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Abstract
It is shown that there exists a class of doubly symmetric periodic solutions of Lunar type
around one oblate primary in the restricted three-body problem. A small parameter is intro-
duced as the closeness of the infinitesimal body to the oblate primary. The radius of the oblate
primary is even smaller compared to the distance from the infinitesimal body to this primary,
such that the order of magnitudes of the oblate perturbation and that of the third-body per-
turbation are comparable. The proof is based on the perturbation techniques and a corollary
of Arenstorf’s fixed-point theorem, where the error estimates are settled by averaging the
first-order system and using the Gronwall’s inequality.

Keywords Symmetric periodic orbits · Oblateness · Restricted three-body problem ·
Averaging · Analytic continuation

1 Introduction

Poincaré believed that periodic orbits are important in understanding the restricted or the
general N-body problem (Poincaré 1892). The study of periodic orbits in CelestialMechanics
not only benefits the development of mathematics, but also provides the intermediate orbits
for space missions and ephemerides (Hénon 1997). In Celestial Mechanics, one of the most
well-known model is the circular restricted three-body problem (CRTBP), in which many
families of periodic orbits are shown to exist via the continuation method or the variational
approach. For more aspects about the continuation method, one can refer to Meyer et al.
(2009), Cors et al. (2005), Xu and Fu (2009), and for more knowledge on the variational
method, one can refer to Gordon (1977), Chenciner and Montgomery (2000), Chen (2010),
and so on. One main difference between these two methods is that the continuation method
includes a small parameter while the variational method does not.

The continuation method is usually adopted in order to find new families of periodic
solutions in a dynamical system with a small parameter ε. Consider two differential systems
ż = F0(z) and ż = F(z, ε) = F0(z) + εFp , which are called the approximated system
and the full system, respectively. The method of finding solutions of the full system near the
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solutions of an approximated system is called the continuation method. If the new solutions
of the case ε > 0 are continued from the case ε = 0 by the implicit function theorem, such
a method is called the classical continuation method.

The classical continuation method is firstly used by Poincaré to classify symmetrical
periodic orbits in the CRTBP by sorts and types with a small mass ratio of the two primaries
as the small parameter (Poincaré 1892). Using the same parameter, Jefferys (1965) showed
that there exists a class of doubly symmetric periodic solutions for the CRTBP in a rotating
frame. Here doubly symmetric means that the periodic orbits are symmetric with respect to
the line containing both primaries and a plane perpendicular to this line. By this continuation
method, the mass ratio cannot be analytically very large. Without the restriction of the mass
ratio, taking the small distance to one primary or the inverse of the large distance to the
center of mass of both primaries as the small parameter, Howison and Meyer (2000) proved
the existence of doubly symmetric periodic orbits by applying the symplectic scaling method
and Arenstorf’s fixed-point theorem. For more knowledge on the symplectic scaling, one can
refer to Meyer et al. (2009), and for Arenstorf’s fixed-point theorem and its corollary, one
can refer to Arenstorf and Bozeman (1977), Cors et al. (2005) and related references.

It is more realistic and interesting though complicated to consider both the oblate and
the third-body perturbation when studying the Lunar-type orbits in the CRTBP. In such a
problem, the infinitesimal body moves around the oblate spheroid, and the other primary
moves as a mass point on the equatorial plane of the oblate primary. The aim of this paper
is to show the existence of the doubly symmetric periodic orbits of Lunar type around the
oblate primary.

In Sect. 2, the Hamiltonian is derived from the motion of the infinitesimal body in the
uniform rotating frame of both primaries, with their center of mass located at the origin.
The origin is then moved to the center of the oblate primary and the resulting Hamiltonian
derived. The Hamiltonian is then expanded with Legendre polynomials {Pk}+∞

k=1. In Sect. 3, a
small parameter representing the closeness of the infinitesimal body to the oblate primary is
introduced to the Hamiltonian by the symplectic scaling, and then the perturbation functions
are expanded using this small parameter. In Sect. 4, orbital elements and canonical elements
are introduced, and then the approximated system is expressed by the canonical elements.
In Sect. 5, double symmetry is described in rectangular coordinates, orbital elements, the
Delaunay elements, and the Poincaré–Delaunay elements. In Sect. 6, the approximated solu-
tions with double symmetries are proved to be circular orbits. In Sect. 7, the von-Zeipel
transformations are adopted to eliminate the short periodic effects in the first-order pertur-
bation term, and the averaged Hamiltonian keeps the same double symmetry. The first-order
system becomes integrable, and it is convenient to do error estimates in the next section. In
Sect. 8, the doubly symmetric periodic solutions of the approximated system are continued
to those of the full system via applying a corollary of Arenstorf’s fixed point theorem to the
boundary-value equations expressed in Poincaré–Delaunay elements. In the last section, the
final conclusion is summarized, and some further problems are discussed.

2 Hamiltonian system

Consider the CRTBP with only one oblate primary in the rotating frame with the center of
mass located at the origin. Denote the mass of the oblate primary as m1, the other m2. The
units ofmeasure can be chosen such that the constant distance between the primaries, the total
mass, and the gravitational constant are all equal to one in the new units. Let the direction

123



Doubly symmetric periodic orbits around one oblate primary Page 3 of 15 10

Fig. 1 A sketch for the motion of
the infinitesimal body around one
oblate primary in the circular
restricted three-body problem

ξ1

ξ2

ξ3

m1 m2

O

of x-axis point from m1 to m2, and the z-axis be perpendicular to the motion plane of the
primaries. Thus the Cartesian coordinate frame is fixed.

Introduce the position coordinate of the infinitesimal body and the conjugate momentum
as x = (x1, x2, x3)T , y = (ẋ1 − x2, ẋ2 + x1, ẋ3)T = (y1, y2, y3)T . Denote μ = m2

m1+m2
. The

position coordinates of m1 and m2 are ζ1 = (−μ, 0, 0)T , ζ2 = (1 − μ, 0, 0)T , respectively,
where the upper T represents transposition.

Under these units, the Hamiltonian function for the motion of the infinitesimal body can
be written as

Hc = 1

2
‖y‖2 − (x1y2 − x2y1) −

∫∫∫
dm

‖x − ζ1 − u‖ − μ

‖x − ζ2‖ , (1)

where u is an arbitrary vector inside the oblate primary, dm represents the uniform density
of the oblate spheroid multiplied by the unit volume du1du2du3.

Moving the origin to the center of the oblate primarym1, one has ξ = x+ (μ, 0, 0)T , and
the conjugate momentum of ξ is η = (ξ̇1 − ξ2, ξ̇2 + ξ1, ξ̇3)

T . A sketch describing the motion
of the infinitesimal body is shown in Fig. 1. The Hamiltonian can be written as follows:

Hμ = 1

2
‖η‖2 + (ξ2η1 − ξ1η2) + μξ1 −

∫∫∫
dm

‖ξ − u‖ − μ

‖ξ − (1, 0, 0)T ‖ − μ2

2
. (2)

Let the equatorial radius of the oblate primary be ae, which is small and ae � |ξ |. From
Kyner (1965), the potential function of the oblate primary is:

∫∫∫
dm

‖ξ − u‖ = 1 − μ

‖ξ‖

[
1 −

∞∑
k=2

Jk

(
ae
‖ξ‖

)k

Pk

(
ξ3

‖ξ‖
)]

, (3)

where J1 = 0, {Jk}∞k=2 are zonal harmonic coefficients. These terms only have relationship
with the latitude of the central body, and Pk (k ∈ N) are Legendre polynomials.

The third-body perturbation function can be expanded as

μ

‖ξ − (1, 0, 0)T ‖ = μ√‖ξ‖2 + 1 − 2ξ1
= μ + μξ1 + μ

∞∑
n=2

Pn

(
ξ1

‖ξ‖
)

‖ξ‖n . (4)
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Neglecting the constant terms, the Hamiltonian can be expanded as

Hexp(ξ, η) =1

2
‖η‖2 − 1 − μ

‖ξ‖ + (ξ2η1 − ξ1η2) − μ

∞∑
n=2

Pn

(
ξ1

‖ξ‖
)

‖ξ‖n

+ 1 − μ

‖ξ‖
∞∑
n=2

Jn

(
ae
‖ξ‖

)n

Pn

(
ξ3

‖ξ‖
)

. (5)

The Hamiltonian (5) is well written in a perturbed form, but there is not an apparent small
parameter, which is necessary for the continuation method and will be introduced in the next
section.

3 Symplectic scaling

In this section, a small parameter for the Hamiltonian system (5) is introduced, following
the way given by Howison and Meyer (2000). Suppose the infinitesimal body is sufficiently
close to the oblate primary with a mass 1−μ. This primary can be approximately considered
as a mass point, as its radius is even smaller than the distance between the infinitesimal body
and the oblate primary.

Let ε represents the closeness of the infinitesimal body to the oblate primary and ε > 0.
Using the following symplectic scaling,

ξ → ε2(1 − μ)
1
3 ξ, η → ε−1(1 − μ)

1
3 η, (6)

the new Hamiltonian is equal to the old Hamiltonian multiplied with ε−1(1 − μ)− 2
3 .

The infinitesimal body is subjected to both the oblate perturbation and the third-body
perturbation. Suppose the orders of the magnitudes of the two perturbations are the same.
One has

J2a
2
e = ε10 J̃2ã

2
e . (7)

The scaled Hamiltonian can be written as

Hε(ξ, η, ε) = ε−1(1 − μ)−
2
3Hexp(ε

2(1 − μ)
1
3 ξ, ε−1(1 − μ)

1
3 η)

= ε−3H01 + H02 − ε3(1 − μ)2/3H1 + ε5HR, (8)

where

H01 = ‖η‖2
2

− 1

‖ξ‖ , (9)

H02 = ξ2η1 − ξ1η2, (10)

H1 = μP2

(
ξ1

‖ξ‖
)

‖ξ‖2 + J̃2ã2e
‖ξ‖3P2

(
ξ3

‖ξ‖
)

. (11)

This section introduced a small parameter into the full HamiltonianHε by symplectic scaling.
The unperturbed system ε−3H01 in (9) is a Keplerian system with zero angular momentum
in the rotating frame, and is like the Keplerian system in an inertial coordinate frame. This
makes it suitable to use scaled osculating orbital elements to describe the perturbed orbit in
the Hamiltonian (8).
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4 Canonical elements

In this section, three kinds of elements are introduced, which are the osculating orbital ele-
ments, theDelaunay elements and the Poincaré–Delaunay elements. The first two are suitable
for describing elliptic motions, while the latter one is suitable for circular or nearly circular
orbits. The latter two are canonical elements, which are useful in canonical transformations.

Let r = ‖ξ‖, the instantaneous orbital elements are a, e, i,Ω,ω, M , which are semi-
major axis, eccentricity, inclination, longitude of ascending node, argument of pericenter
and mean anomaly, respectively. Denote f = f (e, M) as the true anomaly. The central body
has the mass 1, and the gravitational constant equals one. According to the fundamental
orbital theory, one has

ξ = r

⎛
⎝ cos( f + ω) cosΩ − cos(i) sin( f + ω) sin(Ω)

cos( f + ω) sinΩ + cos(i) sin( f + ω) cos(Ω)

sin( f + ω) sin(i)

⎞
⎠ ,

η = ξ̇ = Ck

a(1 − e2)

⎡
⎣−

⎛
⎝ cosω cosΩ − cos(i) sinω sinΩ

cosω sinΩ + cos(i) sin(ω) cosΩ

sin(i) sinω

⎞
⎠ sin( f )

+
⎛
⎝− sinω cosΩ − cos(i) cosω sinΩ

− sinω sinΩ + cos(i) cosω cosΩ

sin(i) cosω

⎞
⎠ (e + cos f )

⎤
⎦ , (12)

where Ck is the angular momentum with the value
√
a(1 − e2) in this Keplerian problem.

Substitute the formula above into (9–11), and one gets the instantaneous Hamiltonian with
osculating orbital elements,

H01 = − 1

2a
, H02 = Ck cos i . (13)

The Legendre polynomial P2(·) is expanded following the procedure of Tisserand expan-
sion, see Laskar and Boue (2010). The Tisserand expansion expands each Pm(·) (m ∈ N)
into triangular series, so it has the advantage of averaging rnPm(·) (n ∈ Z). The Legendre
polynomial P2(

ξ1
r ) then becomes:

P2

(
ξ1

r

)
= 3

2
[cos( f + ω) cosΩ − cos(i) sin( f + ω) sinΩ]2 − 1

2

= I1 + I2 cos 2( f + ω − Ω) + I3 cos 2( f + ω + Ω)

+ I4[cos 2( f + ω) + cos 2Ω], (14)

where

I1 = 3

8
cos2 i − 1

8
, I2 = 3

16
(1 − cos i)2,

I3 = 3

16
(1 + cos i)2, I4 = 3

8
(1 − cos2 i). (15)

One can also get

P2

(
ξ3

r

)
= 3

2
sin2( f + ω) sin2 i − 1

2
= −3

4
cos 2( f + ω) + I5, (16)
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where

I5 = 1

4
− 3

4
cos2 i . (17)

Using (13–17), the Hamiltonian Hε in (8) can be expressed by orbital elements.
As orbital elements are not canonical, one needs to use the Delaunay elements, which are

introduced as below:

L = √
a, G = L

√
1 − e2, H = G cos i,

	 = M, g = ω, h = Ω,

and the Poincaré–Delaunay elements are expressed by Delaunay elements:

Q1 = 	 + g + h, Q2 = −√
2(L − G) sin(g + h), Q3 = 	 + g,

P1 = L − G + H , P2 = √
2(L − G) cos(g + h), P3 = G − H .

Both the Delaunay elements and the Poincaré–Delaunay elements are canonical.
The Hamiltonian Hε is rewritten in the following way:

Hε = − ε−3

2L2 − H − ε3(1 − μ)
2
3H1 + ε5HR

= − ε−3

2(P1 + P3)2
+
(
P2
2 + Q2

2

2
− P1

)
− ε3(1 − μ)

2
3H1 + ε5HR, (18)

where H1 can be expanded with Hansen coefficients as

H1 = μ · r2P2

(
ξ1

r

)
+ J̃2ã

2
e · r−3P2

(
ξ3

r

)

= μ

{
I1

∞∑
k=−∞

X2,0
k (e) cos(kQ1 − k(g + h))

+ I2

∞∑
k=−∞

X2,2
k (e) cos((k − 4)Q1 + 4Q3 + (2 − k)(g + h))

+ I3

∞∑
k=−∞

X2,2
k (e) cos(kQ1 + (2 − k)(g + h))

+ I4

∞∑
k=−∞

X2,2
k (e) cos((k − 2)Q1 + 2Q3 + (2 − k)(g + h))

+ I4

∞∑
k=−∞

X2,0
k (e) cos(kQ1 − k(g + h)) cos 2(Q1 − Q3)

}

+ J̃2ã
2
e

{
−3

4

∞∑
k=−∞

X−3,2
k (e) cos((k − 2)Q1 + 2Q3 + (2 − k)(g + h))

+ I5

∞∑
k=−∞

X−3,0
k (e) cos(kQ1 − k(g + h))

}
, (19)
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where

e2 = 1 −
(
1 − P2

2 + Q2
2

2(P1 + P3)

)2

, cos i = 1 − P3

P1 + P3 − P2
2 +Q2

2
2

. (20)

For more aspects about Hansen coefficients, one can refer to Laskar and Boue (2010). In
fact, the perturbed terms H1 and HR can be expressed by infinity series of the Delaunay
elements or the Poincaré–Delaunay elements if the eccentricity e is not big. The integrable

truncated system − ε−3

2L2 − H is considered as the approximated system, and −ε3(1−μ)
2
3H1

is considered as the first-order perturbation term.
In order to describe the properties of the doubly symmetric periodic orbits of the full

system, the double symmetry and the solutions of the approximated system are introduced
sequentially in the following two sections.

5 Double symmetry

In this section, the double symmetry is expressed by the rectangular coordinates and the
canonical elements. Similar to the two-point-mass case, this Hamiltonian system with one
oblate mass is invariant under these two time reversal transformations:

R1 : (ξ1, ξ2, ξ3, η1, η2, η3, t) → (ξ1,−ξ2,−ξ3,−η1, η2, η3,−t),

R2 : (ξ1, ξ2, ξ3, η1, η2, η3, t) → (ξ1,−ξ2, ξ3,−η1, η2,−η3,−t). (21)

According to Howison and Meyer (2000), one has the following lemma about the doubly
symmetric periodic solutions of the Hamiltonian system (2):

Lemma 1 If one orbit of the Hamiltonian (2) starts fromL
(0)
1 , and intersectsL (0)

2 after time
T > 0, then the orbit is periodic with period 4T and doubly symmetric, where

L
(0)
1 = {(ξ, η)|ξ = (ξ1, 0, 0), η = (0, η2, η3)},

L
(0)
2 = {(ξ, η)|ξ = (ξ1, 0, ξ3), η = (0, η2, 0)}. (22)

This lemma tells us that if one orbit hits the ξ1 axis in the ξ1ξ2 plane and the ξ1ξ3 plane
perpendicularly at two different times, then this orbit is doubly symmetric periodic. That is
to say, one orbit is doubly symmetric periodic if the initial values ξ1(0), η2(0), η3(0) are well
chosen such that ξ2(T ) = η1(T ) = η3(T ) = 0.

The sets of boundary values for the double symmetry in (22) can be expressed by the
orbital elements, the Delaunay elements and the Poincaré–Delaunay elements, respectively:

L
(1)
1 = { f = 0 mod π, ω = 0 mod π, Ω = 0 mod π},

L
(1)
2 = { f = 0 mod π, ω = π

2
mod π, Ω = π

2
mod π}, (23)

L
(2)
1 = {	 = 0 mod π, g = 0 mod π, h = 0 mod π},

L
(2)
2 = {	 = 0 mod π, g = π

2
mod π, h = π

2
mod π}, (24)

L
(3)
1 = {Q1 = 0 mod π, Q2 ≡ 0, Q3 = 0 mod π},

L
(3)
2 = {Q1 = 0 mod π, Q2 ≡ 0, Q3 = π

2
mod π}, (25)
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In the next section, the doubly symmetric periodic orbits of the approximated system is
characterized by the two sets of boundary values L (3)

1 and L
(3)
2 .

6 Approximated solution

In this section, the doubly symmetric periodic orbits of the approximated system H0 =
−ε−3H01 +H02 is introduced. The HamiltonianH0 can be rewritten in Poincaré–Delaunay
elements:

H0 = − ε−3

2(P1 + P3)2
+
(
P2
2 + Q2

2

2
− P1

)
, (26)

Denote the initial conditions of the approximated system as Z∗
0 = (Q∗

1, . . . , P
∗
3 )T , and

the general solution of the approximated system Z (0)(Z∗
0 , t). The differential equations with

respect to time t can be written as

Ż (0) = F0(Z
(0)), (27)

and the general solution Z (0) of the approximated system (26) is

Q1(t) =
[

ε−3

(P∗
1 +P∗

3 )3
− 1

]
t + Q∗

1,

Q2(t) = P∗
2 sin(t) + Q∗

2 cos(t)

Q3(t) = ε−3t
(P∗

1 +P∗
3 )3

+ Q∗
3,

P1(t) = P∗
1 , P3(t) = P∗

3 ,

P2(t) = −Q∗
2 sin(t) + P∗

2 cos(t).

(28)

According to Lemma 1 and the sets of boundary values in (25), Z (0) is doubly symmetric
and periodic if

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q∗
1 = iπ, Q∗

2 = 0, Q∗
3 = jπ,

Q1(T ) =
(

ε−3

(P∗
1 +P∗

3 )
3 − 1

)
T + iπ = kπ + iπ,

Q2(T ) = P∗
2 sin(T ) = 0,

Q3(T ) = ε−3

(P∗
1 +P∗

3 )
3 T + jπ = (

m + 1
2

)
π + jπ,

(29)

where i, j, k,m are positive integers, and k ≤ m. From Eq. (29), one gets

T = ε−3

(
P∗
1 + P∗

3

)3 T − kπ =
(
m + 1

2
− k

)
π,

ε3 = m + 1
2 − k(

P∗
1 + P∗

3

)3 (
m + 1

2

) , P∗
2 = 0, (30)

so the doubly symmetric periodic orbits of the approximated system can be written as
⎧⎨
⎩

Q1(t) =
[

ε−3

(P∗
1 +P∗

3 )
3 − 1

]
t + iπ, Q2(t) ≡ 0, Q3(t) = ε−3t

(P∗
1 +P∗

3 )
3 + jπ,

P1(t) ≡ P∗
1 , P2(t) ≡ 0, P3(t) = P∗

3 .

(31)
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Fig. 2 An example of the doubly
symmetric periodic orbit of the
approximated system with
ε3 = 1

3 , L = G = 1,
H = G cos π

4 , and g = h = 0 −0.5

0
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ξ 3
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One simple example for the doubly symmetric periodic solution of system (26) is the case
of ε3 = 1

3 , k = m = 1, L = G = 1, H = G cos π
4 , and g = h = 0. A sketch of this doubly

symmetric periodic solution is given in the Fig. 2.
It is shown that doubly symmetric periodic solutions exist in the approximated system for

the CRTBP. These solutions are described by Eqs. (30) and (31). The following section will
eliminate the short periodic effects of the first-order perturbation term by averaging so as to
give better error estimates which are useful according to the fixed-point theorem used in the
procedure of the continuation.

7 Averaging

In this section, the perturbation term H1 is averaged such that this averaged term does not
contain the short period effects about the Poincaré–Delaunay elements Q1 = 	 + g + h and
Q3 = 	+g, and the conjugate momenta, the Poincaré–Delaunay elements, P1 = L−G+H
and P3 = G − H are constants for the first order.

The doubly symmetric periodic orbits of the full system are continued from the circular
orbits of the approximated system, and the continued orbits are elliptic with small eccentric-
ities.

Two angular variables Q1 and Q2 in H1 are eliminated separately. The averaged H1 can
be obtained from (19). One has

H̄1 = 1

2π

∫ 2π

0
H1dQ1

= μ

[
I1X

2,0
0 + I2X

2,2
4 cos(4Q3 − 2(g + h)) + I3X

2,2
0 cos(2g + 2h)

+ I4X
2,2
2 cos 2Q3 + 1

2
I4(X

2,0
−2 + X2,0

2 ) cos(2Q3 − 2g − 2h)

]

+ J̃2ã
2
e

[
−3

4
X−3,2
2 cos 2Q3 + I5X

−3,0
0

]
, (32)
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and

¯̄H1 = 1

2π

∫ 2π

0
H̄1dQ3

= μ

[(
1 + 3

2
e2
)
I1 + 5

2
I3e

2 cos(2g + 2h)

]
+ J̃2ã

2
e (1 − e2)−3/2 I5, (33)

where cos 2(g + h) and sin 2(g + h) can be derived from the Poincaré–Delaunay elements
Q2 and P2. If one substitutes (20) into (32), the ¯̄H1 can be explicitly expressed in Poincaré–
Delaunay elements.

The generating function of the first averaging procedure can be written as

S(1) = S(1)(Q1, Q2, Q3, P
′
1, P

′
2, P

′
3),

where the primed variables are the new variables. The relationship between old and new
variables is

Q′
1 = Q1 + ∂S(1)

∂P ′
1

, Q′
2 = Q2 + ∂S(1)

∂P ′
2

, Q′
3 = Q3 + ∂S(1)

∂P ′
3

,

P ′
1 = P1 − ∂S(1)

∂Q1
, P ′

2 = P2 − ∂S(1)

∂Q2
, P ′

3 = P3 − ∂S(1)

∂Q3
.

Substitute the old variables by the new variables to do Taylor expansions, one has

ε−3

(P ′
1 + P ′

3)
3

∂S(1)

∂Q1
= ε3(1 − μ)

2
3
(H1(Q1,2,3, P

′
1,2,3) − H̄1(Q2,3, P

′
1,2,3)

)
, (34)

so theS(1) can be solved. In a similar way, the second generating functionS(2)(Q′
1,2,3, P

′′
1,2,3)

can be solved by

ε−3

(P ′′
1 + P ′′

3 )3

∂S(2)

∂Q′
3

= ε3(1 − μ)
2
3

(
H̄1(Q

′
2,3, P

′′
1,2,3) − ¯̄H1(Q

′
2, P

′′
1,2,3)

)
, (35)

where the double primed variables are the newer variables. The formulas of both S(1) and
S(2) are not given here because they are long and not difficult to calculate.

The new Hamiltonian without the primes can be written as:

H̄ε = − ε−3

2(P1 + P3)2
+
(
P2
2 + Q2

2

2
− P1

)

− ε3(1 − μ)
2
3 ¯̄H1(Q2, P1, P2, P3) + O(ε5). (36)

This section gives the averaged first-order system by the Zeipel method. In the generat-
ing functions S(1) and S(2), the angular variables are the old variables, and the conjugate
momenta are the new variables. The implicit transformations can be solved by iterations. In
the following section, the doubly symmetric periodic solutions of the approximated system
are continued.

8 Continuation

This section gives the proof of the existence of the doubly symmetric periodic orbits of the full
system. The proof is based on a proposition derived from Arenstorf’s fixed-point theorem.
This proposition is given by Cors et al. (2005) and is stated as follows.

123



Doubly symmetric periodic orbits around one oblate primary Page 11 of 15 10

Proposition 1 (Cors, Pinyol and Soler) Let U be an open domain in R
n, I ⊂ R an open

neighborhood of the origin and f : U × I → R
n with f (0, 0) = 0, differentiable with

respect to x ∈ U, and fx (0, 0) non-singular. Assume that there exist c > 0, k > 0 such that
for x ∈ U, ε ∈ I ,

1. ‖ fx (x, ε) − fx (0, 0)‖ ≤ c(‖x‖ + ε),
2. ‖ f (0, ε)‖ ≤ kε .

Then there exists a function x(ε) ∈ U, defined for ε ∈ I ′ ⊂ I , such that f (x, ε) = 0 and
x(0) = 0.

The norms used here are defined as ‖X‖ = max1≤i≤n |Xi | for X ∈ R
n and ‖A‖ =

sup‖X‖=1 ‖AX‖ for A ∈ R
n×n . Let DF denote the matrix in which the elements are the

partial derivatives of the vector function F with respect to the vector X .
The f (x, ε) described in Proposition 1 is in fact composed of three equations, which

are about the boundary values of three angular variables. It is difficult to check whether
‖ fx (x, ε) − fx (0, 0)‖ and ‖ f (0, ε)‖ are bounded as described in this proposition. Before
giving the explicit f (x, ε) and the proof of the final conclusion, one needs to make the error
estimates.

Consider the differential equation system of the Hamiltonian (36)

Ż = F(Z , ε) = F0(Z2,4,5,6, ε) + ε3F1(Z2,4,5,6) + ε5FR(Z , ε), (37)

where Z = (Q1, Q2, . . . , P3) ∈ R
6, F = (F (1), F (2), . . . , F (6)) ∈ R

6, F (i) = ∂H̄ε

∂Pi
, and

F (i+3) = − ∂H̄ε

∂Qi
, (i = 1, 2, 3).

As ε is small enough, Z(Z0, t, ε)− Z (0)(Z0, t) is bounded when time is finite. The vector
functions F0, F1 and FR are continuous, and their derivatives with respect to Z are bounded
in a compact region near Z (0). In order to give the error estimates according to Proposition 1,
a lemma on the differential equations of the Hamiltonian system (36) is mentioned.

Lemma 2 Let Z (1)(Z0, t) be a solution of

Ż (1)(Z0, t) = DZ (0) F0Z
(1) + F1|Z (0) (38)

with an initial condition Z (1)(Z0, 0) = 0. In a finite time interval t ∈ [0, t0], the solution of
the full system (37) can be expressed as

Z(Z0, t, ε) = Z (0)(Z0, t) + ε3Z (1)(Z0, t) + ZR(Z0, t, ε), (39)

where [Z − Z (0)]|Z0 is of order ε3 and ZR(Z0, t, ε) is of order ε5. In addition, DZ0 Z
(1) is

bounded, and DZ0 ZR is of the order ε5.

Proof The proof can be referred to Howison and Meyer (2000), Cors et al. (2005).
Let Z (0)(Z∗

0 , t) be a doubly symmetric periodic solution of the differential equation (27).
Denote a set of initial values of the full system as Z0, which is very near Z∗

0 ,

Z0 = Z∗
0 + (0, 0, 0, δP1, δP2, δP3)

T

= (iπ, 0, jπ, P∗
1 + δP1, δP2, P

∗
3 + δP3)

T . (40)

Specially, P1(0) = P∗
1 + δP1 and P3(0) = P∗

3 + δP3. Suppose Z0 is well chosen, such that
(Q1, Q2, Q3) = (iπ + kπ, 0, ( j + m + 1

2 )π) after time T = (m + 1
2 − k)π + δT , and

Z(Z0, t) is a doubly symmetric periodic solution of the full system.
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The errors between Z(Z0, t) and Z (0)(Z0, t) can be preliminarily estimated by

‖Z(Z0, t, ε) − Z (0)(Z0, t)‖ ≤
∫ t

0
‖Ż − Ż (0)‖ds

≤
∫ t

0
‖DZ (0) F0 · (Z − Z (0))‖ds + C1ε

3t, (41)

where C1 > 0 is a constant, max{‖F1‖, ‖FR‖} < C1, and

DZ (0) F0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − 3ε−3

(P1(0)+P3(0))4
0 − 3ε−3

(P1(0)+P3(0))4

0 0 0 0 1 0

0 0 0 − 3ε−3

(P1(0)+P3(0))4
0 − 3ε−3

(P1(0)+P3(0))4

0 0 0 0 0 0
0 − 1 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In a finite time, P1(t) − P1(0) and P3(t) − P3(0) are of order ε5, and thus Q1(t) − Q(0)
1 (t)

and Q3(t) − Q(0)
3 (t) can be estimated roughly to be of the order ε2. Denote C0 > 0 as a

constant, such that

‖Q1(t) − Q(0)
1 (t)‖ ≤

∫ t

0

3ε−3

(P1(0) + P3(0))4
O(ε5)ds + C1ε

3t

≤
∫ t

0
C0‖Q1(s) − Q(0)

1 (s)‖ds + C1ε
3t,

and

‖P1(t) − P(0)
1 (t)‖ ≤

∫ t

0
‖ε5FR + C1ε

6‖ds ≤ C1ε
5t .

Similarly, Q3 and P3 have the same property. One has

(
Q̇2

Ṗ2

)
=
(

0 1
− 1 0

)(
Q2

P2

)
+
(

ε3F (2)
1 + O(ε5)

ε3F (5)
1 + O(ε5)

)
,

and thus both Q2 and P2 are of order ε3.
In all, one has

‖Z(Z0, t, ε) − Z (0)(Z0, t)‖ ≤
∫ t

0
C0‖Z − Z (0)‖ds + C1ε

3t .

According to Gronwall’s inequality, one has

‖Z − Z (0)‖ ≤ C1

C0
ε3(eC0t − 1). (42)

Using an expansion of Taylor series, one can show that (38) and (39) are correct. In fact,
(38) and (39) are also valid for the Hamiltonian (18) before averaging, because the Zeipel
transformation is nearly identity with the order ε6.

The eigenvalues of matrixDZ (0) F0 are four zeros and±i . One has ‖DF0 ·ZR‖ ≤ C0‖ZR‖,
and
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‖ZR‖ ≤
∫ t

0
‖Ż − Ż (0) − ε3 Ż (1)‖ds ≤

∫ t

0
‖DZ F0 · ZR‖ds + C2ε

5t

≤
∫ t

0
C0‖ZR‖ds + C2ε

5t, (43)

where C2 > 0 is a constant. According to Gronwall’s inequality, one has

‖ZR‖ ≤ C2

C0
ε5(eC0t − 1).

One has the fundamental solution matrix for (38),

�(t) = exp (DF0 · t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 − 3ε−3t
(P1+P3)4

0 − 3ε−3t
(P1+P3)4

0 cos t 0 0 sin t 0

0 0 1 − 3ε−3t
(P1+P3)4

0 − 3ε−3t
(P1+P3)4

0 0 0 1 0 0
0 − sin t 0 0 cos t 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where �−1(t) = �(−t), P1,3 = P1,3(0).
Z (1) can be solved by the following way,

Z (1) = �(t)
∫ t

0
�(−s)F1(Z

(0))ds

= −(1 − μ)
2
3

(∫ t

0
F (1)
1 ds,O(δP2),

∫ t

0
F (3)
1 ds, 0,O(δP2), 0

)T

, (44)

where ∫ t

0
F (1)
1 ds =

(
3

4
μ − 3

2
J̃2ã

2
e

)
P1P3

(P1 + P3)3
t + O(δP2

2 ),

∫ t

0
F (3)
1 ds = 3

2
J̃2ã

2
e

P2
1

(P1 + P3)3
t + O(δP2

2 ). (45)

As P1 + P3 is bounded away from zero, the derivative of Z (1) with respect to Z0 is bounded.
Following the way of Cors et al. (2005), the derivative of ZR with respect to Z0 is also
bounded at the order of ε5. 
�

Using Proposition 1 and Lemma 2, Theorem 1 can now be proved as follows.

Theorem 1 In the circular restricted three-body problemwith one oblate primary, there exists
a family of Lunar-type doubly symmetric periodic orbits around the oblate primary, where
the other primary moves on the equatorial plane of the oblate primary.

Proof For the full system, one has

Q1(T ) =
[

ε−3

(P∗
1 + P∗

3 + δP1 + δP3)3
− 1

]
T + iπ + ε3Q(1)

1 + ε5Q(R)
1 = kπ + iπ,

Q2(T ) = δP2 sin T + ε3Q(1)
2 + ε5Q(R)

2 = 0,

Q3(T ) = ε−3

(P∗
1 + P∗

3 + δP1 + δP3)3
T + jπ + ε3Q(1)

3 + ε5Q(R)
3 = jπ +

(
m + 1

2

)
π,

(46)
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Fix T0 = (m + 1
2 − k)π finite, let m and k be sufficiently large as the order of ε−3, one

gets �(δT , δP2, δP1 + δP3). �1 is derived from Q3(T ) − Q1(T ) = T + jπ − iπ , �2 is
derived from Q2(T ). As P1 + P3 = L , denote δL = δP1 + δP3. Substitute (30) into Q3(T ),
divide by (m + 1

2 )π , and one can derive �3:

�1 = δT + ε3(Q(1)
3 − Q(1)

1 ) + O(ε5) = 0,

�2 = ±δP2 cos δT + ε3Q(1)
2 + O(ε5) = 0,

�3 = 1 + δT
T0(

1 + δL
L∗
)3 − 1 + 1

(m + 1
2 )π

[ε3Q(1)
3 + O(ε5)] = 0. (47)

Let X = (δT , δP2, δL), one has

∂�(0, 0)
∂X

=
⎛
⎝ 1 0 0

0 ± 1 0
1
T0

0 − 3
L∗

⎞
⎠ , (48)

so �X (0, 0) �= 0. One has ‖�X (0, ε)‖ ≤ C1ε, and

‖�X (X , ε) − �X (0, 0)‖
≤ ‖�X (X , ε) − �X (X , 0)‖ + ‖�X (X , 0) − �X (0, 0)‖
≤ C1ε

3 + max(‖δT ‖, ‖δP2‖, ‖δL‖) ≤ C3(‖X‖ + ε), (49)

where C3 is a positive constant.
The sets of the boundary values Q1,2,3 are also satisfied by the inverse procedure of the

Zeipel transformations. According to Proposition 1, there exists a function Z of Z0 and ε

such that Z(Z0, t, ε) is a doubly symmetric periodic solution of the full system. 
�

The conclusion of this section is that there exist doubly symmetric periodic orbits of Lunar
type around one oblate primary in the CRTBP, where the mass point primary moves on the
equatorial plane of the oblate primary. In addition, the infinitesimal body is supposed not to
be close to themotion plane of the primaries, as the octupole perturbation cannot be neglected
for nearly coplanar motions.

9 Discussion

This paper considers the perturbation of the oblateness of the central primary, and gives a
similar result to Howison and Meyer (2000). The approach followed in this study can be
applied almost identically for the classical CRTBP, so it can give the result of Howison and
Meyer (2000) in a somewhat different way.

The direct theorem used in this paper for the continuation is different from that one
applied in the paper of Howison and Meyer (2000). This paper takes use of the averaging,
which makes the first-order system integrable. The error estimates for the continuation are
given in a different way that is easier to understand. It is sensible to calculate the solutions
of the first-order system, as this helps people to study the characteristics and visualize the
double-symmetric periodic orbits, and to find the bounds for the small parameter. It is also
interesting to consider the problem about the Lunar-type symmetric periodic orbits around
one symmetric ellipsoid in a rotating frame.
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