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Abstract
We here develop, in an angular momentum approach, a consistent model that integrates all
rotation variables and considers forcing both by the central planet and a potential atmosphere.
Existing angular momentum approaches for studying the polar motion, precession, and libra-
tion of synchronously rotating satellites, with or without an internal global fluid layer (e.g., a
subsurface ocean) usually focus on one aspect of rotation and neglect coupling with the other
rotation phenomena. The model variables chosen correspond most naturally with the free
modes, although they differ from those of Earth rotation studies, and facilitate a comparison
with existing decoupled rotationmodels that break the link between the rotationmotions. The
decoupled models perform well in reproducing the free modes, except for the Free Ocean
Nutation in the decoupled polar motion model. We also demonstrate the high accuracy of
the analytical forced solutions of decoupled models, which are easier to use to interpret
observations from past and future space missions. We show that the effective decoupling
between the polar motion and precession implies that the spin precession and its associated
mean obliquity are mainly governed by the external gravitational torque by the parent planet,
whereas the polar motion of the solid layers is mainly governed by the angular momentum
exchanges between the atmosphere (e.g., for Titan) and the surface. To put into perspective
the difference between rotation models for a synchronously rotating icy moon with a thin ice
shell and classical Earth rotation models, we also consider the case of the Moon, which has
a thick outer layer above a liquid core. We also show that for non-synchronous rotators, the
free precession of the outer layer in space degenerates into the tilt-over mode.

Keywords Cassini state · Precession · Polar motion · Titan · Internal ocean · Angular
momentum formalism

1 Introduction

Synchronous rotation is a common phenomenon in our Solar system. Be it the Moon, the
Galilean satellites, or Titan, almost every large satellite of the planets of the Solar system has
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equal rotation and revolution periods. This is a consequence of the dissipation associated with
the tides raised by the parent planet on the satellite which tends to slow down the satellite’s
rotation. Such synchronous rotators are expected to occupy a Cassini state, which is a special
equilibrium configuration described at the end of the seventeenth century by Cassini for the
Moon (see Colombo 1966, for a modern description). In that state, the precession of the
rotation axis is driven by the precession of the orbit pole, so that the nodes of the orbital
plane and of the equatorial plane are locked together, and that the spin axis lies in the plane
defined by the orbit and Laplace poles, whereas the obliquity remains constant. The Laplace
plane is the inertial plane that minimizes the variations in orbital inclination and can be seen
as an orbital plane averaged over the node precession period. The obliquity is the angular
separation between the orbit pole and the spin axis. While the spin axis precesses in space, it
wobbles with respect to the rotating frame attached to the surface of the satellite. This motion
is called polar motion.

Unlike polar motion, the spin precession has been observed for Titan and the Moon. The
orientation of the spin axis of the mantle of the Moon has been determined from Lunar laser
ranging (see Williams et al. 2001 and references therein). The inclinations of the orbit and
of the equator of the Moon with respect to the ecliptic are i = 5.145◦ and θ = −1.543◦,
respectively. Both planes precess retrogradely with a period of 18.6 years. The obliquity
ε = θ − i = −6.688◦ is consistent with the obliquity of an entirely solid and rigid Moon
[� −6.8◦, as can be obtained, e.g., from Eq. (6) of Baland et al. (2011)]. Recently, Dumberry
andWieczorek (2016) studied the orientation of the inner core, in viewof a possible validation
of dynamo models and detection in gravity signal of a differential orientation of the inner
core with respect to themantle. Titan is the only satellite of the Solar systemwith a significant
atmosphere, which is expected to be the main cause of the polar motion of satellite (Coyette
et al. 2016, 2018). The orientation of the spin axis of the shell of Titan has been determined
from Cassini radar images (see Meriggiola et al. 2016 and references therein). The obliquity
ε = 0.31◦ whereas the orbital inclination with respect to the Laplace plane i = 0.32◦ and the
period of the retrograde precession is about 700 years. The obliquity is about three times larger
than expected for an entirely solid and rigid Titan. Bills and Nimmo (2008) proposed that
the presence of a subsurface ocean can explain Titan’s large obliquity. It is currently believed
that the large obliquity of Titan is due to a resonant amplification, allowed by the presence
of the internal ocean (Baland et al. 2011; Noyelles and Nimmo 2014; Boué et al. 2017).

The rotation models mentioned above have some drawbacks. In polar motion models
(Coyette et al. 2016, 2018), the spin precession is set as known and not solved for, whereas
the polar motion is set to zero in the spin precession model of Baland et al. (2011). We
refer to that kind of models as decoupled models in the following. Contrary to decoupled
polar motion model of Coyette et al. (2018), the decoupled spin precession model of Baland
et al. (2011) does not include the possibility of a thick atmosphere/lakes exchanging angular
momentumwith the surface and does not include ocean flow. The effects of an ocean flow and
an atmosphere are also not considered in the model of Noyelles and Nimmo (2014), which
couples the spin precession to polar motion. The model of Dumberry and Wieczorek (2016)
for the Moon includes precession/polar motion coupling and the flow in the liquid core, but
is not suited for a study of the polar motion, as we will see later, whereas the model by Boué
et al. (2017) includes precession/polar motion coupling, ocean flow, but not the effect of
Titan’s atmosphere. Finally, except for Williams et al. (2001) in the case of a solid Moon,
and Coyette et al. (2016, 2018) in the case of Titan with an ocean, the effect of periodic tidal
deformations is not considered in the aforementioned studies (see Baland et al. 2016 for an
update of Baland et al. (2011) to tidal deformations, or Noyelles (2018) for a coupled rotation
model of a tidally deformed solid body).
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In this study, we investigate all rotation variations (libration, precession, polar motion) in
one consistent model that integrates the effects of the existence of internal (e.g., subsurface
ocean) and external (atmosphere) non-solid layers.We use the angular momentum formalism
and focus on the spin precession and the polar motion and their coupling to each other. Since
decoupled models offer the advantage of providing compact analytical solutions, we also
assess their validity.

The plan of the paper is as follows. In Sect. 2, in order to study the coupling between polar
motion and spin precession in a simple configuration first, we extend the Cassini state model
of Eckhardt (1981), originally developed for a solid and rigid Moon, to a solid and rigid
Titan and its thick atmosphere. We consider two torques to be applied on the satellite: the
quasi-diurnal external gravitational torque by the parent planet and the atmospheric torque,
which includes a constant term, and a series of periodic terms. As the atmospheric variations
are governed by the revolution of Saturn around the Sun, we mainly focus on the annual term
(annual refers to the revolution period of Saturn around the Sun which is 29.42 years). The
external torque is said to be quasi-diurnal because its period is slightly altered by the orbital
precession period (diurnal refers to the rotation/revolution period of Titanwhich is 15.9 days).
In Sect. 3, we move on to the case with a rotating global internal liquid layer, still considering
the precession/polar motion coupling and the atmosphere.We express the different torques as
functions of the chosen variables to be solved for. The external gravitational torque on each
layer is easily generalized from its expression in the solid case, and the internal gravitational
torques are adapted from Coyette et al. (2016). The atmospheric torque exerted on the shell
is identical to the atmospheric torque exerted on the solid satellite. We model the flow in the
ocean as a simple solid rotation, or Poincaré flow and adopt the procedure of Mathews et al.
(1991) for the computation of the total torque exerted on the liquid layer (which turns out to be
only caused by the hydrodynamical part of the pressure at the liquid layer boundaries). From
the ocean torque, we deduce the hydrodynamic torques on the shell and on the interior. All
the torques are introduced in a set of governing equations for the coupled polar motion and
spin precession. Neglecting the polar motion of the solid layers and the atmospheric torque,
we also write a set of governing equations for the decoupled spin precession, to be used for
comparisons with the coupled model instead of the ocean model of Baland et al. (2011) who
considered that the ocean is in hydrostatic equilibrium. We show that decoupled models for
the polar motion and the spin precession can be very good approximations of the coupled
model, and can therefore be used in view of data interpretation. Throughout Sects. 2 and 3,
we put into perspectives some differences between the rotation of a synchronous satellite and
Earth rotation. We present a summary and concluding remarks in Sect. 4.

2 Entirely solid and rigid satellite

2.1 Governing equations

We first consider the case of an entirely solid and rigid satellite in order to be able to later
assess the effect of a subsurface ocean on the satellite’s rotation. An additional advantage is
that the mathematics of a solid satellite is less complex, which allows us to focus here on
more geometrical aspects and facilitates comparisons with previous results. This will also
allow putting into perspective the differences between synchronous and non-synchronous
rigid rotation (e.g., the rotation of a rigid Earth, which is a very well-known problem).
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The rotation variations of a solid synchronous body locked in the Cassini state is a problem
that can be divided into three components:

1. The variations in rotation angle. We will refer to them as librationswhen they are caused
by the external gravitational torque by the parent body and asLOD variationswhen they
are caused by exchanges of angular momentum between the outer solid layer and the
atmosphere and/or lakes present on the surface, e.g., for Titan,

2. The polar motion, which is the motion of the rotation axis with respect to the Body
Frame (BF), a frame attached to the mean principal axes of inertia of the satellite,

3. The motion of the BF with respect to the inertial frame (IF), or conversely the motion of
the Laplace pole as seen from the BF (Laplace pole motion hereafter).

By combining the Laplace pole motion and the polar motion, it is possible to obtain the
motion of the rotation axis with respect to the inertial space (see Appendix 1), decomposed
in a main motion called precession, and smaller motions called nutations. The obliquity
is the angular separation between the normal to the orbit and the spin axis. Even though the
precession of the rotation axis with respect to an inertial/Laplace reference frame is likely a
more intuitive concept than the Laplace pole motion in the BF, the latter is a more practical
component to be solved for when the governing equations are written in the BF, as will be
done in this paper.

Often, the equations governing the rotation of a synchronous rigid satellite are solved in
an approximated way. For example, Van Hoolst et al. (2013) studies libration and LOD varia-
tions without considering polar motion and precession, Bills and Nimmo (2008) and Baland
et al. (2011) determine the precession and obliquity from the angular momentum equation
written in the IF by neglecting polar motion and librations/LOD variations, whereas Coyette
et al. (2016) determine the polar motion from the angular momentum equation written in a
rotating BF by considering a coplanar precession with a fixed obliquity whose value can be
arbitrarily chosen. The decoupled libration and LOD variations models are accurate since
those rotation components are decoupled from the other components (see below). Precession
and polar motion, however, are coupled through Euler’s kinematic equation (see Eq. 13) and
the decoupled models for those rotation components require further justification. Assessing
the validity of the decoupled models is one of the goals of this study and is important as
they have the advantage of producing rather compact analytical solutions practical for inter-
pretation of measurements (e.g., Margot et al. 2007, 2012 used simple analytical decoupled
solutions for both the obliquity and libration of Mercury to infer the polar moment of inertia
of its mantle and of its core). We show below that the coupling with polar motion has a small
influence on the spin precession: It results in a shift of � 0.1% in mean obliquity and even
smaller semi-diurnal and diurnal nutations related to the influence of the central planet and
of the atmosphere, respectively. We also show that there are very little differences (� 0.1%)
between the results of coupled and decoupled polar motion models.

As proved by Eckhardt (1981), all the components of the rotation of a satellite in syn-
chronous rotation with its orbital motion can be fully described as solutions of a system of
two equations written in the BF. The first describes the change in angular momentum and
is coupled to the second equation stating that the Laplace pole is fixed in inertial space. We
express the rotation vector of the satellite as

� = n

⎛
⎝
0
0
1

⎞
⎠ + nm = n

⎛
⎝

mx

my

1 + mz

⎞
⎠ , (1)
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with m the incremental rotation vector with respect to the synchronous rotation, in which
mx and my are the components of the polar motion normalized by n, and mz represents the
normalized variations in rotation rate. The rotation rate n is equal to the mean rate of the
satellite’s true longitude L = Ω + ω + M which is the sum of the ascending orbital node
longitude Ω , the pericenter longitude ω, and of the mean anomaly M . We have chosen here
the z-axis of the BF along the largest principal moment of inertia. The x-axis points toward
the parent body at pericenter and the y-axis is at 90◦ with respect to the x-axis in such a way
that the three axes form a right-handed Cartesian frame.

2.1.1 Angular momentum equation

The angular momentum equation can be expressed in the satellite’s BF as

dH
dt

+ � ∧ H = �pb + �a (2)

and expresses that the rate of change of the rotation angular momentum

H = I� (3)

is due to the applied external torques by the parent body (�pb) and by the possible atmosphere

and lakes which exchange angular momentum with the surface (�a). I is the inertia tensor
of the solid and rigid synchronous satellite defined as

I =
⎛
⎝

A 0 0
0 B 0
0 0 C

⎞
⎠ , (4)

with A < B < C the principal moments of inertia along axes x , y, and z.

External torque: The external torque by the parent body �pb can be written, correct up to
first order in small rotational and orbital quantities, as (see Eq. (18) of Coyette et al. (2016)
and Appendix 1.2)

�pb = 3n2

⎛
⎝

0
(A − C)[i sin(ω + M − π) − px ]

(B − A)(s − γ )

⎞
⎠ . (5)

Here γ is the libration angle (mz = γ̇ /n) and s = 2e sinM with e the orbital eccentricity.
px is the x-component of the unit vector along the Laplace pole expressed with respect to
the satellite’s BF as

p̂ =
⎛
⎝
0
0
1

⎞
⎠ + p =

⎛
⎝

px
py
1

⎞
⎠ . (6)

Since the tilt between the Laplace pole and the BF pole is small, it is a good first-order
approximation to set the z-component of p̂ to 1 (see Eq. 100). As we intend to derive a
coupled solution for polar motion and Laplace pole motion from which we will extract the
precession, we have expressed this torque as a function of the unknown Laplace pole motion,
whereas Coyette et al. (2016) write it as a function of a known obliquity and of an unknown
polar motion. The torque depends on the moment of inertia differences as it would be zero for
a spherically symmetric satellite. The z-component depends on (s − γ ) as this represents the
angle between the x-axis and the direction to the planet in the orbital plane. The y-component
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depends on the orientation of the equator with respect to the orbital plane expressed here as
a function of the orbital inclination i and of the Laplace plane orientation with respect to the
BF. Note that the frequency of the first term of the y-component of the external torque is the
variation rate of (M + ω) which is equal to (n − Ω̇) and is quasi-diurnal. Diurnal refers to
the rotation/revolution period of the synchronous satellite (15.9 days for Titan).

Atmosphere/lakes torque: Titan is the only synchronous satellite which possesses a signif-
icant atmosphere, and lakes and seas, that exchange angular momentumwith the surface. The
details of the derivation of their torque �a on Titan are given in Coyette et al. (2016). They
start from the atmospheric angularmomentum (AAM) generated from an atmosphericGlobal
CirculationModel for Titan’s atmosphere (Tokano 2013), decomposed into time series. Each
component of the AAM series is the combination of a pressure/matter term, caused by the
time-variable atmospheric pressure on Titan’s surface, and of a wind/motion term, caused by
the relative motion of the atmosphere with respect to the surface. The angular momentum of
the seas and lakes (Tokano et al. 2014; Tokano and Lorenz 2015) is similarly decomposed
into series for the pressure and motion terms. In summary, the angular momentumHa of the
atmosphere and lakes is the sum of a constant term (frequency zero) and of a Fourier series
with frequencies � , amplitudes hx (�), hy(�), hz(�), and phases φx , φy, φz :

Ha =
⎛
⎝

hx (0) + ∑
� �=0 hx (�) cos(� t + φx (�))

hy(0) + ∑
� �=0 hy(�) cos(� t + φy(�))

hz(0) + ∑
� �=0 hz(�) cos(� t + φz(�))

⎞
⎠ . (7)

The angular momentum has an annual component and in addition a multitude of frequen-
cies associated with the atmosphere and lake dynamics. Annual refers to the revolution
period of Saturn around the Sun (29.42 years). Because of atmospheric super-rotation,
hz(0) dominates all other parts of any components of Ha . At first order in small quanti-
ties mx ,my, hx (�), hy(�) and hz(� �= 0), the torque is written as

�a = −dHa

dt
− � ∧ Ha =

⎛
⎝

−hz(0)nmy + nhy(0) + Γ̃x

+hz(0)nmx − nhx (0) + Γ̃y

Γ̃z

⎞
⎠ , (8)

Γ̃x =
∑
� �=0

(
nhy(�) cos(� t + φy(�)) + �hx (�) sin(� t + φx (�))

)
, (9)

Γ̃y =
∑
� �=0

(−nhx (�) cos(� t + φx (�)) + �hy(�) sin(� t + φy(�))
)
, (10)

Γ̃z =
∑
� �=0

�hz(�) sin(� t + φz(�)). (11)

The x and y-components of the torque have a constant term, a term proportional to the polar
motion components, and other time-varying terms.

2.1.2 Invariance of the Laplace pole (Euler kinematic equation)

The second equation introduced in Eckhardt (1981) is

d p̂

dt
+ � ∧ p̂ = 0 (12)
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and states that the motion of the Laplace pole p̂ with respect to the satellite’s BF is not
subject to any torque, since the Laplace pole does not move in inertial space. The first two
components of Eq. (12) add to the three components of Eq. (2), and allow to solve for the 5
unknowns (γ,mx ,my, px , py) describing the libration angle, the orientation of the rotation
axis with respect to the BF and the orientation of the Laplace plane with respect to the BF.

If we note (ξ̃ , θ̃ , φ̃) the Euler angles1 between the BF and the IF, and then we can write
p̂ = (sin θ̃ sin φ̃, sin θ̃ cos φ̃, cos θ̃ ) and Eq. (12) is equivalent to Euler’s kinematic equation
(e.g., Van Hoolst 2007; Dehant and Mathews 2015)

˙̃
θ + I sin θ̃

˙̃
ξ = n(mx + Imy)e

I φ̃ , (13)

which is a classical relation linking precession of the BF in space and polar motion in the BF.
Assuming that the projection of p and m on the equatorial plane are circular motions at

a common frequency w in the BF (positive for prograde motions, negative for retrograde
motions), that is to say that px + I py = peIwt andmx + Imy = meIwt with p the amplitude
of the Laplace pole motion and m the amplitude of the polar motion, it is also possible to
write Eq. (12) under the form (e.g., Dumberry and Wieczorek 2016 or Mathews et al. 1991):

p = m

1 + w/n
. (14)

Equations (12–14) do not involve the details of the internal structure of the satellite, hence
the adjective kinematic.

2.1.3 Final system of governing equations

At first order in small rotational and orbital quantities, the final system of governing equations
can be expressed as a system of five ordinary differential equations

Anṁx + [(C − B)n + hz(0)]nmy = nhy(0) + Γ̃x , (15)

Bnṁy + [(A − C)n − hz(0)]nmx = −nhx (0) + Γ̃y,

+3n2(A − C)[i sin(ω + M − π) − px ], (16)

ṗx = npy − nmy, (17)

ṗy = −npx + nmx , (18)

C γ̈ + 3n2(B − A)γ = 6en2(B − A) sinM + Γ̃z, (19)

in polar motion (mx ,my), orientation of the Laplace pole with respect to the BF (px , py), and
libration (γ ). Equation (19) governs the libration/LOD variations and is independent of the
other equations. We, nevertheless, note that those variations have a negligible effect on the
spin precession of the satellite (see Appendix 1). Its solution, which can be written explicitly
in analytical form, is well known (e.g., Van Hoolst et al. 2009). We, therefore, focus on the
subsystem composed of Eqs. (15–18), which governs the polar motion and the Laplace pole
motion, and therefore precession and shows that both motions are coupled. Compared to the
system of Eqs. (72–73) of Coyette et al. (2016) for polar motion, two additional equations
allow for orientating the BF with respect to the IF. A direct comparison with Eq. (1) of
Baland et al. (2011) for the spin precession is not possible, as that equation is written in the

1 Note that the Euler angles (ξ̃ , θ̃ , φ̃) of the BF are defined here in the same way as the Euler angles (ξ, θ, φ)
of the rotation reference frame in Fig. 10. We use a different notation though to avoid confusion.
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Table 1 Values for the interior and orbital parameters of a satellite toy model which has the characteristics of
Titan, but rotates rigidly

Parameter Value References

R 2575 km Zebker et al. (2009)

{A, B,C} {3.060104, 3.060465, 3.06058} × 1035 kg m2 Coyette et al. (2016)

n 2π/15.9 days https://ssd.jpl.nasa.gov/?sat_elem

e 0.0288 https://ssd.jpl.nasa.gov/?sat_elem

Ω̇ −2π/703 years Vienne and Duriez (1995)

i 0.3197◦ Vienne and Duriez (1995)

{hx (0), hy(0), hz(0)} {7 × 1021,−6 × 1022, 2.0 × 1026} kg m2 s−1 Tokano (2013)

�an 2π/29.42 years

{hx (�an), hy(�an} {3.0 × 1022, 1.0 × 1022} kg m2 s−1 Tokano (2013)

{φx (�an), φy(�an)} {0.9, 5.19} rad Tokano (2013)

The toy satellite has no surface lakes and the atmosphere dynamics has only constant and annual terms. Its
orbital precession is taken to be uniform. In some places the toy model is simplified to the axisymmetric case
(A = B, using the value of (A + B)/2)

IF after averaging over the rotation/revolution period and with the assumption of a zero polar
motion.2

The PM/precession subsystem is characterized by two free modes, obtained by averaging
the torques over the forcing periods to get homogeneous equations. One of them is the free
polar motion, which by analogy with the Earth is called the Chandler Wobble (CW). The
other is the free precession (FP) of the spin axis around the Laplace pole. We refer to the
latter free mode as the Quasi-Diurnal Free Wobble (QDFW) since it has a long period
in inertial space but is quasi-diurnal in the BF. In the next subsections, we derive the free
frequencies, eigenmodes, and forced solutions of the PM/precession subsystem.We consider
for illustrative purposes a satellite toymodelwith some of Titan’s characteristics (see Table 1).

2.2 Free frequencies

The frequencies σCW and σQDFW of the free modes have expressions of the form

σCW =
√

Z − √
Δ

2AB
and σQDFW =

√
Z + √

Δ

2AB
, (20)

Z = n2
[−3A2 + 2A(B + C) + C(C − B)

] − hz(0)n(A + B − 2C) + hz(0)
2, (21)

Δ = Z2 − 4ABn2
[
4(C − A)n + hz(0)

] [
(C − B)n + hz(0)

]
. (22)

At first order in (C − A), (C − B), and hz(0), which are small quantities with respect to A,
B, and C , Eqs. (20–22) simplify to

σCW � 2n

√
(C − B + hz(0)/n)(C − A + hz(0)/4n)

AB
, (23)

σQDFW � n + 3

2
n
C − A

A
. (24)

2 See Appendix A of Baland et al. (2012) for the derivation of Eq. (1) of Baland et al. (2011) from Eqs. (2)
and (100), assuming mx = my = 0.
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Table 2 Period of the Free modes
of the Titan toy model (see
Table 1), computed from Eqs.
(20–22), considering the triaxial
or biaxial cases, and the presence
or absence of the atmosphere

Triaxial Biaxial

+ Atm. No Atm. + Atm. No Atm.

TCW (years) 116.36 278.77 121.39 224.44

TQDFW (days) 15.8963 15.8963 15.8977 15.8977

TFP (years) 185.094 185.067 296.631 296.589

Fig. 1 Free frequencies in the BF and in the IF for a triaxial synchronous rotator (top) and for a biaxial non-
synchronous rotator (e.g., the Earth, bottom). The passage from the BF to the IF is obtained by adding the
rotation rate (n orΩo) to the free frequencies expressed in the BF. Positive/negative frequencies correspond to
prograde/retrogrademotions. Some remarkable frequencies have received a denomination: Quasi-Diurnal Free
Wobble (QDFW), Chandler Wobble (CW), Free Precession (FP), and Tilt-Over mode (TOM). The prograde
QDFW has a very small amplitude compared to the retrograde QDFW, hence the hatched line. For a biaxial
Earth, the modes are purely prograde (CW) or retrograde (QDFW) in the BF

Whereas the CW is affected by the atmosphere, the QDFW is not affected at first order
(see also Table 2 for numerical results for the Titan toy model). Neglecting the effect of
the atmosphere super-rotation (hz(0) = 0), Eqs. (23–24) are equivalent to Eqs. (8a–8b) of
Eckhardt (1981) [see also Eqs. (41–42) of Varadi et al. (2005) and Sect. 3 of Rambaux and
Williams (2011)], and Eqs. (20–22) are equivalent to Eq. (90) derived by Boué et al. (2017)
within an Hamiltonian formalism.

We have written the free frequencies as positive, but the system is in fact characterized
by two pairs of equal and opposite eigenvalues, related to the fact that each eigenmode is a
combination of circular prograde and retrograde motions (see below and Fig. 1). In inertial
space, the circular motions of frequency σ translate to motion of frequency σ ′ = σ + n. In
particular, the circular retrograde QDFW translates into a circular retrograde free precession
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11 Page 10 of 50 R.-M. Baland et al.

at rate (written as a positive value)

σ ′
FP = 3

2
n
C − A

A
. (25)

Like the QDFW, the FP is not significantly affected by the atmosphere. The smaller the
difference between C and A is, the larger the free precession period is (see Table 2).

The first-order approximation for the free frequencies (Eqs. (23) and (25)) of the coupled
model are consistent with the free frequencies of the decoupledmodels. TheCW frequency of
Eq. (23) is consistent with Eq. (81) of Coyette et al. (2016), provided that the effect of elastic
deformations is neglected therein, whereas Eq. (25) is consistent with Eq. (3) of Baland et al.
(2011), since (C − A)/C � (C − A)/A. The agreement in free modes between the coupled
and decoupled models is due to the fact that the spin axis essentially remains fixed both in
space in the CW mode (no precession) and with respect to the pole axis of the BF in the
QDFWmode (no polar motion), so that the free modes of the coupled models are essentially
decoupled, as we will see below.

For a fast rotator not locked in a Cassini state (e.g., the Earth), the CW and QDFW
frequencies cannot be derived from the governing Eqs. (15–18) and therefore are not given
by Eqs. (23–24), in the first-order approximation (see Appendix 2 for more details). Since
the mean motion n of the Earth is smaller than its mean rotation rate Ωo, it is reasonable to
fully neglect the external torque to obtain the homogeneous system of equations, whereas a
part of the torque remains in the case of a synchronous satellite. For the Earth, with A = B
and hz(0) = 0, σCW = Ωo(C − A)/A and the CW is a purely prograde mode of m (see
Fig. 1). The QDFW degenerates into a purely retrograde mode of p, also called the Tilt-Over
Mode (TOM), with σQDFW → σTOM = Ωo in the BF (diurnal) and σ ′

TOM = 0 in the IF
(infinite period). The TOM is in fact a mathematical degeneracy of the free precession mode
of finite period (about 26,000 years for the Earth), characterized by σ ′

FP as given in Eqs. (126)
or (131), and which is obtained by taking into account the small but homogeneous part of
the external torque.

2.3 Eigenmodes

The CW mode can be written either as an elliptical motion

px � mx = cCW cos(σCW t + φCW), (26)

py � my = cell cCW sin(σCW t + φCW), (27)

or as a sum of prograde and circular retrograde motions at frequency σCW

px � mx = cCW

(
1 + cell

2
cos(σCW t + φCW) + 1 − cell

2
cos(−σCW t − φCW)

)
, (28)

py � my = cCW

(
1 + cell

2
sin(σCW t + φCW) + 1 − cell

2
sin(−σCW t − φCW)

)
. (29)

The transformation between elliptic and circular formulation is a simple matter of trigono-
metric manipulations. The factor cell can be approximated as

cell �
√
4(C − A)n + hz(0)

(C − B)n + hz(0)
�= 1, (30)

and accounts for the ellipticity of the free trajectory’s which is mainly due to the synchronous
rotation (see the factor 4 in the numerator instead of 1 in the non-synchronous case), but also
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to the difference between A and B. cCW and φCW are arbitrary constants depending on the
initial conditions. The CW mode corresponds to quasi-identical free motions in m and p,
since the spin axis remains essentially fixed with respect to inertial space in that mode. This
can be verified with Euler’s equation (14) which reduces to p � m for both the prograde and
circular retrograde components since σCW/n 	 1.

In the QDFWmode, the Laplace pole motion with respect to the BF is quasi-circular and
retrograde and much larger than the free polar motion:

mx 	 px � cQDFW cos(−σQDFWt − φQDFW), (31)

my 	 py � cQDFW sin(−σQDFWt − φQDFW). (32)

This mode therefore essentially represents the quasi-diurnal motion of the spin axis and BF
axis with respect to the Laplace pole. cQDFW and φQDFW are arbitrary constants depending
on the initial conditions. The fact that p 
 m � 0 can also be seen from Euler’s equation
(14) for σQDFW � −n for the retrograde motion. For the prograde motion, σQDFW � n, and
Euler’s equation shows hat m � 2p � 0.

2.4 Forced solution

In this section, we describe the main characteristics of the numerical solution for the orien-
tation of our Titan toy model, presented in Fig. 2. We also derive an approximate analytical
solution for the orientation of a synchronous satellite, and compare it to the numerical
solution (panels (a) and (b) of Fig. 3). The difference between the analytical coupled solu-
tion and the decoupled solutions of Coyette et al. (2016) and Baland et al. (2011) for the
polar motion (mx ,my) and spin precession (sx , sy) is shown in panels (c) and (d) of Fig. 3,
respectively.

2.4.1 Form of the solution

As the system composed of Eqs. (15–18) can be solved for each frequency of the forcing,
we express the full solution for polar motion and Laplace pole motion in the BF as

⎛
⎜⎜⎝
mx

my

px
py

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
mx

my

px
py

⎞
⎟⎟⎠

ext

+

⎛
⎜⎜⎝
mx

my

px
py

⎞
⎟⎟⎠

off

+

⎛
⎜⎜⎝
mx

my

px
py

⎞
⎟⎟⎠

atm

, (33)

where the first, second, and third terms correspond to the part of the solution related to
the external forcing by the parent planet, the constant terms, and the periodic terms of the
atmospheric forcing, respectively.

In the Earth rotation community, the motion of the spin axis in space is usually seen as the
motion with respect to a frame attached to the BF equator of a reference time (for instance,
the J2000 epoch). It is represented in the form of nutationsΔε in orbital obliquity andΔψ in
node longitude (e.g., Defraigne et al. 1995). The projection, in Cartesian coordinates, of the
trajectory of the spin axis onto the J2000 equator, (x, y) = (sin ε0Δψ,Δε)with ε0 the initial
obliquity, is a composition of prograde and retrograde circular motions. For each circular
component, the nutations in obliquity and in longitude are therefore shifted by π/2 with
respect to each other, and the amplitude of the nutation in longitude equals to that of the
nutation in obliquity, normalized by the sinus of the initial obliquity. We adapt that kind of
representation to the case of synchronous bodies in the Cassini state, considering the Laplace
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Fig. 2 Numerical solution for the Titan toy model. Panels a and b describe the evolution over 30 years of the
equatorial components of the unit vector along the Laplace plane p = (px , py) and of the unit vector along
the spin axism = (mx ,my), as distances in meters at the surface of the satellite. The offset due to the constant
terms of the atmospheric forcing is materialized by the cross markers. The evolution of p is quasi-circular,
diurnal, and mainly governed by the external torque, whereas the evolution of m is elliptical, annual, and
mainly governed by the atmospheric torque. The trajectory of p is covered about 700 times over 30 years,
each circle being slightly shifted with respect to the previous one because of the annual atmospheric torque,
explaining the thickness of the curve in panel (a). To highlight the annual Laplace pole motion, we zoom on
one region, consider times equally spaced by a diurnal cycle, and join the corresponding points to draw an
ellipse of quasi the same dimensions as the ellipse of the annual polar motion. The zoomed region in panel (b)
highlights the quasi-diurnal external component of the solution form. Panel c displays the evolution over two
diurnal cycles (� 32 days) of the inertial obliquity θ , where one can easily see the semi-diurnal variations due
to the external gravitational torque. The diurnal variations associated with the atmospheric torque are an order
of magnitude smaller than the externally driven nutations. The trajectory of the unit vector along the spin axis
projected onto the Laplace plane (sx , sy ) is shown in panel (d) over the duration of the orbital precession (703
years) which drives the spin precession. The zoomed area displays the small semi-diurnal external and diurnal
atmospheric nutations

plane as the reference plane. We consider the inertial obliquity θ , the angle between the
rotation axis and the Laplace pole (see Fig. 10) which can be computed as θ � |m − p|. In
the following, we show that
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θ � θ̄ + Δθext +
∑
� �=0

Δθatm(�), (34)

where θ̄ is the mean inertial obliquity. The longitude of the ascending node of the rotation
frame (see Fig. 10) can be written as:

ξ � Ω + Δξext +
∑
� �=0

Δξatm(�), (35)

with Ω the longitude of the ascending node of the orbital plane. Δθext/atm and Δξext/atm
are obliquity/longitude nutations due to the external gravitational torque or to the periodic
atmospheric forcing. The equatorial components (sx , sy) of the unit vector along the spin
axis expressed in the coordinates of the IF (see Eq. (102), Appendix 1) can be written, at first
order in obliquity and longitude nutations, as

sx � θ sinΩ + θ̄ (ξ − Ω) cosΩ, (36)

sy � −θ cosΩ + θ̄ (ξ − Ω) sinΩ. (37)

The prograde and retrograde decomposition naturally also applies to (sx , sy), so that for each
circular component, the amplitude of a given nutation in longitude is equal to that of the
nutation in obliquity, normalized by the mean inertial obliquity.

2.4.2 Numerical results for the Titan toy model

The main feature is the quasi-circular retrograde Laplace pole motion (panel a in Fig. 2) with
a radius of about 19.3 km measured at the surface of Titan, which is essentially driven by the
external gravitational forcing by Saturn (see below). The polar motion (panel b) is elliptical,
reaches a few tens of meters in amplitude, and is mainly induced by the annual atmospheric
forcing. The centers of polar motion and of Laplace pole motion are offset (polar offset
in the following) by a few hundred meters from zero because of the constant term of the
atmospheric forcing.

Numerical results, form and p, derived with the analytical solutions given below, are sum-
marized in Table 3, in both elliptical and circular pro/retrograde forms. In the pro/retrograde
form, the ratio of the externally driven p andm solutions (w = ±(n − Ω̇) � ±n) are 2 and
	 1, respectively, as must be according to Euler’s kinematic Eq. (14). The ratio is � 1 for
the annual atmospheric solution, since |w| = �an 	 n, and exactly 1 for the constant atmo-
spheric solution, since w = 0. This shows that the externally driven, essentially retrograde,
Laplace pole motion has only a very small polar motion counter part, and that the atmospher-
ically driven polar motion and Laplace pole motion are of the same order of magnitude (see
Table 3).

The behavior of the spin axis as seen from the IF can be inferred from the circular
pro/retrograde decomposition of the solutions for m and p. Each circular component of
the solution expressed in the BF at a frequency w, and of amplitudes m and p, corresponds
to a circular motion of the rotation axis with respect to the Laplace pole of frequency w + n
and of amplitude |m − p| in the IF. The large retrograde and quasi-diurnal external Laplace
pole motion in the BF corresponds to a large nutation in the IF at the orbital precession
period, which is in fact the main precession of the spin axis, characterized by an inertial
obliquity of 0.43◦ (see panels c and d in Fig. 2). The small prograde external solution in the
BF corresponds to a small semi-diurnal nutation in the IF. The atmospheric solution at annual
period corresponds to quasi-diurnal nutations in the IF, which have a very small amplitude.
The polar offset has no influence on spin motion seen from space.
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Table 3 Amplitudes and frequencies of the different parts of the solution of Eq. (33) for the Titan toy model
of Table 1, in elliptical and pro/retrograde circular forms

Solution form Ext. Atm. Atm.

Elliptical Freq. BF n − Ω̇ 0 �an

mx � 0 m 16.7 m −24.53 m

my 2.4 m −607.2 m −49.52 m

px 19.3 km 16.7 m −24.46 m

py 19.3 km −607.2 m −49.49 m

Circular → Prograde Freq. BF n − Ω̇ 0 �an

m p 1.2 m 303.6 m 36.76 m

pp 0.6 m 303.6 m 36.71 m

|mp/pp | 2 1 � 1

Freq. IF 2n − Ω̇ n n + �an

Amp. IF 0.6 m 0 m 0.05 m

→ Retrograde Freq. BF −n + Ω̇ 0 −�an

mr −1.2 m 303.6 m 13.25 m

pr −19.3 km 303.6 m 13.27 m

|mr /pr | 	 1 1 � 1

Freq. IF Ω̇ n n − �an

Amp. IF 19.3 km 0 m 0.02 m

The latter form verifies Euler kinematic Eq. (14) and allows to easily transform the solution to the IF, since
the amplitude in the IF is the difference |m − p| in amplitudes in the BF

2.4.3 Analytical solution related to the external forcing by the parent planet

The solution at the quasi-diurnal frequency f = (n − Ω̇) in the BF corresponding to the
external torque can be written, with the numerator correct up to the first order in (C − A)/B
and in Ω̇/n, in elliptical form as

⎛
⎜⎜⎝
mx

my

px
py

⎞
⎟⎟⎠

ext

� −θ0

n

⎛
⎜⎜⎝

0
2Ω̇ cos(M + ω)

(n − 2Ω̇) sin(M + ω)

(n − Ω̇) cos(M + ω)

⎞
⎟⎟⎠ , (38)

θ0 = − 3C−A
B in4

( f 2 − σ 2
CW)( f 2 − σ 2

QDFW)
, (39)

with σCW and σQDFW given by Eqs. (23–24), and shows resonances with the CW and the
QDFW. The solution is resonantly amplified by the QDFW, as can be seen by writing the
resonance factor in θo as proportional to 1/(Ω̇ + σ ′

FP), if the free precession period is close
enough to the orbital precession period in space (e.g., for the toy model, it is amplified by
36%, compared to a case where Ω̇ 	 σ ′

FP). It cannot be amplified by a resonance with the
CW mode, since the CW period is very long (> 100 years for the toy model) compared to
the forcing period (� 16 days).

By trigonometric manipulations, one can see that the amplitude of the prograde Laplace
pole motion pextp = θ0Ω̇/2n is much smaller than the amplitude of the retrograde motion
pextr = −θ0(2n − 3Ω̇)/2n (see Table 3). The polar motion, essentially along the y-axis of
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Fig. 3 Differences inmeters at the surface between the numerical and analytical solutions of the coupledmodels
(top panels) and between the analytical solution of the coupledmodels and the solution of the decoupledmodels
(bottom panels) for a rigid solid Titan. Left panels: differences in polarmotion. Right panels: differences in spin
precession. The difference between the numerical and analytical annual coupled solutions for Titan’s annual
polar motion due to the atmospheric torque is < 0.002 m, see panel (a). The analytical solution for the annual
polar motion of the coupled model is in good agreement (to 0.1%, see panel c) with the solution obtained from
Eqs. (84–85) of Coyette et al. (2016). Due to the external gravitational torque only, the analytical coupled
solution differs by 2.5 m in mean obliquity with respect to the numerical solution, see the large oscillations
in panel (b). The difference between the mean inertial obliquity of the decoupled model of Baland et al.
(2011) and the mean inertial obliquity of the analytical solution of the coupled model is 4.3 m and explains
the amplitude of the large oscillations in panel (d). As the decoupled solution of Baland et al. (2011) neglects
nutation induced by the coupling with the polar motion, semi-diurnal oscillations of 0.6 m amplitude, due to
the external torque can also be seen in panel (d). Nutations related to the atmosphere are an order of magnitude
smaller

the Body Frame, and of amplitude −2θ0Ω̇/n, corresponds to a combination of prograde and
retrograde motions with amplitude mext

p/r = ±θ0Ω̇/n. The difference between the numerical
and analytical solutions for the diurnal polar motion can be seen as the diurnal oscillations
in panel (a) of Fig. 3, and is four orders of magnitudes below the amplitude of the solution.

Injecting Eq. (38) in Eq. (101) for θ , and expanding the result up to the first order in Ω̇/n,
the mean inertial obliquity is given by

θ̄ = θ0

(
1 − 5

2

Ω̇

n

)
(40)

and the semi-diurnal nutations in obliquity and longitude can be expressed as

{Δθext, θ̄Δξext} = −θ0

2

Ω̇

n
{cos 2(M + ω), sin 2(M + ω)} . (41)
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From Eqs. (40–41), we determine the motion of the spin axis in space related to the external
gravitational torque by using Eqs. (36–37):

sextx � θ̄ sinΩ − θ0

2

Ω̇

n
sin(2(M + ω) + Ω) (42)

sexty � −θ̄ cosΩ + θ0

2

Ω̇

n
cos(2(M + ω) + Ω). (43)

The frequencies of the variations in sextx/y are Ω̇ and (2n−Ω̇), and their amplitudes correspond
to the differences (mr − pr ) and (mp − pp) of the retrograde and prograde amplitudes,
respectively (see Table 3). The decomposition of (sextx , sexty ) into a main precession and a
secondary semi-diurnal nutation also appears in Eqs. (67–68) of Varadi et al. (2005).

Note that the inertial obliquity varies with time about a mean value θ̄ �= θ0. If we restrict
the second factor in Eq. (38) to order zero in Ω̇/n, which amounts to neglecting the polar
motion and nutations, we get θ̄ = θo. This corresponds to a constant over time obliquity
η0 = (θ0 − i) (0.114◦ for the toy model) which, by neglecting σCW and Ω̇ with respect to n
in Eq. (39) for θ0, can be written as

η0 � −iΩ̇

Ω̇ + σ ′
FP

. (44)

This expression is identical to the solution of Baland et al. (2011) obtained in a decoupled
model where the polar motion has been assumed to be zero. Like the nutations, the difference
(θ̄ −θ0) in Eq. (40) is therefore the result of the coupling between the spin precession and the
polar motion. For Titan, see Fig. 3, both (θ̄ − θ0) and the nutations are smaller than the actual
measurement precision of about 1 km (Meriggiola et al. 2016). The decoupled solution of
Baland et al. (2011) is therefore an excellent approximation.

Using Eq. (44), we now express the y-component of the polar motion as a function of ηo

mext
y � 3n2(C − A)

A(n2 − σ 2
CW)

η0 cos(M + ω). (45)

This expression is similar to the solution of Coyette et al. (2016) for the diurnal polar motion
forced by the parent planet.3 The difference between our solution for mext

y of Eq. (38) and
the one of Coyette et al. (2016) (or of Eq. 45) is so small that they cannot be distinguished in
panel (c) of Fig. 3, due to the larger annual oscillations (see below). This good agreement is
due to the fact that the obliquity η0 is negligibly influenced by the polar motion itself.

2.4.4 Analytical solution related to the atmospheric forcing

The solution corresponding to the constant term of the atmospheric forcing (the polar offset)
is given by

(
mx

my

)

off
=

(
px
py

)

off
�

(
hx (0)

4(C−A)n+hz(0)
hy(0)

(C−B)n+hz(0)

)
, (46)

3 See their Eqs. (85, 92–93) where � must be replaced by (n − Ω̇). Note that a factor 3 is missing (typo) in
the terms proportional to the obliquity η in their Eqs. (92–93). Numerical results presented therein are correct.
Note also that Coyette et al. (2016) find a 6 m amplitude for the diurnal polar motion excited by the parent
planet, whereas we obtain an amplitude of 2.4 m. This is because they use the measured obliquity (0.32◦) and
not the predicted solid obliquity (0.11◦) as we implicitly do within the coupled model.
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in total agreement with Eqs. (82–83) of Coyette et al. (2016). The solution for moff reflects
the balance reached by the spin axis between the orientation of the atmospheric angular
momentum and the orientation of the axis of highest inertia along which the rotation would
be stable if no torque was applied. The polar offset increases with decreasing flattenings,
so that the spin axis tends to align with the atmospheric angular momentum axis in the
limit case of a spherical body. As already anticipated in Sect. 2.4.2, both axes (rotation and
Laplace) share the same offset, as follows from Euler’s equation Eq. (14) for w = 0, and
there is no effect in inertial obliquity θ computed from Eq. (101) and in spin motion seen
from space. This is why there is no contribution of the polar offset in Eqs. (36–37). This can
also be understood from the fact that, seen from the IF, the forcing is at short period (diurnal)
compared to the FP (185 years), while seen from the BF, the forcing is at long period (infinite)
compared to the CW (116 years). As a result, the spin axis is able to follow the forcing in the
BF (moff �= 0), but not in the IF where it stays fixed (moff = poff ).

The solution corresponding to the periodic terms of the atmospheric forcing can be
expressed as a sum of elliptical motion with amplitudes and phases given in Appendix 3
as functions of those of the atmospheric forcing of Eq. (8), or as a sum of prograde and
retrograde circular motions

⎛
⎜⎜⎝
mx

my

px
py

⎞
⎟⎟⎠

atm

�
∑
� �=0

⎛
⎜⎜⎝
mp(�) cos(� t + φp(�)) + mr (�) cos(−� t − φr (�))

mp(�) sin(� t + φp(�)) + mr (�) sin(−� t − φr (�))

pp(�) cos(� t + φp(�)) + pr (�) cos(−� t − φr (�))

pp(�) sin(� t + φp(�)) + pr (�) sin(−� t − φr (�))

⎞
⎟⎟⎠ , (47)

with amplitudes (mp/r (�), pp/r (�)) and phases (φp/r (�)). For long forcing periods (� 	
n), patmx and patmy tend to be close tomatm

x andmatm
y , respectively, as shownbyEuler’s Eq. (14),

so that the atmosphere changes the orientation of the BF, but does not affect the orientation
of the rotation axis in space. Table 3 gathers results for the Titan toy model. The difference
between the numerical and analytical annual coupled solutions for atmospheric polar motion
is very small (see panel (a) of Fig. 3), whereas the solution of Coyette et al. (2016) for the
annual polar motion is a very good approximation (panel c).

The periodic atmospheric forcing causes small nutations of the spin axis in space. Injecting
Eqs. (38) and (47) in Eq. (101) for θ , at first order in Ω̇/n, mp/r and pp/r , we have

Δθatm(�) = (mp(�) − pp(�)) sin(M + ω + � t + φp(�))

+(mr (�) − pr (�)) sin(M + ω − � t − φr (�)), (48)

θ̄Δξatm(�) = (pp(�) − mp(�)) cos(M + ω + � t + φp(�))

+(pr (�) − mr (�)) cos(M + ω − � t − φr (�)), (49)

for the nutation related to the atmospheric torque at frequency � . The motion of the spin
axis in space due to the atmospheric forcing can be obtained from the nutations of Eqs. (48)
and (49) by using Eqs. (36–37)

sx �
∑
� �=0

(pp(�) − mp(�)) cos(M + ω + Ω + � t + φp(�)) (50)

+(pr (�) − mr (�)) cos(M + ω + Ω − � t − φr (�)), (51)

sy �
∑
� �=0

(pp(�) − mp(�)) sin(M + ω + Ω + � t + φp(�)) (52)

+(pr (�) − mr (�)) sin(M + ω + Ω − � t − φr (�)). (53)
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Fig. 4 Amplitudes of the atmosphere contribution to the prograde and retrograde parts of the solution for the
PM and Laplace pole motion, as a function of the forcing period, assuming that the forcing amplitudes at any
period are those of the annual forcing. The vertical black line is the annual period of the atmospheric forcing.
The dashed orange lines are the QDFW and CW periods

For the annual atmospheric forcing, the frequencies of the atmospheric variations in sx/y are
n ± �an , as was already anticipated in Table 3. Their amplitudes are negligible (one order
of magnitude smaller than the already small external nutations), confirming that the polar
motion and spin precession can be seen as effectively decoupled from each other, even when
the atmospheric torque is considered.

One may wonder whether it is possible to amplify the atmospheric PM to the detection
level thanks to a resonant amplification, and to enhance the small atmospheric contribution
to the spin precession at the same time. In our toy model, we have only considered annual
atmospheric forcing, but there is a multitude of other atmosphere and lake forcings at other
frequencies. To illustrate the behavior of the solution with respect to the forcing period, we
vary the forcing period between a hundredth of the diurnal period and 100 times the annual
period, without varying the forcing amplitudes and phases which are taken as those of the
annual forcing. For periods larger than about 1 year, the spin and Laplace motion have similar
amplitudes, as found above for the annual period (see Fig. 4). Forcings with period of about
100 years (or 3.5 Saturn revolution periods) are close enough to the CW period to produce a
response with a significant amplification of bothmotions above the kilometer level. However,
such periodic forcings are not likely to exist, as the atmosphere dynamics is governed by the
revolution of Saturn around the Sun. For decreasing periods, the response tends to decrease
and the difference between mp and pp and between mr and pr increases. For quasi-diurnal
periods, mr � 0 (circular prograde polar motion). In principle, a resonance is possible if the
forcing period is close enough to the QDFW period. However, an amplification of at least
4 (5) orders of magnitude is needed to reach the km level in PM (Laplace pole motion) and
requires a very good match between frequencies, which is not so likely and depends on the
atmospheric model chosen. Besides, in real conditions, such strong resonant amplifications
would be counteracted by dissipative processes. We conclude that it is not possible to reach
the detection limit in PMwith a solid rigidmodel for Titan, in agreement with similar findings
by Coyette et al. (2016) who consider a more realistic atmosphere dynamics. Similarly, the
spin precession is very unlikely to be enhanced by an amplification of any atmospheric
contribution.
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3 Satellite with a subsurface ocean

3.1 A new set of variables

In studies of rotation of the Earth, it is customary to write one angular momentum equation
for the whole body, one for the fluid outer core (FOC, subscript f ), and one for the solid inner
core (SIC, subscript s), all expressed in the BF of the mantle [see for instance the coupled
system of equations (15a–15c) ofMathews et al. (1991)]. The variables to be solved for are all
expressed in the coordinates of the mantle Body Frame (see Fig. 5), and arem, the variations
in rotation of the mantle with respect to the uniform rotation along the z-axis, normalized
by the mean rotation rate, andm f andms , the normalized variations in rotation of the FOC
and SIC, respectively, with respect to the mantle’s rotation. Because the torque on the SIC
depends on the tilt ns between the z-axis of the mantle BF and the z-axis of the SIC BF,
an additional kinematic equation governing this tilt is required to close the system (see Eq.
(19) of Mathews et al. (1991)). Besides the two free modes related to variations in rotation
rate, the system is characterized by four modes which are (1) the Chandler Wobble (CW),
corresponding to a motion of the mantle rotation axis with respect to the mantle BF, and
mainly associated with the variable m, (2) the Free Core Nutation (FCN), corresponding to
the motion of the fluid core rotation axis with respect to the mantle rotation axis, and mainly

x,xs

y,ys

m,ms

mf

msns

p mo

mi

pi

ps

xi

yi

mantle,shell pole axis
mantle,shell rotation axis

FOC,ocean rotation axis

SIC,interior rotation axis

SIC,interior pole axis

Laplace pole axis

Fig. 5 Red: Rotation variablesm,m f ,ms andns projected onto the equator of themantle BF (x, y), as defined
byMathews et al. (1991) to study Earth’s rotation. The subscripts f and s stand for the fluid outer core and the
solid inner core, respectively. The fifth variable p is introduced by Dumberry andWieczorek (2016) to account
for the effect of the precession of the Moon’s mantle in space. Note that Dumberry and Wieczorek (2016) do
not follow the convention sign of Eckhardt (1981) for p. Blue: New set of rotation variables ms ,mo,mi , ps
and pi projected onto the equator of shell (xs , ys ) or interior (xi , yi ) BF. The subscripts s, o, and i stand for
the shell, the ocean, and the interior, respectively. We here follow the convention sign of Eckhardt (1981) for
the definition of ps and pi
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associated with the variablem f , (3) the Free Inner Core Nutation (FICN), corresponding to
a motion of the inner core rotation axis with respect to the mantle rotation axis, and mainly
associated with the variablems , (4) the Inner Core Chandler Wobble (ICW), corresponding
to a motion of the inner core rotation axis with respect to the inner core BF, associated with
the combination of variables m + ms − ns . The FCN and FICN both correspond to quasi-
diurnal free wobbles in the BF. The FCN is also referred to as the NDFW (nearly diurnal free
wobble) in the literature, even though they belong to different reference frames. The FICN
is sometimes named PFCN (Prograde Free Core Nutation), as opposed to the FCN which is
retrograde.

The precession of the Earth’s mantle rotation axis with respect to the ecliptic plane, which
is a good approximation of an inertial plane, is not included in the formalism of Mathews
et al. (1991). As a result, the mantle rotation axis can be seen as fixed with respect to inertial
space, so that the FCN and FICN can also be seen as motion of the FOC and SIC rotation
axes with respect to inertial space. To properly study the coupling between spin motion axis
in space and spin motion axis in the BF for synchronous satellites in the Cassini state, it
is, however, necessary to account for the motion of the mantle rotation axis in space. The
evolution of the tilt of the z-axis of the mantle with respect to the inertial space, denoted p
(see Eq. 6), was introduced for the Moon by Eckhardt (1981) and was also used in Sect. 2 for
an entirely solid satellite. It was also added as a fifth equation to the classical system for the
Earth by Dumberry and Wieczorek (2016). With that additional equation comes a fifth free
mode which is the Free Precession (FP) of the mantle spin axis in space, associated with the
variable combination (p + m). The FCN and FICN are then associated with p + m + m f

and p + m + ms , respectively.
Instead of using the four variables classically used for the Earth extended with the variable

p, we choose to select five rotation variables showing more symmetry between the two solid
layers and better suited to compare with previously developedmore restricted models.We for
example prefer not to use the tilt ns but to use an equivalent variable as p for the solid interior,
which is the combination p + ns (see Fig. 5). As the model in intended for icy satellites,
we change the name of the layers and the associated subscripts. The mantle becomes the ice
shell (m → s), the FOC becomes the ocean ( f → o), and the SIC becomes the solid interior
(s → i). By analogy with Eckhardt’s formalism for the solid case, we define a variable for
the orientation of the Laplace pole in the BF of both the shell (ps) and of the interior (pi ).
We also define in a more symmetrical way variations of rotation for the shell (ms) and the
interior (mi ) with respect to their uniform rotation along the z-axis of their respective BF. As
the ocean has no practically defined BF, we express the ocean rotation variations mo in the
coordinates of the shell BF. With our new set of variables, the system will be characterized
by five free modes for the orientation of the rotation axes (see Table 4): the Chandler Wobble
and the Interior ChandlerWobble which are defined by analogy with Earth’s studies, the Free
Precession (or QDFWs, the quasi-diurnal free wobble of the shell in the shell BF), the Free
Ocean Nutation (or QDFWo in the shell BF) which replaces the FCN/NDFW of the Earth,
and the Free Interior Nutation (or QDFWi in the interior BF) which replaces the FICN/PFCN
of the Earth. In addition, there are two rotation rate free modes (the shell and interior free
libration).

3.2 Angular momentum equations

The rotation of a synchronously rotating icy satellite with a global subsurface ocean is gov-
erned by the following five equations
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Table 4 Free modes for a synchronous satellite with an internal global ocean, associated with our new set of
rotation variables

Mode Corresponding motion Associated variables

CW Shell rotation axis w.r.t shell BF ms

ICW Interior rotation axis w.r.t interior BF mi

FP Shell rotation axis w.r.t IF

↪→ QDFWs Shell rotation axis w.r.t Laplace pole in shell BF ms − ps
FON Ocean rotation axis w.r.t IF

↪→ QDFWo Ocean rotation axis w.r.t Laplace pole in shell BF mo − ps
FIN Interior rotation axis w.r.t IF

↪→ QDFWi Interior rotation axis w.r.t Laplace pole in interior BF mi − pi

dHs

dt
+ �s ∧ Hs = �s, (54)

dHo(s)

dt
+ �s ∧ Ho(s) = �o(s), (55)

dHi

dt
+ �i ∧ Hi = �i , (56)

d p̂s
dt

+ �s ∧ p̂s = 0, (57)

d p̂i
dt

+ �i ∧ p̂i = 0. (58)

Here, Hs , Ho(s), and Hi are the angular momentum of the shell, ocean, and interior, �s and
�i are the rotation vectors of the shell and of the interior. �s , �o(s), and �i are the torques
exerted on the different layers. p̂s and p̂i are defined by analogy with the solid case (see
Eq. 6):

p̂s =
⎛
⎝
0
0
1

⎞
⎠ + ps =

⎛
⎝

psx
psy
1

⎞
⎠ and p̂i =

⎛
⎝
0
0
1

⎞
⎠ + pi =

⎛
⎝

pix
piy
1

⎞
⎠ . (59)

Vectors related to the shell or to the interior are expressed in the coordinates of their respective
BF. The coordinate system (shell or interior BF) chosen to express vectors related to the ocean
is indicated in parentheses in the subscripts. Here, the ocean’s equation Eq. (55) is expressed
in the coordinates of the shell BF.

In the next subsections, we determine expressions for the rotation, angular momentum
and torque vectors. As the tidal deformations largely complexify the governing equations, we
consider the solid layers to be rigid, as in Sect. 2. The main goal of this paper is to evaluate
the effect of coupling between the different rotation quantities and to compare our results
with those of studies in which the different rotation variables are studied independently of the
other. Those decoupled studies have shown that the tidal effect is large for large icy satellites
as Titan, but we do not expect that the inclusion of tides will change the conclusions of our
comparisons. Inclusion of tides is foreseen in a follow-up paper.
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3.3 Rotation vectors and angular momentum

The angular momentum of the solid layers (k stands here for s or i), in their respective BF,
can be expressed similarly as Eq. (3) for the angular momentum of the solid satellite :

Hk = I k�k, (60)

with the inertia tensors and rotation vectors defined as Eq. (4) and Eq. (1), respectively:

I k =
⎛
⎝

Ak 0 0
0 Bk 0
0 0 Ck

⎞
⎠ and �k = n

⎛
⎝
0
0
1

⎞
⎠ + nmk = n

⎛
⎝

mk
x

mk
y

1 + mk
z

⎞
⎠ , (61)

with mk
z = γ̇k/n. γk is the libration angle of layer k.

The development of the angular momentum of the ocean requires more care. As it is
not practical to define a Body Frame for the ocean, whose mass distribution and orientation
depends on the orientations of both the shell and interior, we choose to write the ocean
angular momentum in the BF of an adjacent solid layer, in this case the shell BF. We model
the relative velocity in the ocean as

vo(s) = (�o(s) − �s) ∧ r + v, (62)

with �o(s) the rotation vector of the ocean, seen as a solid body rotation, and r the position
vector. The additional velocity field v is a small field defined so that the total flow satisfies the
boundary conditions at the non-spherical interfaces and so that v does not contribute to the
ocean angular momentum. Such a simple flow is known as a Poincaré flow (e.g., Mathews
et al. 1991, Eq. (6), where we have replaced m f by (�o(s) − �s), according to our choice
of variables to solve for). Determining the exact expression for v in a three layer case would
not be an easy task (in the biaxial case with no SIC, it is given after Eq. (B23) of Mathews
et al. (1991); for a triaxial core-mantle boundary, see, e.g., Eq. (50) of Van Hoolst and Dehant
(2002)), and is not necessary for computing the torque on the fluid layer, as wewill see below.
It is only needed to know that the components of v are proportional to the flattenings of the
core-mantle and inner core boundaries, as noted by Mathews et al. (1991) in their Eq. (7).

We write the ocean rotation vector as

�o(s) = n

⎛
⎝
0
0
1

⎞
⎠ + nmo = n

⎛
⎝

mo
x

mo
y

1 + mo
z

⎞
⎠ , (63)

with mo
z = γ̇o/n. Since the orientations of the two solid layers, and therefore also of the two

interfaces of the ocean are different, we divide the ocean into a top (subscript ot) and a bottom
(ob) part aligned with the shell and the interior, respectively. The boundary between the two
parts is a sphere, which is therefore not affected by the orientation of the solid layers. As a
result, the ocean angular momentumHo can be written as the sum of the angular momentum
of the top and bottom oceans. We express it here with respect to the reference frame attached
to the shell:

Ho(s) =
(
I ot(s) + R(i→s) I ob(i)R

−1
(i→s)

)
�o(s) (64)

= n

⎛
⎝

(Aot + Aob)mo
x + (Cob − Aob)(psx − pix )

(Bot + Bob)mo
y + (Cob − Bob)(psy − piy)

(Cot + Cob)(1 + mo
z )

⎞
⎠ . (65)
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Here R(i→s) is the transformation matrix from the interior BF to the shell BF (see Eq. 108)

and I ot(s) and I ob(i), the inertia tensor of the top and bottom oceans, are defined as in Eq.
(61). The effect of the misalignment of the bottom ocean with respect to the shell and the top
ocean is manifested by the presence of terms proportional to the components of the difference
between ps and pi . Similarly, the effect of the misalignment of the inner core of the Earth
with respect to the mantle is present in the FOC angular momentum through the components
of ns (see Eq. (22a) of Mathews et al. (1991)), which would be the combination of ps − pi
if we were to define such a vector between the z-axes of the solid layers’ BFs in the ocean
case (see Fig. 5). Note that (Cob − A/Bob) and (A/B/Cot + A/B/Cob), and soHo(s), do not
depend on the radius of the sphere separating the top and bottom oceans, which can therefore
be chosen arbitrarily between the largest radius of the triaxial solid interior and the smallest
radius of the triaxial ocean–shell interface. This makes the decomposition of the ocean into
a top and bottom fluid layer efficient and also intuitive.

3.4 Total torque on the ocean

The torque on the fluid layer includes the external gravitational torque (ext) by the parent
planet, the internal torque (int) by the solid layers, and the hydrostatic (phs) and hydrody-
namic (phd) pressure torques exerted at the ocean boundaries:

�o(s) = �o,ext + �o,int + �o,phs + �o,phd. (66)

The different torques are formally defined as

�o,ext/int = −
∫
Vo

r ∧ ρo∇Φext/int dV , (67)

�o,phs/phd = −
∫
So

(ro ∧ n̂o)Phs/hd(ro)dS +
∫
Si

(ri ∧ n̂i )Phs/hd(ri ) dS, (68)

with Φext the external gravitational potential of the parent planet and Φint the internal grav-
itational potential due to the shell and interior masses. The quantities r, ρo, and Vo are the
position vector, the density and the volume of the ocean; ro and ri are the position vectors
of the points located on So and Si , the ocean and interior surfaces; n̂o and n̂i are the outward
unit normal on these surfaces.

Wehave divided the pressure P inside the ocean into a part Phs corresponding to an ocean at
rest (hydrostatic pressure), and a part Phd which depends on the fluid motion (hydrodynamic
pressure). The pressure gradient inside the ocean, which we assume to be inviscid, is given
by the Navier–Stokes equation. In the coordinates of the shell BF, we have

∇P = ∇Phs + ∇Phd, (69)

with

∇Phs = −ρo (∇Φext + ∇Φint) , (70)

∇Phd = −ρo

(
s ∧ (s ∧ r) + ṡ ∧ r + 2s ∧ vo(s) + dvo(s)

dt

)
, (71)

with dvo(s)
dt = ∂vo(s)

∂t + (vo(s).∇)vo(s), the total derivative of the fluid velocity.
Applying Gauss theorem, the pressure torques can be alternatively written as

�o,phs/phd = −
∫
Vo

r ∧ ∇Phs/hd dV . (72)
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From Eqs. (67–72), it is straightforward to see that hydrostatic equilibrium implies

�o,ext + �o,int + �o,phs = 0 (73)

and that the torque on the ocean, now written

�o(s) = �o,phd, (74)

is only due to the hydrodynamic part of the pressure. This is not the case for the solid layers,
as we will see below.

In the Earth rotation community, it is not customary to use the formal definition (Eq. 68)
of �o,phd. As shown by Mathews et al. (1991) (see also Sasao et al. 1980), an alternative
form for the angular momentum equation of the fluid layer can be obtained starting from
the Navier–Stokes equation and involving the fact that v does not contribute to the angular
momentum. They find that, in our notations:

dHo(s)

dt
− n(mo − ms) ∧ Ho(s) = 0. (75)

This derivation is based on the knowledge that v is a quantity of first order in the flattenings of
the fluid layer boundaries, but does not require to know the exact expression of v. Therefore,
comparing Eq. (55) with Eq. (75), the total torque on the ocean is given by

�o(s) = �o(s) ∧ Ho(s) (76)

= n2

⎛
⎝

(Cot − Bot )mo
y + (Cob − Bob)(mo

y + piy − psy)
−(Cot − Aot )mo

x − (Cob − Aob)(mo
x + pix − psx )

0

⎞
⎠ . (77)

3.5 Total torque on the solid layers

The torques on the shell and on the solid interior can be written as

�s = �s,ext + �s,int + �s,phs + �s,phd + �atm, (78)

�i = �i,ext + �i,int + �i,phs + �i,phd, (79)

with �k,ext the external gravitational torque by the parent planet on layer k, �k,int the internal
gravitational torque by the other layers and�k,phs/phd the hydrostatic/hydrodynamic pressure
torques exerted at the ocean boundary with layer k. The atmospheric torque on the shell �atm

is the same as in the solid case (see Eq. 8). The gravitational and pressure torques on solid
layer k are formally defined as

�k,ext/int = −
∫
Vk

r ∧ ρk∇Φext/int dV , (80)

�s,phs/phd =
∫
So

(ro ∧ n̂o)Phs/hd(ro)dS =
∫
Vot

r ∧ ∇Phs/hd dV , (81)

�i,phs/phd = −
∫
Si

(ri ∧ n̂i )Phs/hd(ri ) dS =
∫
Vob

r ∧ ∇Phs/hd dV . (82)

Because the hydrostatic pressure is directly related to the external and internal gravita-
tional potential (Eq. 70), it is more convenient to write, for each solid layer, the sum of the
gravitational torque and of the hydrostatic pressure torque as a gravitational torque corrected
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for the effect of hydrostatic pressure, which acts as a transfer of the gravitational torques on
the top and bottom ocean to the adjacent solid layers. Eqs. (78–79) are now written as

�s = �s, ˜ext + �s, ˜int + �s,phd + �atm, (83)

�i = �i, ˜ext + �i, ˜int + �i,phd, (84)

with

�s, ˜ext/ ˜int = −
∫
Vs+ot

r ∧ ρ(r)∇Φext/int dV , (85)

�i, ˜ext/ ˜int = −
∫
Vi+ob

r ∧ ρ(r)∇Φext/int dV . (86)

By analogy with the solid case (see Eq. 5), the external gravitational torques, including
the effect of hydrostatic pressure, are written as in Eqs. (109–110). The expressions for the
internal torques, including the effect of the hydrostatic pressure, are given by Eq. (111), see
Appendix 1.

From a comparison of Eq. (72) for the formal expression of the hydrodynamic pressure
torque on the ocean andEqs. (81–82) for the formal expressions of the hydrodynamic pressure
torques on the shell and on the solid interior, it follows that

�s,phd + �i,phd + �o,phd = 0. (87)

Making use of the final expression for the hydrodynamic pressure torque on the ocean of Eq.
(76), we obtain

�s,phd = −�o(s) ∧ Hot(s) = −n2

⎛
⎝

(Cot − Bot )mo
y

−(Cot − Aot )mo
x

0

⎞
⎠ , (88)

�i,phd = −�o(s) ∧ Hob(s) = −n2

⎛
⎝

+(Cob − Bob)(mo
y + piy − psy)

−(Cob − Aob)(mo
x + pix − psx )

0

⎞
⎠ . (89)

At first order in small quantities, �i,phd has the same expression in the interior BF as in the
shell BF, so that Eq. (89) which is written in the shell BF can be injected in Eq. (56) which
is written in the interior BF.

3.6 Final system

Making use of Eqs. (76,83,84) for the torques on the different layers, the system of vector
Eqs.(54–58) is expanded into 13 scalar equations subdivided into two independent sets.

A first set of three equations governs librations and LOD variations

Csnγ̈s − 3n2[(Bs − As) + (Bot − Aot )](s − γs) − nκ z
int(γs − γi ) = Γ̃z, (90)

Conγ̈o = 0, (91)

Cinγ̈i − 3n2[(Bi − Ai ) + (Bob − Aob)](s − γi ) + nκ z
int(γs − γi ) = 0. (92)

We refer the reader to Van Hoolst et al. (2013) and Coyette et al. (2018) for a presentation of
the solution of these equations.

The equations governing polar motion and precession form a system of ten equations that
can be written as

u̇ + Ku = T, (93)

123



11 Page 26 of 50 R.-M. Baland et al.

with

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ms
x

ms
y

mo
x

mo
y

mi
x

mi
y

psx
psy
pix
piy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hy(0)
As

+ Γ̃x
nAs

− hx (0)
Bs

+ Γ̃y
nBs

+ 3n (As+ot−Cs+ot )
Bs

i sin(ω + M − π)

0
0
0

3n (Ai+ob−Ci+ob)
Bi

i sin(ω + M − π)

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (94)

and the components of the matrix K are given in Appendix 4. u is the vector of the 10
unknowns: the equatorial components of the variations in rotation of the shell, ocean, and
interior with respect to the uniform rotation along the z-axis of the shell or interior BF and
of the unit vector along the Laplace pole expressed with respect to the shell and interior BFs.
The vector T contains the parts of the torques which do not depend on the variables to be
solved for. The remaining parts of the torque are included in the product (Ku), along with
the cross product terms of the governing equations.

We aim to compare the solution of this coupledmodel for spin precession and polarmotion
with the solution of two decoupled models:

1. The decoupledmodel for polarmotion can be obtained from the generalmodel (Eq. 93) by
ignoring the last four equations for the time derivative of the p-variables and by rewriting
ps/ix/y in the six first equations in terms of ms/i

x/y by means of Eq. (100). This decoupled
model corresponds to Eq. (51) of Coyette et al. (2018), in which the tidal contribution
should be set equal to zero.

2. As the precession is a slow motion in space, the decoupled model for spin precession can
best be obtained by re-expressing the angular momentum Eqs. (54–56) in the IF. We next
average the equations over the orbital period, and neglect the polar motion and longitu-
dinal librations of the solid layers. This decoupled precession model extends the model
for hydrostatic equilibrium satellite interiors (Baland et al. 2011, 2012) by including a
hydrodynamic pressure (Poincaré flow). The decoupled system can be expressed as three
ordinary differential equations for the projections onto the Laplace plane of the spin unit
vectors of the three layers; see Eq. (176), Appendix 5.

In Sect. 3.7, we compare the free frequencies of both kinds of models. To that end, we
consider two satellite toy models representative of Titan. The first model (TM1) is Titan-like,
with a shell thickness of 100 km, has no surface lakes, and shares the same atmosphere
dynamics as the solid toy model, but has a homogeneous interior, whereas Titan likely has
an interior divided into a high-pressure ice mantle and a rocky core. The second (TM2)
Titan toy model is axisymmetric and has no atmosphere. In order to investigate the case
of a thick ”shell“, we consider a third toy model, TM3, representative of the Moon. TM3
allows easier comparison with studies about Earth rotation which includes the presence of
the FOC and SIC below a thick mantle. The surface flattenings are set equal to those derived
from the observed shape of Titan (see Baland et al. 2014; from Zebker et al. 2009) or of
the Moon (Dumberry and Wieczorek 2016; from Araki et al. (2009)). The flattenings of the
internal boundaries are chosen arbitrarily but with the condition that they decrease toward
the center. For the axially symmetric TM2 and TM3, the equatorial flattenings are set to zero.
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Table 5 Values for the interior parameters of two Titan (TM1 and TM2) and one Moon (TM3) Toy Models
with an internal fluid layer

Parameter TM1 TM2 TM3
(Titan-like) (biaxial, no atmosphere) (Moon-like)

R (km) 2575 2575 1737

Ro (km) 2475 2475 350

Ri (km) 2275 2275 200

ρs (km/m3) 1000 1000 3300

ρo(km/m3) 1100 1100 5800

ρi (km/m3) 2250 2250 7700

αs 19.22 × 10−5 19.22 × 10−5 1.29 × 10−3

αo 0.8αs 0.8αs 0.8αs
αi 0.6αs 0.6αs 0.6αs

βs 14.37 × 10−5 0 0

βo 0.8βs 0 0

βi 0.6βs 0 0

The interior characteristics of the three toy models can be found in Table 5. In Sect. 3.8, we
compare the forced solutions of coupled and decoupled rotation models, considering TM1
and the same uniform orbital precession as for the solid toy model.

3.7 Freemodes for the polar motion and the precession

The frequencies σ of the free modes for polar motion and precession in the coupled model
are the eigenvalues of K, which are solutions of det(σ I10 − K) = 0, with I10 the (10 × 10)
identity matrix. As this determinant is a polynomial of degree 5 in σ 2, we find 5 distinct
free frequencies σCW, σICW, σQDFWs, σQDFWo and σQDFWi corresponding to the 5 free modes
described in Table (4). Depending on the interior model considered, the free frequencies
either are all real or two of them (σQDFWo and σQDFWi) are non-real complex conjugates. The
toy models defined in Table 5 are characterized by real free frequencies. As in the solid case,
we choose to express the frequencies as positive, and a free prograde or a free retrograde
motion can be associatedwith each frequency, as sketched in Fig. (6). Three eigenmodes have
quasi-diurnal frequency, which correspond to small frequencies σ ′

FP, σ
′
FON, σ ′

FIN in inertial
space, with long periods. FP and FON modes corresponds to retrograde motions. The FIN
can be prograde or retrograde, depending whether σQDFWi is smaller or larger than n. It is
possible to obtain analytical expressions for the free frequencies, but since those are long and
not very revealing, we focus on numerical results.

Both decoupled models are characterized by three modes: the FP, FON, and FIN for the
decoupled precession model, and the CW, ICW, and FON for the decoupled polar motion
(Coyette et al. 2018). The decoupled precession model does not include the CW and ICW
because it does not consider the polar motion of the solid layers. The decoupled polar motion
model does not consider the motion of the spin axes of the shell and of the solid interior with
respect to space and as such lacks the FP and FIN. Both decoupled models have a FONmode
since they both include the relative motion of the ocean rotation axis with respect to the shell.
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Fig. 6 Free frequencies in the body frames and in the inertial frame for a triaxial synchronous rotator with
an internal global liquid ocean; see Table (4). The passage from the BF to the IF is obtained by adding
the rotation rate n to the free frequencies expressed in the BF. Positive/negative frequencies correspond to
prograde/retrograde motions. As in the solid case (see Fig. 1), hatched lines indicate prograde free motions
which would have very small amplitudes compared to the retrograde motions at the same period

The free periods of TM1 obtained with the coupled model are gathered in Table 6 (column
two). Similarly as for the CW of the solid case, the atmosphere super-rotation introduced
by the term hz(0) clearly affects the periods of the CW (−34%) and of the ICW (−11%).
Contrariwise, σ ′

FP, σ
′
FON, σ ′

FIN are almost independent of hz(0) (effect � 0.1%). The free
periods of TM2 differ from those of TM1 due in part to the lack of atmosphere of TM2, but
also to its axial symmetry, and are shorter for the CW (−16%) and ICW (−9%) and larger
for the FP, FON, and FIN periods (up to +30%).

We next compare the free periods of the coupled (Table 6, column 2) and decoupled
(columns 3 and 4) models. For the FON, the decoupled polar motion model predicts a correct
value for the Moon TM3 with its small interior, but predicts wrong values for the Titan
TM1 and TM2 with their thin outer shell. This is because the decoupled polar motion model
is based on the underlying assumption that the solid layers cannot have a free motion in
space, which significantly alters the period of the FON when the solid interior is large. This
discrepancy indicates that the decoupled polar motion model of Coyette et al. (2018) should
be used with caution to predict solution at quasi-diurnal forcing periods, close to the period of
the QDFWo, as was noted by those authors. The agreement in the periods of the other modes
between the decoupled and coupled models is good or even excellent (e.g., the difference is
6% for TICW of TM3, and 0.005% for TFON of TM1).

We also compared our results for the biaxial TM2 and TM3 to well-known analytical
formulae for the CW, ICW, FCN, and FICN of a biaxial Earth (e.g., page 293 of Dehant and
Mathews (2015)). Todo so,wefirst removed inK the terms related to the external gravitational
torque and characteristics of the synchronous rotation, to get Kns (see end of Appendix 4
for the details). A good-to-excellent agreement is obtained for TM3, but the periods differ
strongly for TM2 (see columns 5 and 6 of Table 6), which is due to the relatively large size of
the solid interior forTitan toymodels. The classicalmodels for the rotationof theEarth assume
that the solid inner core has a small moment of inertia compared to the total moment of inertia
(see Sect. 5 of Mathews et al. (1991), where As , the equatorial moment of inertia of the SIC,
is neglected in some terms of the governing equations, because of the small size of the SIC).
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Table 6 Free periods (years) for the three Toy Models of Table 5

K Decoupled models Kns Biaxial Earth
(full coupled model) PM Spin prec. (non-synch.) formulae

TM1
TCW 8.63 (13.06) 8.60 − 11.72 −
TICW 180.69 (202.63) 180.65 − 267.60 −
TFP 9.14 (9.13) − 9.10 16.93 −
TFON 323.87 (323.87) 43.72 323.96 463.97 −
TFIN 191.96 (191.95) − 191.95 → ∞ −

TM2
TCW 11.26 11.23 − 16.95 28.31
TICW 184.19 184.16 − 303.88 170.64
TFP 11.00 − 10.97 18.30 −
TFON 384.98 43.70 385.013 566.99 70.28
TFIN 247.6 − 247.67 → ∞ 40.22

TM3
TCW 29.02 28.97 − 57.93 57.93
TICW 1.27 1.20 − 1.28 1.21
TFP 38.68 − 38.65 → ∞ −
TFON 71.38 71.26 71.46 71.30 71.26
TFIN 1.29 − 1.22 1.29 1.22

Column 2: free periods obtained from K (see Eq.93). The values in parentheses for TM1 corresponds to a
case without super-rotation of the atmosphere (hz(0) = 0). TM2 and TM3 have no atmosphere. Columns 3
and 4: free periods obtained from decoupled models for the polar motion (Coyette et al. 2018) and for the
spin precession (see Appendix 5). Column 5: free periods obtained with a matrixKns where the terms related
to the external torque are dropped, in order to mimic the non-synchronous case (hence the subscript ns, see
end of Appendix 4). Column 6: free periods obtained for TM2 and TM3 from well-known analytical formula
written originally for a biaxial Earth (see, for instance, Dehant and Mathews 2015). Values indicated in red
correspond to cases where the considered model fails to provide correct periods, because of their underlying
assumptions

By comparing columns 2 and 5 of Table 6, we can put further into perspective the differ-
ences between synchronous and non-synchronous rotation. For Titan TM1 or TM2, the terms
in the matrixK of Eq. (94) related to the external gravitational torques on the solid layers, the
internal gravitational torque, and the hydrodynamical torques are comprised within a range
of one order of magnitude, so that neglecting the external torques significantly affects all the
free periods. In particular, the CW and ICW periods are smaller due to the resonant rotation
(8.6 years versus 11.7 years for CW of TM1 for instance), a behavior already observed for
the CW of the solid case. As the solid interior accounts for the essential of the mass of the
satellite, the FIN period tends to infinity and this mode degenerates into a TOM, juste like the
FP of a solid body. For theMoon TM3, the external torque on the “shell” (which is the mantle
for the Moon) largely dominates all the other torques, and is three orders of magnitude larger
than the internal gravitational torque. The latter is two orders of magnitude larger than the
external torque on the small solid interior. As a result, neglecting the external torques only
affects the periods of the modes related to the mantle (the FP and the CW). Because of the
large moment of inertia of the mantle compared to the other layers, the FP degenerates into

123



11 Page 30 of 50 R.-M. Baland et al.

a TOM, and the difference between synchronous and non-synchronous rotation tends to the
well-known factor 2 for the CW of an entirely solid body (Eckhardt 1981).

Besides the validation of our model through the comparisons with results from applying
equations for the Earth to model TM3, we also compare our coupled model to three other
rotation models. First we consider the Hamiltonian model for a satellite with a rotating
internal liquid layer developed by Boué et al. (2017), and we use their Titan toy model
denoted F1 for numerical comparisons. Since those authors do not consider the effect of an
atmosphere, we neglect those effects in our model in the comparison. The period of the free
modes obtained with our coupled model are in excellent agreement (difference< 0.4%) with
the ones obtained with the Hamiltonian model. We also compare the Hamiltonian model by
Noyelles (2012) for the rotation of a synchronous satellite with an entirely fluid core with the
outputs of our coupled model adapted to the limit case of an entirely liquid interior, for a toy
model of Io with a core characterized by δ = C f /C = 0.4, or R f /R � 0.8. We notice an
overall good match, except for the FCN period, as already noted by Boué et al. (2017), which
differs by about 16%. The last comparison concerns the angular momentum coupled model
of Dumberry and Wieczorek (2016) applied to the Moon. They assume that the gravitational
external torque, as seen from the IF, is averaged over the Moon rotation/revolution period.
The FP, FCN, and FICN, which manifest themselves in the IF at long periods, are not affected
by this procedure and our results agree with their results. The CW and ICW derived from
their model cannot be in agreement with those derived from our coupled model in which
we use the non-averaged torque, since they have quasi-diurnal periods as seen in the IF (see
Fig. 6). In the limit case of an entirely solid and axisymmetric body, the frequency σCW of
Dumberry and Wieczorek (2016) turns to be 5

2n
C−A
A , instead of 2n C−A

A (see Eq. 23), the
CW frequency of the solid model of Sect. 2 and of Eckhardt (1981), whereas σFP = 3

2n
C−A
A ,

in agreement with our coupled model (see Eq. 25) and Eckhardt (1981).

3.8 Forced solution

The angular momentum Eq. (93) governing the coupled precession and polar motion can be
solved for each frequency of the forcing T of Eq. (94), so that the full solution can be written,
by analogy with Eq. (33) for the solid case, as

u = uext + uoff + uatm, (95)

where the first, second, and third terms correspond to the part of the solution related to the
external forcing by the parent planet, the constant terms of the atmospheric forcing, and the
periodic terms of the atmospheric forcing, respectively.

In the subsections below, we discuss in details the different parts of the solution. Because
the analytical solutions are too long to be written here, we only show numerical results.
Figure 7 shows the evolution over one Saturn or Titan year of ms , mo, mi , ps , pi , θs , θo,
θi , ŝs , ŝo, and ŝi for model TM1, and Table 7 summarizes the results. We also examine the
differences (presented in Fig. 8) between the coupled solution obtained here and the solutions
of the decoupled models of Coyette et al. (2018) and of Appendix 5 for the polar motion and
spin precession, respectively, and compare our coupled model to other published coupled
models.
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Fig. 7 Numerical solution of the system of Eq. (93) for the Titan toy model TM1 of Table 5. Panel a describes,
as distances in kilometers at the surface of the satellite, the evolution over 30 years of the equatorial components
of the unit vector along the Laplace place, both with respect to the shell BF (ps , black) and with respect to the
interior BF (pi , red). The evolution of the equatorial components of the unit vector along ocean spin axismo
with respect to the shell BF is presented in blue. Panel b describes, in meters, the evolution over 30 years of
the equatorial components of the unit vector along the shell (ms , black) and interior (mi , red) spin axes, with
respect to their respective BF. The evolution of ps , pi and of mo is mainly governed by the external torque,
whereas the evolution of ms and of mi is mainly governed by the atmospheric torque. The offset due to the
constant terms of the atmospheric forcing is materialized by the cross markers (black in the shell BF, red in
the interior BF). Panel c displays the evolution over two diurnal cycles (� 32 days) of the inertial obliquities
of the shell (θs , black), the ocean (θo, blue), and of the interior (θi , red). The dashed gray line represents the
orbital inclination, as a point of comparison. The trajectory of the unit vector along the spin axes of the three
layers (same color code as for the other panels) projected onto the Laplace plane (skx , sky ) is shown in panel d
over the duration of the orbital precession (703 years) which drives the spin precession. The dashed gray line
represents the projection of the unit vector along the orbital normal
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Table 7 Amplitudes and
frequencies of the different parts
of the solution of Eq. (95) for the
Titan TM1 of Table 5

External torque Atmosphere Atmosphere

BF Frequency n − Ω̇ 0 �an

ms
x 3 m 13.27 m 65 m

ms
y 5 m −457.82 m 130 m

mo
x 3.6 km 13.27 m 65 m

mo
y 3.6 km −457.82 m 130 m

mi
x 0.2 m 7.08 m 8 m

mi
y 2 m −309.37 m 20 m

psx 17.4 km 13.27 m 65 m

psy 17.4 km −457.82 m 130 m

pix 19.7 km 7.08 m 8 m

piy 19.7 km −309.37 m 20 m

IF Frequency Ω̇

θ̄s 0.388◦ − −
θ̄o 0.467◦ − −
θ̄i 0.438◦ − −
Freq � 2n � n

Δθs 2 m − 0.1 m

Δθo 0.25 m − 0.00004 m

Δθi 0.5 m − 0.001 m

The first part of the table deals with the variablesm and p of the different
layers, seen from the appropriate solid layer BF. The second part of the
table deals with the solution expressed in the IF, and in particular with
the inertial obliquities, computed as differences of the form |m − p|.
Note that θo is computed from |mo − ps |, which is the sum of mo and
ps radii (17.4+ 3.6 = 21 km, or 0.467◦), asmo and ps are out of phase
to each other by π , explaining why the ocean spin axis, as seen from the
IF, is further away from the Laplace pole than the shell and interior spin
axes (panel d of Fig. 7)

3.8.1 Solution related to the external forcing by the parent planet

As for the solid case, the motions induced by the external gravitational torque, at a quasi-
diurnal frequency ( f = n − Ω̇), can be separated into two categories: first, the large circular
motions of several km radius (ps , pi , andmo, see Fig. 7, panel a), and second, the small ellip-
tical motions of a few meters (ms andmi , see Table 7). In addition, the external gravitational
torque results in large circular motions of the rotations axes of the three layers in the IF, on
the timescale of orbit precession, with quasi-constant inertial obliquities (Fig. 7, panels c and
d). It also results in semi-diurnal nutations in obliquity and in longitude, at least four orders
of magnitude smaller than the mean inertial obliquities (Table 7). As for the solid case, the
periods of the CW (8.6 years) and of the ICW (181 years) are too far from the quasi-diurnal
forcing period to produce a resonant amplification of the solution. The solution is slightly
amplified though by a resonance between the forcing at 703 years and the FIN at 192 years
and the FON at 324 years in inertial space. The FP has a period of about 9 years, too far from
the forcing period to induce a significant amplification.
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The decoupled solutions for the polar motion of the solid layers (ms
ext and mi

ext) and for
the spin precession of the three layers in space ( ŝsext, ŝ

o
ext, and ŝiext) are taken from Coyette

et al. (2018) and Appendix 5, respectively. The motion of the spin axis of the ocean, mo
ext,

in the decoupled models is given by Coyette et al. (2018). An alternative decoupled solution
formo

ext can be obtained from the decoupled precession model by injecting θ s0 = i + ηs0 and
θo0 = i + ηo0 into Eqs. (170–171) where the spin node longitudes ξs and ξo are set to Ω , as
there are, by assumption, no nutations in the solution of the decoupled precession model.
For TM1, the differences between the coupled and the decoupled solutions are below the
percent level. Those small differences between the two kind of models indicate that the shell,
ocean, and interior spin precession are almost decoupled from the solid layers’ polar motion,
because ms and mi are very small, compared to the Laplace pole motions. As for the solid
satellite, the decoupled solution for the spin precession is accurate enough compared to the
actual measurement precision of 6%.

The mean orbital obliquities are in very good agreement (< 0.6% difference) with those
of Boué et al. (2017) for their model F1. Our results differ by 0.6% and 2% for the mean
orbital obliquities of the mantle and fluid core, respectively, with the results of the alternative
Hamiltonian model of Noyelles (2012) for an interior model of Io with a large core. Consid-
ering the Moon and the model by Dumberry andWieczorek (2016), we obtain similar values
for the tilt angles of the mantle symmetry axis with respect to the ecliptic normal. We also
find that the resonant amplification with the FCN or the FICN occurs for similar values of the
CMB flattening, whether the torque is averaged or not, because the FCN and FICN periods
are not affected by the averaging (see Sect. 3.7). However, we find a difference of 40% in
mantle polar motion, as a consequence of the torque averaging by Dumberry and Wieczorek
(2016).

3.8.2 Solution related to the atmospheric forcing

Like Eckhardt’s kinematic equation (12), Euler’s kinematic Eq. (14) can be extended to the
shell and the solid interior, explaining why for atmospheric forcing at long periods (w � 0),
we have ms

atm � psatm in the shell BF and mi
atm � piatm in the interior BF, similarly to the

corresponding result for the entirely solid satellite that matm � patm (see Table 7). As the
orientation of the two BF is defined with respect to the same IF, the equatorial components
of the unit vector along the interior spin axis expressed in the shell BF are ps − pi +mi (see
Fig. 5). We find that, for w � 0,ms

atm � mo
atm � psatm −piatm +mi

atm, meaning that the three
rotation axes would be almost aligned if there were no other torques than the torque exerted
by the atmosphere at long periods (see Fig. 9). This is expected since the periods of the FP
(9 years), FON (324 years), and FIN (192 years) are larger than the forcing period as seen
from the IF (quasi-diurnal), so that none of the spin axes is able to follow the forcing in the
IF and they tend to keep a fixed orientation, along the Laplace pole. At the same time, in the
BF’s, the spin axis of each solid layer reaches an equilibrium orientation which reflects the
balance between the orientation of the atmospheric angular momentum and the orientation
of the layer’s principal polar axis of inertia. As the internal gravitational and pressure torques
are too weak to restore the alignment between the two BF’s, psatm − piatm �= 0.

For TM1, the polar offsets (w = 0) are a few hundred meters (see Table 7) and are in
near perfect agreement (difference < 0.0001%) with the values derived from Eq. (61–66) of
Coyette et al. (2018). The annual solution (w = �an) consists of ellipses of a few tens to a
few hundreds meters, as can be seen in panel (b) of Fig. (7). ms

atm and mi
atm are larger than

ms
ext and mi

ext, whereas p
s
atm, p

i
atm and mo

atm are surpassed by the quasi-diurnal solutions
psext, p

i
ext and mo

ext related to the torque exerted by the parent planet. The annual solution
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Fig. 8 Panels a, b, c: Differences, as distances in meters at the surface of Titan, between the numerical solution
of the coupled system of Eq. (93) and the analytical solutions of the decoupled models for the amplitude of
ms , mo, and mi . For the solid layers, the decoupled model is the one of Coyette et al. (2018). For the ocean,
the decoupled model can either be the one of Coyette et al. (2018), see the solid line, or the one obtained from
the decoupled spin precession solution and Eqs. (170–171), see the dashed line. The difference between the
coupled model and the decoupled model of Coyette et al. (2018) forms

ext,m
o
ext andm

i
ext results in the small

diurnal oscillations in panels a, b, and c. The larger oscillations in panel a and c correspond to the differences
forms

atm andmi
atm, at annual period. Panel (d) represents the differences in projected unit spin vectors onto the

Laplace plane (black for the shell, blue for the ocean, and red for the interior). Panel (e) is for the differences in
inertial obliquities between the numerical coupled solution and the analytical decoupled solution derived from
Eq. (182). The differences between the coupled and the decoupled spin precession models in mean obliquities
correspond to the amplitude of the oscillations that occur at the 703-year period in panel d and to the mean
values of the curves of panel e. The differences in mo

ext and in nutations driven by the external gravitational
torque (which are zero in the decoupled spin precession model) manifest themselves as the small semi-diurnal
oscillations in panels b, d and e. The nutations in space related to the atmospheric torque are so small (see
Table 7) that their effect cannot be seen here

obtained here for the polar motion of the solid layers is in agreement to better than 1% with
the annual decoupled solutions of Coyette et al. (2018) (see Fig. 8). As a consequence of the
Euler equation (14), the polar offset does not contribute to the inertial obliquities θk and to
the spin precession vectors ŝk , whereas the contribution of the annual solution is very small
(see Table 7).

Resonant amplification of polar motions and Laplace pole motions to the km level is
possible for forcing periods close to 2π/σCW � 9 years. It is also possible in principle for
forcing periods close to 2π/σICW � 181 years, however, such large forcing periods are not
likely to exist. The polar motion and Laplace pole resonant amplification by the CW do not
result in a significant amplification of the nutations, as the three spin axes tend to stay fixed
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Fig. 9 Amplitudes of the atmosphere contribution to the prograde and retrograde parts of the solution for
the PM and Laplace pole motion, as a function of the forcing period, assuming that the forcing amplitudes
at any period are those of the annual forcing. The solid vertical black line indicates the annual period of
the atmospheric forcing. The dashed orange lines are, from left to right, the three QDFW (which cannot be
distinguished from each other here), CW, and ICW periods. Blue (ocean spin axis), gray (Laplace pole) and
red (interior spin axis, seen from the shell BF) lines cannot be distinguished from each other

in space at long periods, as explained above. For atmospheric forcings at shorter periods,
polar motions and Laplace pole motion would differ more from each other (see Fig. 9),
but the amplitudes of the motions would be so small that the corresponding nutations can be
neglected aswell. Resonant amplifications to the km level are unlikely for forcing frequencies
close to σQDFWs,o,i because it would require a very good match between frequencies, and no
attenuation by dissipative processes.

4 Discussion and conclusions

We have developed a model for the rotation of synchronously rotating satellites (e.g., Titan)
in an angular momentum approach that treats in a consistent way the polar motion and
the spin precession, which are kinematically coupled to each other. We have assessed the
validity of assumptions usually made in decoupled models that break the link between the
two motions, by comparing the results from the decoupled models with the fully coupled
model. Assessing the accuracy of the decoupled models is important, because they have
practical analytical solutions which can easily be used to interpret observations from past
and future space missions. In addition, we have evaluated the rotation variations that have
not been considered in the decoupled cases, such as, the effect of an atmosphere on the spin
precession/nutation.

As Eckhardt (1981) showed, a solid synchronously rotating satellite in the Cassini state
has two free modes of librations in latitude in the BF, a long-period one and a quasi-diurnal
one, that we call here Chandler Wobble (CW) and Quasi-Diurnal Free Wobble (QDFW),
respectively. The QDFW translates into a long period Free Precession (FP) in the IF and
degenerates into a Tilt-Over Mode for the Earth (Smith 1977). The CW is named after the
Earth’s Chandler Wobble, but its period is about half that expected for a non-synchronously
body like the Earth because of the gravitational torque of the central body, in case that the
satellite has no super-rotating atmosphere. Titan’s atmosphere significantly further shortens

123



11 Page 36 of 50 R.-M. Baland et al.

the CW period (Coyette et al. 2016). In the CWmode, the orientation of the spin axis differs
from the orientation of the pole of the BF, but the spin axis remains essentially fixed in space.
In contrast, in the QDFW mode, the spin axis remains essentially fixed with respect to the
BF but moves with respect to the Laplace pole. The free polar motion and free precession
are then almost decoupled from each other, and the free modes of the decoupled models
of Coyette et al. (2016) and Baland et al. (2011) for a solid and rigid synchronous satellite
are good approximations of the free modes of the coupled model. We showed that Titan’s
super-rotating atmosphere only marginally affects the FP period.

We have extended the model to the presence of an internal global liquid ocean and have
chosen to introduce a set of rotation variables that differs from the one of Mathews et al.
(1991), introduced for the Earth, for two reasons. First, it allows for a more intuitive iden-
tification between the variables and the free modes associated with them, especially for the
ICW. Second, it facilitates the comparison with existing decoupled rotation models. Each
BF is oriented with respect to the IF by one rotation variable, instead of being oriented only
with respect to each other. The polar motion of the interior is defined with respect to its own
BF, and the motion of the ocean spin axis is directly defined with respect to the shell BF,
instead of being defined with respect to the shell spin axis. We have identified five latitudinal
free modes, namely the long-period Chandler Wobble (CW) and Interior Chandler Wobble
(ICW), and the Quasi-Diurnal Free Wobbles of the shell (QDFWs), ocean (QDFWo), and
interior (QDFWi). The three quasi-diurnal modes translates into a long period shell Free
Precession (FP), a Free Ocean Nutation (FON), and a Free Interior Nutation (FIN) in the
IF. The QDFWo/FON is the analog of the NDFW (Nearly diurnal Free Wobble)/FCN (Free
Core Nutation) of the non-synchronous Earth, whereas the FIN replaces the FICN (Free Inner
Core Nutation), also called PFCN (Prograde Free Core Nutation). We showed that the free
precession and nutations are not significantly affected by the presence of the super-rotating
atmosphere. For a synchronous rotation, the FIN can be prograde or retrograde, depending
on the details of the internal structure. The decoupled precession model performs well in
reproducing the FP, FON, and FINmodes of the coupled model. The decoupled polar motion
model performs well in reproducing the CW and ICWmodes of the coupled model, but not in
reproducing the FON, as a consequence of the assumption in that model that the spin preces-
sion of the solid layers are already know motions. We have compared our results with those
of the Hamiltonian model by Boué et al. (2017) for Titan, which neglects the atmosphere,
and obtained excellent agreement with differences smaller than 0.4%.

We have shown that the spin precession, both for the solid and ocean cases, is mainly
governed by the external torque. The motion in space of the spin axis of the solid satellite or
of a given layer nearly follows a cone whose aperture (or mean inertial obliquity) is the sum
of the orbital inclination and of the mean orbital obliquity. Themean orbital obliquity slightly
differs (+0.1%, for Titan in the solid case) from the one predicted by a decoupled model,
as a result of a very weak coupling with polar motion. Superimposed on these precession
motions, which have a period equal to that of the orbital precession, there are small semi-
diurnal and diurnal nutations (± 0.01% in the solid case), also arising from the coupling
with polar motion, and mainly due to the external torque, but also, to a lesser extent, to
the atmospheric torque. As the actual precision of the measurement of Titan’s obliquity is
of 6% (Meriggiola et al. 2016), we conclude that the analytical solutions of the decoupled
spin precession models of Baland et al. (2011) and of Sect. 5 for the solid and ocean cases,
respectively, are very good approximations.

The polar motion of a solid rigid satellite, or of the shell in the ocean case, reaches a few
hundred meters and is mainly governed by the atmospheric torque. The spin axis trajectory at
Titan’s surface is an ellipse traveledwith the annual period andwhose center is offset from the
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figure axis of the BF because of the constant term of the atmospheric forcing. The amplitude
of the annual interior polar motion is about one order of magnitude smaller than for the shell
polar motion. Small quasi-diurnal variations of a few meters amplitude are superimposed
onto the elliptical motions due to the weak coupling with the spin precession. As the effect
of the external torque on polar motion is small, the solution of the decoupled polar motion
of Coyette et al. (2016, 2018) for the solid and ocean cases, respectively, where the orbital
obliquities are replaced by the solutions of Baland et al. (2011) or of Sect. 5, are very good
approximations. When considering atmospheric forcing at a period close to the CW period
(about 9 years for the Titan toy model with an ocean considered), it would be possible to
trigger a resonant amplification of the shell polar motion to the detection level (1 km).

Besides applying our formalism to the case of icy satellites with a relatively thin outer
shell (e.g., Titan), we also considered satellites with a large outer mantle (e.g., the Moon)
and the limit case of our equations for non-synchronous bodies (e.g., Earth), in order to
further validate our results. We have found a good match with free modes computed from
the classical relations originally written for the Earth. This partially validates our models,
but also reminds us that Earth formula have an application domain restricted to the case of
bodies with a thick outer layer. We also consider the Moon in view of a comparison with a
similar study based on the formalism developed by Mathews et al. (1991) for the Earth. We
have reached agreement with the angular momentum model of Dumberry and Wieczorek
(2016), but only for the part of the solution related to the precession in space. Because the
external torque they used has been averaged over short period in IF, the part of their solution
related to the polar motion cannot be used for validation or prediction.

In our method, we considered all solid layers to be rigid. Tidal deformations, for a large
satellite like Titan, significantly affects the decoupled solutions (Coyette et al. 2016; Baland
et al. 2016), but we do not expect them to enhance the coupling between polar motion and
precession to a point where the decoupled solutions would be inaccurate enough to prevent
measurement interpretation and predictions.
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1 Appendix 1: Cassini state and orientation of the different layers

Let i and θ be the orbital inclination and inertial obliquity of a solid synchronous satellite,
and χ, ε and φ the Euler angles between the rotation reference frame and the Body Frame
(see Fig. 10). As can be seen from Fig. 10, since i, θ and ε are small angles, the synchronous
rotation implies that (e.g., Peale 1969)

χ + φ + ξ − γ � Ω + ω − π + ν − s, (96)

where Ω and ξ are the longitudes of the ascending nodes of the orbital plane and of the
equator of the rotation frame over the inertial plane, ω is the orbit pericenter node, ν is the
true anomaly (ν = M + s with M the mean anomaly and s = 2e sinM the equation of the
center), and γ is the libration angle. Assuming that the synchronous satellite is in a Cassini
state, the spin axis, the normal to the orbit and the normal to the Laplace/inertial plane are
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Fig. 10 From Coyette et al. (2016). Angles between the inertial plane, the orbital plane, the BF equator, and
the rotation equator for a solid satellite. The angle definitions also apply to any solid layer of a satellite with
an internal liquid layer. For the ocean, we have chosen not to define a Body Frame, but the rotation frame is
well defined

nearly coplanar, so that

ξ = Ω + σ, (97)

θ � i + η, (98)

with σ a small difference between the two node longitudes and η the orbital obliquity. The
definition of the polar motion implies that

(mx ,my) � −ε (sin χ, cosχ), (99)

with mx and my the equatorial components of the rotation normalized rotation vector of Eq.
(1).

Following Eckhardt (1981), we define a unit vector p̂ = (px , py, pz) from the satellite
center, along the direction of the Laplace/inertial pole (see Eq. 6). Taking advantage of the
angles defined above, its components in theBF can bewritten, at first order in small quantities,
as

p̂ = Rz[χ].Rx[−ε].Rz[φ].Rx [θ ].
⎛
⎝
0
0
1

⎞
⎠ �

⎛
⎝

mx − θ sin(M + ω)

my − θ cos(M + ω)

1

⎞
⎠ (100)

and expresses the motion of the Laplace pole with respect to the body frame as a combination
of the polar motion of the rotation axis in the BF and of the precession of the rotation axis in
space with amplitude θ . Since the difference between p̂ (Laplace pole motion with respect
to BF) and � (spin axis with respect to BF, see Eq. (1)) describes the difference between
Laplace and spin poles, the inertial obliquity θ is simply computed, from px , py,mx ,my ,
as:

θ �
√

(px − mx )2 + (py − my)2. (101)
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The components of the unit vector ŝ = (sx , sy, sz) along the direction of the rotation axis,
expressed in the Cartesian coordinates of the Laplace/inertial reference frame are given, at
first order in θ , by

ŝ = Rz[−ξ ].Rx [−θ ].
⎛
⎝
0
0
1

⎞
⎠ �

⎛
⎝

θ sin(ξ)

−θ cos(ξ)

1

⎞
⎠ (102)

and expresses the precession of the rotation axis in space, with amplitude θ . The precession
is slightly influenced by the polar motion through θ , as can be seen from Eq. (101). The effect
is about 5 m for the Titan toy model (see Sect. 2.4.3). The spin precession is also slightly
influenced by the librations/LOD variations through ξ . The angle ξ can be extracted from Eq.
(96), where φ can be obtained from spheric trigonometry relations (the triangle formed by
the ascending node of the rotation equator over the BF equator, the descending node of the
Laplace plane over the BF equator and the ascending node of the rotation equator over the
Laplace plane is fully determined by the knowledge ofm and p) and where γ can be replaced
by the solutions of Van Hoolst et al. (2009) for libration and semi-annual LOD variations,
for example. The effect of γ on the precession (not shown here) is a few meters, and can be
safely neglected in front of the 1-km detection limit related to the position error of Cassini
radar images (Meriggiola et al. 2016).

The unit vectorn along the direction of the orbit pole expressed in theCartesian coordinates
of the Laplace/inertial reference frame is given, at first order in i , by

n̂ = Rz[−Ω].Rx [−i].
⎛
⎝
0
0
1

⎞
⎠ �

⎛
⎝

i sin(Ω)

−i cos(Ω)

1

⎞
⎠ (103)

and the exact expression for the orbital obliquity η of Eq. (98) is given by

cos η = n̂.ŝ. (104)

The definitions of and the relations between the angles presented above also apply to any
solid layer of a satellite with an internal liquid layer. We simply add a subscript or superscript
to indicate towhich layer each quantity is related. For instance, the inertial obliquity of Titan’s
shell and interior are expressed as

θs �
√

(psx − ms
x )

2 + (psy − ms
y)

2, (105)

θi �
√

(pix − mi
x )

2 + (piy − mi
y)

2. (106)

As the orientation of the ocean masses depends on the orientation of the adjacent solid
layers, which are misaligned to each other, we have chosen not to define a Body Frame for
the ocean. However, the definition of an ocean rotation frame still stands. For instance, the
inertial obliquity of Titan’s ocean is expressed as

θo �
√

(psx − mo
x )

2 + (psy − mo
y)

2. (107)

In both the solid and ocean cases, we have chosen to work with unit vector(s) from the
satellite (solid layers) center, along the direction of the Laplace/inertial pole (see Eq. 6),
as variables to be solved for, in order to properly take into account the coupling between
polar motion and spin precession. This has consequences for some expressions (torques,
transformation matrix) defined in the decoupled models of polar motion by Coyette et al.
(2016,2018) where the spin precession was assumed to be known. These modifications are
explained in the subsections below.
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1.1 Consequence on the transformationmatrix

The transformation matrix R(i→s) from the interior BF to the shell BF is a composition of
rotations, as detailed in Coyette et al. (2016). Adapting their Eq. (119) to our set of variables
to be solved for in the ocean case of Sect. 3, and using relations of the form of Eq. (100)
written for the two solid layers, the transformation matrix can be expressed as

R(i→s) =
⎛
⎝

1 (γs − γi ) (psx − pix )
(γi − γs) 1 (psy − piy)
(pix − psx ) (piy − psy) 1

⎞
⎠ . (108)

1.2 Consequence on the external and internal gravitational torques

Adapting Eq. (18) of Coyette et al. (2016) for the external torque on a solid body to our set
of variables to be solved in the solid case, we easily obtain Eq. (5).

For the ocean case, the external torques on the solid layers, corrected for the effect of the
hydrostatic pressure of Eqs. (85–86) become

�s
s, ˜ext = 3n2

⎛
⎝

0
[(As − Cs) + (Aot − Cot )] [i sin(ω + M − π) − psx ]

[(Bs − As) + (Bot − Aot )] (s − γs)

⎞
⎠ , (109)

�s
i, ˜ext = 3n2

⎛
⎝

0
[(Ai − Ci ) + (Aob − Cob)] [i sin(ω + M − π) − pix ]

[(Bi − Ai ) + (Bob − Aob)] (s − γi )

⎞
⎠ , (110)

whereas Eqs. (124–129) of Coyette et al. (2016) for the internal gravitational torque between
the solid layers, here corrected for the effect of the hydrostatic pressure of Eqs. (85–86),
become:

�s
˜int =

⎛
⎝

−nκx
int(p

s
y − piy)

nκ
y
int(p

s
x − pix )

nκ z
int(γs − γi )

⎞
⎠ = −�i

˜int , (111)

with

κx
int = 4πG

5n
(Ci − Bi + Cob − Bob)(ρs[2(αs − αo) − (βs − βo)] + ρo(2αo − βo)),

(112)

κ
y
int = 4πG

5n
(Ci − Ai + Cob − Aob)(ρs[2(αs − αo) + (βs − βo)] + ρo(2αo + βo)),

(113)

κ z
int = −8πG

5n
(Bi − Ai + Bob − Aob)(ρs(βs − βo) + ρoβo). (114)
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2 Appendix 2: A coupled system for a solid axisymmetric
non-synchronous planet

Consider a non-synchronous planet rotating at the mean rateΩo, different from its revolution
rate n, so that its rotation vector is written as

� = Ωo

⎛
⎝
0
0
1

⎞
⎠ + Ωo m = Ωo

⎛
⎝

mx

my

1 + mz

⎞
⎠ , (115)

instead of Eq. (1) for the synchronous case. Neglecting librations (since we assume A = B)
and assuming that the obliquity θ is a small angle (this assumption is not justified for planets
like the Earth with a large obliquity, but is practical in the following), Eq. (96) is replaced by

χ + φ + ξ � Ωot . (116)

For simplicity, we have assumed that the phase of χ +φ + ξ is zero at t = 0. We also assume
that the orbit is circular (e = 0), that the orbital plane is the inertial plane (i = 0), so that
Ω + ω + M = L with L the mean longitude defined as nt + Lo.

Equation (99) for polarmotion in theBF also applies in the non-synchronous case,whereas
Eq. (100) for the Laplace pole motion changes to

p̂ �
⎛
⎝

mx − θ sin(Ωot − ξ)

my − θ cos(Ωot − ξ)

1

⎞
⎠ . (117)

As a result, the components of the unit vector in the direction to the Sun in the coordinates
of the planet BF can be written as

⎛
⎝
rx
ry
rz

⎞
⎠ =

⎛
⎝

− cos(L − Ωot)
− sin(L − Ωot)

px cos(L − Ωot) + py sin(L − Ωot)

⎞
⎠ (118)

and the components of the torque exerted by the Sun are given by

�pb = 3

2
n2(C − A)

⎛
⎝

−py + py cos 2(L − Ωot) − px sin 2(L − Ωot)
px + px cos 2(L − Ωot) + py cos 2(L − Ωot)

0

⎞
⎠ . (119)

By dropping the terms of the torque which explicitly depend on the forcing frequency
2(n − Ωo), the homogeneous system, formed by the angular momentum equation and the
kinematic equation, to be solved to find the free latitudinal modes is written as

AΩoṁx + (C − A)Ω2
omy = −3

2
n2(C − A)py, (120)

AΩoṁ y − (C − A)Ω2
omx = 3

2
n2(C − A)px , (121)

ṗx = Ωo py − Ωomy, (122)

ṗy = −Ωo px + Ωomx , (123)

and is characterized by the following frequencies

σCW = 3n2 + 2Ω2
o

2Ωo

(C − A)

A
, (124)
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σQDFW = 3n2

2Ωo

(C − A)

A
+ Ωo. (125)

The main difference with respect to the homogeneous part of the system of Eqs. (15–18),
besides the neglect of the atmosphere, is the existence of a term in py in Eq. (120) and the
modification of the right-hand side in the y-component of the angular momentum Eq. (121)
by a factor 1/2.

Our expression for σCW slightly differs from the classical expression (see below) derived
from a decoupled system for polar motion. In the IF, the QDFW translates to a free precession
with

σ ′
FP = 3n2

2Ωo

(C − A)

A
, (126)

similar to the classical expression for the precession rate of a non-synchronous planet, as
derived from a decoupled equation for the spin precession in space (see below, Eq. 131), but
without the factor cos θo, with θo the mean obliquity, as we have assumed that θ 	 1.

In studies dealing with the rotation of the Earth, it is customary to neglect the torque to
find the free modes (e.g., page 47 of Moritz and Mueller (1987)). In that case, the angular
momentum equation governing the Chandler Wobble can be solved independently from the
kinematic equation, and the CW frequency reduces to the classical expression

σCW = Ωo
(C − A)

A
. (127)

The CW is a purely prograde (see Eq. 2.10a of Smith (1977)) mode of m. The effect of the
external torque on the CW, obtained as the difference between Eq. (124) and Eq. (127), is
only 0.001% for the Earth, since n 	 Ωo, and can safely be neglected.

Still neglecting the torque, but considering both the angular momentum and kinematic
equations (note that the concept of kinematic equation here plays the same role as the concept
of nutation frame introduced in Sect. 2.3.1 of Moritz and Mueller (1987), that is to say
orienting the BF with respect to the IF), we also obtain the QDFW and FP frequencies which
are given by

σQDFW = Ωo, (128)

σ ′
FP = 0. (129)

The QDFW is a purely retrograde (and diurnal) mode of p. We see that when the external
torque is neglected, the Free Precession degenerates into a mode called the Tilt-Over mode
(TOM) and where the spin axis stays fixed in space. However, it is very well known that
the Earth is precessing in space with a finite period (about 26, 000 years). The TOM and its
infinite period is therefore not strictly speaking an existing rotation mode, but a mathematical
degeneracy due to an extreme approximation (n 	 Ωo) when dealing with equations written
in the BF.

It is possible to write an angular momentum for the precession in the IF, by neglecting
polar motion (see, e.g., Eq. (1) of Bills (2005)):

dŝ

dt
= 1

(1 − e2)3/2
3

2

C − A

C

n2

Ωo
(n̂.ŝ)(ŝ ∧ n̂). (130)

Relaxing the assumption that the mean obliquity θo is a small angle, ŝ = (sx , sy, sz � cos θo)

and n̂ = (nx , ny, nz � 1). The free frequency associated to Eq. (130), obtained by setting
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nx = ny = 0 (or i = 0) is

σ ′
FP = 1

(1 − e2)3/2
3n2

2Ωo
cos θo

(C − A)

A
, (131)

which is a generalization of Eq. (126) to an eccentric orbit and large obliquity.
The considerations above question the very definition of what is a free mode. Is it the

solution obtainedwhen thewhole torque is neglected?Or is it the solution of the homogeneous
system of equations? For the Earth, it is customary to assume that the homogeneous system
of equations is indeed obtained by neglecting the torque. However, we have seen above that
this is not entirely justified. For synchronous rotators in the Cassini state, the dependence of
the torque on the orientation of the BF with respect to the IF is clearly apparent (see Eq. 5),
and it is easy to understand how the torque affects the homogeneous system. For the Earth,
it is not customary to attempt to write the torque as a function of the variable to be solved
for, and the effect of the torque on the homogeneous system is usually overlooked.

3 Appendix 3: Solution for the periodic atmospheric coupling, in the
solid rigid case

The solution corresponding to the periodic terms of the atmospheric forcing of Eq. (8) is
given, by

⎛
⎜⎜⎝
mx

my

px
py

⎞
⎟⎟⎠

atm

�
∑
� �=0

⎛
⎜⎜⎝

ms
y(�) sin(� t + φy(�)) + mc

x (�) cos(� t + φx (�))

mc
y(�) cos(� t + φy(�)) + ms

x (�) sin(� t + φx (�))

psy(�) sin(� t + φy(�)) + pcx (�) cos(� t + φx (�))

pcy(�) cos(� t + φy(�)) + psx (�) sin(� t + φx (�))

⎞
⎟⎟⎠ , (132)

where

ms
y(�) = υy

(
n2�

(
−hz(0)

n
+ (4A + B − 6C)

)

+� 3
(
hz(0)

n
− (A + B − 3C)

))
,

mc
y(�) = υy

(
n3

(
hz(0)

n
+ 4(−A + C)

)

+ n� 2
(

−hz(0)

n
+ (A − B + C)

)
+ � 4

n
(B − 2C))

)
,

mc
x (�) = υx

(
n3

(
hz(0)

n
+ (−B + C)

)

+ n� 2
(

−hz(0)

n
+ (−4A + B + 4C)

)
+ � 4

n
(A − 2C)

)
,

ms
x (�) = υx

(
n2�

(
hz(0)

n
− (4A + B − 6C)

)

+� 3
(

−hz(0)

n
+ (A + B − 3C)

))
,

psy(�) = υy (n2 − � 2)� (B − 2C),
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pcy(�) = υy

(
n3

(
hz(0)

n
+ 4(−A + C)

)
− n� 2

(
hz(0)

n
+ (−A + C)

))
,

pcx (�) = υx (n2 − � 2)n

(
hz(0)

n
+ (−B + C)

)
,

psx (�) = υx
(
n2�(−4A + 5C) + � 3(A − 2C)

)
,

υx = hx (�)

C2(� 2 − σ 2
CW)(� 2 − σ 2

QDFW)
,

υy = hy(�)

C2(� 2 − σ 2
CW)(� 2 − σ 2

QDFW)
.

For � → 0, (ms
y,m

s
x , p

s
y, p

s
x ) → 0 and (mc

y,m
c
x ) → (pcy, p

c
x ), so that (matm

x ,matm
y ) �

(patmx , patmy ).
The solution can also be written in elliptical form

⎛
⎜⎜⎝
mx

my

px
py

⎞
⎟⎟⎠

atm

�
∑
� �=0

⎛
⎜⎜⎝

m̃x (�) sin(� t + φ̃x (�))

m̃ y(�) cos(� t + φ̃y(�))

p̃x (�) sin(� t + ϕ̃x (�))

p̃y(�) cos(� t + ϕ̃y(�))

⎞
⎟⎟⎠ (133)

or in prograde/retrograde circular form (see Eq. 47), after some trigonometric manipulations.

4 Appendix 4: Matrices coefficients for the coupledmodel

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 K1,2 0 K1,4 0 0 0 K1,8 0 K1,10

K2,1 0 K2,3 0 0 0 K2,7 0 K2,9 0
0 K3,2 0 K3,4 0 K3,6 0 K3,8 0 K3,10

K4,1 0 +K4,3 0 K4,5 0 K4,7 0 K4,9 0
0 0 0 K5,4 0 K5,6 0 K5,8 0 K5,10
0 0 K6,3 0 K6,5 0 K6,7 0 K6,9 0
0 n 0 0 0 0 0 −n 0 0

−n 0 0 0 0 0 n 0 0 0
0 0 0 0 0 n 0 0 0 −n
0 0 0 0 −n 0 0 0 n 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(134)

K1,2 = [(Cs − Bs)n + hz(0)]
As

(135)

K1,4 = (Cot − Bot )n

As
(136)

K1,8 = κx
int

As
(137)

K1,10 = −κx
int

As
(138)

K2,1 = [(As − Cs)n − hz(0)]
Bs

(139)

K2,3 = (Aot − Cot )n

Bs
(140)
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K2,7 = 3n(As+ot − Cs+ot ) − κ
y
int

Bs
(141)

K2,9 = κ
y
int
Bs

(142)

K3,2 = n + (Cot − Aot )n

Ao
(143)

K3,4 = −n − (Co − Ao)n

Ao
(144)

K3,6 = K3,8 = −K3,10 = − (Aob − Cob)n

Ao
(145)

K4,1 = −n − (Cot − Bot )n

Bo
(146)

K4,3 = n + n(Co − Bo)

Bo
(147)

K4,5 = K4,7 = −K4,9 = (Bob − Cob)n

Bo
(148)

K5,4 = Cob − Bob

Ai
n (149)

K5,6 = (Ci − Bi )n

Ai
(150)

K5,8 = −K5,10 = − (Cob − Bob)n + κx
int

Ai
(151)

K6,3 = (Aob − Cob)n

Bi
(152)

K6,5 = (Ai − Ci )n

Bi
(153)

K6,7 = − (Aob − Cob)n − κ
y
int

Bi
(154)

K6,9 = 4(Aob − Cob)n + 3(Ai − Ci )n − κ
y
int

Bi
(155)

For Kns , replace K2,7 by
−κ

y
int

Bs
and K6,9 by

(Aob−Cob)n−κ
y
int

Bi
.

5 Appendix 5: A precessionmodel decoupled from the polar motion

We transform the angular momentum Eqs. (54–56) expressed in the coordinates of the shell
and interior BF into three equations expressed in the coordinates of the IF attached to the
Laplace plane (hence the mention (I F) in the subscripts below):

dHs

dt
+ �s ∧ Hs = �s ⇒ dHs(I F)

dt
= �s(I F), (156)

dHo(s)

dt
+ �s ∧ Ho(s) = �o(s) ⇒ dHo(I F)

dt
= �o(I F), (157)

dHi

dt
+ �i ∧ Hi = �i ⇒ dHi(I F)

dt
= �i(I F). (158)
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Note that we do not consider the periodic tidal deformations of the satellite and the effects
of atmosphere and lakes here.

By analogy with the angular momentum of a solid satellite (Eq. A.13 of Baland et al.
(2012)), the angular momentum of a layer k can simply be written as

Hk(I F) = nCkŝk, (159)

with ŝk = (skx , s
k
y , s

k
z � 1) the unit vector along the rotation axis.

The torque �k(I F) on layer k is the sum of the external torque by the parent planet and of
the internal gravitational torque exerted by the other layers, both corrected for the effect of
the hydrostatic pressure, and of the hydrodynamic pressure torque.

In the coordinates of the shell or interior BF, the expressions of the torque are given
in Eqs. (109–111) and Eqs. (88–89). We transform them to the IF thanks to the following
transformation matrices, defined by analogy with the transformation from a solid satellite
BF to the IF (Eq. A.8 of Baland et al. (2012)):

R(s→I F) = Rz(−ξs).Rx (−θs).Rz(−φs), (160)

R(i→I F) = Rz(−ξi ).Rx (−θi ).Rz(−φi ). (161)

Note that the polar motion and longitudinal librations of the solid layers are neglected in
the matrices since we consider a decoupled model. As the precession is a slow motion, the
torques are averaged over the orbit period, and we obtain

�s(I F) = nκs(ŝs ∧ n̂) − nK (ŝs ∧ ŝi ) + �s(I F),phd, (162)

�o(I F) = �o(I F),phd, (163)

�i(I F) = nκi (ŝi ∧ n̂) + nK (ŝs ∧ ŝi ) + �i(I F),phd, (164)

with n̂ defined as in Eq. (103). The coupling constants of the external and internal torques,
κs/i and K , respectively, are given by

κs = 3

2
n(Cs − As + Cot − Aot ), (165)

κi = 3

2
n(Ci − Ai + Cob − Aob), (166)

K = −8πG

5n

((
Ci+ob − Ai+ob + Bi+ob

2

)
(ρs(αs − αo) + ρoαo)

+
(
Bi+ob − Ai+ob

4

)
(ρs(βs − βo) + ρoβo)

)
, (167)

(see also Baland et al. 2012, 2016 for the terms in κs,i and K ).
Expressions for the hydrodynamic pressure torques in the IF at the top and bottom of

the liquid layer have been derived by Peale et al. (2014, 2016) for a biaxial planet (simply
called pressure torque therein). Here we present a full demonstration for a triaxial satellite.
As we have seen above, in the shell BF, the hydrodynamic torque on the shell �s,phd reads
as Eq. (88). We need to express this torque in the variables to be solved for in the decoupled
model, which are (ssx = θs cos(ξs − π/2), ssy = θs sin(ξs − π/2), sox = θo cos(ξo − π/2),
and soy = θo sin(ξo − π/2)), instead of the variables (mo

x ,m
o
y) of the coupled model. This

can be done by noting that in the shell BF, neglecting librations, the ocean rotation vector is
given by (see Eq. 63)

�o(s) = n

⎛
⎝
mo

x
mo

y
1

⎞
⎠ (168)
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but can also be written by transforming the ocean rotation vector in the reference frame
related to the rotation equator (0, 0, n) to the BF of the shell:

�o(s) = Rz[φs].Rx [θs].Rz[ξs − ξo].Rx [−θo].
⎛
⎝
0
0
n

⎞
⎠ , (169)

with φs = − ξs + Ω + ω − π + M , so that

mo
x = θo sin (M + ω − ξo + Ω) − θs sin (M + ω − ξs + Ω) , (170)

mo
y = θo cos (M + ω − ξo + Ω) − θs cos (M + ω − ξs + Ω) . (171)

We stress that, although we have neglected the polar motion ms and mi of the solid layers
in order to obtain a decoupled precession model, we do not neglect the motion of the ocean
rotation axis with respect to the shell BF mo, which is not an ocean polar motion, as it is
defined with respect to the BF of the shell. We then express the torque in the IF thanks to the
appropriate rotations:

�s(I F),phd = R(s→I F).�s,phd (172)

and average it over an orbit period with the slowly varying anglesΩ, ξs and ξo held constant,
to get

�s(I F),phd = n

(
Cot − Aot + Bot

2

)
(ŝs ∧ ŝo). (173)

This torque has the same form as in the axially symmetric case, as (Aot + Bot )/2 is the mean
equatorial moment of inertia of the top ocean.

Similarly, it is possible to show that the hydrodynamic pressure torque on the interior,
expressed in the IF and averaged over the orbit period, is given by

�i(I F),phd = n

(
Cob − Aob + Bob

2

)
(ŝi ∧ ŝo) (174)

and that the corresponding torque on the ocean can be written as

�o(I F),phd = −�s(I F),phd − �i(I F),phd. (175)

Making use of Eqs. (162–164) and of Eqs. (173–175), the system of angular momentum
equations (156–158) becomes

u̇d + Kd.ud = n

⎛
⎝

κs N
0

κi N

⎞
⎠ , (176)

with

ud =
⎛
⎝

Ss
So
Si

⎞
⎠ , Kd =

⎛
⎜⎜⎜⎝

K−κs−κsphd
Cs

κsphd
Cs

− K
Cs

κsphd
Co

−κ iphd−κsphd
Co

κ iphd
Co

− K
Ci

κ iphd
Ci

K−κi−κ iphd
Ci

⎞
⎟⎟⎟⎠ . (177)

κ
s/i
phd are the coupling constants of the hydrodynamic pressure torques

κs
phd = n

(
Cot − Aot + Bot

2

)
, (178)
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κ i
phd = n

(
Cob − Aob + Bob

2

)
. (179)

S j = s jx + I s jy and N = nx + I ny are the projections onto the Laplace plane of the spin and
orbit unit vectors, respectively.

For a uniformly precessing satellite, at first order in small orbital inclination i , the forcing
is given by

N � i eI (Ω−π/2), (180)

withΩ the longitude of the orbital ascending node. By substituting the projected spin vectors
in the explicit form, correct up to the first order in i and in constant over time orbital obliquities
η
j
0 , of

S j � (i + η
j
0)e

I (Ω−π/2) (181)

into Eq. (176), we find that

η
j
0 = − i Ω̇ n j

CsCoCi (d0 + d1Ω̇ + d2Ω̇2 + Ω̇3)
, (182)

with

ns =
[
Cs

(
κ i
phd(Ω̇(Ci + Co) + κi + κs

phd) + (Ci Ω̇ + κi )

(CoΩ̇ + κs
phd) − K (CoΩ̇ + κ i

phd + κs
phd)

)
(183)

+Co

(
κs
phd(Ci Ω̇ + κi + κ i

phd) − K (κ i
phd + κs

phd)
)

(184)

−Ci

(
K (CoΩ̇ + κ i

phd + κs
phd) − κ i

phdκ
s
phd

)]
, (185)

no =
[
Co

(
(Ci Ω̇ + κi + κ i

phd)(CsΩ̇ + κs + κs
phd) (186)

− K (Ω̇(Ci + Cs) + κi + κ i
phd + κs + κs

phd)
)

(187)

+Ci

(
CsΩ̇(κ i

phd + κs
phd) + κ i

phd(κs + κs
phd) − K (κ i

phd + κs
phd)

)
(188)

+Cs

(
κs
phd(κi + κ i

phd) − K (κ i
phd + κs

phd)
)]

, (189)

ni =
[
Ci

(
Ω̇(Co(κs + κs

phd) + Cs(κ
i
phd + κs

phd)) + CoCsΩ̇
2 (190)

− K (CoΩ̇ + κ i
phd + κs

phd) + κ i
phdκs + κ i

phdκ
s
phd + κ i

phd + κsκ
s
phd

)
(191)

+Co

(
κ i
phd(CsΩ̇ + κs + κs

phd) − K (κ i
phd + κs

phd)
)

(192)

−Cs

(
K (CoΩ̇ + κ i

phd + κs
phd) − κ i

phdκ
s
phd

)]
, (193)

d0 = κiκ
i
phdκs + κiκ

i
phdκ

s
phd + κiκsκ

s
phd + κ i

phdκsκ
s
phd

CiCoCs
(194)

+−κiκ
i
phdK − κiκ

s
phdK − κ i

phdκs K − κsκ
s
phdK

CiCoCs
, (195)

d1 = κiκ
i
phd + κiκ

s
phd + κ i

phdκ
s
phd − κ i

phdK − κs
phdK

CiCo
(196)
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+ κiκs + κiκ
s
phd + κ i

phdκs + κ i
phdκ

s
phd

CiCs
(197)

+ −κi K − κ i
phdK − κs K − κs

phdK

CiCs
(198)

+ κ i
phdκs + κ i

phdκ
s
phd + κsκ

s
phd − κ i

phdK − κs
phdK

CoCs
, (199)

d2 = κi + κ i
phd − K

Ci
+ κ i

phd + κs
phd

Co
+ κs + κs

phd − K

Cs
. (200)

By analogy with the constant over time obliquity η0 from Eq. (44) for the solid case, we
use the subscript 0 to indicate that the quantities η

j
0 correspond to the solution of a precession

model decoupled from the polar motion of the solid layers.
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