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Abstract

We propose to use the properties of the Lie algebra of the angular momentum to build
symplectic integrators dedicated to the Hamiltonian of the free rigid body. By introducing
a dependence of the coefficients of integrators on the moments of inertia of the integrated
body, we can construct symplectic dedicated integrators with fewer stages than in the general
case for a splitting in three parts of the Hamiltonian. We perform numerical tests to compare
the developed dedicated fourth-order integrators to the existing reference integrators for the
water molecule. We also estimate analytically the accuracy of these new integrators for the
set of the rigid bodies and conclude that they are more accurate than the existing ones only
for very asymmetric bodies.

Keywords Rotation - Symplectic integrators - Rigid body - Lie algebra

1 Introduction

The problem of the free rigid body is well known to be integrable and the exact solution was
developed by Jacobi (1850). The solution uses Jacobi elliptic functions and elliptic integrals,
which are necessary to solve exactly this problem. Nevertheless, the numerical evaluation of
these functions is more expensive than the usual ones (e.g., Touma and Wisdom 1994; Fasso
2003). If only the final orientation of the body is necessary, only one step is required, and
the higher cost is not a problem. However, in most cases, the kinetic energy of the free rigid
body is coupled to a potential part making the problem no longer integrable. It is notably the
case in Celestial Mechanics for the integration of the dynamics of a planetary system where
the rotation of a body interacts with the orbital motion (e.g., Touma and Wisdom 1994) and
in molecular dynamics (e.g., Dullweber et al. 1997). The temporary position of the body is
then needed at every step, and the use of a cheaper approximated integrator is significant.
Several approximated integrators, which can be used for the free rigid body, exist [see
Hairer et al. (2006) for their description and Hairer and Vilmart (2006) for a comparison]. In
this paper, we are only interested in the splitting technique. This symplectic method usually
consists in the splitting of a Hamiltonian into several integrable parts, which are successively
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integrated by stage. It allows one to conserve on average the energy, but it realizes the inte-
gration of a slightly perturbed Hamiltonian. Each stage of the integration scheme is weighted
by a coefficient. The number of stages and an appropriate choice of their coefficients allow
one to increase the order of the integrator.

This technique was proposed for the free rigid body by McLachlan (1993), Touma and
Wisdom (1994), Reich (1994) and splits the Hamiltonian into parts, which can be easily
integrated as a succession of elementary rotations. The integration schemes of the free rigid
body are those usually used for any Hamiltonian. For instance Touma and Wisdom (1994) and
Dullweber et al. (1997) used the classical Stormer—Verlet or leapfrog integrator and Omelyan
(2007) used the Yoshida’s technique (Yoshida 1990) to obtain a fourth-order scheme with
the second-order leapfrog scheme. These integrators are then symmetrically composed with
a potential to realize the symplectic integration of the perturbed rotation as it was done for
instance by Touma and Wisdom (1994) in celestial mechanics and by Dullweber et al. (1997)
in molecular dynamics.

Fasso (2003) compared the efficiency of the different possible splittings of the Hamil-
tonian for the second-order leapfrog scheme by evaluating the third-order remainder of the
integrator, which dominates the error between the approximated integration and the exact
solution. By computing the third-order remainder for each scheme and each permutation of
moments of inertia, Fasso (2003) concluded that the most efficient scheme depends on the
moments of inertia of the considered body and particularly noticed that the Lie algebra of
the angular momentum allows one to simplify the expression of the third-order remainder.

The aim of this paper is to use the Lie algebra of the angular momentum to construct sym-
plectic integrators dedicated to the Hamiltonian of the free rigid body more effective than the
existing reference integrators. As noticed by Fasso (2003), the number of terms in the third-
order remainder is lower than for an ordinary Hamiltonian. It is then possible to construct
symplectic integrators with fewer stages. This is made possible by the fact that in the present
work the coefficients of the integrator depend on the moments of inertia of the body. The deter-
mination of these coefficients is then allowed by the study of the Lie algebra of the angular
momentum. Therefore, each rigid body has its proper integrator with different coefficients.
In this paper, we are interested in developing symplectic integrators for the free rotation.
These integrators can be then coupled with a potential to integrate the perturbed rotation.

The structure of the remainder of a symplectic integrator of the free rigid body is developed
in Sect. 2. In addition, relations between the coefficients of the remainder allow us to reduce
the number of conditions on the integrator. In Sect. 3, we construct symmetric integrators,
which verify the conditions of Sect. 2. These integrators can have fewer stages than the usual
integrators but are specific to a given rigid body because the coefficients of the integrators
depend on their moments of inertia. We then proceed to numerical tests in Sect. 4: we first
consider the simplest case of the spherical top and then the water molecule, which is an
asymmetric body used in previous studies to test integrators of the rigid body. For these two
selected bodies, we determine the best dedicated symplectic integrators and compare them
to the usual symplectic integrators. In Sect. 5, we determine analytically the best dedicated
symplectic integrators for the set of the rigid bodies and compare them to the usual schemes.

2 Constraints on a symplectic integrator

We consider a free rigid body S in the inertial reference frame R. (I, J, K) is a direct
orthonormal basis associated with the body frame Rs. The vectors I, J, K are associated
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with the principal axes of inertia of moments of inertia, respectively, I1, I and /3. g is the
angular momentum of S expressed in the inertial frame R. For a free rigid body, the angular
momentum g and the Hamiltonian H are conserved. The Hamiltonian H of the free rigid
body is reduced to the rotational kinetic energy

G?* G} G2
l+ 2+3

s - -~ 1
2Ly 2L, 23 O

where G = (G, G2, G3) is the angular momentum expressed in the body frame R . In the
body frame R, the coordinates of G are not conserved but the norm G is conserved with

G=,/G}+G3+Gj. @)

Two different splittings of the Hamiltonian H can reduce its integration to the composition
of simple rotations. The first splitting, ABC, splits the Hamiltonian into three parts (e.g., Reich
1994)

H=A+B+C, 3)
with
G
A= —, 4
2, 4
G3
B=_—=, 5
21
G3
C=—. 6
20, (6)

For the length of time 7, each part corresponds to arotation of angles Gt /11, Gat /I, Gt/ I3,
around the respective principal axes I, J, K. The second splitting, RS, splits the Hamiltonian
into two parts (McLachlan 1993; Touma and Wisdom 1994)

H=R+S, @
with

GI/1 1

R==H(——-—), ®)
2 \ I I
G /1 1 G?

§=3(—-—-— — 9
2 (13 12>+212 ©)

R corresponds to the rotation around the principal axis I with the angle G1#(1/1; — 1/1»)
and S, which is the Hamiltonian of a symmetric top, to a rotation around the principal axis K
of angle G3#(1/Iz — 1/1) followed by a rotation around the angular momentum G of angle
Gt/I.

These two decompositions give rise to two possible splittings, which result in two classes
of symplectic integrators,

n
SABC (h) — l_[eaihLAebihLBecihLC, (10)

i=1
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and
n
Sgs (h) = [ [ e relitts, (11)
i=1

where Ly = {X, .} is the Lie derivative of a Hamiltonian X, / the step size and a;, b; and ¢;
the coefficients of the integrators.

These splitting integrators exactly integrate a slightly different Hamiltonian K. For the
symplectic integrator S (h) = e, this Hamiltonian is given by (e.g., Yoshida 1990; Kose-
leff 1993)

n
hK =hH+ Y h*Hg + 0 ("), (12)
k=2

where each Hamiltonian Hpg, is the remainder of order k.

The remainders Hg, of the schemes Sjpc and Sgg belong to the Lie algebra £ generated
by the alphabet A composed of the three elements G2, G%, G% and associated with the
Poisson brackets. £ = @x>1Ly is a graded Lie algebra and is the sum of the Lie algebras
Ly generated by the Lie monomials of length & (e.g., Koseleff 1993). The Hamiltonian Hg,
belongs to £y and is the sum of Lie monomials of length .

To obtain an integrator of order n, we must have Hg, = Ofork =2,...,n (e.g., Yoshida
1990; Koseleff 1993; McLachlan 1995). The Baker—Campbell-Hausdorff formula allows
one to determine the remainders for each order and to know what equations must verify the
coefficients a;, b; and ¢; to cancel the remainders Hg, for k = 2, ..., n. If the scheme is
symmetric, Hg, = 0 is already verified for the even values of k (e.g., Yoshida 1990).

The number of independent equations at order k which must verify the coefficients «;,
b; and ¢; to verify Hg, = 0 is given by the dimension of the Lie algebra £;. The minimal
number of stages of an integrator of order # is then given by the total number of independent
equations, which the coefficients a;, b; and ¢; must verify to have an integrator of order n.

Fasso (2003) compared the efficiency of the two possible splittings for the Hamiltonian
of the free rigid body for the second-order symmetric schemes obtained with the leapfrog
method

Sapcpar (h) = elachloghlcgilagsLla, (13)
SRSRZ (h) = e%LRehLSg%LR’ (14)
Ssrs2 (h) = e%LsehLRg%LS. )

To obtain all the possible schemes, Fasso (2003) considered the six permutations of the
three Hamiltonians G?/(21}), G3/(21») and G3/(213), which is equivalent to consider the
permutations of the moments of inertia. We call the six permutations ABC, BCA, CAB,
ACB,CBA, BAC.

For each scheme, Fasso (2003) simplified the analytical expression of the three order
remainder by using the relation {G;, G j} = €;x Gy for the Poisson brackets {, } and estimated
it for the six permutations. He concluded that their efficiency depends on the moments of
inertia for a given body. For the bodies near to a symmetric top, the integrators Sgsg2 and
Ssrso are more accurate than Sypcpaz. It is possible to combine symmetrically these three
second-order integrators to obtain higher order integrators (e.g., Suzuki 1990; Yoshida 1990;
McLachlan 1995). These techniques work for any Hamiltonian but do not consider the Lie
algebra of the free rigid body.
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In Sect. 3, we seek to construct symmetric fourth-order integrators for the Hamiltonian
of the free rigid body. To obtain a fourth-order integrator, we must verify Hg, = Hg, =
Hpg, = 0. For a symmetric integrator, the remainders of even order are already canceled and
we must then just verify Hg, = 0. To know the number of coefficients necessary to cancel
this remainder, we need to know its expression.

In this section, we then study the structure of the Lie algebra for the Hamiltonian of the free
rigid body to know the number of constraints to impose to construct symplectic integrators
for the free rigid body.

2.1 Lie algebra structure for the Hamiltonian of the free rigid body

The elements of the Lie algebra £ are the sum of Lie monomials of length k for the alphabet
A = (G2, G%, G%). The Poisson brackets of the components G; of the angular momentum
verify the relation (e.g., Touma and Wisdom 1994; Fasso 2003)

{Gi. G} = €ijxGr. (16)

Here, we take into account this relation to express the elements of the Lie algebra £y of order
k as a linear combination of monomials of the components G; of the angular momentum.

2.1.1 First orders

We first look the structure of the algebra for the first orders.

If the family of elements vy, spans £ and the family of elements vy, spans L, the family
of elements {vy,, vk j} spans Ly 1. To obtain the expression of an element of Li1, we must
then compute all the terms {vy,, vk i}. We note n; the number of monomials in the linear
combination for the order k.

Order 1: For the first order, the Lie monomials of length 1 are G?, G%, G%. Therefore n; = 3.
Order 2: For the second order, the Lie monomials of length 2 can be expressed as {G?, G%}.
With Eq. (16), we have

(61.63) = {63.G2) = (G2, 61} = 461G, a7

and therefore np = 1. (G1G2G3) is a basis of £, and then the dimension of £; is 1. To
simplify, we note W = G1G,G3 in the following.
Order 3: For the third order, the Lie monomials of length 3 can be written as {Gl.z, (G2, Gz}}

and are a linear combination of the terms { Gi2, W3}. With Eq. (16), we have

{G1. W} =2(GiG3 - GiG3) (18)
{G3, W} =2(G3}GT - G3G3) (19)
{G3. W} =2(G3G3 — G3G7). (20)

Therefore, each element of £3 is a linear combination of the terms G%Gz, G%Gz, G%G% and
ny =3.

We consider the third-order remainder Hg, of an integrator of the free rigid body. Hg,
belongs to £3 and is then a linear combination of the three terms G%G% — G%G%, G%G% —
G3G3, G3G3 — G361,

Hg, (G1, G2, G3) = PiG1G3 + P,G1G} + P3G3G3 21)
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with the coefficients P;. If G| = G, = G3 = 1, GiG3 — G1G3, G3G} — G3G3, G3G3 —
G%G% are canceled and Hg, (1, 1, 1) = 0. The coefficients P; must then verify

Pi+ P+ P3=0. (22)

The three terms are linearly dependent. By keeping two of them, we can easily verify that
we obtain two linearly independent terms. For instance, (G%G% — G%G%, G%G% — G%G%) is
a basis of £3 and the dimension of £3 is then 2.

Orders 4 and 5:We can continue this procedure for the orders 4 and 5. We obtain that
(GIW, G?{W, G3W) is a basis of £4 of dimension 3 and that 3W? — G{G3,3W? — G3G3,
3W? - G3G1, G1(G3 — G3), G5(G3 — G?), G3(G} — G3)) is a basis of L5 of dimension 6.

2.1.2 All orders

We can generalize the structure of the Lie algebras for the first orders with a general theorem
about the Lie algebra generated by the alphabet A = (G2, G%, G%).

Theorem 1 Let L be the graded Lie algebra generated by the alphabet A = (G, G%, G%)
with G; the components of an angular momentum and Ly, the Lie algebra generated by the
Lie monomials of length k such that £ = @y>1Ly.

Each element of Lo fork € N* can be expressed as a linear combination of the monomials
of degree 2k + 1

withp+qg+r=k—1and p,q,r € N.
Each element of Lok+1 for k € N* can be expressed as a linear combination of the
monomials of degree 2k + 2

G' Gy GY (24)
withp+q+r=k+1, p,q,r e Nand p,q,r <k.

Demonstration We proceed by recurrence to demonstrate the Theorem 1 and consider
the proposition Pk: each element of Ly is a linear combination of the monomials
G%”HG?’HG%’+1 withp+q+r=k—1land p,q,r € N.

For the order 2, we have seen in Sect. 2.1.1 that each element of the Lie algebra £; is
proportional to G1G>G3 and P is then true.

We suppose that Py is true. We know the family (G2, G%, G%) which spans £ and the

family (G?’7 + GquG%rH) which spans £y;. Each element of £o;4; can then be written

as a linear combination of the terms {Giz, G%p + G%q'H G%r +1 }. We compute all these terms

and for instance, we have
{027 Gfp“Ggq“G%’“} _ G?P+1G§r+1 {G% G%"“} n G%p+lG§q+1 {G% G%’“}
=22q+1) G%(P+1)G§qG§r+] (G1. Go)
—2@2r+1GPVGIGY (G, G3)
= (4g +2) 61"V GG
U+ GIRGY, 25
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We have then
[Gz, G%p+lG§q+1G§r+l} — (4g +2) G?(p+1)G§qG§(r+l)
—(4r +2) G?(P‘H)G;(ZI‘H)G%r
{G%, G%P-HG%(H-IG%PH] = (4r+2) G%(”H)G%(‘H”G?
—@p+2) GGG
!G?, G%erlG%qulG%r'H} — (4p + 2) G%pGg(Q+l)G§(r+l)
—(4g +2) 61"V GG, (26)
We deduce that each element of £y is a linear combination of the monomials G?‘D G%q G%’
withp+g+r=k+1, p,q,r € Nand p, q, r < k. Therefore, if the Theorem 1 is verified
for the order 2k, it is also satisfied for the order 2k + 1.
Therefore, each element of Loy can be written as a linear combination of the terms

{Gl~2, G%PGqu%r} withp+qg+r=k+1,p,q,r € Nand p, ¢q, r < k. We then compute
these terms

{61676y 6y | = 446176 VG W - 4G Gy Gy D w
[63.677 66y = 466y Gy VW —apGi PV G GY W
[63.677GY 6y | = 4pGi" GG W - 496G VGt w. @)

We deduce that each element of Lyr4, is a linear combination of the monomials
GG G with p + g +r = kand p,q,r € N. If the Theorem 1 is verified
for the order 2k + 1, it is also satisfied for the order 2k + 2.

If the proposition Pk is true, Pk is also verified. Therefore, the Theorem 1 is verified
for all the integers k with k > 2.

2.2 Reduction formula

For the third order, we have obtained the supplementary relation Eq. (22) between the coeffi-
cients of the third-order remainder Hpg,. This allows us to decrease the number of independent
coefficients needed to cancel Hg,. This reduction formula can be generalized at all order with
the following theorem.

Theorem 2 Let £ be the graded Lie algebra generated by the alphabet A = (G2, G%, G%)

with G; the components of an angular momentum and Ly the Lie algebra generated

by the Lie monomials of length k such that L = @y>1Ly. Let X € Loky1 and X =
2 2

Y 0=pagrsk Bkt pgrGP Gy Gy

prqtr=k+1 i
The coefficients g1, pgr verify the reduction formula

3 @p)! 2q)! @2r)!

20pt 24q! 2 PRt =0 (28)

0<p.q.r<k
ptq+r=k+1
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Demonstration: We seek the coefficients A 4 7 0 which satisfy the relation

Z }\pqrﬁlk+1,pqr =0. 29)
0=<p.q.r=k

pHg+r=k+1
Along the Theorem 1, each element X of £y can be written
2p A2
X = Z ﬂ2k+l,pqulpG2q Ggr (30)
0<p.q.r<k
ptq+r=k+1

Along the demonstration of the Theorem 1, X can also be written as

3
_ ) 2 ~2p+1 ~2g+1 ~2r41
X=) ¥ ag|chcie ey, 31
i=1 0<p,q.,r
p+q+r=k—1

with

,32k+1,pqr =@Ap+2) (aS,pq—lr—l - a2,pq—1r—1)
+(4q +2) (o1, p—1gr—1 — 03, p—1gr—1)
+ @4r +2) (az,pfqulr - 0{1,1771q71r) ) (32)

where &; pqr = 0if p, g, r donot verify 0 < p, g, r and p+q +r =k — 1. From Eq. (32),
we deduce

Z )\pqrﬁ2k+l,pqr

0<p.q.r<k
ptq+r=k+1

= Z Apgr (4p +2) (@3, pg—1r—1 — @2, pg—1r—1)
0<p.q.r<k
p+q+r=k+1

+ Z kpqr (4q +2) (al,p—lqr—l - Ol3,p—1qr—l)
0=p.q,r<k
ptqtr=k+1

+ Z )“pqr @r+2) (052.]77111711‘ - (xl.pfqulr)
0<p.q.r<k
pH+q+r=k+1

= Z )qu+1r+1 4p+2) (0‘3,pqr - a2,pqr)
0=<p.q,r<k—1
pH+q+r=k—1

+ Z )Lp+1qr+l (49 +2) (al,pqr - 053,pqr)
0<p.q,r<k—1
p+q+r=k—1

+ Z )‘p+1q+1r (4r +2) (Ol2,pqr - O51,pqr)
0=p.q.r<k—1
prq+r=k—1

= Z ()\p+lqr+l (49 +2) — )‘p+lq+lr 4r + 2)) a1, pgr

0<p.q,r<k—1
pH+q+r=k—1
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+ ) (pragrr Gr+2) = Apgiir 4p +2)) 02, pgr
0<p.q.r<k—1
ptq+r=k—1

+ Y (gt G+ = Aprigrn (g +2) a3 pgr. (33)
0<p,q,r<k—1
pHq+r=k—1

because @; pqr = 0if p, g, r donot verify 0 < p,q,r and p +q +r = k — 1. To verify
Eq. (28), it is sufficient to have

Apg+ir+1 Cp+ 1) = Aprigr+1 2q + 1) = Aptigy1r Cr+1). (34)
To verify this relation, it is sufficient to have

Lo eptegtan)! (35)
PAT = appt 2aq! 2rp!”

Equation (28) allows us to find in an other way Eq. (22) obtained previously.

2.3 Number of stages of a symplectic integrator

We consider the two possible integrators Sqpc (Eq. (10)) and Sgs (Eq. (11)). From the
Theorems 1 and 2, the expression of the modified Hamiltonian of these integrators is

nk =i (Bl 4 B0 + o O3
= 1,100 21 1,010 21 1,001 215

400

2k 2p+1 ~2g+1 ~2r+1
+Zh Z Bok,pgrG1 Gy GY
k=1

O<p.q.r
p+q+r=k—1

“+00

2k+1 2p ~2q ~2

A RN Butper G GYGY (36)
k=1 0<p.q.r=k
ptqtr=k+1

where the coefficients S, 4 depend on the coefficients of the integrator a;, b;, ¢; and of the
moments of inertia I, I, 3.

To obtain an integrator of order #, it is sufficient to cancel all the coefficients B, p,, for
k e N,2 <k < n and we must also verify 1 100 = B1,010 = B1,001 = 1. We have in total
N (n) equations to verify at order n. To solve N (n) independent equations, we need N (n)
independent variables «;, b;, ¢; (e.g., Koseleff 1993, 1996; McLachlan 1995). The number
of stages of the integrator is then given by the number of equations.

For the special case of a symmetric integrator, the remainders of even order are already
canceled (e.g., Yoshida 1990) and the expression of the modified Hamiltonian is

G G3 G3
hK = h | B1,1005 + B1,010557 + B1,001 5=

21 21 203
+00 5 5
+Y RN Bper GGG (37)
k=1 0<p.q.r<k
p+q+r=k+1
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To obtain an integrator of order 2n, it is sufficient to cancel all the coefficients Bz 1, pgr for
keN,1 <k <n—1andto verify B1,100 = B1.010 = B1,001 = 1. We have in total N (2n)
equations and the number of independent variables a;, b;, ¢; is then N (2n). For a symmetric
integrator of 2/ stages, the stages i and 2/ — i are identical and the number of independent
variables is /. Therefore, the number of stages of the integrator is 2N (2n). However, the
stages [ and [ + 1 are identical and consecutive, and the number of stages becomes then
2N (2n) — 1.

2.4 Application to the rigid body

We now count the number of equations to obtain the number of stages of the integrators
for the Hamiltonian of the free rigid body. The number of independent equations for each
order k is given by the dimension of the Lie algebra £;. However in Sect. 2.1, we have only
determined the dimensions of the Lie algebras £ for the first orders k = 1,2, 3,4,5. We
can then know the minimal number of stages only for these five first orders. For the higher
orders, we have only express the remainders as a linear combination of monomials and we
obtain in this case an upper bound for the minimal number of stages.

For the even orders, the number of monomials of the linear combination of the Theorem 1
is nor = k(k + 1)/2 for k > 1. For the odd orders, the number of monomials of the linear
combination of the Theorem 1 is nox+1 = k(k+5)/2 for k > 1. For the first order, the number
of monomials is three. To obtain the number of equations to verify to build an integrator, we
sum the number of monomials until the order of the integrator. Moreover, from the Theorem 2,
we have one additional relation between the coefficients of each odd order. For the splitting
RS, we have the additional relation 81,010 = B1,001. Each relation reduces by one the number
of equations to verify in order to cancel the remainder of these orders.

We obtain the number of equations to verify for an integrator of order 2n

n(2n® 4+ 9n — 11)
6

and the number of equations for an integrator of order 2n + 1

N (2n) = +4+ (=Drs (38)

NQ@n+1)= +3+ (=Dgs. (39)

n (n2 + 6n + 2)
3

(—1) gs indicates that for the splitting RS the number of equations must be reduced by 1. The

number of equations for a symmetric integrator of order 2n is

n(n2+6n — 13)
6

Table 1, whose the part on the ordinary Hamiltonian split in two parts is extracted from
Koseleff (1993), compares for the two splittings the dimensions of the Lie algebras £ for
the Hamiltonian of the free rigid body and for an ordinary Hamiltonian and precises the
number of equations and the number of stages. Equations (38) and (39) allow us to fill in
Table 1 the column 7 and Eq. (40) the column 8 for the free rigid body. We note that for
the five first orders, these formulas give results which correspond to the minimal number of
stages given by the dimensions of the Lie algebras £;. Therefore, with these formulas, we
obtain the minimal number of stages for the orders 1, 2, 3, 4 and 5. The dimensions of the
Lie algebras in the general case have been obtained by Koseleff (1993), McLachlan (1995)
and Koseleff (1996) for a Hamiltonian split in two parts and by Munthe-Kaas and Owren

Nsym (2n) = + 4+ (=Dgs. (40)
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Table 1 Dimension of Lie algebras £y, number of equations, number of stages of an integrator non symmetric
(NS) and symmetric (S) in the case of a general Hamiltonian and of the one of the free rigid body with respect
to the order for a decomposition in two and three parts

Order Dimension Number of equations Number of stages
NS S NS S
Total Total

General case (splitting in two parts)?

1 2 2 2 2 2

2 1 1 3 2 3 3

3 2 2 5 2 6

4 3 3 8 4 7 7

5 6 6 14 6

6 9 9 23 10 15
7 18 18 41 18

8 30 30 71 28 31
9 56 56 127 56

10 99 99 226 84

General case (splitting in three parts)

1 3 3 3 3 3

2 3 3 6 3 5 5

3 8 8 14 8

4 18 18 32 11 13°
5 48 48 80 48

6 116 116 196 59 29¢
7 312 312 508 312

8 810 810 1318 371 614
9 2184 2184 3502 2184

10 5880 5880 9382 2555 125¢
Free rigid body (splitting in two parts, RS)

1 3 2 2 2 2

2 1 1 3 2 3 3

3 2 2 5 2 5

4 3 3 8 4 8 7

5 6 [§ 14 6 14

6 6 20 10 20 19
7 11 31 11 31

8 10 41 21 41 41
9 17 58 17 58

10 15 73 38 73 75
Free rigid body (splitting in three parts, ABC)

1 3 3 3 3 3

2 1 1 4 3 4 5

3 2 2 6 2 6

4 3 3 9 5 9 9

5 6 6 15 6 15
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Table 1 continued

Order Dimension Number of equations Number of stages
NS S NS S
Total Total

6 6 21 11 21 21

7 11 32 11 32

8 10 42 22 42 43

9 17 59 17 59

10 15 74 39 74 77

4Table extracted from Koseleff (1993)

bKoseleff (1993), Koseleff (1996) and Tang (2002)
“Yoshida (1990)

dyoshida (1990)

€Sofroniou and Spaletta (2005)

(1999) for a Hamiltonian split in three parts. To fill Table 1, we also use the inventory of the
splitting integrators made by Blanes et al. (2008) and Skokos et al. (2014) for Hamiltonians
which can be split in, respectively, two and three parts.

For an ordinary Hamiltonian split in two parts, Koseleff (1996) demonstrated that the
minimal number of stages for a symmetric fourth-order integrator is 7, where the Yoshida’s
scheme is the only real solution. In the special case of the free rigid body, the number of
stages is 7 (Table 1) and the splitting RS cannot benefit from the algebra of the angular
momentum to construct integrators with fewer stages. For an ordinary Hamiltonian split in
three parts, Koseleff (1996) demonstrated that the minimal number of stages for a symmetric
fourth-order integrator is 13 and Tang (2002) proved that the Yoshida’s scheme is the only
real solution. For the free rigid body, the number of stages becomes 9 (Table 1) and the
splitting ABC profits by the algebra of the free rigid body to construct integrators with fewer
stages.

3 Construction of symmetric integrators

In this part, we explain how to construct symplectic integrators for the rigid body which benefit
from the algebra of the angular momentum. We limit ourselves to fourth-order schemes, which
are the easiest to construct.

3.1 Splitting RS

For a Hamiltonian split into two parts, we have seen in Sect. 2.4 that the minimum number
of stages for a fourth-order symmetric integrator of the free rigid body is 7. Two splitting
schemes of 7 stages exist

RSRSRSR

SRSRSRS “1

where the Hamiltonians R and S are defined, respectively, in Egs. (8) and (9). In order to
compute the coefficients of these two integrators, we scale everything by /; and write the
Hamiltonian of the free rigid body as
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2 2 2
_ Gl G2 G3 _

=31 Tap tap = o G110+ G610 -0 +x67), (“42)
with
I I
x=T =g (43)

3.1.1 Computation of the coefficients

We start with the scheme RSRSRSR defined by

Srsrsrsg (B) = ealhLReblhLSeazhLRebztheazhLReb]themhLR i (44)

The first-order conditions impose
2a; +2a> =1, 2by + by = 1. (45)

We have only two free parameters a; and b1, and the other coefficients are given by

1
a2=§—a1, by =1—2by. (46)

With the Baker—Campbell-Hausdorff formula, we can compute the Hamiltonian K which is
effectively integrated for the integrator Sgsrsrsg (h) = elx with

h3
hK =hH + aL? (P{GIG3 + P;GIG3 + P{G3G3) + O (hs) , 47)
1

and where the coefficients P/ = P; (21 1)? are given by

1
Pl = 30— 1% = ) (1= 6(1 = 2a1)%b1)

1
Py = —30 = DE =) ((x = (1 = 6(1 — 2a1)*by)
+2(x — ) (6(1 —2ay) (1 — by) by — 1))
2
Py= 3= Dx = M2 (6(1 —2a)(1 —b)by — 1). (48)

With P{ + P, 4+ P; = 0, it is sufficient to impose P{ = P§ = 0 to cancel the third-order
remainder. For an asymmetric body (x # 1, x # y, y # 1), we obtain

s s 1 1
B =207 +bi~ =0 a=h (49)

The only real solution is the Yoshida’s scheme with b; = 1/(2 — 2'/3) (Yoshida 1990).
With the scheme SRSRSRS defined by

SSRSRSRS (h) — eathsebthReazthebzhLReazhLSebthReathS, (50)
we have
2
Pl = g(x — 1)*(x — ) (6(1 — 2a1)(1 — by)by — 1)
1
Py = —g(x = Dx —y) 2 — )61 = 2a)(1 —b)by — 1)
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+(x — (1 = 6(1 —2a1)*by))
1
Py= (= D(x = )2 (1 = 6(1 = 2a1)?by). 1)

Like previously, there is only one real solution, which is the Yoshida’s one.

Therefore, using the algebra of the angular momentum for the splitting RS does not allow
us to obtain supplementary integrators other than Yoshida’s scheme for the integrators with
seven stages.

3.1.2 Notes on the splitting RS

We observe that if we switch the parts G2/(21}) and G3/(213) for the scheme RSRSRSR,
we obtain the same third-order remainder as the scheme SRSRSRS. This is due to the fact
that Rg = G?/(21,) commutes with Ry = G3(1/(2I}) — 1/(21)) and R3 = G3(1/(213) —
1/(21)) [This commutation has been previously noted by Fasso (2003)]. Therefore, the
scheme RS RS RS R with the permutation of the parts G% /(2I1) and G% /(213) has aremainder
identical to the one of the scheme SRSRSRS for any order.

Fasso (2003) has already noted for the leapfrog scheme that the third-order remainder of
the type RS with this permutation is identical to the one of the SR. Here, we see that this
can be generalized to any order and any scheme. Therefore it is not necessary to consider
the schemes SR, which in the case of a kinetic energy coupled to a potential part is more
expensive than the schemes RS, because the stage R is cheaper than S.

As the part Rg commutes with the parts Ry and R3, it is possible to gather all the stages
of type e“%G in a step of integration to decrease the computation time. An integrator with the
splitting RS has then only a rotation around the angular momentum by step of integration.
This reduction of the computation time for the splitting RS was not previously noticed as far
as we know.

3.2 Splitting ABC: integrator N

For a Hamiltonian split into three parts, we have seen in Sect. 2.4 that the minimum number
of stages for a fourth-order symmetric integrator of the free rigid body is 9. Seven splitting
schemes of 9 stages and beginning with the stage A and followed by the stage B, exist. We
call them integrators N and they can be sorted in alphabetical order as

ABABCBABA N1
ABACACABA N2
ABACBCABA N3
ABCABACBA N4 (52)
ABCACACBA N5
ABCBABCBA N6
ABCBCBCBA NT.

To obtain all the possible schemes, we consider the six permutations ABC, BCA, CAB,
ACB,CBA, BAC as Fass0 (2003). For example, the scheme N4 with the permutation CA B
becomes CABCACBAC. Therefore, we count 42 fourth-order possible schemes.
To compute the coefficients of each integrator, we scale everything by /; and write
2 2 2
_G6i,6 G

1
= = (Gi+ (1 +0) G+ 1+ G3), 53
a1 o Tar o (G1HAH0 G40 G) (53)
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with

I
1+x:I—, I4+y=—. (54)

3.2.1 Computation of the coefficients
We explain here in detail the computation of the coefficients only for the scheme N4 with
the permutation ABC

$N4 ABC (h) — eathA €b1hLB€C1hLC€a2hLA€b2hLB€a2hLA eCIhLCebthBe“thA ) (55)

The conditions of the first-order impose
2a; +2ar, =1, 2by +by =1, 2c1 = 1. (56)
We have only two free parameters a; and b; and the other coefficients are given by

1 1
a =3 —a, by =1-2by, a=sz (57

With the Baker—Campbell-Hausdorff formula, we determine the Hamiltonian K effectively
integrated of the scheme Sy4 apc (h) = e"LK with

h3
hK = hH + i’ (P{G1G3 + PsGiG3 + P{G3G3) + O (hS) , (58)

where P|, P; and P; depend on ay, by, x and y with

1
Pl = -3 +2by — 8a1by + 8a1b? + 4a} — 8ajby + 4yb? — 8yaiby + 4yal — x + 2xb;
+4xay — 16xa1b; + 16xa1b% — Sxa%bl —4xyby + 8xyb% + 4xya; — 8xya1by

2
— 8x2a1b1 + 8x2a1b% + gxzy — 4x2yb1 + 4x2yb%,
P’——1+2 — 44?4 8a?by + 8yaiby — 4ya® + 2y*b
2= 73 ai ay + sajby + syaiby yaiy + 2y~bq

2 2 1 2 2
—2y“ay + 8xayby + 8xyaiby — gxy + 2xy“by,

2
P3/ = 3~ 2by — 2a; + 8a1by — 8a1b% — 4yb% — 2y2b1 + 2y2a1 +x — 2xby

1
—4xay + 16xa1by — 16xa1b% + 4xyby — 8xyb% —4xya; + g)cy2 — 2xy2b1
2
+8x2%a1by — 8x%ab? — gxzy + 4x2yby — 4x2yb3. (59)

With P| + P; + P; = 0, we only need to cancel the coefficients P| and P,. Using Grobner
base reduction (Buchberger 1965), solving P,é = 0 for k = 1, 2 can be reduced to the two
equations

ocaf—i—ﬁa%—{—yal +6=0
oday+Bb+y =0, (60)
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where a, B, v, 8, o', B/, y’ are constant coefficients that depend on the moments of inertia
with
o = 48x%y —24xy? + 144 xy — 72y + 72 x + 24,
B =48x2y? —12xy> + 144xy*> — 36y +36xy +72y> —24x 4+ 60y,
y =12x%y° +24xy> —24xy? + 18y —24xy —18y> — 30y — 6,
s=x>y"—6xy  —4xy? =3y 43y +1,
o =4x%y —2xy> +12xy —6y> +6x 42,
B =2x>y? +8xy>+6xy+6y>+2x+6y+2,
y = —xy>—3xy—2x—y—1. (61)

These two equations can count several solutions, which depend on the moments of inertia
through x and y. The coefficients of these integrators are specific to a sorted triplet of moments
of inertia. For each different triplet of moments of inertia, we need to compute the coefficients
of the integrator. In exchange for this dependence of coefficients, we have integrators with
fewer stages.

The coefficients P, of Eq. (59) can be used for any permutation of the moments of inertia
of the integrator N4. Instead of doing a permutation of the stages A, B, C, we can switch the
moments of inertia and modify the values of x and y. In the “Appendix A”, we indicate the
equations to solve to obtain the coefficients of the seven integrators N.

3.2.2 Decreasing of the number of stages for specific bodies

For the integrator N4, there are values of (x,y) for whom § = 0 and then a; = 0 can be a
solution. There is then a curve (§ = 0) in the set of definition of (x, y) where it is possible to
obtain fourth-order integrators with 7 or even 5 stages for some discrete values of this curve
where ' = 0 and where a; = by = 0 is a solution. Fassd (2003) observed a similar result
and found that the leapfrog scheme becomes a fourth-order integrator for the case of a flat
body with moments of inertia (0.25, 0.75, 1).

3.3 Estimation of the remainder

We have 42 possible integrators of type N, and for each of them, several solutions for their
coefficients. To determine the best integrator, we can perform numerical integrations. Alter-
natively, we can also estimate faster the precision of the integrator by evaluating the analytical
remainder. For an integrator of order n, the precision can be estimated by the Euclidean norm
of the remainder terms of lowest degree n + 1.

From Theorem 1, the fifth-order remainder can be written

Hg, = 01G1G3 + 02G3G4 + 03G3GT + 04G1G3 + 05G3G3
+ 06G3GT + 07G1G3G3, (62)
and from Theorem 2, we verify the reduction formula for the fifth-order
3001+ 02+ 03+ Q4+ Qs+ Qo) + Q7 =0. (63)

Hp, belongs then to the set V of basis (G]G3, G5G%, G3G1. G1G3, G5G3, G3G1, G1G5G3).
The estimation of the remainder for a fourth-order integrator by the Euclidean norm H Hp, ||
in the set V' is then
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|Hrs| =/ 0F + 03 + 03 + 03 + 02 + 02 + Q2. (64)

3.4 Additional parameter

In order to lower the value of the remainder, it is possible to add to any of the previous schemes
an additional stage (two stages for a symmetric integrator). This provides an additional free
parameter that we can determine in order to minimize the remainder of Eq. (64).

3.4.1 Splitting RS: integrator R

The addition of a parameter in the previous fourth-order RS example gives the integrator of
nine stages

RSRSRSRSR (65)

which we call integrator R. The scheme Sg(h) = e is given by

oUILR Gb1hLs yashLg ybohLs yashLy ybahLs yazhLg ybihLs yarhLy (66)
with

a3 =1-2(a) +a2), b2=%—b1, (67)
and

hK = hH +h*Hg, + I Hg, + O (7). (68)

Withx = I/l and y = I, /I3, we solve P| = P, = 0 to cancel Hg, and minimize || Hps ||2
using Lagrange multipliers.

3.4.2 Splitting ABC: integrator P

For the splitting ABC, we have the fifteen following possible schemes

ABABACABABA P1
ABABCACBABA P2
ABABCBCBABA P3
ABACABACABA P4
ABACACACABA P5
ABACBABCABA P6
ABACBCBCABA P7
ABCABABACBA P8 (69)
ABCABCBACBA P9
ABCACACACBA P10
ABCACBCACBA P11
ABCBABABCBA P12
ABCBACABCBA P13
ABCBCACBCBA P14
ABCBCBCBCBA P15
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which we call integrators P. The first scheme Spy apc (h) = e"Lx g given by

UL bi1hL yazhLa b2hLp ya3hLy yerhLe ya3hLa JbahLy yashLy bihLp yaihLy (70)
with
1 1
a3:§—(a1+a2), bzzi—bl, cr=1, (71
and
hK =hH +h*Hg, + h>Hg; + O (h7) . (72)

With1+x =11/l and 14+ y = I, /I3, we solve P| = P> = 0 to cancel Hg, and minimize
2
| Hrs "

4 Numerical tests

In this part, we realize numerical tests to compare the efficiency of the obtained dedicated
integrators to the one of the usual symplectic integrators.

4.1 Method

To compare the integrators, we need to evaluate their cost C for the same step size 1. We
can then compare two integrators of the same accuracy by comparing their reduced step size
defined as in Farrés et al. (2013) by S(h) = h/C. We note Cy the numerical cost of a rotation.
The stages eL4, el8_ ¢hlc ¢"Lr correspond to one rotation around a principal axis and
have the same cost Cy. Therefore, a scheme ABC with N stages of type ehla ohlp ohlc
has a cost of NCy. However the stage ¢S is composed of one rotation around one of the
principal axes and one rotation around the angular momentum. The cost of ¢/ is thus 2C.
With the reduction of the computation time noted in Sect. 3.1.2 for the splitting RS, we need
to perform the rotation around the angular momentum only one time by integration step.
Therefore, a scheme RS with N stages of type e"L®, ¢"L's has a cost of (N + 1)Co.

In all the numerical tests, we start with a body of angular momentum G = (1, 1, 1) for an
initial orientation of the body (I, J, K) = ((1,0,0), (0, 1,0), (0,0, 1)) € R%. We perform
numerical integrations over a period T = 1 with a step size h; = 1/2 fori =1, ..., 10.

For all the numerical tests, we estimate the precision of an integrator by the numerical
remainder R, on the orientation of the body, which is obtained by the following procedure. At
every step, we compute the Euclidean norm in R? of the difference between the orientation of
the body computed with the given symplectic scheme and the one given by the exact solution.
To compute the exact solution of the free rigid body, we use the matrix algorithm of Celledoni
et al. (2008). For small angles, this difference can be interpreted as the quadratic mean of the
angular errors on the three principal axes multiplied by /3. The numerical remainder R, is
then obtained by taking the average of this difference on the whole integration.

We compare the efficiency of the schemes developed for the rigid body to the gen-
eral integrators which can be used for any Hamiltonian. Among them, McLachlan (1995)
distinguished the symmetric integrators (type S) and the symmetric integrators built from
symmetric integrators of lower order (type SS). We have seen in Sect. 3.1.2 that it is not nec-
essary to consider the schemes SR provided that we consider all the possible permutations
of the moments of inertia for the schemes RS.

The reference schemes used for the tests are the classical leapfrog scheme (ABCBA2,
RSR2), the Yoshida’s fourth-order scheme with a composition of three leapfrog schemes
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Table 2 Coefficients of the fourth-order integrators N for the spherical top

Integrator Coefficients
N1(1) a; = — 8.5120719195965763404768780897146082692210 x 10~}
by = — 1.7560359597982881702384390448573041346105 x 10~}
N2 (1) ay=¢
a =3
N3 (1) a) = %Cos%
by = % —a) — 6012
1 7
N3 (2) ay :ﬁcosl—”
b = % —a) — 6(112
N3 (3) ay = %cos%g
b = % —a) — 6(112
N4 (1) a) = %cos?—ér
b = % —aj
1 7
N4 (2) a) = ﬁcosl—”
by = % —dai
_ L S
N4 (3) a) = ﬁcos I
bl = % —dai
— L 17
N5 (1) a) = ﬁcos T
c1 = —% + 2ay +6a%
N5(Q2) a) = %cos%
cl = 7% + 2a +6a]2
N5 (3) ay :%cos%
c| = —% + 2ay +6a]2
N7 (1) b1 = 6.7560359597982881702384390448573041346096 x 10~!

c1 = 1.3512071919596576340476878089714608269219

(ABCBA4 553 Yoshida, RSR4 SS3 Yoshida) (Yoshida 1990), the Suzuki’s fourth-order scheme
with a composition of five leapfrog schemes (ABCBA4 SS5 Suzuki, RSR4 SS5 Suzuki) (Suzuki
1990), the McLachlan’s fourth-order scheme with a composition of five leapfrog schemes
(ABCBA4 SS5 McLachlan, RSR4 SS5 McLachlan) and the McLachlan’s fourth-order sym-
metric schemes of 2n 4 1 stages with n = 4 (ABC4 S4 McLachlan, RS4 S4 McLachlan) and
n =5 (ABC4 S5 McLachlan, RS4 S5 McLachlan) (McLachlan 1995).

4.2 Spherical top
The moments of inertia of a spherical top are identical (/1 = I = I3 = 1). The rotation of a

spherical top is then trivially integrable and the exact solution corresponds to a rotation around
the angular momentum. However, this simple example allows us to test our algorithms and
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0
5 L
e
X
e
0
S
10 k-
_15 | | | | | |
—4.5 —4 —3.5 -3 —2.5 —2 —-1.5 -1
logy4(h/C)
ABCBA2 — N4 (1) -
ABCBA4 SS3 Yoshida - N4 (2)
N1 (1) N4 (3)
N2 (1) N5 (1)
N3 (1) N5 (2)
N3 (2) o N5 (3)
N3 (3) - N7 (1) -

Fig.1 Comparison of the numerical remainders R for a spherical top between the integrators of Table 2, the
classical leapfrog scheme (ABCBA 2) and the Yoshida’s scheme (ABCBA4 SS3 Yoshida)

Table 3 Numerical and analytical

. . Integrator
remainders for the integrators N g

Numerical remainder

Analytical remainder

dedicated to the spherical top N1 (1)

normalized by those of the best

integrator N5 (2) N2 (1)
N3 (1)

N3 (2)
N3 (3)
N4 (1)
N4 (2)
N4 (3)
N5 (1)
N5(2)
N5 (3)
N7 (1)

119.85
3.97
27.04
107.78
1.00
1120.50
2.06
1.59
107.82
27.02
120.07

100.50
3.40
22.51
92.79

1
991.42
1.58
1.18
92.79
22.51
100.50

to find an efficient way to compare the different integrators. In Eq. (54), wehave x =y =0

and the Hamiltonian reduces to H = (G% + G% + G%) /2.

The RS schemes are trivial as R reduces to the identity, and S to the rotation around the
angular momentum. We will thus only consider here the splitting ABC. For the integrators N
of Eq. (52), we obtain 12 real solutions (Table 2). As all the moments of inertia are identical,
it is not necessary to consider their permutations. To compare these solutions, the numerical
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Fig.2 Normalized analytical remainder R, (Table 3) with respect to the normalized numerical remainder R,
(Table 3) for the integrators of Table 2

Table 4 Coefficients of the best fourth-order integrators N for the water molecule

Integrator Coefficients Analytical
remainder (x 10*2)
N1ABC (1) aj = 2.3009531403182120088035835866488791305526 x 10! 2.09
by = 2.7028961116588991802338916444296474989967 x 10~!
N1 ABC (2) aj = 3.1275929803539412927331110867593240725096 x 10~} 3.83
by = 1.8915198437863547818626148139249232203935 x 10~!
N2ABC (1) aj = 8.0232821323763118962115911006527082023129 x 10~2 3.51
ay = 6.6006740223496715389313719694385753827201 x 102
N2 CAB(2) aj = —6.9201301744275414774484171165883343266794 x 10~2 291
ar = 2.4031143347593460997280823526283232434071 x 10~!
N2ACB (1) aj = 2.6715152527177852877159258491775925759378 x 10! 1.18
ar = 6.6006740223496715389313719694385753827201 x 102
N2BAC (2) aj = 4.5504624774591050429019276281136041301731 x 102 1.06
ar = 1.5208328361334726621353294430175796767150 x 10~}
N3ABC (1) aj = 1.3174008291685690570191318391432506966565 x 10~ 271
by = 2.5001213925191940517879462955880090794685 x 10!
N3 BAC (1)  aj = 2.3903848575720093321093271828856414366272 x 102 2.96
by = 4.2282680933338933433781797072334937140324 x 10~!
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Table 4 continued

Integrator Coefficients Analytical

remainder (x 10*2)

N4 BCA (1) ay = 2.2828507108154095724392719928157650301331 x 10! 3.22
by = 2.2825872461435056924300995377222198669807 x 10~}

N5CAB(2) aj = —6.2720924052603008551218820536171143473233 x 10~2  1.59
1 = 1.7666303579793115034995233223175505593095 x 10~

N5ACB (1) aj = 2.2739584699362931383103719281935592654238 x 101 2.84
1 = 2.4520662064421018140607329552267381194383 x 101

N5BAC (1)  a; = 5.1047890551914167341876030732222399901020 x 10~2 2.67
1 = 2.2825872461435056924300995377222198669807 x 10!

N6ABC (1) aj = 1.6014345007745294110506760786075550961823 x 10~ 2.11
by = 3.3983727648480088011200434314807462997537 x 10~!
N6ABC (2) a) = 3.4036466230135420614475440479339320092178 x 107! 2.19

by = 1.6016272351519911988799565685192537002472 x 10~}
N6 BAC (1) aj = 6.6786520394832546068432401466879049634959 x 102 3.27
by = 4.3305225085804317378510080225902343232508 x 10!

remainder (Sect. 4.1) is compared to the reduced step S(h) = h/C for all the integrators N
of Table 2 on Fig. 1. We sort the solutions in ascending order of the coefficient a;. The same
quantities are plotted for the classical leapfrog scheme of order 2, and the Yoshida’s integrator
of order 4 (Yoshida 1990). The best integrator for the spherical top is N5 (2) which is, at
equivalent reduced cost /1/C, about 700 times more accurate than the Yoshida’s integrator.

On Table 3, the estimation of the analytical remainder of Sect. 3.3 is also provided in
column 3 and they are very well correlated to the numerical remainders (Fig. 2). In the
following, we can then use the analytical remainder as a fast estimate of the accuracy of the
integrators.

4.3 Water molecule

After the spherical top, we will test our integrators on an asymmetric body, the water molecule,
which is a standard model on which the integrators of the free rigid body are tested notably in
molecular dynamics (Dullweber et al. 1997; Fasso 2003; Hairer and Vilmart 2006; Omelyan
2007). Fasso (2003) and Hairer and Vilmart (2006) used the moments of inertia (/; = 0.345,
I, = 0.653, Iz = 1). This does not correspond to a physical body for which the sum of
two moments of inertia must be superior or equal to the third. We prefer use the values
(11 = 10220/29376 =~ 0.348, I, = 19187/29376 =~ 0.653, Iy = 1) (Eisenberg and
Kauzmann 1969).

The water molecule has different moments of inertia and it is then necessary to consider
the six possible permutations. For the water molecule, the integrators N have in total 90 real
solutions for the coefficients a;, b;, c;. We can first discriminate the different solutions by
comparing the analytical remainder estimated by the method of Sect. 3.3. The integrators,
which present the smallest analytical remainders, are indicated in Table 4. Their analytical
remainders are very close, and to determine precisely the best integrator, we need to compare
them numerically.
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N2 ACB (1) == N6 BAC (1)
N2 BAC (2) -+

Fig.3 Comparison of the numerical remainders R, for the water molecule between the integrators of Table 4
and the classical leapfrog scheme (ABCBA 2, RSR 2) and the Yoshida’s scheme (ABCBA 4, RSR 4) obtained
with the best permutation

We have represented on Fig. 3 the obtained numerical remainders for the integrators of
Table 4, the classical leapfrog scheme and the Yoshida’s integrator with the two splittings for
their best permutations.

As predicted by the analytical remainder on Table 4, the numerical tests allow us to deduce
that the best integrators for the water molecule are N2 BAC (2) and N2 ACB (1). For the
smallest step size, the best integrator is N2 BAC (2) and for the others N2 ACB (1). We
consider then that the best integrator is N2 BAC (2) for the water molecule. It is, respectively,
about 170 and 1.6 times more accurate than the Yoshida’s integrators ABCBA 4 and RSR 4
obtained with the more accurate permutation of moments of inertia. The best scheme for the
water molecule Sy2 pac (2 (h) is given by

€a|hLB€b1hLA eazhLBeC]hLCeaj;hLBecthceazhLBebthA e‘”hLB, (73)

with the coefficients

a) = 4.5504624774591050429019276281136041301731 x 102

1
by =

=3
ar = 1.5208328361334726621353294430175796767150 x 10~
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Fig. 4 Comparison of the numerical remainders R;, for the water molecule between the integrator N2 BAC
(2) and the integrators obtained by Yoshida (1990), Suzuki (1990) and McLachlan (1995)
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Fig. 5 Comparison of the numerical remainders R, for the water molecule between the integrators N2 BAC
(2), PI BAC (5), RABC (4) and RS4 S5 McLachlan CBA
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Fig.6 Set of the moments of 2.5
inertia of the rigid bodies £. The

red lines correspond to the

symmetric tops with two equal

2+ BCA E

moments of inertia and delimit C
each permutation. The blue lines
(h+L=11+11 =1,
1 + Ip = Iy) correspond to the 1.5 |
flat body and delimit the set £. § ACB CBA
corresponds to the spherical top <=
and A, B, C, D, E to the flat 1
symmetric tops E ABC S B ]
0.5 + AX BAC |CAB E
0 | | |
0 0.5 1P 1.5 2 2.5
Iy
1
cl = <
2
a3 = 1—2(ar + az). (74)

We notice that all the coefficients are positive. This is not possible in a classical fourth-order
symplectic integrator (Sheng 1989; Suzuki 1991).

It is possible to obtain fourth-order schemes more accurate than the Yoshida’s one.
We then compare to the fourth-order schemes of Suzuki (1990) and McLachlan (1995)
and determine the best permutation for all these schemes. On Fig. 4, we compare
the numerical remainders of these integrators and deduce that the best is RS4 S5
McLachlan CBA. On Fig. 4, we also compare with the integrator N2 BAC (2) and con-
clude that RS4 S5 McLachlan CBA is about 4.7 times more accurate than N2 BAC
2).

For the water molecule, we see that the integrators N are not more efficient than the
existing integrators. Therefore, we look if adding a parameter to minimize the fifth-order
remainder (Sect. 3.4) allows us to obtain better integrators. We start with the integra-
tor R. The six permutations allow us to obtain 46 solutions. We determine numerically
the best integrator, which is R ABC (4) and is 1.5 times more accurate than N2 BAC
(2) (Fig. 5). We then consider the fifteen integrators P, which have in total 724 solu-
tions for the water molecule. We determine numerically the best integrator among the
ones which present the smallest analytical remainders. The best one is PI BAC (5),
which is about 8 times more accurate than N2 BAC (2) and about 1.7 times more
precise than RS4 S5 McLachlan CBA (Fig. 5). The scheme Spipacs) (h) is given
by

ea|hLBeb1hLA eazhLBethLA ea3hLBeclhLCea3hLBebzhLAethLBebthA e‘”hLB, (75)

@ Springer



15 Page260f34 J. Laskar and T. Vaillant

@ 1
0.9 N7
N6
0.8
< N5
0.7 N4
N3
0.6
N2
0.5 N1
0 01 02 03 04 05 06 07 08 09 1
I
(b) 1
0.9
BAC
0.8 CBA
<
ACB
0.7
CAB
0.6 BCA
ABC
0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I

Fig. 7 Best integrators N (a) and associated permutations (b) for a rigid body of moments of inertia (/] <
I < 1), where each integrator and permutation are associated with a color

with the coefficients

a; = 2.6576137190217391781483465189759344419197 x 102
by = 2.8352180398306075206301328654179005782548 x 10~

ay = 2.7103966011355754480520833151108230977015 x 10~
1

by = > — b
1
a =z — (a1 +a2)
c; = 1. (76)

It corresponds to a modest decreasing of the computation time of 12%.
Therefore, the dedicated integrators N, P and R for the water molecule do not allow us to
decrease significantly the computation time with respect to the existing reference integrators.
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I
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Fig. 8 Ratio of the remainder of the integrator RS4 S5 McLachlan obtained with the best permutation, Rz,
on the one of the best integrator N, R, for a rigid body of moments of inertia (I; < I < 1). The color scale
indicates logo(Ry /RN)

5 Comparison for the set of the rigid bodies

In this part, we compare for each rigid body the obtained dedicated integrators to the usual
ones. However, we do not reproduce the numerical test which we have performed for the
water molecule for each physical rigid body. We have seen in Sect. 4.2 that the evaluation of
the analytical remainder allows us to estimate faster the best integrator for a rigid body. We
use then in this part this evaluation of the remainder to compare the dedicated integrators to
the usual ones.

5.1 Method

We follow here the method of Fasso (2003). We consider a rigid body of moments of inertia
(I, I, I3), where the moments of inertia are normalized to obtain /3 = 1. By definition
(e.g., Fasso 2003), the sum of any two moments of inertia must be superior or equal to the
third one. Therefore, /1 and I, must verify

Lh+hL>1, 1+0L>Dh, 1+5L=>I. )

This allows one to define a set £ represented on the Fig. 6. £ is not bounded and /; and /> can
go to infinity. However, several points of £ represent the same rigid body. For instance, we
consider the body (I1, I, 1) with I} < I < 1. This body can be represented in £ by the six
points (I1, ), (I2/11, 1/11), (1/ 12, 11/ 2), (I1/ 12, 1/ 1), (1/1, I2/11), (I2, 1) associated
with the respective permutations of moments of inertia ABC, BCA, CAB, ACB, CBA,
BAC.

An asymmetric body is then represented in the set £ by six points corresponding to the
six permutations. As Fasso (2003), we can restrict the study to the triangle ESA of the set £
in Fig. 6 provided we consider the six permutations for each point of this triangle.

We sample the triangle ESA with a grid of N = 40401 points. We do not consider the
points of this grid which correspond to symmetric tops, which have a trivial solution. For
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Fig. 9 Best integrators P (a) and associated permutations (b) for a rigid body of moments of inertia (/] <
I < 1), where each integrator and permutation are associated with a color

each point and for each permutation, we estimate the analytical remainder as explained in
Sect. 3.3 for each dedicated integrator and for the integrator RS4 S5 McLachlan which is
the best reference integrator for the water molecule. We first determine the best dedicated
integrator, which has the smaller analytical remainder, and its associated permutation. Then,
we compare its analytical remainder to the one of the integrator RS4 S5 McLachlan for its
best permutation.

5.2 Integrator N

We determine the best dedicated integrator N and the associated permutation in Fig. 7 for the
set of the rigid bodies. If we know the moments of inertia of a body, we can then determine
easily its best integrator N with Fig. 7.

For each point of the triangular grid, we divide the analytical remainder of the integrator
RS4 S5 McLachlan for the best permutation by the one of the best integrator N. Along
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Fig. 10 Ratio of the remainder of the integrator RS4 S5 McLachlan obtained with the best permutation, Ry,
on the one of the best integrator P, R p, for a rigid body of moments of inertia (/] < I < 1). The color scale
indicates logo(Ry/Rp)

Sect. 4.1, RS4 S5 McLachlan has a cost of 12Cy and an integrator N a cost of 9Cy. We take
into account the cost of these integrators of order 4 by multiplying the ratio by (12/9)*. The
values of the ratio of these two remainders on the grid are in Fig. 8. If the ratio is larger than
1, the integrators N are better than RS4 S5 McLachlan. We observe that the integrators N are
better than the reference scheme RS4 S5 McLachlan only for some bodies of the triangular
grid. RS4 S5 McLachlan is especially more accurate for the ones close to the symmetric
tops. Therefore, the integrators N, which we have built, are in general less efficient than the
existing integrators.

5.3 Integrator P

As made for the integrators N, we determine the best dedicated integrator P and the associated
permutation in Fig. 9 for the set of the rigid bodies. In Fig. 9, one can notice isolated points.
They correspond to values for which a singularity occurs during the automatic resolution of
the system of equations. We have not analyzed more precisely these solutions.

We represent in Fig. 10 the ratio of the analytical remainder of the integrator RS4 S5
McLachlan for the best permutation by the one of the best integrator P. Along Sect. 4.1, an
integrator P has a cost of 11Cg and we have then multiplied the ratio by (12/11)*. The values
of the ratio of these two remainders on the grid are in Fig. 10. We observe that the integrators
P are better than the reference scheme RS4 S5 McLachlan only for very asymmetric bodies.

6 Conclusion

We used the properties of the Lie algebra of the angular momentum to build symplectic
integrators dedicated to the Hamiltonian of the free rigid body. The relation {G;, G;} =
€;jk Gk between the components of the angular momentum simplifies the expression of the
remainders of a symplectic integrator of the rigid body. These remainders depend on the
moments of inertia of the integrated body. By introducing a dependence of the coefficients of
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the integrators on the moments of inertia, we can cancel the third-order remainder to construct
symmetric fourth-order integrators dedicated to the rigid bodies. For the splitting in three parts
(splitting ABC), it allows us to obtain symplectic fourth-order integrators for the free rigid
body with fewer stages than for the general case. On the opposite, this reduction does not occur
for the integrators obtained with the splitting in two parts (splitting RS). During our analysis
of the splitting RS, we have noted a commutation that allows us to decrease the computation
time of the RS integrators, which has not been previously noticed as far as we know.

We performed extensive numerical tests on the water molecule which is a classical body
to test integrators of rigid bodies. We first test the obtained dedicated fourth-order integrators
with the minimal number of stages (integrators V). These integrators for the water molecule
are not more efficient than the existing ones. We then consider the integrators which we have
obtained by adding a free parameter to minimize the fifth-order remainders (integrators R
and P). Deceptively, these integrators for the water molecule are only slightly more accurate
than the existing reference integrators.

By sampling the set of the moments of inertia of the rigid bodies, we determine for each
existing body the best fourth-order integrators N and P and the associated permutation by
estimating the analytical fifth-order remainder. We then compare the best new integrator for
each body to the best existing integrator for the water molecule. The integrators N have not
better performances than the existing ones, while the integrators P can be better for very
asymmetric bodies.

Here, we restricted ourselves to the simpler fourth-order integrators to obtain simpler
schemes. It should be still possible to obtain better schemes by considering the addition
of two free parameters. However, the coefficients are then more difficult to obtain and the
schemes more complicate than the ones, which have been obtained here. It is also possible to
construct sixth-order integrators, but the system of equations to solve to obtain the coefficients
becomes more difficult to solve.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of interest.

A Solutions for the fourth-order integrators N

For each fourth-order integrator N of Sect. 3.2, the values of the coefficients a;, b;, ¢; are given
by the following equations for moments of inertia determined by the values of 1 +x = 11/
and1+y=1/1.

N1: ABABCBABA

fotaifi+aifr+aif; =0
g0 +bigi+ajga=0 (78)

fo=—-1-3y— 3y2 — 2xy2 - 3x2y - 12xzy2 - 12xzy3 — 4xzy4
f1 = 6418y +24y% — 12xy + 12xy? — 18x2 — 78x%y — 72x%y* — 24x%y?
fr = —12 =36y — 72y> — 48x — T2xy — 168xy* — 48xy> — 36x% + 12x7%y
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f3 = —24 — 72y — 144xy — 48xy? 4 72x> + 24x%y
go=—-1—y—4x —6xy — 2xy2 —3x2 - 5x2y - 2):2y2

g1 =446y + 10x + 18xy + 4xy? + 6x% + 12x%y + 4x?y?
g = —2— 6y — 12xy — 4xy” + 6x% + 2x%y

N2: ABACACABA

fotaifi+alf,=0
go+axg1+aigr=0 (79)

fo =143y —3y> —8xy? — 12xy> + x2y — 3x2y? — 9x2y + x%2y* —4x3yd + x4y?

fi=—6—30y — 18y> + 18y> — 48xy — 48xy” + 48xy> + 6x2 — 30x2y — 78x2y?
+ 30xzy3 - 48)c3y2 + 12x4y

fo = 36y + 36y> — 36y — 36x 4 36xy + 180xy% — 36xy> — 72x% — 144x>y
+ 144x%y? — 14423y + 36x*

go=-—-1-3y— 3y2 — 2xy2 +x2y

g1 = 6+ 12y + 6y>

g = 6y2 — 12xy + 6x2

N3: ABACBCABA

fotaifi+aifr+aifs=0
go+bigi +aigr+algs =0 (80)

fo=14+3y— 3y3 —4xy2 - 6xy3 +x2y4

fi = —6—30y — 18y* 4+ 18y> — 24xy — 24xy? 4 24xy> + 12x%y>

fo =60y +72y? — 36y — 24x + 36xy + 144xy? — 12xy> + 48x%y?

f3 = 24 — 72y + 72x 4 144xy — 24xy* + 48x%y

go=-—-3—18y — 39y2 - 36y3 - 12y4 —2x — 15xy — 319)cy2 - 41xy3 - 15)cy4
—2x2y2 . 3x2y3 —|—x2y5

g1 =2+ 12y +30y% 4 36> + 18y* + 2x + 12xy + 34xy? + 48xy> 4 30xy*
+4x%y? +12x%y% 4 14x2y* 423 y*

g2 = 2+ 30y + 84y% 4+ 78y% + 18y* — 6x + 6xy + 78xy? + 102xy° + 24xy*
+4x%y +30x2y% 4 48x%y3 + 10x%y* + 4x3y3

g3 = 12424y — 24y? — 72y — 36y* + 36x + 144xy + 168xy* + 48xy> — 12xy*
+ 24x2y + 48)62y2 + 24)c2y3
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N4: ABCABACBA

fotaifi+aifr+aifs=0
g0 +bigi +ajga=0 (81)

fo=1+3y -3y’ —4xy* — 6xy’ + x%y*

fi=—-6-30y — l8y2 + l8y3 —24xy — 24xy2 + 24xy3 + 12x2y3
fr =60y +72y% — 36y — 24x + 36xy + 144xy? — 12xy> + 48x%y?
f3 =24 —72y% +72x + 144xy — 24xy* 4 48x%y

g0 = —1—y—2x—3xy—xy2

g1 =2+ 6y +6y? + 2x + 6xy + 8xy? + 2x%y?

g =2- 6y2 4+ 6x + 12xy — 2xy2 —|—4x2y

N5: ABCACACBA

fotaifi+aifr+aifs=0
go+cigl+aig+algs =0 (82)

fo =143y —6xy*> — x%y — 6x%y* + x*y?
fi = —6—30y —36xy + 36xy> — 6x> — 42x%y + 24x%y? + 12x*y
fr = 84y — 48x + 144xy — T2xy* — 36x% + 180x2y — 24x%y? + 24xy + 36x*
f3 =24 — 72y + 144x — 144xy + 48xy? 4+ 216x% — 168x%y + 144x>
go=1+4y+x+9xy — 8xy2 —3x? +4x2y - 25xzy2 —6x°
- 7x3y - 30x3y2 - 2)c3y3
—3xt —oxty —12x*y? — 2x*yd —6xy + 17 y? — 3x0y
g1 =242y + 12x + 12xy 4 30x% 4 34x2y + 4x%y? + 36x°
+48x%y + 12x3y? + 18x*
+30xty + 14x*y? 4 2x%y3
g» = —4 — 30y — 6x — 114xy 4 28xy> — 6x> — 210x2y + 66x>y>
—18x — 210x3y + 48x3y?
+4x3y? —36x* —96x*y — 2x*y? — 36x° — 18x°
g3 = —12+ 36y — 96x + 144xy — 24xy? — 264x% + 264x>y
— 48x%y? — 360x> + 240x7y
—24x3y? —252x* + 84x*y — 72x°
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Né6: ABCBABCBA

fo
S
)
/3
Ja
80
81

82

83

forarfi+alfph+afi+talfa=0
g +bigi +aig +algs +ajga =0 (83)

143y +3y2 —3y% + 8xy? — 3x2y + 3x2y% + 3x%y% + x2y*

—6—18y — 42y2 + 18y3 + 48xy — 48xy2 — 18x2 +42x2y + 18)62y2 + 6x2y3
12 4 36y + 180y% — 36y> + 12x — 252xy + 132xy? + 12xy> + 144x2 — 48x2y
—288y? 4 576xy — 288x>

144y% — 288xy + 144x?

-2y — 6y2 +4x + 11lxy — xy2 —}-xy3 + xy4 +3x% + 13x2y + 7x2y2 + xzy3
—4— 10y — 6y2 — 6y3 - 6y4 — 10x — 28xy — 16xy2 - 4xy3 — 6xy4 — 6x2
—18x%y — 10x2y? + 2x%y?

4+ 14y +42y% + 6y° + 6y* 4+ 2x — 42xy + 14xy>

—6xy® +24x% — 4x?y + 4x2y?

—84y% — 12y + 168xy + 24xy” — 84x> — 12x7%y

g4 = 48y% — 96xy + 48x?

N7: ABCBCBCBA

fo
Si

)

S3

80
81
82

fo+bifi+bifa+bif3 =0
go+cig1 +b1g2 =0 (84)

—1—-3y —3x — 15xy — 6xy2 - 17x2y — 12xzy2 +3x° — 3x3y - 6x3y2 - x4y2
12 + 30y + 42x + 150xy + 36xy? + 30x2 + 222x%y + 84x2y? — 18x3 + 114x3y
+60x3y? — 18x* + 12x*y 4 12x%y?

— 48 — 84y — 204x — 420xy — 72xy?> — 300x>

—708x2y — 192x2y? — 180x> — 492x3y

- 168)c3y2 —36x* — 120x4y - 48)c4y2

= 48 + 72y + 216x + 360xy + 48xy? + 360x>

+ 648x2y + 144x2y? 4 264x> 4 504x%y

+144x3y? 4+ 72x* + 144x*y + 48x4y?

y —x + 3xy —|—2xy2 —3x2 - 2x2y

2+ 2y 4 6x + 6xy 4 6x2 + 8x%y + 2x%y?

—4 — 6y — 10x — 18xy — 4xy? — 6x2 — 12x2y — 4x2y?
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