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Abstract
A family of periodic orbits is proven to exist in the spatial lunar problem that are continuations
of a family of consecutive collision orbits, perpendicular to the primary orbit plane. This
family emanates from all but two energy values. The orbits are numerically explored. The
global properties and geometry of the family are studied.

Keywords Celestial mechanics: restricted three-body problem · Periodic orbits

1 Introduction

We consider the three-dimensional circular restricted three-body problem. This models the
three-dimensional motion of a particle, P0, of zero mass in the Newtonian gravitational field
generated by two particles, P1, P2 of respective positive masses,m1,m2, in a mutual uniform
circular motion. It is assumed that m1 is much larger than m2. This problem is studied in a
rotating coordinate system that rotates with the same constant frequency ω of the circular
motion of P1, P2, so that in this system P1 and P2 are fixed. Because m1 is much larger than
m2, we refer to P1 as the Earth and P2 as the Moon, for convenience.

When P0 moves about the larger particle, P1, the motion of P0 can be completely under-
stood if, for example, P0 is restricted to the two-dimensional plane of motion of P1, P2. In
this case, with m2 = 0, assume that P0 has precessing elliptic motion, of elliptic frequency
ω∗ about P1, precessing with frequency ω. Then the Kolmogorov–Arnold–Moser (KAM)
theorem proves that this precessing motion persists if m2 is sufficiently small and if ω and
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ω∗ are sufficiently noncommensurate. Otherwise, the motion is chaotic due to heteroclinic
dynamics. That is, invariant KAM tori almost foliate the phase space. The motion of P2 is
proven to be stable (Siegel and Moser 1971). When the initial elliptic motion of P0 is not in
the same plane as P0, P1, then under similar assumptions KAM tori can be proven to exist,
but stability cannot be guaranteed.

In this paper, we study the three-dimensional motion of P0 about P2. This is referred to as
the three-dimensional, or spatial, lunar problem. Relatively little is proven in general about
the motion of P0 unless the initial motion starts infinitely close to P2. The proof of existence
of KAM tori in the three-dimensional lunar problem was obtained by M. Kummer under the
assumption that the initial motion of P0 lies infinitely near to P2 (Kummer 1983, see also
Yanguas et al. 2008).1

The main result of this paper is to prove the existence of a special family of periodic orbits
about P2, nearly perpendicular to the primary orbit plane. More precisely, if we normalize
m1 = 1 − μ,m2 = μ, then in the case of μ = 0 there exists a family of periodic orbits on
the z−axis through P2, so perpendicular to the P1, P2 plane, parameterized by their energy
h. This family consists of consecutive collision orbits: Starting at collision at P2, they extend
up the z−axis to a maximal distance d = d(h), then fall back to P2, and periodically repeat
this oscillation, where d can have any positive value. We label these as φ∗(t, h). These orbits
have period T ∗(h). We prove that φ∗(t, h) continuously varies as a function ofμ, sufficiently
small, into a unique periodic orbitφ(t, μ) of period T = T (μ), T (0) = T ∗, on the associated
Jacobi energy surface, provided a non-degeneracy condition holds. This condition is satisfied
for every energy value except two. The resulting family periodic orbits is labeled, F(h, μ).
This family depends on μ1/3 real analytically.

The method of proof of F(h, μ) is to make use of the proof of existence of an analogous
family of orbits about the primary mass P1 (Belbruno 1981a). A three-dimensional regular-
ization defined first in Belbruno (1981a) is performed. This uses a fractional linear Möbius
transformation which can be represented elegantly using a Jordan algebra. We also exploit
symmetry properties of the lunar problem.

The resulting family of orbits is numerically investigated and has interesting properties.
The properties are analogous to those in Belbruno (1981b) for very negative energy, but differ
markedly for larger energy. In particular, the polar orbit in this paper has hyperbolic rather
than elliptic behavior for large Jacobi energy.

The main theorem for this paper is stated as Theorem 1 in Sect. 2. The proof is done in
Sect. 3. In Sect. 4, we describe numerical results. These include stability properties as well
as the evolution of the polar orbit as a function of the parameters. A theoretical justification
for the evolution is given in Belbruno et al. (2018), based on the Rabinowitz functional
(Rabinowitz 1978) and the contact property, proved by Albers et al. (2012) and by Cho and
Kim (2018).

We conclude the introduction with brief summary of the role of the Hamiltonians that we
shall use.

– H will denote the Hamiltonian of the restricted three-body problem with the origin at
the center of mass. It is defined in (1).

– Hm is the Hamiltonian of the restricted three-body problem with the origin at the second
primary. It is defined in (4).

– Hμ is a rescaled version of Hm , still centered at the second primary, but zoomed in at
the Hill’s region around the second primary. It is defined in Eq. (8) and simplified in

1 Kummer proved the existence of KAM tori in the planar lunar problem sufficiently near to P2 (Kummer
1979). This also proves the stability of the Hill periodic orbits (Hill 1878).
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Eq. (9). Both distances and energies are affected by this rescaling, but it still describes
the restricted three-body problem.

As μ goes to 0, the Hamiltonian Hμ converges to the Hamiltonian of Hill’s lunar problem,
which is given by H0. One can also take the limit μ goes to 1 of Hm . This gives the rotating
Kepler problem. The latter problemwas used in Belbruno (1981a).We do not use the rotating
Kepler problem except for comparison which we do in detail in Remark 1.

2 Spatial lunar problem andmain result

The three-dimensional restricted three-body problem in a rotating coordinate system with
coordinates q = (q1, q2, q3) ∈ R

3 and momenta, p = (p1, p2, p3) ∈ R
3, for the motion of

the zero mass particle P0 is defined by the Hamiltonian system,

H = 1

2
|p|2 − μ

|q − m| − 1 − μ

|q − e| + ω(q1 p2 − q2 p1), (1)

q̇ = Hp, ṗ = −Hq , (2)

. ≡ d/dt , t ∈ R
1 is time, Hp ≡ ∂H/∂ p, where the masses of P1, P2 are normalized to

be m1 = 1 − μ, m2 = μ, respectively, μ ∈ (0, 1]. The center of mass is placed at the
origin. P1, P2 are fixed on the q1-axis at the respective locations, e = (−μ, 0, 0), m =
(1−μ, 0, 0), where e,m denotes Earth,Moon, respectively.ω is the frequency of the rotating
frame that is normalized to be 1, where we use ω for generality. A solution φ = φ(t) ∈ R

6

of (2) lies on the 5-dimensional energy surface

ΣH = {(q, p) ∈ R
6|H(q, p) = −h}, (3)

where h ∈ R
1 is a constant. (In nonsymplectic coordinates, H can be written in another form

called the Jacobi integral).

Definition The spatial lunar problem is defined by viewing the motion of P0 from (2) to lie
near P2 and assuming that μ is small.

We will now show how to derive the spatial lunar problem as a limit case of the restricted
three-body problem following the computation on page 77 of Frauenfelder and van Koert
(2018), see also page 143-144 of Meyer et al. (2009). A translation T is made to center the
coordinates at P2 by moving P1 to e1 = (0, 0, 0) and P2 to the origin: q′

1 = q1 −m1, q′
2 =

q2, q′
3 = q3, p′

2 = p2 − m1, p′
1 = p1, p′

3 = p3. This is a symplectic map yielding a

Hamiltonian, H(T−1(q ′, p′)). We add a constant, (1−μ)2

2 to this Hamiltonian as this does not

change theHamiltonian vector field, and end upwith Hm(q ′, p′) = H(T−1(q ′, p′))+ (1−μ)2

2 .
For simplicity of notation,we replaceq ′, p′ byq, p, not to be confusedwith previous notation.

Thus, the spatial lunar problem in translated P2 centered coordinates can be represented
as a Hamiltonian system, with Hamiltonian,

Hm = 1

2
|p|2 − μ

|q| + ω(q1 p2 − q2 p1) − (1 − μ)

(
1√

(q1 + 1)2 + q22 + q23

+ q1

)
. (4)

The flow is given by,
q̇ = Hm p, ṗ = −Hmq . (5)
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The energy surface ΣH becomes,

ΣHm = {(q, p) ∈ R
6|Hm(q, p) = −h}. (6)

In order to study the flow in the coordinates (q, p) defined by Hm near P2, we magnify the
flow near P2 by the map, M : (q, p) → (q̂, p̂),

M : p̂ = μ− 1
3 p, q̂ = μ− 1

3 q. (7)

Thus, for μ small, as we are assuming for this paper, the coordinates (q̂, p̂) are defined in
a magnified neighborhood about P2. This implies that when solutions are found in these
coordinates, in the original coordinates (q, p), the solutions lie close to P2 as determined
by (7).

The transformation given by (7) is not symplectic. In order to obtain a Hamiltonian system
in the coordinates ( p̂, q̂), it is noted thatM is conformally symplecticwith constant conformal
factor μ2/3. It is verified that a new Hamiltonian incorporating this magnification is given
by,

Hμ(q̂, p̂) = μ−2/3(Hm(M−1( p̂, q̂)) + 1 − μ).

This can be simplified using a Taylor expansion. This follows since,

Hμ(q̂, p̂) = 1

2
| p̂|2 − 1

|q̂| + ω(q̂1 p̂2 − q̂2 p̂1)

− 1 − μ

μ2/3

(
1√

(μ1/3q̂1 + 1)2 + μ2/3q̂22 + μ2/3q̂23

+ μ1/3q̂1 − 1

)
.

(8)

It is verified that the term within the square root in the last term of Hμ can be written as
1 + 2μ1/3q̂1 + μ2/3|q̂|2. Setting x = 2μ1/3q̂1 + μ2/3|q̂|2, and using the formula,

1√
1 + x

= 1 − x

2
+ 3x2

8
+ O(x3)

for |x | < 1, which is satisfied for μ sufficiently small, it is verified that,

Hμ(q̂, p̂) = 1

2
| p̂|2 − 1

|q̂| + ω(q̂1 p̂2 − q̂2 p̂1) + 1

2
|q̂|2 − 3

2
q̂21 + O(μ1/3), (9)

where the term O(μ1/3) is a real analytic function of q̂ and μ1/3, and depends continuously
on μ. The Hamiltonian flow is given by,

˙̂q = Hμ
p̂,

˙̂p = −Hμ
q̂ . (10)

The Hamiltonian flow takes place on fixed energy surfaces,

ΣHμ(h) = {(q̂, p̂) ∈ R
6|Hμ(q̂, p̂) = −h}. (11)

It is remarked that settingμ = 0 defines Hill’s Problem. For smallμ, the (rescaled) restricted

three-body problem represents a perturbation of order μ
1
3 .

The function Hμ( p̂, q̂) has the form of a Hamiltonian for a perturbed rotating Kepler
problem similar to what occurs in the restricted three-body problem about the primary mass
point. As was studied in Belbruno (1981a) for motion about the primary mass point P1, this
system for μ = 0 has the q̂3-axis as an invariant submanifold for the flow for q̂(t), p̂(t).

Let φ̂∗(t) represent the solution on the q̂3-axis for μ = 0. Setting q̂k = 0, p̂k = 0, k =
1, 2, one obtains an integrable Hamiltonian system of 1 degree of freedom in the variables
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(q̂3, p̂3). After regularizing collisions, P0 moves to some finite distance d(h) from the origin,
where ˙̂q3 = 0, and then falls back to P2 for another collision. It continues to do this in a
periodic fashion for all time. This defines a periodic consecutive collision orbit with energy
−h and with period T ∗. As h varies, T ∗ = T ∗(h) varies in a continuous manner. In contrast
to the family studied in Belbruno (1981a), the family studied here exists for all energies h. In
particular, as h increases to 0, the distance d remains bounded. The family extends to positive
energy h, and d tends to ∞ as h goes to ∞. 2

In summary, the family of consecutive collision orbits for μ = 0 for System (10) on the
q̂3-axis with frequency T ∗(h) lies on the energy surfaceΣHμ(h)|μ=0. This family is denoted
byF∗(h) and an orbit of this family is labeled φ̂∗(t, h). This orbit moves a maximal distance
d(h). In the original system given by (5) one has a similar family of consecutive collision
orbits for μ = 0 on the energy surface ΣHm given by (6) which move close to P2 to within
O(μ1/3).

We will prove the following theorem,

Theorem 1 On each fixed energy surfaceΣHμ(h) for System (10), there exists a unique peri-
odic orbit, φ̂(t, h, μ), for μ sufficiently small, where φ̂(t, h, 0) = φ̂∗(t, h) and whose period
T (μ) continuously tends to T (0) = T ∗, provided the orbit φ̂(t, h, 0) is non-degenerate.
(Δ 	= 0 (see (13).)) The orbits of this family, F(h, μ), are symmetric to the q̂2q̂3-plane,
and F(h, 0) = F∗(h). F(h, μ) and T (μ) depend continuously on μ and in a real analytic
fashion on μ1/3.

We will refer to the orbits of this theorem as polar orbits.

Remark 1 We shall see in the numerical section that the non-degeneracy condition appears
to fail only twice: once for h ≤ 0, or once for h > 0, see Figs. 1 and 6. This is in contrast
to the polar orbit in the rotating Kepler problem, which becomes degenerate infinitely many
times. This may seem surprising given the similarities between the Hamiltonians of Hill’s
lunar problem and the rotating Kepler problem. However, we point out several important
differences:

1. The rotating Kepler problem is completely integrable, whereas Hill’s lunar problem H0

is not: the additional terms in the potential describe a tidal and centrifugal force.
2. The period of the polar orbit in the rotating Kepler problem goes to infinity as the Jacobi

energy goes to 0. For Jacobi energy h > 0, a regularized orbit moving on the z-axis
escapes to infinity. In Hill’s lunar problem, the region consisting of the intersection of
the Hill’s region with the z-axis (containing the origin) is bounded for all energies h. As
a result consecutive collision orbits in Hill’s lunar problem are periodic for all energies
h.

3. From a physical point of view, there is a large difference between these problems. In the
rotating Kepler problem, the rotational term q1 p2−q2 p1 is due to the rotating coordinate
system centered at the larger primary in 0. In Hill’s lunar problem, the center of rotation is
infinitely far away: the physicalmeaning of the rotational term is hencemore complicated,
resulting in additional terms corresponding to a tidal/centrifugal force.

4. The orbits in Hill’s lunar problem become unstable for large h. Intuitively, the instability
in the polar orbits in Hill’s lunar problem for large energies is easy to understand: for
sufficiently large energy h they spend a considerable time away from the smaller primary
centered at the origin, so that the tidal forces can destabilize the orbit.

2 It is noted that there are two consecutive collision orbits, one on the positive q̂3-axis and the other on the
negative q̂3-axis. We just consider the orbit on the positive axis, without loss of generality.
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Distance of orbits to theMoon

The map M given by (7) scales the coordinates of the periodic orbits by μ
1
3 when mapping

back to the original (q, p) coordinates of (5). Thus for μ small, the periodic orbits remain

close to P2 to within the distance, ρ = O(μ
1
3 ). This distance, however, is significant and can

extend to the L1, L2 Lagrange points.

Bounded period and existence for all energies

We estimate the period of the polar orbit in Hill’s lunar problem. The rotational term drops
out on the z-axis, so the energy equals

EH = 1

2
ż2 + V (z),

where we take Hill’s lunar potential restricted to the z-axis, given by V (z) = − 1
z + 1

2 z
2. Fix

the energy to the value h. The particle moves between z = 0 and z = d(h), where d(h) is a
solution to V (z) = h. This equation is equivalent to the cubic equation

z3 − 2hz − 2 = 0,

which clearly has a unique, positive solution, which can be found with Cardano’s formula.
Using the energy, we can compute the speed, and find for the period

T ∗ = 2
∫ d(h)

0

1√
2h − V (z)

dz = 2
∫ d(h)

0

1√
2h + 2

z − z2
dz.

This integral can be evaluated exactly using elliptic integrals as one may verify with a com-
puter algebra system such as Maple. The expression is not too illuminating, and we will
only establish a period bound here. We compute

T ∗ =
u=z/d(h)

2
∫ 1

0

1√
2h + 2

d(h)u − d(h)2u2
d(h)du

≤ 2
∫ 1

0

1√
2h

d(h)2
+ 2

d(h)3
− u2

du = 2
∫ 1

0

1√
1 − u2

du = π

In other words, the polar orbit in Hill’s lunar problem has a uniform period bound holding for
all h. Furthermore, this period bound is so small that the polar orbit always closes up before
the rotational term can finish even one revolution. We shall see that the orbit still becomes
degenerate due to the tidal and centrifugal force terms.

3 Proof

In this section,we proveTheorem1. It is necessary to regularize the flow since the consecutive
collision orbits for μ = 0 collide with P2. After that is done, making use of the symmetry
of the orbits allows a section to be defined. The existence of the periodic orbit family then
results from an application of the implicit function theorem.
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The main Hamiltonian, Hμ(q̂, p̂), (9), in this paper that we want to regularize has a form
similar to the Hamiltonian in Belbruno (1981a; Eq. 1, p. 397). The differences are that roles
of the q1 and q2 axis are reversed, and (9) has the extra term,

E = +1

2
|q̂|2 − 3

2
q̂21 .

This term is smooth(real analytic) at q̂ = 0 and will not affect the regularization.
It is remarked that the additional term −E p̂ is introduced to the Hamiltonian differential

equations for ˙̂p that are not present in the Hamiltonian differential equation of ṗ for Belbruno
(1981a; Eq. 1, p. 397). Another notable difference in the Hamiltonians is that the additional
perturbation terms in Belbruno (1981a; Eq. 1, p. 397) are O(μ), whereas the perturbation
terms in (9) are O(μ1/3) for μ small.

The idea of regularization is to make a symplectic transformation of the coordinates,

q̂ = F(P, Q), p̂ = G(P, Q),

where Q ∈ R
3, P ∈ R

3 and a transformation of time t → s, so that in the new coordinates,
the Hamiltonian flow is well defined at collision.

In three degrees of freedom, regularizations are considerably more complex than in
two degrees of freedom, where, for example, the Levi-Civita transformation can be readily
applied. A regularization for three degrees of freedom is developed and applied in Belbruno
(1981a) that is ideal for the collision at P2, since, as noted, the Hamiltonian H in Belbruno
(1981a) is very close to Hμ(q̂, p̂).

The regularization in Belbruno (1981a) is a higher dimensional Möbius transformation. It
is represented in a clear manner by defining a Jordan algebra that serves as a generalization
of the complex numbers. This is a nonassociative algebra defined on the space An which
is isomorphic to R

n+1 as a vector space. Its product structure is defined as follows. Write
z ∈ An as

z = z0 + i1z1 + i2z2 + · · · + inzn,

zi ∈ R
1 for i = 1, 2, . . . , n. The R-linear multiplication is then defined by imposing

iαiβ = −δαβ .

Conjugation is defined as

z̄ = z0 − i1z1 − i2z2 − · · · − inzn .

One then obtains, zz̄ = |z|2 = z20 + z21 + · · · + z2n . Division is defined as

1

z
= z̄

|z|2
Although this algebra is commutative, it is nonassociative. Ameasure of the non-associativity
is the ’associator’ a = x(yz)− (xy)z, x, y, z are each in An . Since our variables are of three
components, the case n = 2 is of relevance, where a = (x2z1 − x1z2)(i1y2 − i2y1). Further
details are in Belbruno (1981a).

With coordinates in this Jordan algebra A2, we will obtain a simple form for a symplectic
transformation that regularizes collisions. Since the axes in this paper differ from those
in Belbruno (1981a), we first interchange the first two components: q̃ ≡ (q̂2, q̂1, q̂3) and
p̃ ≡ ( p̂2, p̂1, p̂3). After that, we use the transformation

p̃ = 1 + P

1 − P
, q̃ = Q

2
(1 − P̄)2 − (QP)P̄ + Q(P P̄).
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As in Belbruno (1981a), we will see that the Hamiltonian Γ given by

Γ = (1/2)|P − (1, 0, 0)|2|Q|(Hμ + h)

regularizes the energy level Hμ = −h; we use the time transformation t → s given by
t = ∫ s |q|dτ = (1/2)

∫ s |P − (1, 0, 0)|2|Q|dτ for the rescaling of the Hamiltonian. The
new level set of interest, corresponding to Hμ = −h will be denoted by

ΣΓ = {(P, Q) ∈ R
6|Γ = 0}.

The new Hamiltonian has the form of Belbruno (1981a)(Equ. 22) with the addition of the
term Ẽ(Q, P). Here Ẽ(Q, P) = 1

8 |P − (1, 0, 0)|4|Q|2 − 3
2 f 2(Q, P), where f (Q, P) is the

first component of the transformation of q̃:

Γ = |Q|
4

{|P + (1, 0, 0)|2 + 2(h + ωα(Q, P))|P − (1, 0, 0)|2}
− 1 + (1/2)Ẽ(Q, P)|P − (1, 0, 0)|2|Q| + O(μ1/3).

The Hamiltonian flow is defined by,

Q
′ = ΓP , P

′ = −ΓQ,

where
′ ≡ d

ds . To check that the Hamiltonian flow X(s) = (Q(s), P(s)) is regular at

collision orbits, we note that collision occurs when φ̂∗(t, h) = (q̂∗(t), p̂∗(t)) tends to
(0, 0, 0; 0, 0,∞). In the coordinates Q, P , any collision point corresponds to P = (1, 0, 0)
and |Q| = 1; the collision point X(0) = (0, 0,−1; 1, 0, 0). We see that the Hamiltonian Γ

is smooth near collision points, so the collision orbit, which we label by X∗(s), is indeed
regularized and becomes a well-defined periodic orbit on ΣΓ . We denote its period by S∗.

The existence of a unique periodic orbit X(s, X0, μ) near X∗(s), X(0, X0, μ) = X0, of
period S near S∗ forμ sufficiently small is obtained by the implicit function theorem, applied
to the subset of symmetric orbits, as we shall now see.

The Hamiltonian flow is symmetric with respect to the q̂1, q̂3-plane, because the Hamil-
tonian Hμ is invariant under the map

t → −t, (q̂1, q̂2, q̂3, p̂1, p̂2, p̂3) → (q̂1,−q̂2, q̂3,− p̂1, p̂2,− p̂3).

Keeping in mind our interchange of components, this implies that the involution

s → −s, (Q1, Q2, Q3, P1, P2, P3) → (−Q1, Q2, Q3, P1,−P2,−P3).

preserves Γ . Solutions that are symmetric with respect to this involution are characterized
by the condition,

Q1(0) = P2(0) = P3(0) = 0.

This means that symmetric solutions are characterized by three initial values Q2(0), Q3(0),
P1(0). This can be reduced to two initial values on the energy surface near X∗(0). Namely
at X∗(0) we can verify that

∂Γ

∂Q3
= −1 	= 0. (12)

Thus, by the implicit function theorem, near X∗(0), we can eliminate the Q3 coordinate and
characterize symmetric solutions by two initial values,

Q2(0), P1(0).
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In addition, the time of intersection of solutions near X∗(0) can be determined from (12) as
s = s(Q2, Q3, P1) by the implicit function theorem for μ sufficiently small.

This defines a three-dimensional surface of section

S = {Q2, Q3, P1|Q1(0) = P2(0) = P3(0) = 0}.
A solution starting on this section at time s = 0, then reintersecting the section at time

s = S/2 yields a symmetric periodic orbit of period S. This is satisfied by the consecutive
collision orbit, X∗(s) with s = S∗/2. For this to be satisfied near X∗(s) for small μ by a
solution X(s, X0, μ) yields a periodic orbit of period S(μ) near S∗, such that S(0) = S∗.
This can be satisfied provided the determinant

Δ = det
∂(Q1, P2, P3)

∂(S, Q2(0), P1(0))
(13)

does not vanish at μ = 0, S = S∗/2, X(0) = X∗(0). When Δ 	= 0 is satisfied, we say that
the periodic orbit φ̂(t, h, 0) is non-degenerate. It is numerically shown next, in Sect. 4, that
φ̂(t, h, 0) is non-degenerate except for two values of h.
This concludes the proof of Theorem 1.

4 Numerical results

We start with a summary of the numerical results. Throughout, we will be comparing Hill’s
lunar problem with the rotating Kepler problem. The reason for this is twofold.

– The same type of polar orbit has been studied before in Belbruno (1981a). Comparison
will hence clarify differences and similarities.

– We can consider the two types of polar orbits as part of a larger family of periodic orbits
in the restricted three-body problem. Both the rotating Kepler problem and Hill’s lunar
problem are limit cases where the polar orbit has a particularly simple form.

Here is a list of the main results. We will write H0 for Hill’s lunar problem and K for the
rotating Kepler problem.

Stability properties for fixed�:

H0: The polar orbit goes through four bifurcations for h ∈ (−∞,∞): they are a period
doubling bifurcation, a simple degeneracy, another simple degeneracy, and a period
halving bifurcation. The polar orbit is elliptic for h < −1.03 and complex hyperbolic
for h > 0.11.3

K: The polar orbit goes through infinitely many simple degeneracies for h ∈ (−∞, 0),
and the orbit is elliptic for all h < 0. Simple degeneracies occur whenever the period
of the polar orbit is a multiple of 2π , the rotation period of the coordinate system.

3 A quick overview of the terminology: by elliptic we mean two conjugate eigenvalues on the unit circle.
This implies a weak form of stability: nearby orbits cannot escape quickly. By hyperbolic we mean two real
eigenvalues: λ and 1/λ. We add “negative” to indicate that λ < 0. The return map in the spatial problem has
four eigenvalues, satisfying the symmetry property: if λ is an eigenvalue, then so are λ̄, 1/λ and 1/λ̄. This
leaves one additional case in this dimension, namely none of the eigenvalues are purely real, nor do they lie on
the unit circle: we will call this complex hyperbolic. All forms of hyperbolicity imply instability in the sense
that nearby orbits tend to escape quickly: how quickly depends on the absolute value of the largest eigenvalue.
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Variation of the familyF(h,�)with fixed� and varying h

We consider small deformations of Hill’s lunar Hamiltonian, i.e., small μ in Hμ and of the
rotating Kepler problem, i.e., μ close to 1 in Hm .

H0: The polar orbit starts out as a very eccentric ellipse, staying near the z-axis: the pro-
jection to the xy-plane looks like an oval. After becoming degenerate twice, the orbit
starts to develop a cusp in the yz-projection.

K: The orbit also starts out as a very eccentric ellipse, near the z-axis: the projection to the
xy-plane looks like an oval for very negative energy. As h increases, the shape ceases
to be convex and the orbit becomes degenerate. With each degeneracy, the winding
number of the polar orbit around 0 increases; in other words, the orbit accumulates
loops as the Jacobi energy increases.

A bridge between polar orbits in the rotating Kepler problem and the restricted three-
body problem near the light primary

Suppose that we are given a smooth 1-parameter family of vector fields depending on a
parameter s. In analogy with the results of Schmidt (1972), we will refer to a smooth 1-
parameter family of periodic orbits γs of Xs as a bridge for γs varying between γ0 and
γ1.

For energy h ≤ −1.50 4 we will see that there is a bridge with constant Jacobi energy h
connecting polar orbits near the smaller primary, meaning small μ in Hm , to polar orbits in
the rotating Kepler problem, meaning μ = 1 for the Hamiltonian Hm . The orbits near the
smaller primary can be continued to Hill’s lunar problem after rescaling the coordinates.

For very negative Jacobi energy, this bridge does not involve any dynamical transitions.
For larger Jacobi energy, orbits near the light primary are hyperbolic, whereas orbits in the
rotating Kepler problem are elliptic, so this bridge necessarily involves bifurcations.

Non-collision polar orbits in the Moon–Earth system

We continue the polar orbit into the Moon–Earth system where the polar orbit turns out to be
a physical non-collision orbit for sufficiently high Jacobi energy. A plot of the periapsis and
apoapsis as function of the energy is given in Fig. 13. It also undergoes a period doubling
bifurcation, making a transition from stable to unstable in the same energy range.

4.1 Details concerning the numerical procedure

4.1.1 Regularization scheme

We will use the Moser–Belbruno–Osipov regularization scheme to regularize the flow. We
use the incarnation due to Moser, which we will refer to as just Moser regularization, and
the incarnation due to Belbruno specialized to collision orbits as in Belbruno (1981a), which
we will refer to as Belbruno transform; this scheme is described in Sect. 3. Both schemes are
detailed in the appendices.

As a short summary, the Moser scheme regularizes the energy hypersurface below the
critical value to the unit cotangent bundle of the three-sphere and has the advantage that it

4 We remind the reader that the critical energy for μ = 0.5 equals −2.0.
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is global, i.e., no local charts are needed (see Appendix). However, to do computations in
the Moser scheme we need to impose constraints to stay on this space, which we view as a
submanifold of T ∗

R
4; this leads to a slightly larger computational effort.

The Belbruno transform uses a generalized Möbius transformation, based on the Jordan
algebra described in Sect. 3. For this regularization scheme, the advantages and disadvantages
as described above are reversed.The scheme is local andgives a chart,which someorbits could
escape from. On the other hand, the Belbruno regularization does not require constraints.

4.1.2 Integration scheme

For numerical integration, we have used a Taylor integrator with both variable stepsize and
order. The typical order with a double and long double, which corresponds to about
15–16 digits and 18–19 digits precision, respectively, was between 20 and 30. We have
used three different implementations of the Taylor integrator: the Taylor translator described
in Jorba and Zou (2005), the CAPD-library, CAPD (2018), and a homegrown Taylor library.

To find periodic orbits forμ > 0, wemade use of a local surface of section and the familiar
homotopy method to follow solutions from μ = 0 to the desired value of μ in sufficiently
steps of μ. We choose a linear surface of section perpendicular to the z-axis. This is useful to
follow the orbits for large parameter changes. As usual, we followed the orbit until it crossed
the surface of section and found a more accurate intersection by normalizing the flow.

For the stability analysis of the polar orbit, we choose a symmetric surface of section in
line with the proof in Sect. 3. This has the advantage that the symmetry properties can be
exploited more effectively.

Afinal remark concerning theHamiltonian: for the lunar problemweuse the regularization
of Hμ, theHamiltonian given in (8), but some care has to be taken to dealwith the catastrophic
cancelation in the final term.

4.2 Detailed results

4.2.1 Non-degeneracy of the lunar and Kepler orbit for h ≤ 0

To apply the theorem, we need to know whether the non-degeneracy condition holds. To
check this, we numerically compute the linearized return map transverse to the flow. We can
represent this as a symplectic 4×4-matrix, so its eigenvalues have some symmetry properties.
Namely, if λ is an eigenvalue of a symplectic 4 × 4-matrix, then λ̄, 1/λ and 1/λ̄ are also
eigenvalues (possibly equal). In general, this leaves a lot of possibilities. However, it turns
out that the linearized return map is elliptic, i.e., all eigenvalues lie on the unit circle, for
very negative energies h. The behavior for the lunar problem, which is of primary interest
here, turns out to differ from the behavior in the rotating Kepler problem studied in Belbruno
(1981a).

See Fig. 1 for the eigenvalues in the lunar problem. For very negative energies, the return
map is elliptic. For h ∼ −1.03, the orbit goes through a period doubling/halving bifurca-
tion: the orbit goes from being purely elliptic to mixed elliptic/negative hyperbolic without
becoming degenerate; its double cover does become degenerate.

At energy h ∼ −0.86, the orbit itself becomes degenerate resulting in a positive hyper-
bolic/negative hyperbolic pair of eigenvalues.

This is in contrast to the situation for the rotating Kepler problem, where the orbit stays
elliptic up to h = 0. Furthermore, the polar orbit in the rotating Kepler problem becomes
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Fig. 1 The real part of the four
eigenvalues for μ = 0, the lunar
problem, as a function of the
energy h in the Hamiltonian Hμ

for h ≤ 0. Bifurcations from an
elliptic to a hyperbolic eigenvalue
appear twice
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Fig. 2 The real part of two
eigenvalues for μ = 1, the
rotating Kepler problem, as a
function of the energy h in the
Hamiltonian Hm . All eigenvalues
are elliptic, and bifurcations
occur whenever an eigenvalue
passes through 1
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degenerate infinitely many times as the energy goes to 0, and its behavior changes every time
when it does. This results in loops appearing in the perturbations of the rotating Kepler prob-
lem. This behavior was found by Belbruno in Belbruno (1981a). We include an illustration
for the convenience of the reader in Fig. 3. Most of the other illustrations of the orbits will
involve only projections to the xy- and yz-plane.

Remark 2 The plot in Fig. 2 was obtained through numerical means, and we want to point
out that one can obtain an analytical expression for the eigenvalues of the linearized return
map.

4.2.2 Stability properties of the polar orbit in the lunar problem for h > 0

In Hill’s lunar problem, the polar orbit remains a periodic orbit for h > 0, and its stability
properties there are very interesting. To understand the situation, recall that eigenvalues of a
symplectic matrix come with symmetries as mentioned in Sect. 4.2.1. In the spatial problem,
there are four eigenvalues, and an orbit can lose stability without becoming degenerate by
the following mechanism:
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Fig. 3 A periodic polar orbit in RTBP for large mass ratio, close to the rotating Kepler problem. This orbit
has picked up many loops as described in Sect. 4. On the right, the xy- and yz-projections of the orbit. The
xz-projection can be found in Fig. 4

Fig. 4 The xz-projection of the
orbit from Fig. 3

z
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1. at parameter h1 all eigenvalues are elliptic, i.e., on the unit circle.
2. as the parameter h → h1 the eigenvalues stay elliptic, but they collide in pairs: i.e., there

are only two distinct eigenvalues (Fig. 4).
3. for h > h1 the eigenvalues move off the unit circle as sketched in Fig. 5.

It turns out that this mechanism occurs in for Hill’s lunar problem for h > 0.
We briefly explain the bifurcation points in Fig. 6.

a the orbit becomes degenerate and goes from being hyperbolic/negative hyperbolic to
elliptic/negative hyperbolic for h ∼ 0.044.

b the orbit goes through a period doubling/halving bifurcation: it goes fromelliptic/negative
hyperbolic to elliptic/elliptic for h ∼ 0.091.

c the orbit goes through an eigenvalue collision for h ∼ 0.11 and the eigenvalues move
for away from the unit circle. They do not appear to return to the unit circle, so stability
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Fig. 5 Collision of eigenvalues

Fig. 6 Bifurcation of the polar
orbit for h > 0 in Hill’s lunar
problem: the real part of the four
eigenvalues of the linearized
return map
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seems to be lost for large h > 0. Beyond point c, the eigenvalues move “freely” in
the complex plane, so the real part has then little meaning by itself. In particular, the
additional “intersection” is not an intersection in the complex plane.

Remark 3 The same mechanism of losing stability takes place for small μ > 0.

4.3 Bifurcations

Let γh denote the polar orbit in Hill’s lunar problem as a function of the energy h. We have
found the following bifurcation behavior of γh :

1. a period doubling/halving bifurcation for h ∈ [−1.025245,−1.025225] and in the inter-
val [0.0909615, 0.0909616].

2. a simple degeneracy in two intervals, namely for h ∈ [−0.85556,−0.85555] and for
h ∈ [0.043843, 0.043844].

3. an eigenvalue collision for h ∈ [0.109989, 0.109990].
We verified this statement using a computer-assisted argument with interval arithmetic to
obtain rigorous error bounds. This method was also used in for example Kapela and Simó
(2007). The above bifurcations of the polar orbit γh are recognized by noting that in each
case we have a specific behavior of the eigenvalues of the linearized return map. Namely,

123



A family of periodic orbits in the three-dimensional lunar problem Page 15 of 22 7

1. In this case, the linearized return map has an eigenvalue equal to −1 for some parameter
in the given interval, and a pair of eigenvalues moves from the unit circle to the positive
real axis or vice versa.

2. In this case, the linearized return map has an eigenvalue equal to 1 for some parameter
in the given interval, and a pair of eigenvalues moves from the unit circle to the positive
real axis or vice versa.

3. In this case, the linearized return map has two eigenvalues on the unit circle that are
equal, and not equal to −1 or 1 for some parameter in the given interval, and in addition,
the corresponding pairs of eigenvalues move away from the unit circle.

We have proceeded bymaking the proof from Sect. 3 more quantitative, and we have used the
linearized flow to obtain a tight enclosure of the return map. Such a scheme is similar to the
rigorous bifurcation results in theRössler systemobtained inWilczak andZgliczyński (2009).
We will briefly outline how we deduced the bifurcations. After obtaining an enclosure for the
return map using the linearized flow, we have computed the coefficients of the characteristic
polynomial of the restriction of the linearized flow to a transverse slice. Let us denote this
restriction by ψ . The characteristic polynomial of ψ is given by

χ(ψ)(x) = x4 − s1(ψ)x + s2(ψ)x2 − s3(ψ)x + det(ψ).

Here si (ψ) denotes the elementary symmetric polynomial in the roots of the characteristic
polynomial of degree i , so s1(ψ) = Tr(ψ). A 4× 4 symplectic matrix satisfies det(ψ) = 1
and s3(ψ) = s1(ψ). Hence we can compute the entire characteristic polynomial by just
computing s1 and s2. Using the standard formula for a quadratic polynomial, we find all
roots with good error bounds. Based on numerical experiments, we obtain the following.

Observation 1 The orbit is elliptic for h < −1.03 and complex hyperbolic for h > 0.11

Although we have checked the statement for some finite intervals using interval arithmetic,
we do not have a full proof that works for all energies.

4.3.1 Evolution of the polar orbit as a function of the energy

Here we fix a small mass parameter μ > 0, namely μ = 10−10 in the figures, and vary the
energy. We plot the projection to the xy-plane and to the yz-plane, and look at the evolution
as function of the energy. The typical situation for h < 0 is drawn in Fig. 7. For h ≥ 0,
the typical situation is drawn in Fig. 8 with the pointed tip in the yz-plane becoming more
pronounced as the energy increases.

Remark 4 Periodic polar solutions can be found in Hill’s lunar problem for all energies,
even for h > 0. Indeed, the Hill’s region becomes unbounded, but remains bounded in the
z-direction. This is of course not true for the restricted three-body problem, which we will
discuss next.

4.3.2 Solutions for the restricted three-body problem

The solutions we find for the rescaled Hamiltonian Hμ can be continued to larger μ as
solutions for the unrescaled problem. The energy is rescaled, and periodic polar orbits do
not exist for all energies anymore. Indeed, for h > 0 the orbits will typically escape a given
region around the masses.
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Fig. 7 The xy- and the yz-projection of a periodic polar orbit in the lunar problem: μ = 10−10 and h = −1.5
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Fig. 8 The xy- and the yz-projection of a periodic polar orbit in the lunar problem: μ = 10−10 and h = +8.0

For small μ and suitably rescaled energy, the behavior of the orbits is of course the
same as before. We will just mention one case that is of particular interest, namely the case
μ ∼ 0.01215, which is the mass ratio of the Moon/Earth. We found that the periodic polar
orbit can be continued to sufficiently large h ∼ −1.52 such that it is no longer a physical
collision orbit. This value of the Jacobi energy exceeds that of the first critical value. A 3d-plot
of this orbit is given in Fig. 9.

We also remark that solutions in the restricted three-body problem include the families
discussed in Belbruno (1981a). In the next section, we see that the new family from the main
theorem is for some energies a continuation of an orbit found in Belbruno (1981a).

4.3.3 Evolution of the polar orbit as a function of�

Here we fix the Jacobi energy of the Hamiltonian Hm and start at small, and small positive
μ at a near collision orbit. We will investigate how the polar orbit γμ evolves as μ changes
from small values to μ = 1. This gives part of a bridge connecting the polar orbits from this
paper to the polar orbits from Belbruno (1981a).

Remark 5 We point out that the part of the bridge indicated in the figures here is in the
unrescaled problem. In other words, we are using the Hamiltonian Hm rather than Hμ.

The bridge is constructed using a numerical homotopy. The homotopy becomesmore difficult
to carry out, i.e., smaller parameter steps are needed, for larger h. In particular, for h close
to −1.5, the period of polar orbits near the smaller primary becomes very large.
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Fig. 9 A periodic polar orbit in RTBP for the mass ratio Moon–Earth. The minimal distance to the center of
the Moon, the black ball, is 4389 km. This orbit is mixed elliptic/negative hyperbolic. Projections to the xy-
and yz-plane are drawn on the right. The projection to the xz-plane is drawn in Fig. 10

Fig. 10 The projection to the
xz-plane of the orbit from Fig. 9
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We make the following observations

– When h is sufficiently negative, e.g., h < −2, there are no bifurcations in the evolution
of the polar orbit as the mass parameter goes from small μ to large μ. In particular, γμ

is elliptic in this case.
– The projection of the orbit γμ to the xy-plane grows in area as μ increases until the area

reaches a maximum nearμ ∼ 0.5, after which the projection shrinks to a point forμ = 1
(which is collision orbit). This is illustrated in xy-projections of Figs. 11 and 12. Also
note that the projection of the orbit does not bound a convex region for large μ.

– For larger Jacobi energy h, the polar orbit in the lunar problem becomes hyperbolic,
whereas the polar orbit in the rotating Kepler problem, i.e., Hm with μ = 1, remains
elliptic. For these values of h, a bridge involves bifurcations.

123



7 Page 18 of 22 E. Belbruno et al.

x

z

y

y

0.010

0.005

0.000

-0.005

-0.010

µ =0.02
=0.10
=0.18
=0.26
=0.34
=0.42

µ
µ
µ
µ
µ

-0.002 -0.001 0.000

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

-0.35

=0.50µ

-0.005-0.010 0.000 0.005 0.010

Fig. 11 The xy- and yz-projection of an orbit in the bridge from lunar to rotating Kepler: for h = −2.0 as μ
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Fig. 12 The xy- and yz-projection of an orbit in the bridge from lunar to rotating Kepler: for h = −2.0 as μ
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Fig. 13 Periapsis (left) and apoapsis (right) in km as function of the Jacobi energy. At the light blue line, the
orbit just hits the surface of the Moon (taken to have a radius of 1716 km), and at the dark blue line, the orbit
reaches a periapsis that is at least 50 km above the surface

4.3.4 Periapsis, apoapsis for Moon–Earth system

We approximate the Moon–Earth system with the restricted three-body problem. For the
distance Earth–Moon we take 386,000 km. Following the above scheme, we find the polar
orbit as a function of the Jacobi energy. It turns out that the polar orbit does not collide with
the Moon for sufficiently large energy. We have included a plot of the periapsis and of the
apoapsis of the polar orbit.
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Fig. 14 The real part of the
eigenvalues of the linearized
return map for the polar orbit in
the Moon–Earth system as
function of the Jacobi energy
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Fig. 15 An orbit starting close to the periodic polar orbit: it is shifted by about 400 km in the y-direction
(orbits are fairly stable under shifts in the x-direction), and followed for five periods of the polar orbit

The stability properties of the polar orbit in the Moon-Earth system, though similar to
those of the Hill’s lunar system, are plotted in Fig. 14. The bifurcation point indicates a
period doubling/halving bifurcation.

The effect of the instability that appears after the period doubling/halving bifurcation is
indicated in Fig. 15.

We make the following observation: the periapsis of the polar orbit exceeds 1766 km (just
50km above the surface of the Moon) just before losing stability. The values are so close
though that the approximations we made (circular restricted three-body problem) most likely
spoil stability of a physical non-collision orbit.
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Appendix: Regularization in coordinates

Moser regularization is based on n−dimensional stereographic projection. The position and
momentum variables are given by q = (q1, q2, . . . , qn) ∈ R

n , p = (p1, p2, . . . , pn) ∈ R
n .

We denote by (q, p) ∈ T ∗
R
n a point in the (co)-tangent bundle of Rn , where we think of Rn

as a chart for Sn = {|ξ |2 = Σn
i=0ξ

2
i = 1}, ξ = (ξ0, ξ1, . . . , ξn). We set x = −p and y = q ,

and define the (co)-tangent bundle of Sn as

T ∗Sn = {(ξ, η) ∈ T ∗
R
n+1 | |ξ |2 = 1, 〈ξ, η〉 ≡ Σn

i=0ξiηi = 0}.
To go from T ∗Sn to T ∗

R
n we use the map

x = ξ̃

1 − ξ0

y = η0ξ̃ + (1 − ξ0)η̃,

(14)

where ξ̃ = (ξ1, ξ2, . . . , ξn). Collision corresponds to ξ0 = 1.
To go from T ∗

R
n to T ∗Sn , we use the inverse given by

ξ0 = |x |2 − 1

|x |2 + 1

ξ̃ = − 2x

|x |2 + 1

η0 = −〈x, y〉

η̃ = |x |2 + 1

2
y − 〈x, y〉x .

(15)

The Belbruno transform employs a Möbius transformation which sends to the collision
point |p| = ∞ to P = (1, 0, . . . , 0) ∈ R

n . In coordinates for three dimensions (the index
j = 2, 3), the forward Belbruno transformation is given by

Q1 = 1 − |p|2
2

q1 + 〈q, p〉(p1 + 1)

Q j = |p|2 + 1

2
q j + p1q j − p jq1 − 〈q, p〉p j

P1 = |p|2 − 1

|p + 1|2
Pj = 2p j

|p + 1|2 .

The inverse Belbruno transform is given by

q1 = 1 − |P|2
2

Q1 + 〈Q, P〉(P1 − 1)

q j = |P|2 + 1

2
Q j − P1Q j + Pj Q1 − 〈Q, P〉Pj

p1 = 1 − |P|2
|P − 1|2

p j = 2Pj

|P − 1|2 .
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Appendix: Hamiltonian vector field with constraints

The setup is the following. We are given a manifold M , which is a symplectic submanifold
of the symplectic manifold (N ,Ω). We denote the inclusion by ι : M → N , and the induced
symplectic form on M by ω := ι∗Ω . We assume that M = f −1

1 (0) ∩ f −1
2 (0). In addition,

we are given a Hamiltonian function HN : N → R, and we have the induced Hamiltonian
HM = ι∗HN . In our case N = T ∗

R
n+1 and M := T ∗Sn .

The functions that define M are

f1 = 1

2
|ξ |2 − 1

2
, f2 = 〈ξ, η〉.

In our case, the symplectic manifold N = T ∗
R
n+1 has a global chart, but T ∗Sn has not.

We will give a formula for the Hamiltonian vector field XH on M in terms of Hamiltonian
vector field on N . In our example, this means that we can use the global coordinates on
N = T ∗

R
n+1. We have

XH = XHN + c1X f1 + c2X f2 , (16)

where

XHN =
n∑
j=0

∂HN

∂η j

∂

∂ξ j
− ∂HN

∂ξ j

∂

∂η j

X f1 =
n∑
j=0

∂ f1
∂η j

∂

∂ξ j
− ∂ f1

∂ξ j

∂

∂η j
= −

∑
j

ξ j
∂

∂η j

X f2 =
n∑
j=0

∂ f2
∂η j

∂

∂ξ j
− ∂ f2

∂ξ j

∂

∂η j
=

∑
j

ξ j
∂

∂ξ j
− η j

∂

∂η j

c1 = d f2(XHN )

d f2(X f1)
= −{ f2, HN }

{ f1, f2} = −{ f2, HN }

c2 = d f1(XHN )

d f1(X f2)
= { f1, HN }

{ f1, f2} = { f1, HN }.

The Poisson brackets defined by { f , g} := ω(X f , Xg} are of course not needed to do the
computations, but they clarify the situation if M is a symplectic submanifold of higher
codimension, where a matrix filled with { fi , f j } has to be inverted. A computation shows
that the above vector field is tangent to the submanifold M and that it is the Hamiltonian
vector field.
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