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Abstract
We use validated numerical methods to prove the existence of spatial periodic orbits in the
equilateral restricted four-body problem. We study each of the vertical Lyapunov families
(up to symmetry) in the triple Copenhagen problem, as well as some halo and axial families
bifurcating from planar Lyapunov families. We consider the system with both equal and non-
equal masses. Our method is constructive and non-perturbative, being based on a posteriori
analysis of a certain nonlinear operator equation in the neighborhoodof a suitable approximate
solution. The approximation is via piecewise Chebyshev series with coefficients in a Banach
space of rapidly decaying sequences.As by-product of the proof,we obtain useful quantitative
information about the location and regularity of the solution.

Keywords Gravitational four-body problem · Spatial periodic orbits · Chebyshev spectral
methods · Computer-assisted existence proofs

1 Introduction

Acomplete understanding of the gravitationalN-bodyproblem is among the oldest challenges
in mathematical physics, with roots in the age of Newton. In the nineteenth century, Poincaré
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initiated the study of the circular restricted three-body problem (CRTBP). In this simplified
problem, two massive bodies (called primaries) are constrained to a fixed periodic solution
of the Kepler problem, and a massless particle moves in their gravitational field. This is one
of the simplest N -body problems which is not integrable and which admits chaotic motions.
A complete review of the literature for the CRTBP is beyond the scope of this work, and we
direct the interested reader to thewatershed studies of Strömgren (1933), ofHénon (1965a, b),
and of Broucke (1968). We also refer to the books of Moser (2001), of Szebehely (1967),
of Meyer et al. (2009), and of Belbruno (2007) and also to the lecture notes of Chenciner
(2015) for much more complete discussions.

The advent of space exploration in the twentieth century revitalized study of the CRTBP.
Researchers developed new analytical and numerical techniques to find orbits for use in the
design of space missions. One of the first works to study the possibility of using the R3BP
to design space missions is found in the Ph.D. thesis of Farquhar (1968). He used some
spatial periodic orbits in the CRTBP, the so-called halo orbits, as hypothetical locations for
communications relay stations in the Apollo missions. The first mission to actually use a
spatial halo orbit was the ISEE-3 satellite in 1978. Almost 20 years later, the Solar and
Heliospheric Observatory (SOHO) was the second mission using this kind of orbit in 1996.
Again a complete review of past and future missions considering halo orbits as trajectories
is beyond the scope of this work, but it is worth mentioning that the James Webb Space
Telescope—previously known as Next-Generation Space Telescope (NGST)—is tentatively
scheduled to launch in 2021 and will be stationed on a halo orbit near the libration point L2

in the Sun–Earth system. We refer to the interested reader to Folta and Beckman (2002) for
further mission details.

Natural generalizations of the CRTBP consist in taking a special solution of the gravita-
tional three-body problem and studying a massless particle moving in the resulting field. It is
well known that the three-body problem admits an explicit solution known as the Lagrangian
central configuration. This consists of three massive (not necessarily equal) bodies arranged
in an equilateral triangle configuration. Each body moves in a periodic orbit of the Kepler
problem, either elliptical or—as in our case—circular. The resulting four-body system is
known as the equilateral circular restricted four-body problem (CRFBP).

Let us briefly consider some motivation for studying the CRFBP. Astronomical obser-
vations reveal that Lagrangian central configurations are found in our own Solar system.
There are well-known examples of asteroids that lie approximately in an equilateral con-
figuration in the Sun–Jupiter system. Such asteroids have been classified into two groups,
the so-called Trojans and Greeks which both lie on the orbit of Jupiter. Trojan asteroids
have been detected recently in our Solar system for the Mars–Sun and Neptune–Sun sys-
tems and even for the Earth–Sun system. We find equilateral triangle configurations also
among Saturn and some of its moons, for example, Saturn–Tethys–Telesto, Saturn–Tethys–
Calypso, or Saturn–Dione–Helene. Exploration of the Trojan asteroids was included with
high priority in the 2013 Decadal Survey among the New Frontiers missions in the decade
2013–2022.

In Schwarz et al. (2007), the authors describe several observed extrasolar planetary systems
(EPS) where they find a Sun-like star and a Jupiter-like gas giant orbiting the star. They
compute the stability zones of hypothetical planets located approximately in an equilateral
configuration formedby the star–gas giant-Trojan planet system. In otherwords, they consider
hypothetical planets in a 1 : 1 orbital resonance with the gas giant. They also consider
some other relevant effects in their work, related to the habitability of the Trojan planet. For

123



Spatial periodic orbits in the equilateral circular restricted four-body problem Page 3 of 36 2

example, they consider the age of the central star, the distance from it, climate considerations,
etc.

Mathematical investigations of the CRFBP appear as early as the work of Pedersen
(1944, 1952). A later study of Simó gave compelling numerical evidence for the con-
jecture that there are always eight, nine, or ten equilibrium solutions—depending on the
mass ratios of the primary bodies (Simó 1978). The interested reader may want to con-
sult also the study of Álvarez-Ramírez and Vidal (2009) where tools from the qualitative
theory of dynamical systems are used to explore the phase space of the spatial problem in
detail.

Rigorous mathematical proof of the correctness of the equilibrium count given by Simó
in Simó (1978) has recently been completed in a series of papers by Leandro (2006), Barros
and Leandro (2011, 2014). The proof uses Möbius transformations to put the problem into
a form where the number of zeros is counted using rules of sign. From the point of view of
the present discussion, it is important to mention that the proof is computer assisted.

The next simplest solutions of the CRFBP are periodic orbits, and these are studied in
a number of works including Burgos-García (2016), Burgos-Garcia and Bengochea (2017),
Burgos-García and Delgado (2013), Papadakis (2016), Baltagiannis and Papadakis (2011),
and Papadakis (2016). The paper (Papadakis 2016) just cited is especially relevant to the
present introduction, as the author studies some spatial families of periodic orbits in the
CRFBP.

Inspired by the success of Leandro and Barros, we provide mathematically rigorous exis-
tence proofs for some spatial periodic orbits in the CRFBP. As in the works of Leandro
and Barros, our method of proof is computer assisted. Of course, the number of periodic
orbits in a Hamiltonian system is typically uncountable, and we cannot hope to obtain
precise counts as in the equilibrium case. Instead, we focus on proving the existence of
periodic orbits in certain prominent families like the vertical Lyapunov, halo, and axial solu-
tions.

We present a method which can in principle be used to prove the existence of any
non-degenerate periodic orbit for the CRFBP found using standard numerical methods.
Here, non-degeneracy amounts to assuming that the periodic orbit is isolated in the energy
level set and that it is not too close to a bifurcation. “Too close” involves implementa-
tion details like the number of digits of precision available in the representation of real
numbers, the conditioning of certain matrices, and some local bounds on second deriva-
tives.

Our arguments are based on a posteriori analysis in infinite sequence spaces of Chebyshev
series coefficients. The method is constructive, works for parameter values far from any sym-
metric or perturbative special cases, and provides useful by-product such as precise bounds
on the location of the orbits, bounds on derivatives, bounds on the domain of analyticity, and
decay rates for the Chebyshev series coefficients of the periodic orbit. Some periodic orbits
whose existence is proved using our methods are illustrated in Figs. 1, 2, and 3. More results
are discussed in Sect. 5.

Our computer-assisted analysis builds on the earlier work of Hungria et al. (2016), Lessard
et al. (2016), incorporating new developments due to Van den Berg and Sheombarsing (2016)
(see Sect. 4), and Lessard (2018) (see Remark 4). Indeed, we defer to these references for
many of the technical details and focus our attention instead on adapting these methods to
the CRFBP and on the results so obtained.
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Fig. 1 Spatial periodic orbits in the tripleCopenhagen problem:The figure illustrates 126 spatial periodic orbits
in the equilateral restricted four-body problem with equal masses. Computer-assisted proofs of existence for
these orbits—using themethods laid down in the presentwork—are discussed in Sect. 5. The tripleCopenhagen
problems have a 2π/3 rotational symmetry, so that in this case we only have to prove one-third of the orbits
and obtain the rest by symmetry

Fig. 2 Vertical Lyapunov families associated with libration points: The orbits illustrated in Fig. 1 are obtained
by numerical continuation from the vertical families associated with the 10 libration points of the triple
Copenhagen problem. Our method of proof is based on a posteriori analysis of numerical data and applies to
any of the orbits located during the continuation. This figure illustrates the vertical families associated with
L1 (top frames) and L4 (bottom frames). See Sect. 2 for an overview of the libration points and their stability
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Fig. 3 Halo family in the equilateral restricted four-body problem: Spatial periodic orbits can appear as
bifurcations from planar Lyapunov orbits. One such family is illustrated here for an equilateral restricted
four-body problem with non-equal masses/broken symmetry. We refer to these as halo orbits, in analogy with
similar families found in the CRTBP—an observer sitting in the xy-plane sees these as “halos” around a
primary body. We discuss existence proofs for these and several related families bifurcating from the plane in
Sect. 5

Remark 1 (The functional analytic and phase space approaches) In Sect. 2.3, we briefly
summarize several decades of mathematically rigorous computer-assisted analysis for N -
body problems. In concluding the present introduction, we only remark that—very roughly
speaking—existing work employs either topological arguments formulated in the phase
space, or functional analytic arguments formulated in a Banach space.

The phase spacemethods depend on high-order Taylor/Lohner algorithmswhich track sets
of initial conditions (Zgliczynski 2002). They apply degree theory—for example, Conley or
Brouwer indices—to force the existence of non-trivial recurrent dynamics. The functional
analytic methods reformulate invariant objects like equilibria, periodic orbits, smooth invari-
antmanifolds, or connectingorbits as solutions of nonlinear operator equations. The equations
may be discretized using Taylor, Fourier, Chebyshev, or Lindstedt series expansions, and a
posteriori arguments based on implicit function theory force the existence of true solutions
near good enough approximate ones.

From our point of view, the phase space/function space dichotomy is completely natural,
as topological and analytical tools permeate every corner of dynamical systems theory. As
the mathematically rigorous theory of computational dynamics evolves, it will necessarily
grow in both directions. Matriculation of diverse approaches indicates health, rather than
confusion, in our field.

The choice of a functional analytic framework for the present study is in part influenced by
the taste of the authors, as well as by our desire to illustrate the successful use of these tool in
an interesting and highly non-trivial application. An even more important factor is our desire
to use these periodic orbits as the base step in constructing stable/unstable manifolds using
the parameterization method (Cabré et al. 2003, 2005; Haro et al. 2016; Castelli et al. 2015).
We are especially interested in combining the numerical methods developed inMireles James
and Murray (2017) with the a posteriori analysis developed in Castelli et al. (2018). The first
step in this project is to numerically compute the periodic orbits using piecewise Chebyshev
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series equipped with validated truncation error bounds in the analytic category—exactly
the problem solved in the present work. The resulting invariant manifold expansions, when
combinedwith the analytic continuation techniques for local invariantmanifolds developed in
Kalies et al. (2018), Kepley andMireles James (2018), lead to both computer-aided existence
proofs for transverse connecting orbits and bounds on minimum transport times for these
connections. We remark that while there exist many methods in the literature for proving
the existence of connecting orbits (see the discussion in Sect. 2.3 for more references) only
set-oriented methods like those of Kalies et al. (2018) and Kepley and Mireles James (2018)
are able to rule out connections/bound minimum transport times.

The remainder of the paper is organized as follows. In Sect. 2, we review some background
material pertaining to the a posteriori analysis. We also discuss briefly the rich literature on
computer-assisted proof in Celestial Mechanics. In Sect. 3, we discuss a procedure which
transformsour problem to polynomial and introduce appropriate phase conditions for periodic
orbits in the transformed problem. In Sect. 4, we introduce the Chebyshev operator equation
of the form F(x) = 0 whose solutions correspond to periodic orbits of the CRFBP. Section 5
is devoted to results, where we prove existence of periodic orbits in the CRFBP by showing
existence of solutions of F = 0 using a rigorous computer-assisted a posteriori analysis.

2 Background

2.1 Equations of motion for the equilateral circular restricted four-body problem

We consider the motion of an infinitesimal particle, moving in the gravitational field of three
massive bodies—the primaries—themselves moving in an equilateral triangular configura-
tion of Lagrange. The equations of motion in a rotating frame are

ẋ = f (x),

where x def= (x, ẋ, y, ẏ, z, ż) and with the vector field given by

f (x) def=

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ
2 ẏ + Ωx (x, y, z)

ẏ
−2ẋ + Ωy(x, y, z)

ż
Ωz(x, y, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

Here,

Ω = Ω(x, y, z, m1, m2, m3)
def= 1

2
(x2 + y2) + m1

r1
+ m2

r2
+ m3

r3

is the effective potential, where ri
def= √

(x − xi )2 + (y − yi )2 + z2, for i = 1, 2, 3. The
general expressions for the coordinates of the primaries in terms of the masses of the three
point masses are given by
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x1
def=

−|K |
√

m2
2 + m2m3 + m2

3

K
, y1

def= 0,

x2
def= |K | [(m2 − m3)m3 + m1(2m2 + m3)]

2K
√

m2
2 + m2m3 + m2

3

, y2
def= −√

3m3

2m3/2
2

√
m3

2

m2
2 + m2m3 + m2

3

,

x3
def= |K |

2
√

m2
2 + m2m3 + m2

3

, y3
def=

√
3

2
√

m2

√
m3

2

m2
2 + m2m3 + m2

3

,

where K
def= m2(m3 − m2) + m1(m2 + 2m3) and the masses are normalized so that

m1 + m2 + m3 = 1.

We write

p1 = (x1, y1), p2 = (x2, y2), and p3 = (x3, y3)

to denote the locations in the plane of the primary bodies.
The equations of motion have the well-known first integral (the so-called Jacobi constant)

given by

C = −(ẋ2 + ẏ2 + ż2) + 2Ω.

The constantC is related to the total energy of the systembymeans of the relation E = −C/2.
It should be noted that whenm3 = 0 andm2

def= μwe recover the coordinates of the restricted
three-body problem:

(x1, y1, z1) = (−μ, 0, 0),

(x2, y2, z2) = (1 − μ, 0, 0),

(x3, y3, z3) = (1/2 − μ,
√
3/2, 0),

where the position of the ‘phantom’ mass m3 coincides with the equilibrium point L4 of the
R3BP associated with the masses m1 and m2.

The relative equilibria—or libration points—of the system are given by the critical points
of the effective potentialΩ . That is, they satisfy the equationsΩx = 0,Ωy = 0, andΩz = 0.
A straightforward computation shows that the partial derivative Ωz satisfies

Ωz = −z
3∑

i=1

mi

r3i
,

with ri = √
(x − xi )2 + (y − yi )2 + z2 for i = 1, 2, 3, and as a consequence, all equilibria

are coplanar (i.e., Ωz = 0 implies that z = 0). As mentioned in “Introduction,” there are 8,
9, or 10 equilibria depending on the mass ratios (Fig. 4).

It is not difficult to see that when we have two equal masses, say m2 = m3, the partial
derivatives of the effective potential for the planar case satisfy the following properties

Ωx (x,−y) = Ωx (x, y),

Ωy(x,−y) = −Ωx (x, y).

As a consequence, the equations ofmotion (1) are invariant under the transformations x → x ,
y → −y, ẋ → −ẋ , ẏ → ẏ, ẍ → ẍ , ÿ → −ÿ; therefore, we have recovered the well-
known symmetry with respect to the x-axis for the restricted three-body problem. However,

123



2 Page 8 of 36 J. Burgos-García et al.

Fig. 4 The circular restricted
four-body problem: The
primaries with masses
0 < m3 ≤ m2 ≤ m1 move in a
central equilateral triangle
configuration of Lagrange. After
changing to a corotating
coordinate frame, we study the
dynamics of a fourth and
massless particle moving in the
gravitational field of the
primaries. The equations of
motion for the massless particle
are given in Eq. (1). For typical
mass ratios, the problem has
always 8, 9, or 10 relative
equilibria (or libration points)
depending on the mass ratio. The
relative equilibria are denoted
here by L j for 0 ≤ j ≤ 9

for the equal masses case we have an additional and useful symmetry which states that if

z(t) = x(t) + iy(t) is a solution of the system (in complex notation), then e
2π
3 iz(t) is also

a solution of the system. In other words, we have a symmetry with respect to the lines that
join the center of the triangle with the three primaries, see Burgos-García (2013) for further
details. A useful consequence of this symmetry with respect to the local dynamics around
the equilibrium points is that it is enough to study the equilibrium points on the x-axis. This
information is extended to the remaining equilibrium points by means of this symmetry.
Moreover, as this property can be applied to study the periodic orbits around the primaries,
it is enough to study the dynamics around the primary on the x-axis.

2.2 Overview of methods and results

When searching for spatial periodic orbits in Hamiltonian systems, a natural starting point
is the so-called vertical Lyapunov families. These are one-parameter families of spatial peri-
odic orbits near a libration point of saddle × saddle × center or saddle × center × center
stability. For these, we compute a high-order approximation of the center manifold using the
approach of Farrés and Jorba (2010). The resulting formal expansion for the center manifold
provides good starting points for the vertical Lyapunov families. We then apply a classical
numerical continuation scheme for systems with a first integral (e.g., see Keller 1987). Since
our continuation approach is based on Newton’s method, we must have local isolation of the
solutions. Again, since we are working with a Hamiltonian system, we must introduce both
the standard Poincaré condition and an unfolding parameter as discussed in Muñoz Almaraz
et al. (2003) to remove the degeneracies caused by the phase and the conservation of energy.
We apply our method of proof to some of the orbits located using the continuation scheme.

Another mechanism giving rise to spatial periodic orbits is discussed in the work of Hénon
(1973) and starts by considering a planar family of periodic orbits. He shows that computing
the so-called vertical stability index (denoted as av) of a planar periodic orbit provides
information about whether a planar periodic orbit belongs at the same time to a family of
3D (spatial) periodic orbits. The conclusions of that work suggest that the so-called vertical
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critical orbits, when |av| = 1, can be considered as members of 3D families of periodic
orbits. When we find planar Lyapunov orbits for which |av| = 1, we will find spatial families
of periodic orbits after the bifurcation. This mechanism produces the so-called halo and axial
orbits families (as well as others). Once again numerical continuation can be applied to any
such orbit, and we apply our method of proof to some periodic orbits located this way.

We now outline the main idea behind the computer-assisted proofs carried in the present
work. LetΩ ⊂ R

N be an open set and f : Ω → R
N be a real analytic vector field. The main

objects of study in this paper are periodic solutions of the differential equation ẋ = f (x),
that is solutions x : [0, T ] → R

N with x(t + T ) = x(t) for all t ∈ R. Following closely the
approach of Van den Berg and Sheombarsing (2016), we expand the solution in the basis of
Chebyshev series on multiple time domains, and we solve for the Chebyshev coefficients.
We endow the space of unknown coefficients with a Banach space structure and are left with
the problem of finding a zero of a smooth nonlinear map between Banach spaces. Truncating
to a finite number of modes, we compute an approximate solution using Newton’s method.
Finally, we make a posteriori arguments which allow us to conclude that there is a true
solution of the problem near our numerical approximation. The a posteriori analysis used in
the present work follows the approach developed in Hungria et al. (2016) and Van den Berg
and Sheombarsing (2016).

Using the methods sketched above, we are able to prove the existence of a number of in-
and out-of-plane periodic orbits for the CRFBP.

Remark 2 (Automatic differentiation) The analysis outlined above is based on formal series
manipulations and is especially straightforward when the vector field f is polynomial. How-
ever, in the present work we consider the CRFBP, whose nonlinearities involve rational
denominators originating from the inverse square law of universal gravitation. To circum-
vent this difficulty, our approach builds on the techniques of automatic differentiation for
Fourier series developed in Lessard et al. (2016), and we convert the four-body vector field
into a polynomial system—albeit in a higher-dimensional phase space. The idea, which we
discuss in details in Sect. 3, is to append additional polynomial differential equations related
to the rational nonlinearities. By carefully adding new variables (sometimes called unfold-
ing parameters) to the system (which balance certain scalar constraint equations), we obtain
a system of polynomial equations which is equivalent to the original system, in the sense
that periodic solutions of one are periodic solutions of the other. We note that in Lessard
et al. (2016) additional variable was avoided by exploiting the symmetries of the restricted
three-body problem.

2.3 Computer-assisted proofs in Celestial Mechanics

In this section, we provide a brief overview of the literature on computational proofs for
N -body problems, with a particular emphasis on results pertaining to periodic solutions. A
general review of the literature on computer-assisted proofs in analysis is beyond the scope
of the present work, and the interested reader will find extensive scholarly discussion in the
book of Tucker (2011), the memoire Eckmann et al. (1984), and also the review articles
van den Berg and Lessard (2015) and Koch et al. (1996). The reader is warned also that the
discussion below follows a kind of dynamical progression, and is not at all in chronological
order.

Regular motions include equilibrium, periodic, and quasiperiodic solutions of the equa-
tions of motion. It is sometimes possible to study equilibrium solutions and their stability
“by hand” (or with the aid of computer algebra systems); however, it is hard work describing
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the nonlinear stability—that is following invariant manifolds. We refer to the mathemati-
cally rigorous, computer-assisted studies of center manifolds (Capiński and Roldán 2012)
and strong stable/unstable manifolds (Capiński and Wasieczko-Zajac 2015) for the circular
restricted three-body problem, as well as to the work of Kepley and Mireles James (2018)
on the dynamics of complex saddles in the CRFBP.

Techniques for computer-assisted proofs of periodic orbits for differential equations in
general, and for celestial mechanics problems in particular, have been developed by a number
of authors. See, for example, the studies ofArioli (2004),Arioli et al. (2006), andLessard et al.
(2016) on periodic orbits for the three-body and the planar restricted three-body problem,
as well as the computer-assisted proof of the existence of choreography orbits for N -bodies
with 3 ≤ N ≤ 8 Kapela and Zgliczyński (2003). The present work provides computer-
assisted proofs of spatial orbits in the circular restricted four-body problem. The recent
work of Walawska and Wilczak (2018) follows global branches of spatial periodic orbits
in the restricted three-body problems, providing mathematically rigorous computer-assisted
analysis of the bifurcations.

Computer-assisted proofs of invariant tori in realistic celestial systems are both difficult
and technical and can be found in the work of Celletti and Chierchia (1997, 2007). These
studies build on the earlier work of Celletti and Chierchia (1987), Celletti et al. (1987),
de la Llave and Rana (1990), and Celletti and Chierchia (1991) on the use of the digital
computer as a tool for optimizing KAM estimates. See also the recent work of Haro and de la
Llave (2006) on a general approach to computer-assisted proofs for invariant tori. Note that
in the studies just mentioned, the invariant tori are constructed explicitly via Fourier series
approximation. Another, more existential approach to KAM theorem is found in the work of
Kapela and Simó (2017), where the authors use methods of rigorous numerical integration in
order to compute normal forms about periodic orbits of Hamiltonian systems and check the
conditions of abstract stability theorems. Using these techniques, they show, for example, that
the rotating figure-eight choreography orbit in the full three-body problem is KAM stable.

We refer also to the work of Galante and Kaloshin (2011) on the destruction of invariant
tori in the planar circular restricted three-body problem and the study of Urschel and Galante
(2013) on diffusion in a Sun–Jupiter–Asteroid problem.

The study of irregular motions often focuses on transverse homoclinic/heteroclinic chaos
or on the existence of topological horseshoes. See, for example, the studies of Arioli (2002),
Wilczak and Zgliczynski (2003), and Wilczak and Zgliczyński (2005) on connecting orbits
and chaos between periodic orbits in the circular restricted three-body problem. See also the
work of Capiński (2012) on transverse intersection between the stable/unstable manifold of
such orbits. The recent work of Kepley and Mireles James (2018) establishes the existence
of transverse homoclinic orbits, and hence chaotic motions, for a saddle-focus equilibrium
in the CRFBP.

2.4 A posteriori existence and computer-assisted proof in nonlinear analysis

We now state a theorem which provides sufficient conditions for the existence of a zero to a
nonlinear equation, provided one has a good enough, non-degenerate approximate solution.
The theorem makes precise the meaning of the terms “good enough” and “non-degenerate”
and provides computable conditions for checking these conditions. The reader will find
similar theorems with their proofs in the references Hungria et al. (2016), Eckmann et al.
(1984), Gameiro and Lessard (2017), Day et al. (2007), Yamamoto (1998), and Arioli and
Koch (2012).
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Theorem 1 (Radii polynomial approach) Let X and Y be Banach spaces, F : X → Y be
a twice Fréchet differentiable mapping and x̄ ∈ X (typically a numerical approximation).
Denote by ‖·‖X the norm on X, Br (x̄) = {x ∈ X : ‖x − x̄‖ ≤ r} the closed ball centered at x̄ ,
and ‖ · ‖B(X) the bounded linear operator norm. Suppose that A† : X → Y and A : Y → X
are bounded linear operators and that A is one-to-one (injective). Assume that there are
constants Y0, Z0, Z1 ≥ 0 and a positive function Z2 : (0,∞) → (0,∞) having that

‖AF(x)‖X ≤ Y0, (2)

‖IdX − AA†‖B(X) ≤ Z0, (3)

‖A
(
DF(x̄) − A†) ‖B(X) ≤ Z1, (4)

‖A (DF(x) − DF(x̄)) ‖B(X) ≤ Z2(r)r , for x ∈ Br (x̄). (5)

Define the function

p(r)
def= Z2(r)r2 − (1 − Z0)r + Y0. (6)

If there exists an r0 > 0 so that p(r0) < 0, then there exists a unique x̃ ∈ Br (x̄) such that
F(x̃) = 0.

Remark 3 In many applications, the function Z2(r) is a polynomial in r . In this case, p(r)

is a polynomial which we refer to as the radii polynomial. This happens in particular when
F is a polynomial map on a product of Banach algebras, the case considered in the present
work.

3 Automatic differentiation for the CRFBP: the equivalent polynomial
system

In this section, we derive a nine-dimensional polynomial vector field and show that periodic
solutions of the new problem correspond to periodic solutions of the six-dimensional CRFBP.
The polynomial vector field is obtained by automatic differentiation, a process by which we
add algebraic differential equations to our system whose solutions correspond to the original
non-polynomial nonlinearity.

The idea of replacing a given nonlinear system of differential equation with a polynomial
vector field is not new. Examples of using this idea to simplify the development of Taylor
integration schemes for celestial mechanics problems appear in the literature as early as the
works of Steffensen (1955), Rabe (1961), and Deprit and Price (1965). In the context of
computer-assisted proofs, it is important to describe precisely the relationship between the
original and the polynomial problems. (The problems are not strictly speaking equivalent;
for example, in addition to being of different dimensions the polynomial problem is entire
and the later has singularities at the locations of the primaries.) The study of Kepley and
Mireles James (2018) presents a dynamical systems approach to justifying the automatic
differentiation, which we recapitulate below.

3.1 The infinitesimal conjugacy equation

Let U ⊂ R
M be an open subset and f : U → R

M be a smooth non-polynomial vector field.
We look for a transformation h which embeds the vector field in a polynomial system. Let
us denote the polynomial vector field by g. We want that the dynamics of the polynomial
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vector field, when restricted to a certain submanifold, are conjugated to the original dynamics
generated by f .

To be more precise, we seek an N > 0, a smooth function h : U ⊂ R
M → R

N , and a
polynomial vector field g : RM+N → R

M+N with
(

f (x)
Dh(x) f (x)

)
= g(x, h(x)), x ∈ U . (7)

Defining R : U → R
M+N by

R(x) =
(

x
h(x)

)
,

we see that Eq. (7) is equivalent to the infinitesimal conjugacy equation

DR(x) f (x) = g(R(x)), (8)

for x ∈ U ⊂ R
M . The dynamical interpretation of Eq. (8) is that the vector field g restricted

to the graph of h is equivalent to the vector field f pushed forward by R, so that orbits of
g on the graph of h correspond to orbits of f . Indeed, the following Lemma is proven in
Kepley and Mireles James (2018).

Lemma 1 Suppose that f , g, R are as above.

– Then, the image of R, that is, the graph of h, is an invariant manifold for the flow generated
by g.

– Let πM : RM+N → R
M denote projection onto the first M components. Then, if

u : [0, T ] → R
M+N is a solution of the differential equation u̇ = g(u), we have that

x(t) def= πM (u(t))

is a solution of the differential equation ẋ = f (x) with initial conditions πM (u(0)).

In a particular problem involving a non-polynomial vector field f , the challenge is to find
g and h. The procedure for this is straightforward when f contains N non-polynomial terms
which are themselves solutions of polynomial ordinary differential equations. This procedure
is best illustrated by considering particular examples.We note that this approach to automatic
differentiation of vector fields is a generalization of the approach developed for Taylor series
more commonly discussed in the literature (as, for example, in Jorba and Zou 2005; Knuth
1981; Haro et al. 2016). This approach has the virtue of applying also to the basis such as
Fourier and Chebyshev as well as Taylor series. See Lessard et al. (2016), van den Berg et al.
(2018), and the discussion below.

3.2 Automatic differentiation for the CRFBP

Returning to the equations of motion for the CRFBP defined in Sect. 2.1, we define variables

u1
def= x, u2

def= ẋ, u3
def= y, u4

def= ẏ, u5
def= z, u6

def= ż,

and

u7
def= 1

r1
, u8

def= 1

r2
, and u9

def= 1

r3
,
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where

r1 =
√

(x − x1)2 + (y − y1)2 + z2,

r2 =
√

(x − x2)2 + (y − y2)2 + z2,

r3 =
√

(x − x3)2 + (y − y3)2 + z2.

Recall that (x j , y j ) for j = 1, 2, 3 are the coordinates of the three primary bodies. The virtue
of these variables is seen by observing that

Ωx = x − m1(x − x1)

r31
− m2(x − x2)

r32
− m3(x − x3)

r33
= u1 − m1(u1 − x1)u

3
7 − m2(u1 − x2)u

3
8 − m3(u1 − x3)u

3
9,

Ωy = y − m1(y − y1)

r31
− m2(y − y2)

r32
− m3(y − y3)

r33
= u3 − m1(u3 − y1)u

3
7 − m2(u3 − y2)u

3
8 − m3(u3 − y3)u

3
9,

Ωz = −m1z

r31
− m2z

r32
− m3z

r33
= −m1u5u3

7 − m2u5u3
8 − m3u5u3

8.

That is, the CRFBP nonlinearities are polynomial in the new variables.
To understand the dynamics in terms of these new variables, consider, for example, that

u̇7 = −1

r21
ṙ1

= −1

r21

d

dt

√
(x(t) − x1)2 + (y(t) − y1)2 + z(t)2

= −1

r21

d
dt (x(t) − x1)2 + (y(t) − y1)2 + z(t)2

2
√

(x(t) − x1)2 + (y(t) − y1)2 + z(t)2

= −(u1 − x1)u2u3
7 − (u3 − y1)u4u3

7 − u5u6u3
7,

and similarly that

u̇8 = −(u1 − x2)u2u3
8 − (u3 − y2)u4u3

8 − u5u6u3
8,

u̇9 = −(u1 − x3)u2u3
9 − (u3 − y3)u4u3

9 − u5u6u3
9.

Based on these considerations, let x def= (u1, . . . , u6) ∈ R
6 and define the set

U = {
x = (u1, . . . , u6) : u1 
= x j and u3 
= y j for j = 1, 2, 3

}
.

Define the smooth function h : U ⊂ R
6 → R

3 by

h(x) =

⎛
⎜⎜⎜⎜⎝

1√
(u1−x1)2+(u3−y1)2+u25

1√
(u1−x2)2+(u3−y2)2+u25

1√
(u1−x3)2+(u3−y3)2+u25

⎞
⎟⎟⎟⎟⎠
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and let u = (u1, . . . , u9)
def= R(x) = (x, h(x)) ∈ R

9, where R : U → R
9 is smooth. Finally,

let the polynomial vector field g : R9 → R
9 given by

g(u)
def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2

2u4 + u1 − m1(u1 − x1)u3
7 − m2(u1 − x2)u3

8 − m3(u1 − x3)u3
9

u4

−2u2 + u3 − m1(u3 − y1)u3
7 − m2(u3 − y2)u3

8 − m3(u3 − y3)u3
9

u6

−m1u5u3
7 − m2u5u3

8 − m3u5u3
9

−(u1 − x1)u2u3
7 − (u3 − y1)u4u3

7 − u5u6u3
7

−(u1 − x2)u2u3
8 − (u3 − y2)u4u3

8 − u5u6u3
8

−(u1 − x3)u2u3
9 − (u3 − y3)u4u3

9 − u5u6u3
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

With g and R so defined it is a straightforward calculation to verify that Eq. (8) is satisfied
for the CRFBP field f . Recalling Lemma 1, we have the following result.

Lemma 2 If u = (u1, . . . , u9) : [0, T ] → R
9 is a T -periodic solution of u̇ = g(u), then

x(t) def= π6(u(t)) = (u1, . . . , u6) : [0, T ] → R
6 is a T -periodic solution of the CRFBP

ẋ = f (x) with f given in (1).

3.3 Unfolding parameters

Periodic solutions of the polynomial system defined in Lemma 2 occur in five parameter
families and are hence not isolated. The five unit Floquet multipliers come from

(a) The shift invariance always present when we study periodic solutions of vector fields;
(b) The fact that g inherits a first integral from f ;
(c) The fact that each of the three appended equations introduces a spurious periodic family.

We say that the extra families are spurious as they lie off the image of R and hence have
nothing to do with the dynamics of the CRFBP. Nevertheless, they are present when we
study g and have to be understood/excluded.

The degeneracy introduced by (a) is handled by introducing a phase condition. We take a
standard Poincaré section. The degeneracy introduced by (b) is handled by fixing the desired
frequency/period. This choice must be balanced by introducing an unfolding parameter to
re-balance the system of equation. This classical technique is discussed, for example, in the
works of Muñoz Almaraz et al. (2003), Sepulchre and MacKay (1997) and Muñoz Almaraz
et al. (2000). Each degeneracy from (c) is due to the fact that we have to impose that the
periodic orbit is on the manifold parameterized by R. We achieve this by introducing three
additional scalar constraint equations. Each of these constraint equationsmust be balanced by
its own unfolding parameter, resulting in a total of four. In the end, these parameters will end
up being zero, as we show below. Their ultimate purpose is to remove the four-dimensional
kernel—resulting from the degeneracies just mentioned—from the linearized problem.

More precisely then, we let α1, α2, α3, β ∈ R the unfolding parameters and consider the
augmented system of equations

u̇1 = u2,

u̇2 = 2u4 + u1 − m1(u1 − x1)u3
7 − m2(u1 − x2)u3

8 − m3(u1 − x3)u3
9 + βu2,
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u̇3 = u4,

u̇4 = −2u2 + u3 − m1(u3 − y1)u3
7 − m2(u3 − y2)u3

8 − m3(u3 − y3)u3
9,

u̇5 = u6,

u̇6 = −m1u5u3
7 − m2u5u3

8 − m3u5u3
9,

u̇7 = −(u1 − x1)u2u3
7 − (u3 − y1)u4u3

7 − u5u6u3
7 + α1u3

7,

u̇8 = −(u1 − x2)u2u3
8 − (u3 − y2)u4u3

8 − u5u6u3
8 + α2u3

8,

u̇9 = −(u1 − x3)u2u3
9 − (u3 − y3)u4u3

9 − u5u6u3
9 + α3u3

9. (10)

Denote α = (α1, α2, α3) ∈ R
3, and denoting the right-hand side of (10) by g̃(u, β, α), we

get

g̃(u, β, α)
def= g(u) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

βu2

0

0

0

0

α1u3
7

α2u3
8

α3u3
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have the following lemma, which is related to the results of Muñoz Almaraz et al.
(2003). Since the lemma does not exactly follow directly from any of the classical results, we
include the proof—which involves some tedious calculations—in “Appendix” for the sake
of completeness.

Lemma 3 Assume that α1, α2, α3, β, ω ∈ R are fixed constants with ω > 0, and letn,p ∈ R
9

be fixed vectors. Let T = 2π/ω. Suppose that u = (u1, . . . , u9) : [0, T ] → R
9 is a T -

periodic solution of u̇ = g̃(u, β, α) with

0 = (u(0) − p) · n,

u7(0) = 1√
(u1(0) − x1)2 + (u3(0) − y1)2 + u5(0)2

,

u8(0) = 1√
(u1(0) − x2)2 + (u3(0) − y2)2 + u5(0)2

,

u9(0) = 1√
(u1(0) − x3)2 + (u3(0) − y3)2 + u5(0)2

, (11)

and that u7(t), u8(t), u9(t) > 0 for all t ∈ [0, T ]. Then,

(i) α1 = α2 = α3 = β = 0, and
(ii) the function x def= (u1, . . . , u6) : [0, T ] → R

6 is a T-periodic solution of the circular
restricted four-body problem ẋ = f (x) with f given in (1).
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4 The rigorous computational approach based on Chebyshev series

Based on the analysis provided by the previous section, we now define a nonlinear Chebyshev
operator equation of the form F(x) = 0 on a Banach space of infinite sequences whose zeros
correspond to periodic orbits of u̇ = g̃(u, β, α), and via Lemma 3 to periodic orbits of
the CRFBP. To define the Chebyshev operator, we employ the techniques described in the
paper Van den Berg and Sheombarsing (2016), following closely their notation and approach.
Once the operator is obtained, we will apply the radii polynomial approach (as described in
Theorem 1) to prove existence of solutions of F(x) = 0.

As in Van den Berg and Sheombarsing (2016), considering any partition of [0, 1]
Pm

def= {t0 = 0 < t1 < t2 < · · · < tm−1 < tm = 1}, (12)

where m ∈ N is the mesh size. Fix ω > 0, and let n,p ∈ R
9 be fixed vectors. Looking for

periodic orbits of (10) is equivalent to

(P1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
u(1)(t) = 1

ω
g̃(u(1)(t), β, α), t ∈ [0, t1],

u(1)(0) = u(m)(1),

(u(1)(0) − p) · n = 0,

(
u(1)
7 (0)

)2 ((
u(1)
1 (0) − x1

)2 +
(

u(1)
3 (0) − y1

)2 +
(

u(1)
5 (0)

)2) = 1,

(
u(1)
8 (0)

)2 ((
u(1)
1 (0) − x2

)2 +
(

u(1)
3 (0) − y2

)2 +
(

u(1)
5 (0)

)2) = 1,

(
u(1)
9 (0)

)2 ((
u(1)
1 (0) − x3

)2 +
(

u(1)
3 (0) − y3

)2 +
(

u(1)
5 (0)

)2) = 1.

(Pi )

⎧⎨
⎩

d

dt
u(i)(t) = 1

ω
g̃(u(i)(t), β, α), t ∈ [ti−1, ti ],

u(i)(ti−1) = u(i−1)(ti−1),

for i = 2, . . . , m,

where u(i) : [ti−1, ti ] → R
n is a solution of the differential equation u̇ = 1

ω
g̃(u, β, α) on

the time interval [ti−1, ti ] for i = 1, 2, . . . , m. The idea of the approach is to solve each
problem (Pi ) on the time interval [ti−1, ti ] for each i = 1, 2, . . . , m using Chebyshev series
expansions of each component u(i)

k (k = 1, . . . , 9) of the solutions. As we shall see, solving
simultaneously all problems (P1),…, (Pm) using Chebyshev series will lead to the equivalent
zero finding problem F(x) = 0 posed on a Banach space of infinite sequences of Chebyshev
coefficients.

For each time subdomain index i = 1, . . . , m, let σi : [−1, 1] → [ti−1, ti ] be given by

σi (t)
def= ti − ti−1

2
(t + 1) + ti−1, (13)

and let ũ(i) : [−1, 1] → R
9 be given by ũ(i)(t)

def= u(i)(σi (t)). Hence, if u(i) is a solution of
the differential equation u̇ = 1

ω
g̃(u, β, α) on the time interval [ti−1, ti ], then ũ(i) is a solution

of the differential equation u̇ = ti −ti−1
2ω g̃(u, β, α) on the time interval [−1, 1]. Given any
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i ∈ {1, . . . , m} and j ∈ {1, . . . , 9}, expand ũ(i)
j : [−1, 1] → R in Chebyshev series as

ũ(i)
j (t) =

[
a(i)

j

]
0
+ 2

∞∑
k=1

[
a(i)

j

]
k

Tk(t), t ∈ [−1, 1], (14)

and denote a(i)
j =

(
[a(i)

j ]k

)
k≥0

the infinite sequence of Chebyshev coefficients of ũ(i)
j .

Moreover, given i ∈ {1, . . . , m} denote a(i) =
(

a(i)
1 , a(i)

2 , . . . , a(i)
9

)
, the vector containing

the infinite sequences ofChebyshev coefficients of each of the nine components of the solution
ũ(i) : [−1, 1] → R

9.
Given a number ρ ≥ 0 and a sequence of real numbers c = (ck)k≥0, define the weighted

	1 norm

‖c‖(ρ,1)
def= |c0| + 2

∞∑
k=1

|ck |ρk .

Given n ∈ N, define the sequence space

	1(ρ,n)

def=
{

a = (a1, a2, . . . , an)

∣∣∣ a j = ([a j ]k
)

k≥0 and ‖a j‖(ρ,1) < ∞, 1 ≤ j ≤ n
}

.

The sequence space 	1(ρ,n) is endowed with the norm

‖a‖(ρ,n)
def= max

j=1,...,n

{
‖a j‖(ρ,1) = |[a j ]0| + 2

∞∑
k=1

|[a j ]k |ρk

}
.

Given a sequence of decay rates ν = (νi )
m
i=1 ∈ R

m+, denote the Banach space

Xν
def= R

4 ×
m∏

i=1

	1(νi ,n).

The norm ‖ · ‖Xν on the space Xν is defined as follows. Given

x = (β, α, a(1), . . . , a(m)) ∈ R
4 ×

m∏
i=1

	1(νi ,n) = Xν,

its norm is given by

‖x‖Xν = max
{
|β|, |α1|, |α2|, |α3|, ‖a(1)‖(ν1,n), ‖a(2)‖(ν2,n), . . . , ‖a(m)‖(νm ,n)

}
.

Definition 1 (Chebyshev operator for periodic orbits) Let ν = (νi )
m
i=1 and ν̃ = (ν̃i )

m
i=1 be

some weights with 1 < ν̃i < νi for all i = 1, . . . , m. Fix ω > 0 and two vectors n,p ∈ R
9.

The Chebyshev operator for periodic orbits is the mapping F : Xν → X ν̃ defined by

F(x) =
(

F0(a
(1)), F1(β, α, a(m), a(1)), F2(β, α, a(1), a(2)), . . . , Fm(β, α, a(m−1), a(m))

)
,
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where F0 : 	1(ν1,n) → R
4 and Fi : R4 × 	1(νi−1,n) × 	1(νi ,n) → 	1

(ν̃i ,n)
are given by

F0(a
(1))

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9∑
j=1

([
a(1)

j

]
0
+ 2

N−1∑
k=1

(−1)k
[
a(1)

j

]
k
− p j

)
n j

(
u(1)
7 (0)

)2 ((
u(1)
1 (0) − x1

)2 +
(

u(1)
3 (0) − y1)2 + (u(1)

5 (0)
)2)− 1

(
u(1)
8 (0)

)2 ((
u(1)
1 (0) − x2

)2 +
(

u(1)
3 (0) − y2

)2 +
(

u(1)
5 (0)

)2)− 1

(
u(1)
9 (0)

)2 ((
u(1)
1 (0) − x3

)2 +
(

u(1)
3 (0) − y3

)2 +
(

u(1)
5 (0)

)2)− 1

,

where for j = 1, 3, 5, 7, 8, 9, the u(1)
j (0)

def= [a(1)
j ]0 + 2

∑
k≥1(−1)k[a(1)

j ]k , and where for
i = 1, . . . , m

Fi (β, α, a(i−1), a(i))
def=

⎧⎪⎪⎨
⎪⎪⎩

[a(i)]0 − [a(i−1)]0 + 2
∞∑

k=1

(
(−1)k[a(i)]k − [a(i−1)]k

)
, k = 0

ωk[a(i)]k − ti − ti−1

4

(
[φ(i)]k−1 − [φ(i)]k+1

)
, k ≥ 1,

where we set a(0) = a(m), and where φ(i) = φ(i)(β, α, a(i)) represents the Chebyshev
coefficients of g̃(u(i), β, α), that is for j = 1, . . . , 9

g̃ j (u
(i)(t), β, α) = [φ(i)

j ]0 + 2
∞∑

k=1

[φ(i)
j ]k Tk(t), t ∈ [−1, 1].

Lemma 4 Fix ω > 0, p,n ∈ R
9, m ∈ N and a partitionPm of [0, 1] as in (12). Let T

def= 1/ω.
Consider the Chebyshev operator as defined in Definition 1. Let ν = (νi )

m
i=1 and assume

that x = (β, α, a(1), . . . , a(m)) ∈ Xν satisfies F(x) = 0. For each i = 1, . . . , m, define
ũ(i) : [−1, 1] → R

9 component-wise by (14). Recall (13) and define u : [0, T ] → R
9

component-wise (that is for j = 1, . . . , 9) by

u j (t)
def= ũ(i)

j (σi (t/T )), if t/T ∈ [ti−1, ti ] ⊂ [0, 1].
Then, u : [0, T ] → R

9 is a T -periodic solution of u̇ = g̃(u, β, α) satisfying the four
conditions (11). Moreover, x(t) def= π6(u(t)) = (u1, . . . , u6) : [0, T ] → R

6 is a T -periodic
solution of the CRFBP ẋ = f (x) with f given in (1).

Based on the analysis of Lemma 4, a vector x ∈ Xν satisfying F(x) = 0 defines a
periodic orbit in the CRFBP. Finally, obtaining computer-assisted proofs of existence of
periodic orbits in the CRFBP boils down to applying the radii polynomial approach (as
presented in Theorem 1) to compute rigorously solutions of F = 0. To apply Theorem 1, we
need the following ingredients: a numerical approximation x̄ , an approximate derivative A†

of DF(x̄), an approximate inverse A of DF(x̄), and the bounds Y0, Z0, Z1, and Z2 satisfying,
respectively (2)–(5). The construction of these ingredients is standard in the field of rigorous
numerics in dynamics, and we refer to the paper Van den Berg and Sheombarsing (2016)
for their explicit derivation. Perhaps, the only difference with the approach of Van den Berg
and Sheombarsing (2016) is the way we compute the discrete convolutions involved in the
components of the Chebyshev operator F . The next remark provides details about this.
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Remark 4 (Controlling the numerical instability of weighted 	1 norms) To defineY0 satisfying
(2), we must compute rigorously an upper bound for ‖AF(x̄)‖Xν . This computation involves
controlling weighted 	1 norms of the terms φ(i) = ([φ(i)]k

)
k≥0 in the definition of Fi . Since

the terms in φ(i) are defined by cubic, quartic, and quintic convolutions, the computation of
their weighted 	1 norms can be unstable numerically, especially when the vector of decay
rates ν ∈ R

m+ has large components (which is often necessary to show that the bound Z1

satisfying in (4) is such that Z1 < 1—a necessary condition for the radii polynomial approach
to succeed). To control this numerical instability, we used the method introduced in Lessard
(2018) (which combines the FFT algorithm and the property that the sequence space 	1(ρ,1)
is a Banach algebra under discrete convolutions) to compute rigorous enclosure of discrete
convolutions which decay exponentially fast. This approach stabilizes the computation of
the norms in 	1(ρ,1) of the components of the Chebyshev operator F .

We are now ready to present several computer-assisted proofs of existence of periodic
orbits in the CRFBP.

5 Results

Using the interval arithmetic MATLAB package INTLAB (Rump 1999), we wrote a com-
puter program implementing a rigorous implementation of the bounds Y0, Z0, Z1, and Z2

satisfying (2)–(5), respectively. For a selection of numerical approximations x̄ obtained using
our continuation scheme, we proved the existence of r > 0 such that the radii polynomial
p defined in (6) satisfy p(r) < 0. The number r is the radius of the closed ball about
x̄ Br (x̄) ⊂ Xν , which contains a unique solution x̃ of the Chebyshev operator equation
F(x) = 0. Moreover, the radius r provides a C0 error between the numerical approximation
ū : [0, T ] → R

9 and the true periodic solution ũ : [0, T ] → R
9.

For each family, we provide the initial positions and velocities. For sake of simplicity of the
presentation, in all but one case, we show only four digits after the decimal point (see Tables
1, 2, 3, 4, 7, 8), even though for the computer-assisted proofs, the numerical approximations
have a 16-decimal representation. For the halo family introduced in Sect. 5.3 we provide the
initial positions and velocities with 15 digits after the decimal point (see Tables 5, 6).

5.1 Vertical Lyapunov families for equal masses

Beginning with the known equilibrium solutions given by the libration points, the vertical
Lyapunov families provide a natural starting point in the study of spatial periodic orbits.
Indeed, each libration point in the CRFBP has a pair of purely imaginary eigenvalues associ-
ated with the out-of-plane eigenvectors, and we expect these imaginary eigenvalues to give
rise to a one-parameter family of periodic out-of-plane oscillations referred to as a vertical
Lyapunov family. This family can be computed very accurately near the libration point using
a center manifold reduction as discussed in Farrés and Jorba (2010). Beginning from an orbit
in the center manifold, we apply a standard numerical continuation scheme and follow the
branch. This leads to a large number of numerical orbits, some of which we take as input to
our computer-assisted proof.

Figure 5 and Table 1 illustrate the results obtained by applying this strategy at the libration
point L1 in the triple Copenhagen problem (m1 = m2 = m3 = 1/3). For each orbit, we
record an approximate initial condition, the approximate period, and the computer-assisted
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Table 6 Data (initial velocities) for the proofs of the halo periodic orbits

# ẋ0 ẏ0 ż0

1 0.088642517172174 −0.008698078879862 −0.018667190346042

2 0.089127415449054 −0.018764783368137 −0.040222532218378

3 0.090623936206856 −0.035108596007713 −0.074951058178906

4 0.094083951085435 −0.058644215867131 −0.123835825072705

5 0.099932906399883 −0.088383350585881 −0.182417845929532

6 0.107881848901760 −0.124298177639717 −0.246728886716861

7 0.117070323535206 −0.166907930691462 −0.313067166858705

8 0.126064308771794 −0.215484192050279 −0.376179033483518

9 0.133015172752009 −0.267765006277291 −0.430285870557321

C0 error bound resulting from our a posteriori analysis. We note that the vertical family at
L1 appears to accumulate at the vertical family at L0—the libration point at the origin. The
L0 family lies entirely on the z-axis, as the axis is invariant in the triple Copenhagen problem
(i.e., there is a four-body version of the Sitnikov problem at the origin). Due to the rotational
symmetry of the triple Copenhagen problem, the vertical families at the remaining inner
libration points L2 and L3 are obtained by a rotation of ±2π/3 radians.

Analogous results are given for the vertical Lyapunov families associated with the outer
libration points L4 and L7 of the triple Copenhagen problem in Fig. 6 and Table 2 and Fig. 7
and Table 3, respectively. These families appear to pass through the plane of the primaries.We
remark that related spatial families of periodic orbits for the CRFBPwere studied numerically
in Papadakis (2016). We also remark that the vertical Lyapunov families at L5, L6, L8, and
L9 are obtained by rotation, giving rise to the data illustrated in Fig. 1.

5.2 A vertical family with non-equal masses

We stress that our method does not make use of any symmetries which may or may not be
present in the problem, and because of this, it can be used to prove the existence of non-
symmetric orbits. To illustrate this, we consider the CRFBP with mass values m1 = 0.4,
m2 = 0.35, and m3 = 0.25, breaking the symmetry of the triple Copenhagen problem. In
this case, the z-axis is no longer invariant and we consider the vertical Lyapunov family
associated with L0 (which no longer sits at the origin). After computing the center manifold
reduction, we perform a numerical continuation of the branch. We prove the existence of 15
periodic orbits obtained in this way. The results are recorded in Fig. 8 and Table 4.

5.3 Spatial orbits bifurcating from planar Lyapunov families: halo and axial families

We recall that the plane of the primaries is an invariant subspace for the CRFBP. Then,
another mechanism producing spatial periodic orbits is a symmetry breaking bifurcation
for a planar family of periodic orbits Hénon (1973). Natural examples include the planar
Lyapunov families associated with the libration points. Indeed, studying bifurcations from
the planar Lyapunov families is known to give rise to spatial halo and axial families in the
CRTBP. See, for example, Doedel et al. (2007), Calleja et al. (2012), and the references
discussed therein.
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Fig. 5 (Left) L1 family of periodic orbits. (Right) The projection of the same family in the x–y plane. The
family appears to accumulate on the z-axis, probably joining with the vertical family associated with L0

Fig. 6 (Left) L4 family of periodic orbits. The periods of the periodic orbits vary from 5.5916 to 7.2211.
(Right) The projection of the same family in the x–y plane

Taking the CRFBP with non-equal masses m1 = 0.4, m2 = 0.3, and m3 = 0.2—the
asymmetric example parameters from Simó (1978)—we start from L1 and perform a center
manifold reduction for the in-plane eigenspace associated with the purely imaginary pair of
eigenvalues. As in the previous examples, we numerically continue the resulting family until
we encounter an out-of-plane stability bifurcation. That is, we track the Floquet multipliers of
the periodic orbit and watch for the first bifurcation associated with the out-of-plane bundle
(Floquet multipliers pass through a root of unity.) When this occurs an out-of-plane family of
periodic orbits may be born (in a pitch-fork bifurcation) and if so we follow the new family
via numerical continuation. This leads, for example, to the halo family illustrated in Fig. 9.
The results of a number of computer-assisted proofs for this family are given in Tables 5 and
6, where we include precision.

Following the planar Lyapunov family associated with L1 past the first bifurcation, we
find other out-of-plane bifurcations, giving rise to additional spatial families which can be
followed using numerical continuation. Twomore such families are illustrated in Figs. 10 and
11. Applying our method of proof along these branches leads to the certified data reported
in Tables 7 and 8. We have also performed some numerical continuations involving the mass
parameters, but we believe that including more results in the present work puts us past the
point of diminishing returns. Systematic and mathematically rigorous study of continuous
branches of periodic orbits—and their bifurcations—in the CRFBP varying mass and energy
parameters would make an interesting topic of future study. Just such a study for the halo
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Fig. 7 (Left) L7 family of periodic orbits. The periods of the periodic orbits vary from 6.5069 to 7.2274.
(Right) The projection of the same family in the x–y plane

Fig. 8 (Left) L0 family of periodic orbits at non-equal masses. The periods of the periodic orbits vary from x
to y. (Right) The projection of the same family in the x–y plane

Fig. 9 (Left) Halo family at the mass ratio m1 = 0.5, m2 = 0.3, and m3 = 0.2. The periods of the periodic
orbits vary from 4.40766 to 4.04788. (Right) The projection of the same family in the x–y plane

orbits in the restricted three-body problem has been conducted by Walawska and Wilczak
(2018), and those methods could be adapted to the CRFBP as well.

Acknowledgements The authors offer their thanks to the two anonymous referees who read the submitted
version of the manuscript. The final published version is greatly improved thanks to their insightful comments
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Fig. 10 (Left) Axial family at the mass ratio m1 = 0.5, m2 = 0.3, and m3 = 0.2. The periods of the periodic
orbits vary from 7.9168 to 8.2118. (Right) One axial periodic solution with frequency ω ≈ 0.121776, that is,
with period about 8.2118

Fig. 11 (Left) Pancake family at the mass ratio m1 = 0.5, m2 = 0.3, and m3 = 0.2. The periods of the
periodic orbits vary from 4.5763 to 4.6106. (Right) The projection of the same family in the x–y plane

and questions. The first author was supported by PRODEP grant UACOAH-PTC-416, and the third author was
partially supported by NSF grants DMS-1813501 and DMS-1700154 and by the Alfred P. Sloan Foundation
Grant G-2016-7320. The authors would like to thank J.B. van den Berg for many helpful conversations in the
early stages if this work.

Appendix: Proof of Lemma 3

Since γ is a solution of the differential equation, we consider the first, third, and fifth compo-
nents of the vector field and have that u2 = u̇1, u4 = u̇3 and u6 = u̇5. Moreover, considering
the seventh component gives

u̇7 = (−u1u2 − u3u4 − u5u6 + x1u2 + y1u4 + α1) u3
7,
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and since u7 > 0, we divide by u3
7 and rewrite this as

1

u3
7

d

dt
u7 = −(u1 − x1)u2 − (u3 − y1)u4 − u5u6 + α1

= −(u1 − x1)u
′
1 − (u3 − y1)u

′
3 − u5u′

5 + α1

= −1

2

d

dt
(u1 − x1)

2 − 1

2

d

dt
(u2 − y1)

2 − 1

2

d

dt
(u3)

2 + α1

= −1

2

d

dt

(
(u1 − x1)

2 + (u2 − y1)
2 + u2

3

)+ α1,

or

d

dt
G1(t) = d

dt
F1(t) + α1, (15)

where

F1(t)
def= −1

2

(
(u1(t) − x1)

2 + (u3(t) − y1)
2 + (u1(t) − x1)

2) ,
and

G1(t)
def= − 1

2u7(t)2
,

are both periodic functions. Taking the average of Eq. (15) over the interval [0, T ] leads to

0 = 1

T

∫ T

0
α1 dt = α1,

as the derivatives of F1 and G1 (indeed the derivatives of any periodic function) have average
zero. Since T > 0, we conclude that α1 = 0 as desired. Nearly identical arguments, applied
to the eighth and ninth component equations, show that α2 = α3 = 0.

Now define

û(t)
def= 1√

(u1(t) − x1)2 + (u3(t) − y1)2 + u5(t)2
,

and note that

d

dt
û(t) = −

d
dt (u1(t) − x1)2 + (u3(t) − y1)2 + u5(t)2

2
(√

(u1(t) − x1)2 + (u3(t) − y1)2 + u5(t)2
)3

= − û3 ((u1 − x1)u2 + (u3 − y1)u4 + u5u6)

= − û3u1u2 − û3u3u4 − û3u5u6 + û3x1u2 + û3y1u4.

Then, we see that u7(t) and û(t) satisfy the same differential equation with the same initial
condition. By existence and uniqueness for ODEs, we have that u7(t) = û(t), i.e.,

u7(t) = 1√
(u1(t) − x1)2 + (u3(t) − y1)2 + u5(t)2

. (16)

for all t ∈ [0, T ]. Similarly,

u8(t) = 1√
(u1(t) − x2)2 + (u3(t) − y2)2 + u5(t)2

. (17)
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and

u9(t) = 1√
(u1(t) − x3)2 + (u3(t) − y3)2 + u5(t)2

. (18)

for all t ∈ [0, T ].
The argument that β = 0 is similar to the above but different enough that we include

it for the sake of completeness. Inspired by the energy functional for the circular restricted
four-body problem, we define the function

H(u) = −(u2
2 + u2

4 + u2
6) + u2

1 + u2
3 + 2 (m1u7 + m2u8 + m3u9)

and observe that H(γ (t)) is a periodic function. We have that

∇ H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2u1

−2u2

2u3

−2u4

0
−2u6

2m1

2m2

2m3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since we have already established that α1 = α2 = α3 = 0, we have that

〈∇ H , g〉=〈⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2u1

−2u2

2u3

−2u4

0
−2u6

2m1

2m2

2m3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2

2u4 + u1 − m1u1u3
7 − m2u1u3

8 − m3u1u3
9 + m1x1u3

7 + m2x2u3
8 + m3x3u3

9 + βu2

u4

−2u2 + u3 − m1u3u3
7 − m2u3u3

8 − m3u3u3
9 + m1y1u3

7 + m2 y2u3
8 + m3y3u3

9

u6

−m1u5u3
7 − m2u5u3

8 − m3u5u3
9 + m1z1u3

7 + m2z2u3
8 + m3z3u3

9

−u1u2u3
7 − u3u4u3

7 − u5u6u3
7 + x1u2u3

7 + y1u4u3
7 + z1u6u3

7

−u1u2u3
8 − u3u4u3

8 − u5u6u3
8 + x2u2u3

8 + y2u4u3
8 + z2u6u3

8

−u1u2u3
9 − u3u4u3

9 − u5u6u3
9 + x3u2u3

9 + y3u4u3
9 + z3u6u3

9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉

= 2u1u2 − 2u2(2u4 + u1 − m1u1u3
7 − m2u1u3

8 − m3u1u3
9 + m1x1u3

7 + m2x2u3
8 + m3x3u3

9) − 2βu2
2

+ 2u3u4 − 2u4(−2u2 + u3 − m1u3u3
7 − m2u3u3

8 − m3u3u3
9 + m1y1u3

7 + m2 y2u3
8 + m3y3u3

9)

− 2u6(−m1u5u3
7 − m2u5u3

8 − m3u5u3
9 + m1z1u3

7 + m2z2u3
8 + m3z3u3

9)

+ 2m1(−u1u2u3
7 − u3u4u3

7 − u5u6u3
7 + x1u2u3

7 + y1u4u3
7 + z1u6u3

7)

+ 2m2(−u1u2u3
8 − u3u4u3

8 − u5u6u3
8 + x2u2u3

8 + y2u4u3
8 + z2u6u3

8)

+ 2m3(−u1u2u3
9 − u3u4u3

9 − u5u6u3
9 + x3u2u3

9 + y3u4u3
9 + z3u6u3

9)

= 2u1u2 − 4u2u4 − 2u2u1 + 2m1u2u1u3
7 + 2m2u2u1u3

8 + 2m3u2u1u3
9

− 2m1u2x1u3
7 − 2m2u2x2u3

8 − 2m3u2x3u3
9 − 2βu2

2

+ 2u3u4 + 4u2u4 − 2u3u4 + 2m1u3u4u3
7 + 2m2u3u4u3

8 + 2m3u3u4u3
9

− 2m1y1u4u3
7 − 2m2 y2u4u3

8 − 2m3y3u4u3
9
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+ 2m1u5u6u3
7 + 2m2u5u6u3

8 + 2m3u5u6u3
9 − 2m1z1u6u3

7 − 2m2z2u6u3
8 − 2m3z3u6u3

9

− 2m1u1u2u3
7 − 2m1u3u4u3

7 − 2m1u5u6u3
7 + 2m1x1u2u3

7 + 2m1y1u4u3
7 + 2m1z1u6u3

7

− 2m2u1u2u3
8 − 2m2u3u4u3

8 − 2m2u5u6u3
8 + 2m2x2u2u3

8 + 2m2 y2u4u3
8 + 2m2z2u6u3

8

− 2m3u1u2u3
9 − 2m3u3u4u3

9 − 2m3u5u6u3
9 + 2m3x3u2u3

9 + 2m3y3u4u3
9

+ 2m3z3u6u3
9. = −2βu2

2.

Then, we note that H(γ (t)) is a periodic function and that the above computation gives

d

dt
H(t) = ∇ H(γ (t))γ ′(t)

= ∇ H(γ (t))g(γ (t))

= −2βu2
2(t).

Taking the average and exploiting that the average of the derivative of a periodic function is
zero give

0 = 1

T

∫ T

0

d

dt
H(t) dt = −2β

T

∫ T

0
u2(t)

2 dt .

Since T > 0 and u2(t)2 do not change sign, it follows that β = 0.
Finally, we recall Eqs. (16), (17), and (18) as well as the fact that β = 0 and have that

u̇2 = 2u4 + u1 − m1u1u3
7 − m2u1u3

8 − m3u1u3
9 + m1x1u3

7 + m2x2u3
8 + m3x3u3

9

= 2u4 + u1 − m1(u1 − x1)u
3
7 − m2(u1 − x2)u

3
8 − m3(u1 − x3)u

3
9

= 2u4 + u1 − m1(u1 − x1)(
(u1(t) − x1)2 + (u3(t) − y1)2 + u5(t)2

)3/2

− m2(u1 − x2)(
(u1(t) − x2)2 + (u3(t) − y2)2 + u5(t)2

)3/2

− m3(u1 − x3)(
(u1(t) − x3)2 + (u3(t) − y3)2 + u5(t)2

)3/2
= 2u4 + Ωx .

A similar computation shows that

u̇4 = −2u2 + Ωy

and that

u̇6 = Ωz .

Then, γ̂ (t)
def= (u1(t), u2(t), u3(t), u4(t), u5(t), u6(t)) is a periodic solution of the circular

restricted four-body problem as desired.
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