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Abstract
We consider the planar restricted four-body problem proposed byMoulton. One infinitesimal
mass moves under the attraction of three mass points in collinear Euler’s configuration,
namely P0(m0 = μm) is placed at the origin, and other two identical points P1(m) and
P2(m) are placed at the same distance from the origin. The problem is an extension of
the well-known Copenhagen problem, in which P0 does not exist, and therefore, the name
is chosen for the considered problem. We perform a study on the evolution of families of
symmetric periodic orbits (characteristic curves) as the mass parameterμ evolves. Compared
with the Copenhagen problem, we find new families of periodic orbits and how the classical
ones change. We also analyse the number and evolution of spiral points, which represent the
heteroclinic orbits connecting equilibrium points.

Keywords Moulton–Copenhagen problem · Four-body problem · Symmetric periodic
orbits · Characteristic curves · Asymptotic orbits

1 Introduction

The so-called Copenhagen problem is a particular case of the restricted three-body problem
(RTBP). It studies the motion of a massless particle under the attraction of two identical
masses which move on circular orbits around their mutual centre of mass. This problem
received its name after the huge work carried out by astronomers of the Copenhagen Obser-
vatory under the direction of Dr. Elis Strömgren. To have an idea of the work done there, the
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reader is addressed to the interesting review Strömgren (1933), in which he presented most of
the work done by this observatory on this topic. Although simpler than the classical restricted
three-body problem, it has been deeply analysed because too the many properties in periodic
orbits related with its symmetry and the behaviour of asymptotic branches associated with
the equilibria.

Periodic orbits are the most important objects in the study of dynamical systems. It is
well known that Poincaré (1892) pointed out that periodic orbits form the skeleton of any
dynamical system. In the cases of autonomous Hamiltonian systems, the periodic orbits
appear in families. A family of periodic orbits is represented by a smooth one-parameter
continuous curve (characteristic curve) in the space of initial conditions of parameters. A
detailed study of periodic orbits of different types, their classification and evolution can be
found in the excellent book written by Hénon (2003). The existence of periodic orbits in the
three-body problem has been extensively studied, in particular, Strömgren (1933), Hénon
(1965a), Hénon (1965b), Szebehely (1967), Danby (1984), Hénon (2003) found families of
symmetric simple periodic orbits for this problem.

Extensions tomore realistic problems appeared at the end of last century by considering the
primaries oblate planets (Bhatnagar and Chawla 1977; Bhatnagar and Hallan 1983; Sharma
1981), radiation sources (Schuerman 1980; Simmons et al. 1985; Papadakis 1996; Papadakis
et al. 2009; Papadouris and Papadakis 2014; Papadakis 2016) or both effects (Elipe and Ferrer
1985; Elipe 1992; Elipe and Lara 1997; Ishwar and Elipe 2001).

To our knowledge, Moulton (1900) was the first one in considering the “problem of four
bodies, three ofwhich are finite,moving in circles according to one or the other of the solutions
of Lagrange.” For this problem, Moulton focused on its equilibria. In the present article, we
extend the Copenhagen problem by placing a third mass P0 on the origin of coordinates, in
such a way that the primaries are in a collinear Euler configuration, as in Moulton’s case.
Following Moulton, one century later, Maranhão and Llibre (1999) discovered transversal-
collision orbits and proved the existence of invariant punctured tori.Michalodimitrakis (1981)
studied the evolution of the system in terms of the mass of the central body P0. More analyses
of this problem have been made; for instance, Kalvouridis et al. (2006, 2007) studied the
families of periodic orbits in terms of the radiation parameter, Arribas et al. (2016a, b) made
a complete analysis of the existence and stability of the equilibrium points in the photo-
gravitational collinear restricted four-body problem, Barrabés et al. (2017) studied the same
problem by adding a repulsive Manev potential to the central mass.

The discovery of exoplanets gave a new impulse to these problems, since the celestial
bodies are not only limited to the physical dimensions and configurations of those found in
the Solar System, there are giant planets near the central star, planets under the attraction
of two nearby binaries and, even, the movement of planets without sun is possible. Indeed,
Chenciner and Montgomery (2000) published their article on a special periodic solution of
the three-body problem originally discovered byMoore (1993). In this special orbit, the three
bodies chase each other on the same path, a type of a Fig. 8 curve (Broucke et al. 2006).
Hence, this scenario favours a series of recent studies which are not only interesting from
the theoretical point of view, but also from their practical aspects, like the determination of
habitability zones of these new solar systems (Érdi et al. 2004; Funk et al. 2015; Burgos-
García et al. 2019).

In this work, we are interested in finding periodic orbits when only gravitational forces are
considered. In order to find periodic orbits, we use the grid search method (Markellos et al.
1974); it is simple, and it is very efficient in finding symmetric periodic orbits for dynamical
system of two degrees of freedom. The method can also take advantage from the mirror
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configurations that present these systems when they satisfy certain conditions of symmetry
(Barrio and Blesa 2009).

Since Strömgren (1933), it is known that some families of periodic orbits of the restricted
three-body problem end at an orbit formed by a pair of heteroclinic orbits connecting the two
triangular equilibrium points. Henrard (1972) proved the Strömgren’s conjecture according
to which a class of doubly asymptotic orbits are limit members of families of periodic orbits.
These families end in what is known as a spiral point around the Lagrange’s equilibria.
Strömgren (1933), Hénon (1965a, b) showed (graphically) four of these spiral points in the
Copenhagen problem. Later, Gómez et al. (1988) developed a numerical method to find
the heteroclinic orbits, which was applied to prove numerically the existence of the four
asymptotic orbits in the Copenhagen problem and extended the result to find the exact number
of this kind of orbits for different values of the mass parameter μ in the three-body problem.

In this paper, we deal with the gravitational collinear four-body problem in which the three
primaries form a collinear central configuration. After formulating the problem, we show a
brief description of the classical results for the symmetric periodic orbits in the three-body
problem: twenty-two characteristic curves of three different classes and four spiral points.
By using the grid search method, we find a huge amount of symmetric periodic orbits for
a large number of values of mass of the central body in order to analyse the evolution of
the characteristic curves from the three-body problem to the collinear restricted four-body
problem with increasing values of the central mass. Finally, we use the method of Gómez
et al. (1988) to find the number and location of spiral points in this problem in terms of the
mass of the central primary.

2 Formulation of the problem

We consider the motion of an infinitesimal mass P under the action of three finite bodies
P0, P1, P2, which are located at the collinear Lagrange points of the three-body problem.
Primaries P1 and P2 have equal massesm1 = m2 = m and P0 has massm0 = μm, where μ

is called mass parameter. P1 and P2 are located symmetrically with respect to P0, which is
placed at the origin of an inertial reference frame. In this frame, P1 and P2 describe circular
orbits around P0 with angular velocity ω given by Eq. (1). Note that in this manuscript we
will restrict the problem to planar motion. Besides, we consider a planar synodic reference
frame with the same origin, the Ox axis the line joining the primaries towards P1, and the
axis Oy to complete the direct frame. Our problem consists in finding the planar motion (on
the Oxy plane) of an infinitesimal mass P under the gravitational force of the three primaries.
This is what we call Moulton–Copenhagen problem (M–C problem).

We choose the units of distance, mass and time in such a way that ‖P1P2‖ = 1, and
the gravitation constant Gm = 1. Hence, the coordinates of the primaries P0, P1, P2 in the
synodic frame are, respectively, (0, 0), (1/2, 0) and (−1/2, 0), and Gm0 = μ.

Since the primaries are at the collinear Lagrange equilibria, the sum of the gravity forces
exerted by P0 and P2 on P1 must be equal to the centrifugal force, that is,

m1ω
2‖P0P1‖ = Gm0m1/‖P0P1‖2 + Gm2m1/‖P1P2‖2;

hence, the angular velocity of the synodic frame is

ω2 = � = 2(1 + 4μ). (1)
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Fig. 1 Evolution of the six
Lagrangian points in the collinear
restricted four-body problem as μ

increases

Then, the equations of motion for the infinitesimal particle P , after the change of time
ds = ω dt , are given by

ẍ − 2 ẏ = ∂U

∂x
, ÿ + 2 ẋ = ∂U

∂ y
, (2)

where the effective potential U is

U (x, y) = 1

2
(x2 + y2) + 1

�

(
μ

r0
+ 1

r1
+ 1

r2

)
, (3)

with

r0 =
√
x2 + y2, r1 =

√
(x − 1/2)2 + y2, r2 =

√
(x + 1/2)2 + y2.

Furthermore, and when dealing with rotating frames, there exists the Jacobi constant C ,

C = 2U (x, y) − (ẋ2 + ẏ2). (4)

For μ = 0 (�P0), we have the classical Copenhagen problem, where there are five equi-
librium points, L j , j = 1, 2, 3, 4, 5.

When μ �= 0 (see Fig. 1), the origin is occupied by a central body P0 and the collinear
point L1 splits into two symmetric points L+

1 and L−
1 that move towards the primaries P1,

P2, respectively, as μ increases. Simultaneously, L2 and L3 move towards P1 and P2, and
L4, L5 go towards P0. Hence, the problem has six equilibria (Arribas et al. 2016a).

3 Symmetric periodic orbits in the Copenhagen and inM–C

The system (2) is invariant under the symmetry (x, y, ẋ, ẏ; t) −→ (x,−y,−ẋ, ẏ;−t).
Because of this symmetry, in this paper we are interested in finding periodic orbits that are
symmetric with respect to the Ox-axis. In such cases, the orbit will orthogonally cross the
abscissas axis twice per period. Hence, if the initial conditions at t0 = 0 for such an orbit are

(x0, y0, ẋ0, ẏ0; t0 = 0) = (x0, 0, 0, ẏ0),

at the instant t = T /2 (half period), the solution of (2) with the above initial conditions must
be
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(xT /2, yT /2, ẋT /2, ẏT /2; t0 = T /2) = (xT /2, 0, 0, ẏT /2).

That is, we need to check the first perpendicular crossing of the x-axis:

y(x0, 0, 0, ẏ0; T /2) = 0, (5)

ẋ(x0, 0, 0, ẏ0; T /2) = 0. (6)

and then, (x0, 0, 0, ẏ0) will be initial conditions of a symmetric periodic orbit of period T .
Due to the existence of the Jacobi constant Eq. (4), we can express ẏ20 = 2U (x0, 0) −C ;

hence, we use the (x,C) plane to graphically represent the initial conditions of families of
symmetric periodic orbits and to find them.

In order to find the initial conditions, we use here the grid search method (Markellos
et al. 1974; Elipe et al. 2007; Barrio and Blesa 2009). Firstly, we build a regular mesh
(x j ,C j ), i = 0, . . . N of initial conditions. Then, we take from it two consecutive points,
namely (xi ,Ck) and (xi+1,Ck), and integrate Eq. (2) for the initial conditions up to the instant
(T /2) at which the orbit crosses again the x-axis [Eq. (5)], i.e.,

(xi , 0, 0, ẏi )[t = 0] �−→ (xi , 0, ẋi , ẏi )[t = Ti/2],
(xi+1, 0, 0, ẏi+1)[t = 0] �−→ (xi+1, 0, ẋi+1, ẏi+1)[t = Ti+1/2].

Then, we must check whether the product ẋi [t = Ti/2] · ẋi+1[t = Ti+1/2] < 0 or not,
that is, we have to determine if they have opposite signs. If that is not the case, we take
the next point on the grid. If the condition is true, however, and due to continuity, there is
value (x∗

i ,Ck) with x∗
i ∈ (xi , xi+1) such that ẋ∗

i [t = Ti/2] = 0, that is, the orbit crosses
perpendicularly again the x-axis, thus, is a symmetric periodic orbit. Therefore, we keep this
value and proceed with the next point of the mesh. Once we complete the row Ck , we repeat
the procedure for the next row Ck+1 until every point of the grid is completed.

To solve this, a root-finding process combined with a numerical integrator is necessary.
We used Brent’s method (Brent 1971) since it is an appropriate choice for this step of the
grid search method. Once the convergence is reached, we have a set of initial conditions that
satisfy the symmetric periodic conditions.

3.1 Copenhagen problem (� = 0)

To study the evolution of the families of symmetric periodic orbits in terms of the parameterμ,
we begin with the caseμ = 0, which coincides with the well-known Copenhagen three-body
problem (Strömgren 1933; Hénon 1965a, b; Papadakis 1996).

Figure 2 shows the characteristic curves of the three-body problemwith the same notation
used by Hénon. There are 22 families of periodic orbits, named: a, b, c, f, g, h, i, j, k, l, m, n, o,
r, s, t, u, v, w, x, y, z. In that sense, and in order to group families, we consider several regions
of the plane (x,C) where families of periodic orbits appear, namely, Z1 = (−∞,−0.5) ×
[0,∞), Z23 = Z2 ∪ Z3, with Z2 = (−0.5, 0) × [0,∞) and Z3 = (0, 0.5) × [0,∞),
Z4 = (0.5,∞) × [0,∞), Z5 = (−∞,−0.5) × (−∞, 0). Z1 contains the families: b, h, l,
u, w. Z23 contains the families: c, f, i, n, o, r, s, x, y. Z4 contains the families: a, g, j, k, t, v, z
and, lastly, Z5 contains only the family m.

Because of the symmetry of the problem, for each periodic orbit with initial conditions
(x0, 0, 0, ẏ0) at t = 0, there exists another periodic orbit, symmetric with respect to the Oy
axis, with initial conditions (−x0, 0, 0,−ẏ0) at t = T /2. This fact can be used to group the
families of periodic orbits into three classes:

– First class (c, k, l, m and r): all the orbits are symmetric with respect to both axes.
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Fig. 2 Families of symmetric periodic orbits in the Copenhagen problem and zoom of the three encircled
areas. Each point on the plane (x,C) corresponds to a periodic orbit

– Second class (j, n and o): for each orbit in the family, its symmetric one also belongs to
the family.

– Third class (a, b, f, g, h, i, s, t, u, v, w, x, y and z): for each orbit in the family, its symmetric
ones does not belong to the family.

The continuous transition from orbits of the second class to their symmetric counter-
parts requires that a double symmetric orbit belongs to the family; thus, each second class
curve must intersect with a curve of the first class. In this problem, we have the following
intersections: j–k, n–c and o–r.

Since third class families do not contain the symmetric orbit of each of their members,
this symmetric orbit must belong to another family. Therefore, third class families appear in
pairs in such a way that each one contains the symmetric orbits of their paired family. In the
three-body problem, the pairs are: a–b, f–h, g–i, s–t, u–v, w–x, y–z.

At the bottom of Fig. 2, a zoom of the different encircled regions near the spiral points is
presented. We name these points S1, S′

2, S2, S4, according to the zone (Z1, Z2, Z4) that they
belong to. These are the end of several families (Henrard 1972) and represent asymptotic
orbits, i.e., heteroclinic orbits that connect the two triangular Lagrangian points L4, L5. All
these points have the same value of the Jacobi constant, C = 11/4, and the x coordinate is
equal to x1 = −1.90, x2 = −0.48, x3 = −0.32, x4 = 0.51, respectively.
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Fig. 3 Evolution of characteristic curves in the M–C problem as μ increases (μ = 0.001, 0.01,
0.1, 1, 10, 1000)

3.2 Moulton–Copenhagen problem (� �= 0)

When a fourth central body is considered, the characteristic curves of the restricted three-body
problem change depending on the parameter μ. See Fig. 3.

In what follows, we will focus on three different aspects of the evolution of the character-
istic curves:

• The change in the number and position of spiral points with the value of μ and the
appearance of a new spiral point S3 in zone Z3.

• In the collinear restricted four-body problem, a mass occupies the origin, so there can be
no periodic orbit passing through the origin. This produces direct changes in the families
f and h, because both families contain a periodic orbit with this property.

• New families of curves appear and some old families disappear. In Fig. 3, we show the
characteristic curves of the four-body problem for different increasing values of μ > 0.
Each of these curves belongs to one of the three classes of families above mentioned.
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Fig. 4 Jacobi constant of the
spiral points versus μ

4 Asymptotic orbits (spiral points)

4.1 Existence of asymptotic orbits

Asymptotic orbits in the restricted three-body problem (RTBP) appear when triangular
Lagrangian points become unstable, i.e., when the mass parameter μ̃ > 0.00385 (see Sze-
behely 1967, Section 5.4.2).
N. B. The symbol μ̃ stands for the mass parameter of the RTBP.

In Arribas et al. (2016a, b), we presented a detailed study on the existence and stability
of the symmetric collinear restricted four-body photo-gravitational problem equilibria in
terms of three parameters μ, q0, q1 (mass and radiation parameters). The gravitational case
presented here is a particular case of the former work, where q0 = q1 = 1, and μ is the
only the mass parameter that varies. The problem has two triangular equilibria on the Oy
axis which move towards the origin as μ increases (see Fig. 1). The stability of these points
depends on the roots of the characteristic polynomial

λ4 + λ2 + b(μ) = 0, with b(μ) = ∂2U

∂x2

∣∣∣
(0,yL )

∂2U

∂ y2

∣∣∣
(0,yL )

, (7)

where (0, yL(μ)) is the position of the Lagrange point. This point is stable when 0 < b(μ) <

1/4 and unstable otherwise. It is easy to show numerically that the triangular equilibria are
unstable when μ < 11.72 (Arribas et al. 2016a). Hence, and for these values, the collinear
four-body problem can have asymptotic orbits.

Moreover, and in order to reach the equilibrium point, the asymptotic orbit must have a
Jacobi constant equal to the value given by Eq. (4) and evaluated at the Lagrange triangular
point with zero velocity: C(μ) = 2U (0, yL(μ)). This means that all the spiral points are on
the same horizontal line on the plane (x,C).

Figure 4 shows the value of the Jacobi constant for the asymptotic orbits versus the
parameterμ, i.e., the curveC = C(μ). For the case of the RTBP,C(0) = 11/4. Furthermore,
it can be seen that the ordinate of this point decreases when μ increases, reaching the limit
limμ→∞ C(μ) = 3/4.
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4.2 Coordinate x of spiral points

In order to find the heteroclinic (asymptotic) orbits that connect both Lagrangian triangular
points, we use the method developed by Gómez et al. (1988).

Let L4, L5 be the triangular equilibrium points of a vector field X on a certain manifold
M ; then, the stable and unstable manifolds of Li are defined, respectively, by

Ws(Li ) =
{
x ∈ M, φ(t, x)

t→∞−−−→ Li

}

and

Wu(Li ) =
{
x ∈ M, φ(t, x)

t→−∞−−−−→ Li

}
,

where φ is the flow of the field. Due to the symmetry of the problem, an orbit of the unstable
manifold Wu(L4) that cuts orthogonally the Ox-axis (ẋ = 0) continues with an orbit of the
stable manifold Ws(L5), creating a heteroclinic orbit.

Let us first study the motion near the equilibrium points L4(5) = (0, yL). Following
Szebehely (1967, p. 241), if we change the coordinates to

ξ = x, η = y − yL (8)

and expand the effective potential U (x, y) around the point Li , taking into account that
Uxy(0, yL ) = 0, and naming 	 = Uxx (0, yL ),
 = Uyy(0, yL ), the variational Eq. (2)
becomes

ξ̈ − 2η̇ = 	 ξ,

η̈ + 2ξ̇ = 
η. (9)

In this case, the characteristic equation becomes expression (7). Thus, and for the values
of the parameter 0 ≤ μ ≤ 11.72, the roots of this equation are ±λr ± iλi , where λr , λi > 0
are functions of μ. Then, the solution of (9) may be written as

ξ(t) = eλr t (A1 cos λi t + A2 sin λi t) + e−λr t (A3 cos λi t + A4 sin λi t),

η(t) = eλr t (B1 cos λi t + B2 sin λi t) + e−λr t (B3 cos λi t + B4 sin λi t), (10)

where the constants Ai , Bi , (i = 1, 2, 3, 4) are related by the expressions

B1 = k1A1 + k2A2, B2 = −k2A1 + k1A2,

B3 = −k1A3 + k2A4, B4 = −k2A3 − k1A4,

with

k1 = λr

2
(1 − K ), k2 = λi

2
(1 + K ), and K = 	

λ2r + λ2i
. (11)

If we take the constants A3 = A4 = B3 = B4 = 0, we obtain an approximation of Wu(L4),
then. Therefore, the linear approximation to Wu(L4) can be given by

ξ(t) = eλr t (A1 cos λi t + A2 sin λi t),

η(t) = eλr t (B1 cos λi t + B2 sin λi t). (12)

The method proposed by Gómez et al. (1988) benefits from expression (12) and gives an
approximation of the solution of Eq. (2) only near L4. However, we can assume that the point
(ξ(0), η(0)) is sufficiently close to L4 to take it as an initial condition in the integration of
Eq. (2) and thus to obtain a good estimation of an orbit from the unstable manifold.
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Table 1 Value of the coordinate
x of the spiral points for different
values of μ

μ S1 S′
2 S2 S3 S4

0 −1.9022 −0.4783 −0.3223 0.5073

10−4 −1.9021 −0.4783 −0.3222 0.5074

10−3 −1.9000 −0.4786 −0.3222 0.0005 0.5075

10−2 −1.8821 −0.4816 −0.3216 0.0021 0.5082

10−1 −1.7413 −0.4963 −0.3265 0.0159 0.5104

0.23 −1.6089 −0.3409 0.0284 0.5108

1 −1.3071 −0.3981 0.0434 0.5078

3 −1.1299 −0.4441 0.5036

10 −1.0454 −0.4780

These initial conditions expressed in terms of the variables (x, y) are given by

x(0) = A1, y(0) = yL + k1A1 + k2A2,

ẋ(0) = A1λr + A2λi , ẏ(0) = A1

2

[
(λ2r − λ2i ) − 	

] + A2

2
λrλi .

(13)

Integrating (2) for a great number of initial conditions (by changing the constants A1, A2)
and stopping the integration at the instant T , when y(T ) = 0, we can plot the points
(x(T ), ẋ(T )) to obtain curves that represent the manifold. The intersections of these curves
with the x-axis provide the initial conditions for heteroclinic orbits.

In order to be more systematic, Gómez et al. (1988) proposed to take the initial conditions
(x(0), y(0)) on a circle (r cos θ, yL +r sin θ) small enough (r small) around the equilibrium.
This can be obtained by taking

A1 = r cos θ, A2 = r sin θ − k1r cos θ

k2
, θ ∈ [0, 2π]. (14)

Fixing r = 10−4 and integrating with a large number of values of the angle θ , Gómez et al.
(1988) proved the existence and found the position of the four asymptotic (spiral) points
shown in Fig. 2 for the RTBP.

In order to study the existence of these asymptotic points in the C–M problem, we suc-
cessively apply the same method for different values of the parameter μ and we obtain the
following conclusions:

– For μ = 0, we obtain exactly the same four asymptotic orbits as in the RTBP.
– For μ sufficiently small (μ � 10−3), we obtain the same number of spiral points as in

the three-body problem, distributed in the same regions.
– When μ ≈ 10−3, a fifth spiral point S3 appears in Z3.
– When μ ≈ 0.23, S′

2 disappears and there are four spiral points.
– When μ ≈ 3, S3 disappears and there are three spiral points.
– When μ ≈ 10, S4 disappears and we have only two spiral points.

Table 1 provides the values of the x-coordinate of the spiral points for different values of
the parameter μ < 11.72.
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Fig. 5 Left: characteristic curve h in restricted three-body problem. Right: three periodic orbits corresponding
to three points in the figure

Fig. 6 Left: Characteristic curves h1 and h2 in the collinear restricted four-body problem. Right: Orbits that
belong to h1 (thinner) and h2 (thicker)

5 Effects of the central body on families h and f

To understand how the central body affects the families of symmetric periodic orbits, we
analyse the paired families h and f .

Figure 5(left) shows the family h of the RTBP, and three points representing three different
periodic orbits, O1, O2, O3 from the family. The same figure (right) shows these three orbits.
Orbits from family h are retrograde and move around P2. When t = T /2, these orbits cut the
Ox axis at a point between P1 and P2. Additionally, the orbit O2 crosses the origin. Note that
in the collinear restricted four-body problem a central mass occupies the origin; therefore,
the previous orbit O2 is not possible. This fact splits the family h into two subfamilies h1
and h2 (see Fig. 6) in such a way that the intersection with the Ox axis at t = T /2 of the
h1 orbits is between P0 and P1, while the same point from h2 orbits is between P2 and
P0.

On the other hand, the family f is paired with h, and thus, its behaviour must be sim-
ilar. In the restricted three-body problem, family f crosses the axis x = 0. Therefore this
point represents the periodic orbit that passes through the origin. Obviously, when a mass
is at the origin, no periodic orbit can pass through this point. Figure 7 shows how f splits
in two subfamilies f1 in Z2, paired with h1, and f2 in Z3 paired with h2, where family
f1 tends asymptotically to the axis x = 0, while f2 tends to the new asymptotic point
S3.
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Fig. 7 Top: characteristic curve
f1 and f2 in the collinear
restricted four-body problem.
Bottom: orbits that belong to f1
(thinner) and f2 (thicker)

6 Evolution with � of the other families

6.1 Region Z1

Besides what is happening for h curve, a second change is happening around the spiral point
S1. The curve w is a closed curve up to μ ≈ 0.1, but after that value, the curve opens and
moves towards the h1 curve. For a value of μ ≈ 0.86, there is a bifurcation and two new
curves appear: h1, that ends at the spiral point, and w1, a short characteristic curve that is
close but does not tend to that point. This evolution is shown in Fig. 8.
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Fig. 8 Evolution of the characteristic curves w and h1 around S1 in zone Z1

Fig. 9 Orbits of the family h1 for
μ = 1 in zone Z1

Orbits from family w1 are retrograde and surround the three primaries as well as the
equilibria except the collinear L2. For μ = 1, the retrograde orbits from family h1 are shown
in Fig. 9.

6.2 Region Z2

In addition to new families arising from family f1, we found that family c disappears and
two new families, c1 and c2, appear. The first one goes asymptotically between the forbidden
area and the C-axis, while family c2 moves from the equilibrium point L−

1 to the spiral point
S2 (see top of Fig. 7). Moreover, a very short curve α can be seen close to the spiral point S′

2
(see top-left of Fig. 10 with a close look at regions around S2, S′

2 in Z2).
On the other hand, these families evolve with μ (see Fig. 10). Family r merges with c1

and two families are obtained: One of them moves towards the spiral point S2, and the other
one towards the point S′

2. For μ ∈ (0.03, 0.04), the new family closest to S′
2 intersects with

families n and o, and then, two new families are created, each one tending towards a spiral
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Fig. 10 Evolution of characteristics close to S′
2 and S2 in Z2

Fig. 11 New family o–n– f1 in
Z2

point. The orbits involved in this process are retrograde and enclose P0 as well as the two
collinear equilibria close to it and the triangular equilibria.

The new family that ends at S2 approaches the family f1 and, finally, both create one
family. Meanwhile, for μ ≈ 0.23 the spiral point S′

2 disappears as well as some of the
families. These facts can be observed in Fig. 11.

6.3 Region Z3

In addition to the new spiral point S3, new characteristic curves are obtained. In Fig. 12, all
the new curves for the particular value μ = 0.1 are presented.

A characteristic curve cp2 is found, that is paired with c2 family, leaving S3 and ending at
the collinear equilibrium point L+

1 . Paired with α we find a short curve, α p , very close to S3.
A new curve β leaves the point S3. It is composed by direct orbits that enclose P0 and

P2 creating loops around the triangular equilibria. As the orbits move away from S3, loops
disappear and the triangular equilibria are left outside the orbit (see Fig. 14 left).
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Fig. 12 Orbits Oδ belong to characteristic δ and Oγ belong to characteristic γ . The orbit named Oγ δ belongs
to both characteristic curves

Fig. 13 Characteristic curve β p

in Z4 for μ = 0.1

Newcharacteristic curves γ and δ cross each other. Curve γ moves towards the equilibrium
point with values ofC varying very little. Curve δ leaves the space between the forbidden area
and the C-axis, crosses γ and ends at the spiral point S3. These curves have self-symmetric
orbits and they are not paired with others.

Orbits in γ are direct orbits surrounding P0 with a very small period. The orbits corre-
sponding to δ are small direct orbits, too. For the largest value of C the orbits encompass
P0. When C decreases, there is an orbit with two cusp points on the Oy axis that tend to
the origin creating loops. When we consider an orbit near S3 the loops enclose the triangular
equilibria and the inner loop encompasses P0.

6.4 Region Z4

In this area, we find the new family β p that is paired with β (in zone Z3) and is located
between the two g families of Hénon, as we can see in Fig. 13.

As μ increases, family j goes to the upper part of k; the rest of curves do not have a
qualitative change, for instance, the new family β p .

Figure 14(right) shows orbits from family β p , symmetric to others from family β.

7 Conclusions

We studied the motion of a small mass under the action of three primaries in a collinear
central configuration, a problem that was proposed by Moulton and that is an extension of
the Copenhagen problem. There are two peripheral equal masses (m) at the same distance
from another mass (m0 = μm) placed at the origin. An analysis of the evolution of the
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Fig. 14 Orbits of the families β and β p

families of symmetric simple periodic orbits for this system, in terms of the parameterμ, has
been made.

We begin with a review of the results for the case μ = 0, (Copenhagen problem). This
system has twenty-two characteristic curves of three different classes and four spiral points
that represent heteroclinic orbits connecting the two triangular Lagrangian points L4, L5.
Next, we proceed to compute the characteristic curves for theMoulton–Copenhagen problem
in a similar way as we did for the Copenhagen problem, and we characterized them in terms
of the new mass parameter.

Besides, we can conclude that the number of spiral points change: This number increases
from four to five when the 0.001 ≤ μ < 0.23 and it decreases for 0.23 ≤ μ < μmax = 11.7;
after this value, there is no longer any spiral point. The existence of these spiral points, that
is to say, heteroclinic curves which points correspond to periodic orbits, shows a kind of
accumulation periodic orbits on zones close to the spiral points, which could provide some
clues in the formation of planets or asteroids.
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