in the BCR4BP. The first
impulse of magnitude Δvi at initial time ti injects the spacecraft into a transfer trajectory,
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Fig. 23 Escape time from the vicinity of Phobos resulting from the propagation of initial values on grids on
the z-vz plane. Initial values of x and vx for each panel (i–viii) correspond to those on the x-vx plane with
the same label in Fig. 22a. The upper bound of the color bar corresponds to the maximum propagation time
(approximately 25 days), which includes trajectories not escaping within this time. The stable and unstable
manifolds are shown in black
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Fig. 24 A spatial long-term stable quasi-periodic QSO computed by propagating the initial condition on the
Poincaré section at y = 0, vy > 0, x = 0.99694, vx = 0, z = −0.0016, vz = −0.0004 with C = 2.999989,
for approximately 25 days
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Fig. 25 Poincaré section (gray) of approximately 1.4-year propagation of the spatial long-term stable quasi-
periodic QSO in Fig. 24, superimposed on the stable (blue) and unstable (red) manifolds of MP-UQSO-#3
in Fig. 22 on a x-vx and b z-vz planes of the Poincaré section at y = 0, vy > 0. The stable and unstable
manifolds almost completely overlap in this figure

and the second impulse of magnitude Δv f at final time t f inserts it into a quasi-periodic
QSO. We set Δvi tangential to the local velocity of the initial circular orbit. Therefore,

Δvi =
√

(vx i − yi )2 + (vy i + xi + μ)2 + vz i
2 −

√
1 − μ

ri
, (12)

Δv f =
√

(vx f − vx QPi )
2 + (vy f − vy QPi )

2 + (vz f − vz QPi )
2, (13)
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where the subscripts i and f represent initial and final values of a transfer trajectory, respec-
tively, the subscript QPi represents initial values of a quasi-periodic QSO, and ri is the
non-dimensional initial distance from the center of the Earth.

In this formulation, the cost of transfer is Δv := Δvi + Δv f and the transfer time is
t f − ti , with the boundary conditions

ψi :=
[

(xi + μ)2 + yi 2 + zi 2 − ri 2

(xi + μ)(vx i − yi ) + yi (vy i + xi + μ) + zivz i

]
= 0, (14)

ψ f :=
⎡
⎣
x f − xQPi

y f − yQPi

z f − zQPi

⎤
⎦ = 0, (15)

and an inequality condition

Γ f := Δv f − Δv f ub < 0, (16)

where Δv f ub is the prescribed upper bound of the magnitude of Δv f , which is set to 2 m/s
in this computation.

Therefore, the optimization problem for this two-impulse transfer is to minimize the cost
Δv under the boundary conditionsψi = 0 andψ f = 0, and the inequality condition Γ f < 0.

5.3.2 Generation of initial guesses

As an example, we choose spatial, weakly unstable, periodic QSOs of C = 2.9 and Az =
17, 414 km of EM-UQSO-#2, C = 2.8 and Az = 138, 328 km of EM-UQSO-#3, and
C = 2.7 and Az = 46, 235 kmofEM-UQSO-#5, from the large set of the bifurcated solutions
in Fig. 5. We parameterize stable manifolds of these periodic QSOs by two parameters: the
phase along a periodic orbit, the minimum of which is zero and the maximum of which is
the period of the periodic orbit, and the phase angle of the Sun θs at the time when stable
manifolds are on the periodic orbit. On a periodic orbit, we give small Δv to initial states
of stable manifolds that can reach the vicinity of the Earth in backward propagation, and
propagate them forward in time. Both forward and backward propagations are done in the
BCR4BP including solar perturbation. Initial guesses for the subsequent optimization are
those that can stay around the Moon for sufficiently long time.

We present examples of searching for initial guesses as stable manifolds emanating from
the periodic QSOs of EM-UQSO-#2 (Fig. 26), EM-UQSO-#3 (Fig. 27), and EM-UQSO-#5
(Fig. 28), respectively. Figures 26a, 27a, and 28a show transfer times and the Jacobi energies
at perigees of stable manifolds emanating from the periodic QSOs of EM-UQSO-#2, EM-
UQSO-#3, and EM-UQSO-#5, respectively, that can reach 36,000 km altitude from the Earth,
colored according to the perigee altitude. In this computation, themaximumpropagation time
of the stable manifolds is 200 days. The red diamonds represent good initial guesses that can
reach 1,000 km altitude from the Earth surface and can stay around the Moon for longer than
1 year after executing Δv =1 m/s on the periodic orbit. Note that the transfer times span a
wide range, from approximately 100 days to 200 days, due to the sensitive dependence on
initial conditions in the BCR4BP. Figures 26b, 27b, and 28b visualize escape time from the
vicinity of the Moon for one of the good initial guesses (red diamonds) in Figs. 26a, 27a, and
28a, respectively, parameterized by azimuth (θ ) and elevation (ψ) angles of Δv, where
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Fig. 26 a Transfer times and the Jacobi energies at perigees (Cperigee) of stable manifolds emanating from the
periodic QSO of EM-UQSO-#2 that can reach 36,000 km altitude from the Earth surface, colored according
to the perigee altitude. The red diamonds represent good initial guesses that can reach 1,000 km altitude from
the Earth surface and can stay around the Moon for longer than 1 year after executing Δv =1 m/s on the
periodic QSO. b Escape time from the vicinity of the Moon for one of the good initial guesses of transfer time
of 186.58 days and Cperigee = 0.88 in a in terms of azimuth (θ ) and elevation (ψ) angles of Δv

Δvx = |Δv| cosψ cos θ,

Δvy = |Δv| cosψ sin θ,

Δvz = |Δv| sinψ,

0 ≤ θ ≤ 2π,

−0.5π ≤ ψ ≤ 0.5π.

(17)

The figures indicate that numerous transfers from LEOs to quasi-periodic QSOs are pos-
sible with a small insertion maneuver Δv =1 m/s. We also note that invariant manifolds of
spatial unstable periodic QSOs are still good indicators of spatial, long-term stable, quasi-
periodic QSOs even in the BCR4BP perturbed by the Sun. We target long-term stable orbits
achieved by Δv =1 m/s in Figs. 26b, 27b, and 28b (yellow) in the subsequent optimization
as final destinations of transfer trajectories. As mentioned in Sect. 5.2.1, direct identifications
of high-dimensional dynamical objects in the BCR4BP may help deeper understandings of
the generating mechanism of the stability regions in future works.

5.3.3 Optimization

Weoptimize the good initial guesses found in Sect. 5.3.2 by a direct transcription andmultiple
shooting procedure (Enright and Conway 1992), which translates an optimal control problem
into a nonlinear programming (NLP) problem. The method divides a trajectory into N − 1
segments by N nodes of equal time intervals, and introduces NLP variables

y := {x j , t1}, j = 1, . . . , N , (18)

where t1 is the departure time on a LEO, and x j := (x j , y j , z j , vx j , vy j , vz j ) is the state on

a j th node at time t j = t1 + j−1
N−1 (tN − t1), and tN is the arrival time at the quasi-periodic

QSO, which is fixed to the initial time of the quasi-periodic QSO.
The objective function is

J ( y) := Δv1 + ΔvN , (19)
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Fig. 27 a Transfer times and the Jacobi energies at perigees (Cperigee) of stable manifolds emanating from the
periodic QSO of EM-UQSO-#3 that can reach 36,000 km altitude from the Earth surface, colored according
to the perigee altitude. The red diamonds represent good initial guesses that can reach 1,000 km altitude from
the Earth surface and can stay around the Moon for longer than 1 year after executing Δv =1 m/s on the
periodic QSO. b Escape time from the vicinity of the Moon for one of the good initial guesses of transfer time
of 177.82 days and Cperigee = 0.72 in a in terms of azimuth (θ ) and elevation (ψ) angles of Δv
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Fig. 28 a Transfer times and the Jacobi energies at perigees (Cperigee) of stable manifolds emanating from the
periodic QSO of EM-UQSO-#5 that can reach 36,000 km altitude from the Earth surface, colored according
to the perigee altitude. The red diamonds represent good initial guesses that can reach 1,000 km altitude from
the Earth surface and can stay around the Moon for longer than 1 year after executing Δv =1 m/s on the
periodic QSO. b Escape time from the vicinity of the Moon for one of the good initial guesses of transfer time
of 162.81 days and Cperigee = 2.32 in a in terms of azimuth (θ ) and elevation (ψ) angles of Δv

where Eqs. (12) and (13) are evaluated on the initial and final nodes for Δv1 and ΔvN ,
respectively.

The boundary conditions are

ψ1 = 0, ψN = 0, (20)

where Eqs. (14) and (15) are evaluated on the initial and final nodes for ψ1 and ψN , respec-
tively.

The state x j on a j th node (1 ≤ j ≤ N − 1) is propagated in the BCR4BP given by
Eq. (4) for the fixed time span [t j , t j+1]. For the continuity of a trajectory, the defect

ζ j := ϕ(x j , t j , t j+1) − x j+1, j = 1, . . . , N − 1 (21)

123



23 Page 26 of 32 K. Oshima, T. Yanao

must vanish.
The inequality condition in terms of Δv f is

ΓN < 0, (22)

where Eq. (16) is evaluated on the final node for ΓN .
To avoid impacts on the surfaces of the Earth or theMoon of radius Re or Rm (see Table 1),

we impose inequality conditions on each node

η j :=
[

Re
2 − {(x j + μ)2 + y j 2 + z j 2)}

Rm
2 − {(x j − 1 + μ)2 + y j 2 + z j 2)}

]
< 0, j = 1, . . . , N . (23)

For the sake of consistency in terms of time, an inequality condition χ := t1 − tN < 0 is
also respected.

As a summary, the NLP problem is formulated to minimize the scalar objective function
J ( y), subject to the nonlinear (6N −1)-dimensional equality constraints c( y) and (2N +2)-
dimensional inequality constraints g( y), which are the functions of the (6N+1)-dimensional
NLP variables y, as

Minimize J(y) subject to

c( y) := {ζ j ,ψ1,ψN } = 0, j = 1, . . . , N − 1,

g( y) := {ΓN , η j , χ} < 0, j = 1, . . . , N . (24)

Table 3 An example of optimal
solutions originated from
EM-UQSO-#2

Performance Value Unit

Total Δv 3204.52 m/s

Departure maneuver Δvi 3204.49 m/s

Insertion maneuver Δv f 0.03 m/s

Transfer time 186.63 days

Table 4 An example of optimal
solutions originated from
EM-UQSO-#3

Performance Value Unit

Total Δv 3205.84 m/s

Departure maneuver Δvi 3205.57 m/s

Insertion maneuver Δv f 0.27 m/s

Transfer time 178.17 days

Table 5 An example of optimal
solutions originated from
EM-UQSO-#5

Performance Value Unit

Total Δv 3129.80 m/s

Departure maneuver Δvi 3129.35 m/s

Insertion maneuver Δv f 0.45 m/s

Transfer time 163.52 days
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5.3.4 Result

We solve the NLP problem (24) using the MATLAB®’s constrained optimization solver
fmincon by setting tolerances of 10−10 for constraint violations and for function evaluations.
Tables 3, 4, and 5 summarize examples of optimal solutions originated from the stable
manifolds of EM-UQSO-#2, EM-UQSO-#3, and EM-UQSO-#5, respectively. Due to the
small insertion maneuvers (Δv f ), total Δvs of the obtained optimal solutions are much
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Fig. 29 The trajectory in a x-y-z space, b x-y-z space amplifying around the Moon, c x-y plane, and d the
change in the Jacobi energy in the Earth–Moon rotating frame, and the trajectory in e x-y-z space and f x-y
plane in the Sun–Earth rotating frame of the optimal solution in Table 3 originated from EM-UQSO-#2. The
black trajectory represents a transfer trajectory, the gray trajectory is a quasi-periodic QSO propagated for
6 years after the insertion maneuverΔv f , and the dashed circle represents the lunar orbit. Perigee and perilune
altitudes of the transfer trajectory (above (a)) and the quasi-periodic QSO (above (b)) are shown
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smaller than those of low-energy transfers from LEOs to low lunar orbits in Topputo (2013),
Oshima et al. (2019). Total Δvs are comparable to those of ballistic transfers from LEOs
to unstable halo orbits in Parker and Anderson (2014) (see Table 3-20 in the reference),
but stationkeeping efforts of the arrival orbits against instabilities could be smaller in our
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Fig. 30 The trajectory in a x-y-z space, b x-y-z space amplifying around the Moon, c x-y plane, and d the
change in the Jacobi energy in the Earth–Moon rotating frame, and the trajectory in e x-y-z space and f x-y
plane in the Sun–Earth rotating frame of the optimal solution in Table 4 originated from EM-UQSO-#3. The
black trajectory represents a transfer trajectory, the gray trajectory is a quasi-periodic QSO propagated for
6 years after the insertion maneuverΔv f , and the dashed circle represents the lunar orbit. Perigee and perilune
altitudes of the transfer trajectory (above (a)) and the quasi-periodic QSO (above (b)) are shown

123



Spatial unstable periodic quasi-satellite orbits… Page 29 of 32 23

solutions due to the long-term stability of the quasi-periodic QSOs. Transfer times are longer
than many of those in the same reference.

Figure 29 shows the trajectory in the Earth–Moon rotating frame ((a), (b), (c)), (d) the
change in the Jacobi energy, and the trajectory in the Sun–Earth rotating frame ((e) and
(f)) of the optimal solution in Table 3 originated from EM-UQSO-#2. The black trajectory
represents a transfer trajectory and the gray trajectory is a quasi-periodic QSO propagated
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Fig. 31 The trajectory in a x-y-z space, b x-y-z space amplifying around the Moon, c x-y plane, and d the
change in the Jacobi energy in the Earth–Moon rotating frame, and the trajectory in e x-y-z space and f x-y
plane in the Sun–Earth rotating frame of the optimal solution in Table 5 originated from EM-UQSO-#5. The
black trajectory represents a transfer trajectory, the gray trajectory is a quasi-periodic QSO propagated for
6 years after the insertion maneuverΔv f , and the dashed circle represents the lunar orbit. Perigee and perilune
altitudes of the transfer trajectory (above a) and the quasi-periodic QSO (above b) are shown
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for 6 years after the insertion maneuver Δv f . The relatively small out-of-plane amplitude of
the quasi-periodic QSO results in the nearly planar transfer. The change in the Jacobi energy
indicates the significance of solar perturbation for the transfer phase. Since the apogee of the
transfer trajectory is located in the second quadrant in the Earth-centered Sun–Earth rotating
frame (see the panel (f)), the solar tidal force accelerates the trajectory and pumps up the
perigee altitude (Yamakawa 1993).

Figure 30 shows the trajectory in the Earth–Moon rotating frame ((a), (b), (c)), (d) the
change in the Jacobi energy, and the trajectory in the Sun–Earth rotating frame ((e) and (f))
of the optimal solution in Table 4 originated from EM-UQSO-#3. The transfer trajectory has
larger out-of-plane motion due to larger out-of-plane amplitude of the quasi-periodic QSO
than that in Fig. 29. The high perilune altitude of the transfer trajectory avoids the risk of
critical operations for low-altitude lunar flyby as noted in Parker et al. (2015). According
to the panels (d), (e), and (f), the transfer trajectory exploits solar perturbation similarly to
Fig. 29.

Figure 31 shows the trajectory in the Earth–Moon rotating frame ((a), (b), (c)), (d) the
change in the Jacobi energy, and the trajectory in the Sun–Earth rotating frame ((e) and (f)) of
the optimal solution in Table 5 originated from EM-UQSO-#5. The out-of-plane amplitudes
of the transfer trajectory and the quasi-periodic QSO are similar to those in Fig. 30. The
transfer trajectory exploits not only solar perturbation, but also high- and low-altitude lunar
flybys, which reduce the departure maneuverΔvi . The large amplitudes in x and y directions
of the quasi-periodic QSO could be useful for explorations of triangular Lagrange points L4

and L5.

6 Conclusion

The first part of this paper computed families of spatial periodic QSOs via bifurcation
analyses in the Earth–Moon and Mars-Phobos circular restricted three-body problems. In
each problem, we showed spatial weakly unstable periodic QSOs of the families UQSO-#2,
UQSO-#3, and UQSO-#5. The second part of this paper presented three applications of the
spatial unstable periodic QSOs. The first application was concerned with a ballistic landing
concept on the surface of Phobos via unstable manifolds emanating from periodic QSOs of
MP-UQSO-#2 and MP-UQSO-#3. Our preliminary results indicated that MP-UQSO-#2 is
favorable for landing on near-equatorial regions, whereas MP-UQSO-#3 is advantageous for
the exploration of polar regions. The second application identified stability regions of spatial,
long-term stable, quasi-periodic QSOs based on phase-space structures of invariant mani-
folds emanating from spatial unstable periodic QSOs. Such long-term stable orbits could
be useful for observations and explorations of high-latitude regions of celestial bodies. The
third application designed nearly ballistic, two-impulse transfers from a low Earth orbit to
a spatial, long-term stable, quasi-periodic QSO around the Moon in the bicircular restricted
four-body problem including solar perturbation. The method exploited the result of the sec-
ond application to find initial guesses of small insertion Δv into quasi-periodic QSOs, based
on stable manifolds emanating from spatial unstable periodic QSOs. We presented examples
of nearly ballistic, two-impulse optimal transfers from low Earth orbits to different families
of spatial, long-term stable, quasi-periodic QSOs, which could be useful in the missions,
such as CubeSat missions, where Δv is of much higher priority than transfer time.
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