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Abstract
We study different families of even periodic solutions in the classical Sitnikov problem that
emanate from the circular case as the eccentricity is increased. The families can be classified
by the number N of full revolutions of the primaries and labelled by the number of zeroes
p of the vertical coordinate of the massless body in half a period. We give a linear stability
criterion of these branches depending on even N , based on the sign for the initial slope
of the discriminant function for the associated Hill’s equation, in a computable interval of
eccentricities. All families for N = 2 are linearly stable for small and computable e. The
results show a fundamental symmetry-driven difference between the even and odd N cases.

Keywords Periodic orbits · Sitnikov problem · Numerical continuation

Mathematics Subject Classification 70F15 · 34B15 · 37G15 · 37N05

1 Introduction

The Sitnikov problem (Sitnikov 1960) is a special case of the restricted three-body pro-
blem where the primaries move in elliptic orbits of the two-body problem with eccentricity
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e ∈ [0, 1] and themassless bodymoves on a straight line perpendicular to the plane of motion
of the primaries through their barycentre. In appropriate units, the equation of motion for the
massless body is ruled by the differential equation

z̈ = − z

(z2 + r(t, e)2)3/2
, (1)

where r(t, e) is the distance of the primaries to their centre of mass and it is given by

r(t, e) = 1

2
(1 − e cos(u(t))), (2)

and u(t) is the eccentric anomaly which is a function of time through Kepler’s equation

u − e sin u = t . (3)

In Pavanini (1907) expressed the solution by means of Weierstrass elliptic functions. A few
years later, MacMillian (1913) expressed the solutions in terms of Jacobi elliptic functions.
The list of analytical and numerical works on the Sitnikov problem is long (Libre and Simó
1980; Belbruno et al. 1994; Corbera and Llibre 2000, 2002; Llibre and Ortega 2008; Rivera
et al. 2012; Ortega and Rivera 2010; Perdios and Markellos 1988; Robinson 2008; Dvorak
1993; Martínez-Alfaro and Chiralt 1993; Tkhai 2006; Sidorenko 2011; Soulis et al. 2007).

It is well known (Soulis et al. 2007; Sidorenko 2011) that for the circular case (e = 0) and a
given N ∈ N there exist a finite number of nontrivial symmetric 2Nπ-periodic solutions. All
of them are parabolic and unstable (in the Lyapunov sense) if we consider the corresponding
autonomous equation as a 2Nπ -periodic equation. The authors in Llibre and Ortega (2008)
proved that these families of periodic solutions can be continued from the known 2Nπ-
periodic solutions in the circular case for non-necessarily small values of the eccentricity e
and in some cases for all values of e ∈ [0, 1].

Closely related to the present paper is the numerical study of Jiménez-Lara and Escalona-
Buendía (2001) where they describe numerically some families of symmetric periodic orbits
for almost all values of eccentricity. However, these works do generally not provide informa-
tion about the stability properties of these periodic solutions. Besides they skipped the case
N = 3 from their analysis.

Some of the authors of the present paper provided a quantification procedure of the sym-
metric branches (Galán et al. 2018). They introduced new general results and applied them
to the Sitnikov problem, studying the linear stability of the branches when N is odd. The
present work improves on the linear stability properties of these symmetric branches when
N is even, founding new and not expected properties and differences for the cases of odd or
even revolutions of the primaries. We highlight the case N = 2 characterizing the stability
properties of all branches of periodic solutions in a computable e-interval.

The paper is organized as follows: Sect. 2 is devoted to state and prove the main analytical
result of this work. In Sect. 3, we describe the numerical approach to the computation of the
branches. The results are classified in Sect. 2 by the number of revolutions of the primaries.
The Floquet multipliers and the discriminant function are linear stability indicators that
reveal the rich bifurcation structure. Here, we point out some consequences for N = 2
combining Theorem 2 and the results in Galán et al. (2018). In particular, we show that all
families of continuation form the circular case and are elliptic for a computable e-interval.
By completeness and to highlight the fundamental symmetry-driven difference between the
even and odd N cases, we study numerically the cases N = 1 and N = 3. A special treatment
of the case of negative eccentricity in Sect. 3.2 provides a tool to prove the vanishing of the
slope of the discriminant when N is odd. We end with some conclusions and open problems
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and complete the paper with some appendixes with numerical and perturbative results that
complete the work.

2 Theoretical results

We present one of the main results (Theorem 1) obtained and proved in Galán et al. (2018)
that will be necessary for the main results of this document. For each integer N ≥ 1 let
νN = [2√2N ], where [ ] denotes the integer part function. For a fixed and p from 1 to νN ,
Theorem 1 proves the existence of a quantifying family ZN

e,p(t) of even and 2Nπ-periodic
solutions of the following boundary value problem

z̈ + z

(z2 + r(t, e)2)3/2
= 0, ż(0) = ż(Nπ) = 0, (4)

with p zeros on [0, Nπ ] for all e ∈ [0, e∗] with e∗ computable. These bifurcating families
emerge from even 2Nπ -periodic solutions ϕp(t) = ZN

0,p(t) of the circular Sitnikov problem,
i.e. when the eccentricity parameter e is zero.

Theorem 1 Given an integer N ≥ 1 and p = 1, . . . , νN = [2√2N ] there exists γ = γN ,p >

0, e∗
N ,p ∈ [0, 1] explicitly computable and a smooth function ξ = HN ,p(e), e ∈ [0, e∗

N ,p]
with HN ,p(0) = ξp, ϕp(0) = ξp such that Z N

e,p(t) = z(t;HN ,p(e), e), is an even 2Nπ-
periodic solution of (4). Moreover,

|ZN
e,p| ≤ ξp + γ e f or all e ∈ [0, e∗

N ,p].
In order to study the linear stability properties of the families Ze(t) := ZN

e,p(t) in Galán
et al. (2018), it is considered the discriminant function associated with the first variational
equation along the periodic solution ZN

e,p,

ÿ + q(t, e, p, N )y = 0, (5)

where q(t, e, p, N ) is a 2Nπ -periodic function in t given by

q(t, e, p, N ) := r(t, e)2 − 2ZN
e,p(t)

2

(ZN
e,p(t)

2 + r(t, e)2)5/2
. (6)

The discriminant function associated to the Hill’s equation (5) is defined by

�(e) = y1(2Nπ, e) + ẏ2(2Nπ, e), (7)

where yi (t, e), i = 1, 2 are the canonical solutions of (5), satisfying

y1(0, e) = ẏ2(0, e) = 1, ẏ1(0, e) = y2(0, e) = 0.

Notice that�(e) is the trace of themonodromymatrix�(e) associated to the first order planar
system associated to (5). On the other hand, it is well known (see Magnus andWinkler 1979;
Jury 1975) that (5) is stable (equivalently Ze is linearly stable) if and only if the corresponding
Floquet multipliers ρi [e], i = 1, 2 satisfy one of the following conditions:

(A1) ρ1 = ρ2 /∈ R, |ρ1,2| = 1, equivalent to |�(e)| < 2.
(A2) ρ1,2 = ±1 (equivalent to |�(e)| = 2) and �(e) = ±Id being Id the 2 × 2 identity

matrix,

and is unstable (equivalently Ze is linearly unstable) if
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(A3) ρ1,2 = ±1 (equivalent to |�(e)| = 2) and �(e) �= ±Id .
(A4) |ρ1| < 1 < |ρ2|, ρi ∈ R, i = 1, 2 (equivalent to |�(e)| > 2).

Furthermore, Eq. (5) is called

I. Elliptic if condition (A1) holds.
II. Parabolic Stable (Unstable) if condition (A2)((A3)) holds.
III. Hyperbolic if condition (A4) holds.

For the case e = 0 (the circular case), it follows that�(0) = 2 since the function ϕ̇p is an odd
and 2Nπ-periodic solution of (5) (as a direct computation shows) and therefore ρ1,2(0) = 1.
Furthermore, it can be proven that �(0) �= Id therefore Z0 is linearly unstable (see Magnus
andWinkler 1979). From here, we deduce that the linear stability properties of Ze for e small
will depend on the properties of the functions �′(e), �′′(e)...
In Galán et al. (2018), we derived the analytic formulas for�′(e) and�′′(e), which are given
by

�′(e) =
∫ 2Nπ

0
w(s, e)∂eq(s, e)ds,

�′′(e) =
∫ 2Nπ

0

(
∂ew(s, e)∂eq(s, e) + w(s, e)∂2e q(s, e)

)
ds, (8)

where w(s, e) = ẏ1(2Nπ, e)y22 (s, e). The sign of �′(0) clearly implies the stability result
for the linearized equation (5) for small e. Keeping this in mind, we need the following result.

Lemma 1 Let h ∈ C2([0, E]) with h(0) = 0, h′(0) = m. Let K > 0 be an upper bound for
|h′′(x)| for all x ∈ [0, E], i.e.

max
x∈[0,E] |h

′′(x)| ≤ K .

We have,

(1) If m > 0 then h(x) > 0 for all x ∈ ]0, E1] where E1 = min

{
E,

2m

K

}

(2) Let α > 0 fixed. If m < 0 then −α < h(x) < 0 for all x ∈ ]0, E2] where

E2 = min

{
E,−2m

K
,
m + √

m2 + 2αK

K

}
.

Proof Consider the Taylor’s expansion of h(x) at x = 0 given by

h(x) = mx + R(x),

where the remainder R(x) satisfies

|R(x)| ≤ max
x∈[0,E] |h

′′(x)| x
2

2
≤ Kx2

2
.

In consequence, (
m − (Kx)/2

)
x ≤ h(x) ≤ (

m + (Kx)/2
)
x, (9)

for all x ∈ [0, E]. In the case of positive slope ((1)m > 0) it follows

0 < m − (Kx)/2 ⇔ x <
2m

K
.
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Combining this last inequality with (9), we deduce that h(x) > 0 for all x ∈ [0, E1] where
E1 = min

{
E,

2m

K

}
.

In the case of negative slope ((2)m<0), for any giveαwededuce from (9) that the inequalities
−α < h(x) < 0 hold if

−α <
(
m − (Kx)/2

)
x and

(
m + (Kx)/2

)
x < 0.

For x ≥ 0, these last two inequalities are equivalent to

x <
m + √

m2 + 2αK

K
, and x < −2m

K
.

If we define E2 = min

{
E,−2m

K
,
m + √

m2 + 2αK

K

}
then −α < h(x) < 0 for all x ∈

[0, E2]. This completes the proof. 
�
Define

υ = �′(0), K∗ ≥ max
e∈ [0,e∗

N ,p]
|�′′(e)|,

E∗
1 = min

{
e∗
N ,p,

2υ

K∗

}
, E∗

2 = min

{
e∗
N ,p,−

2υ

K∗ ,
υ + √

υ2 + 8K∗
K∗

}
.

In “Appendix A”, we give a computable value of K∗ given by the formula (15).

Theorem 2 Let N ∈ N and p = 1 to νN = [2√2N ] fixed. Let �(e) the discriminant
function of (5) for e ∈ [0, e∗[ where e∗ = e∗

N ,p given by Theorem 1. Assume the condition

�′(0) = υ �= 0. Then,

i) If υ > 0 the periodic solution Z N
e,p of (4) is linearly unstable ∀e ∈]0, E∗

1 ].
ii) If υ < 0 the periodic solution Z N

e,p of (4) is linearly stable ∀e ∈]0, E∗
2 ].

Proof For any fixed N ≥ 1 and p = 1 to νN fixed, we apply Lemma 1 to the function
h ∈ C2([0, e∗

N ,p]) defined by h(e) = �(e) − 2. Notice that

h(0) = �(0) − 2 = 0, h′(0) = �′(0) = υ.

If the assumption in (i) hold, i.e. υ > 0 then

0 < h(e) ⇔ �(e) > 2,

for all e ∈ [0, E∗
1 ]. Therefore, the Eq. (5) is hyperbolic which means that ZN

e,p is linearly
unstable.
If the assumption in ii) holds, i.e. υ < 0 then

−4 < h(e) < 0 ⇔ −2 < �(e) < 2,

for all e ∈ [0, E∗
2 ]. Therefore, Eq. (5) is elliptic which means that ZN

e,p is linearly stable. This
completes the proof. 
�
Remark 1 When N is odd, it is possible to prove thatυ = 0 (seeGalán et al. 2018), henceforth
Theorem 2 does not provide information about the stability properties of ZN

e,p. The case N
odd is considered in Theorem 2 in Galán et al. (2018) taking in account the sign of �′′(0).
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On the other hand, the key value υ in Theorem 2 has been computed in a general Newtonian
equation with a nonlinear centre at the origin (see Zhang et al. 2018), based on the 2Nπ-
periodic solutions ϕ(t) in the circular case (e = 0) and on some information about their
canonical solution φ(t) = y1(t, 0) :

υ = �′(0) = φ′
1(2Nπ, 0)

4μ2

∫ 2Nπ

0

cos s
(
ϕ(s)2 + 1

4

) 3
2

ds, (10)

where

μ = f (ξp, 1/2), f (z, r) = z

(z2 + r2)3/2
.

3 Numerical results

The search of periodic orbits that emanate from the circular case (e = 0) can be easily
formulated as a standard continuation procedure on the BVP problem (4). But this problem
provides only half of the orbit; to reconstruct the full orbit, we make use of the symmetry and
extend to the full period of the orbit which is T = 2Nπ . The boundary conditions ensure
that all the solutions of (4) extended to the time interval [0, T ] are periodic and even in t .

We have made use of the continuation procedure presented in Muñoz-Almaraz et al.
(2003) for the conservative case and later extended to properly treat the symmetries and
reversibilities in Muñoz-Almaraz et al. (2007). See also Galán-Vioque et al. (2014) for a
review and examples from Mechanics.

In the Sitnikov problem, a two-step procedure has been necessary; first we have continued
the circular family of period orbits for e = 0 (Hamiltonian case) that can be parametrized
by the period which turns out to be a monotonically increasing function. Along these family
of periodic solutions for e = 0 (circular case) we have detected the initial conditions ξ(0)
whose associated period is commensurate with that of the primaries. Precisely with that
initial condition, we have computed by the initial value integration an appropriate starting
solution for the emanating branch that was the input to a boundary value continuation in the
eccentricity.

The continuation algorithm is implemented in Auto which is a well tested and accurate
program for numerical continuation based on collocation and a pseudo arclength strategy
(Doedel et al. 1997). In “Appendix B”, we cast all the initial vertical separation of the
massless body for the 15 branches considered in this paper.

The initial value of the period of the oscillatory motion of the primary can be obtained by
the Lyapunov Center Theorem and is given by Tc = 2π

2
√
2
. Since the Kepler problem in the

appropriate units is 2π , the resonance condition is thus N2π = p2
√
2 where p is the number

or periods of the primary. As stated in Llibre and Ortega (2008), the maximum value of p
for a given value of N is νN . In this paper, we will thoroughly investigate the cases N = 1, 2
and 3 which correspond to ν1 = 2, ν2 = 5 and ν3 = 8. Therefore, we will follow at most 15
branches of periodic orbits.

The conclusion of this argument is that the branches can be labelled by N and p where p
is the number of zeros of the z component of the massless body in half a period [0, Nπ]. As a
by-product of the numerical continuation, we compute with negligible cost the multipliers of
the 2Nπ-periodic solution and detect the possible bifurcations and the discriminant function
�(e) defined in the previous section as the trace of the monodromy matrix.
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The final outcome of the calculation is a branch in the ξ, e plane for each N and p and
the linear stability of the associated periodic solutions.

For N = 1, 2 and 3, we plot the Floquet multipliers and the discriminant function�(e) for
all values of p and 0 ≤ e < 1 for the branches that emanate from the circular case (e = 0).
All the branches for fixed value of N are plotted in a bifurcation ξ ,e diagram indicating the
linear stability with a solid blue line and the instability with a dashed red line.

3.1 Case N = 1

For N = 1, the primaries perform just a single complete revolution before the massless body
returns to its initial condition. There are only two branches corresponding to even periodic
orbits. Both are born linearly stable from the circular problem and the initial linear stability
remains up to moderate values of e (e ∼ 0.5 and 0.9, respectively). The Floquet multipliers
start from+1 (parabolic case) and rotate on the unit circle until the−1 is reached where they
split in a period doubling bifurcation (PD). The branches remain unstable up to e = 1where a
collision between the primaries takes place. At the PD bifurcation, a new elliptic family with
double period is born. This secondary branch has been computed but is not displayed for the
sake of clarity. In general, it follows a period doubling cascade leading to chaotic behaviour.
These two primary branches were considered as numerical examples for the quantitative
study of the elliptic branches in Galán et al. (2018). Note that for both branches, �′(0) = 0
and the stability will be determined by the second derivative of the discriminant function. At
the period doubling bifurcation, the logarithm of the modulus of the multipliers depart from
zero in a symmetric way (if ρ is a multiplier so is 1/ρ), and the principal argument of the
multipliers reach +π and −π , respectively. This kind of PD bifurcations is usually called
splitting PD bifurcations because the multipliers depart from the unit circle and the original
branch loses its stability (Figs. 1 and 2).

3.2 Negative eccentricity results forN odd

In Galán et al. (2018), we were able to prove that for odd values of N the discriminant func-
tion is an even function of the eccentricity [see Proposition 4.2 in Galán et al. (2018)].
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Fig. 1 Floquet multipliers for the two branches corresponding to N = 1. The left subplot corresponds to
p = 1 and the right one is p = 2. In this and the following figures representing Floquet multipliers, the upper
panel is the logarithm of the modulus of the multipliers whereas the middle panel shows its principal argument
as a complex number. The lower panel shows the discriminant function �(e) (in blue). The two red horizontal
lines border the stable region indicating branching point bifurcation (+2) and period doubling (−2)
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Fig. 2 Bifurcation diagram for
the two branches corresponding
to N = 1. The upper curve
corresponds to p = 1 (one zero of
z(t) in half a period) whereas the
lower one corresponds to p = 2
(two zeros in half a period). Both
branches behave in a similar way
and are born as linearly elliptic
and remain so up to intermediate
(p = 1) and high (p = 2) values
of e. The red asterisks denote the
splitting PD bifurcations
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From the modelling point of view, it is unclear the meaning and usefulness of e < 0
but from the mathematical point of view it is a valid extension. This evenness immedi-
ately proves the vanishing of the slope of the discriminant of the �(e) function at the
origin.

The authors of Zhang et al. (2018) have also proven independently and with a different
technique the vanishing of �′(0) only for the case N = 1. In fact, they provide an elegant
expression (see Eq. 10) for its value that will be used in “Appendix C”.

In the next subsection and in “Appendix B”, we will show that for even values of N , the
quantity �′(0) does not have to be zero necessarily. In our opinion, this is an interesting and
nontrivial result; there are qualitative differences between the odd and even N cases.

3.3 Case N = 2

For N = 2, we have 5 branches emanating from the circular case. It is easy to see that
the N = 2 and p = 2 circular solutions are equivalent to twice the N = 1 and p = 1
one. The same holds for N = 2 p = 4 and N = 1 p = 2. These branches for different
values of N coincide in the ξ, e plane but the multipliers are shifted in e corresponding to
the second iterate of the Poincaré map. For example, a PD bifurcation (multiplier at −1) for
N = 1 p = 1 corresponds to a branching point (BP) (multiplier at +1) for the N = 2 p = 2.

The multipliers corresponding to p = 1, 2, 3 and 4 are displayed in Fig. 3 and exhibit an
interesting bifurcation behaviour.

The most remarkable case is p = 1 which turns out to be the only symmetric branch
for which �′(0) �= 0. In this case, with negative slope which means that the stability of
the solutions changes from unstable into stable as the eccentricity crosses from negative to
positive values. The branch is initially stable and undergoes a “passing” period doubling
(e ∼ 0.15) without loss of stability (the multipliers cross at +1 without leaving the unit
circle). The discriminant function undergoes a tangency at �(e∗) = −2. We find also a
window of instability for p = 1 at a BP bifurcation at e ∼ 0.55. The stability is regained
later at e ∼ 0.85 and the branch remains stable up to the collision at e ∼ 1.

Branches p = 2 and p = 3 behave similarly with a passing PD and a loss of stability at a
BP. Both branches start with zero slope for the discriminant function. Branch p = 4 is stable
up to a PD bifurcation at e ∼ 0.88.
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Fig. 3 In these four sub-panels, we plot the behaviour of the Floquetmultipliers for the branches corresponding
to N = 2 and p = 1, 2, 3 and 4 in clockwise order with the same procedure as previous cases. The general
behaviour is qualitatively different form the odd-N cases (see N = 1 above and N = 3 later)

The branch with smaller value of ξ(0) that corresponds to p = 5 is analysed in detail in
Fig. 4. A careful monitoring of the stability indicators reveals another window of instability
along the branch.

In Fig. 5, we extend the range of e to negative values and zoom around e = 0. Note
that in this case �′(0) �= 0. We have checked the correctness of this result by evaluating
analytically the slope of the �(e) curve with the expressions presented in “Appendix C”.
The case of N even is fundamentally different from N odd. However, for the 4 remaining
branches corresponding to N = 2 even the discriminant starts with zero slope.

To end this subsection, we plot the partial bifurcation diagram for N = 2 with the same
notation used for N = 1.

3.4 Case N = 3

When the primaries are allowed to perform three complete revolutions before the periodic
orbit is closed (N = 3), we know that there exist eight even in time periodic solutions of the
negligible mass along the vertical axis. They are again labelled by the number of zeros (i.e.
crossings of the horizontal plane) in half a period from p = 1 up to p = 8. As in the previous
section, it is easy to prove that the cases N = 3, p = 3 is the same branch as N = 1, p = 1
and with N = 3 p = 6 and N = 1, p = 2 but with three identical full sequential revolutions.
Again, the corresponding bifurcation of the multipliers can be deduced from the N = 1 case
by a rigid rotation of the multipliers around the unit circle (Fig. 6).
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Fig. 4 In this figure in the left sub-panel, we present the Floquet multipliers for N = 2 and p = 5. At a first
glance, the branch seems to be stable up to e ∼ 0.95 where a splitting BP occurs just after a passing PD similar
to the other branches. However, a closer look at the stability indicators [principal argument of the multipliers
(above) and discriminant function (below)] in the right sub-panel shows that the branch undergoes a instability
window with two BP bifurcations approximately at e ∼ 0.1 and e ∼ 0.7 where the elliptic behaviour is
recovered

Fig. 5 Floquet multipliers and
discriminant function as a
function of the eccentricity for
positive and negative values for
branch N = 2 and p = 1
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Fig. 6 Bifurcation diagram for
the 5 branches corresponding to
N = 2. The upper curve
corresponds to p = 1 (only one
zero of z(t) in half a period) and
as discussed above presents a
non-standard behaviour for the
discriminant function
(�′(0) �= 0). The following four
branches downwards correspond
to p = 2, 3, . . . 5 (with p zeros in
half a period). We have indicated
the passing PD and BP
bifurcations as explained in the
corresponding figures of the
Floquet multipliers, i.e. Figs. 3
and 4
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Fig. 7 In these four sub-panels, we plot the behaviour of the Floquetmultipliers for the branches corresponding
to N = 3 and p = 1, 2, 3 and 4 in clockwise order with the same procedure as previous cases. The most
remarkable case is p = 1which turns out to be the only symmetric branchwhich starts as hyperbolic (unstable)
right from e = 0 but with �′(0) = 0. The branch corresponding to p = 3 undergoes a PD and BP bifurcation
of the passing type (not leaving the unit circle and with a tangency of the discriminant function to the threshold
lines) before the splitting PD at e ∼ 0.4. As explained in the text, this branch is equivalent to N = 1, p = 1
but with 3 full revolutions of the orbit and the passing bifurcations are the signatures of the subharmonic
bifurcations corresponding to a multipliers equal to the square and third root of unity in the N = 1 and p = 1
branch

In Figs. 7 and 8, we plot in four sub-panels the Floquetmultipliers with the same procedure
of the previous cases, i.e. log of the modulus, principal argument and discriminant function.

We should point out that in all 8 cases numerically it holds that �′(0) = 0, in agreement
with Proposition 4.2 in Galán et al. (2018) of the even in e character of the function �(e).

Branches 2 through 8 behave in a similar way to the case N = 1, i.e. they start as linearly
elliptic and loses their stability via a period doubling bifurcation before reaching the vicinity
of e = 1 region. In some cases (precisely for the above-mentioned p = 3 and 6 cases), before
reaching the stability losing period doubling they cross on the unit circle trough a Branching
Point (BP) and a period doubling (PD) bifurcation in which there is no change of stability
(passing BP or PD where the multipliers meet and remain at the unit circle). Those are the
well-known subharmonics bifurcations.

Branch corresponding to p = 1 is qualitatively different form the rest; it is hyperbolic
(unstable) right from the beginning. The Floquet multipliers split along the real axis (one
inside and one outside, as they should) and remain real along the branch; correspondingly the
discriminant function raises from the border at +2 with zero slope. However, the condition
�′(0) = 0 is still valid and the stability is determined by the its second derivative. We would
like to highlight that this is the only hyperbolic symmetric solution that we have found for
the 15 branches under consideration in this paper.
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Fig. 8 These four sub-panels show the remaining four branches for N = 3 corresponding to p = 5, 6, 7 and 8.
All of them start as linearly elliptic and p = 6 corresponds to the third iterate of N = 1 and p = 2 exhibiting
the corresponding passing PD and BP before the splitting PD bifurcation close to p = 0.9
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Fig. 9 Bifurcation diagram for the 8 branches corresponding to N = 3. The upper curve corresponds to p = 1
(only one zero of z(t) in half a period) and as discussed above is hyperbolic (red dashed curve) just form its
start at the circular problem. Note that this is the only solution which turns up with e. The following 7 branches
heading downwards correspond to p = 2, 3, . . . 8 (with p zeros in half a period). All these branches behave
in a similar way and are born as linearly elliptic and remain so up to consecutively higher values of e where
the stability is lost via a PD bifurcation. In branches p = 3 and p = 6, we have indicated the passing PD and
BP bifurcations as that appear as explained in the corresponding figures of the Floquet multipliers, i.e. Figs.
7 and 8
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All 8 branches are cast in a partial bifurcation diagram in Fig. 9. The unstable branch for
p = 1 behaves differently form the rest and start with positive slope to higher values of the
initial displacement of the zero mass body. We have checked the correctness of this result by
evaluating analytically via the implicit function theorem the slope of the ξ(e) curve with the
expressions presented in “Appendix C”.

We could merge all three bifurcation diagram but without an appropriate nonlinear rescal-
ing it would be difficult to observe the bifurcation structure.

4 Conclusions

The linear stability criterion for the even2πN -periodic continuation families from the circular
case for N even is based on a first approximation on the sign of a slope. This sign can
be computed using information of the starting 2πN -periodic circular solutions. We have
performed a detailed numerical analysis of all the symmetric branches in the elliptic Sitnikov
problem when the primaries are allowed to perform 1, 2 or 3 full revolutions.

The main conclusion is the fact that the cases with odd N are qualitatively different from
the even N cases. In the first cases, the discriminant function vanishes for all values of p,
whereas for the second cases the slope of the discriminant function may take nonzero values
for some branches.

All the branches considered in this paper extend up to e ∼ 1, which is a clear indication
that from the two possibilities considered in the main theoretical result of paper (Llibre and
Ortega 2008) (global continuation of reconnection to the equilibrium point solution on the
plane of the primaries) the first one is the only numerically observed for symmetric solutions
and N ≤ 3.

The agreement between the theoretical predictions and the numerical results is remarkable.
It would be interesting to compute the Birkhoff coefficient along the elliptic branches to

prove the nonlinear stability. The application of the techniques developed by Ortega (1992,
1996) is confident that the technical difficulties may be overcome. Results along this line will
be reported elsewhere.
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Appendix A: Upper bound for |1′′(e)|
For any given N ≥ 1 and p = 1 to νN , this appendix is devoted to compute an upper bound
for |�′′(e)| where �′′(e) is given by

�′′(e) =
∫ 2Nπ

0

(
∂ew(s, e)∂eq(s, e) + w(s, e)∂2e q(s, e)

)
ds.

Then, it is necessary to find global bounds on [0, e∗] of the functions w(t, e), ∂ew(t, e) and
q(t, e) := q(t, e, p, N ) with

w(t, e) = ẏ1(2Nπ, e)y22 (t, e), q(t, e) = r(t, e)2 − 2ZN
e,p(t)

2

(ZN
e,p(t)

2 + r(t, e)2)5/2
,
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where Ze(t) := ZN
e,p(t) is the periodic solution of (4) and yi (t, e) i = 1, 2 are the canonical

solutions of (5). Following the results in Galán et al. (2018) (see Sect. 3.1), we have

‖w‖∞ ≤ R2, and ‖∂ew‖∞ ≤ 3R2,

with R a positive and computable constant. For future computations, we will be using that
q(t, e) can be written in the following way

q(t, e) = F(t, e)H(t, e),

where

F(t, e) = r(t, e)2 − 2Z2
e (t), H(t, e) = (

Z2
e (t) + r(t, e)2

)−5/2;
in this way

∂eq = F ∂eH + ∂eF H

∂2e q = F ∂2e H + 2∂eF ∂eH + ∂2e F H .

A straightforward computation shows that

∂eF = 2r∂er − 4Ze ∂e Ze

∂2e F = 2
(
(∂er)

2 + r∂2e r − 2
(
(∂e Ze)

2 + Ze ∂2e Ze
))

(11)

and

∂eH = −5

(
Ze

(Z2
e + r2)7/2

∂e Ze + r

(Z2
e + r2)7/2

∂er

)

∂2e H = 35
(
Ze ∂e Ze + r∂er

)2
(Z2

e + r2)9/2
− 5

(
(∂e Ze)

2 + Ze ∂2e Ze + (∂er)2 + r ∂2e r
)

(Z2
e + r2)7/2

. (12)

At this point, it is convenient to recall some upper bounds given in Galán et al. (2018) (see
Sect. 3). Therefore, for all (t, e) ∈ R × [0, e∗] we have, with γ = γ1

|Ze| ≤ ξp + eγ1 := G(e), |∂e Ze| ≤ γ1

|r | ≤ 1 + e

2
:= r0(e) ∂er | ≤ 1

2(1 − e)
:= r1(e).

In order to obtain upper bounds for ∂2e F given in (11) and ∂2e H given in (12) only remains
to compute upper bounds for ∂2e r and ∂2e Ze.
Upper bound for ∂2e r . From Eq. (2), we have

∂2e r = sin2 u

2r
+ e

4r2
(cos u − ∂er) sin u.

After some easy computations, it follows

|∂2e r | ≤ 2 − e

2(1 − e)3
:= r2(e).

Upper bound for ∂2e Ze. We know that the function Ze satisfies

z̈ + f (t, z, e) = 0, Że(0) = Że(Nπ) = 0,

where

f (t, z, e) = z

(z2 + r(t, e)2)3/2
.
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In consequence, ∂2e Ze(t) is the solution of

ÿ + q(t, z, e)y + B(t, z, e) = 0, y(0) = 0, ẏ(0) = 0

with

B(t, z, e) = ∂zq(t, z, e) ∂e Ze(t) + ∂eq(t, z, e) + ∂2ze f (t, z, e) ∂e Ze(t) + ∂e f (t, z, e).

Using the method of variation of parameters, we deduce that

∂2e Ze(t) = −
∫ t

0
G(t, s, e) B(s, Ze, e)ds,

where G(t, s, e) = y1(s, e)y2(t, e) − y1(t, e)y2(s, e). In consequence,

|∂2e Ze| ≤ T ‖|G‖∞ ‖B‖∞ .

Once again, following the results in Galán et al. (2018) (see Sect. 3.1 and “Appendix A”) we
found and deduce bounds for G and b, respectively. Then

‖G‖∞ ≤ 2R2, ‖B‖∞ ≤ b(e),

where

b(e) = 12(1 + 16γ1)

(1 − e)4
+ 96(1 + γ1)(1 + 3NπσR2)

(1 − e)4
.

Therefore,

|∂2e Ze| ≤ 4NπR2b(e) := γ2(e).

In summary, the previous computations allow us to conclude the following:

|F | ≤ r20 (e) + 2G2(e)

|∂eF | ≤ 2r0(e)r1(e) + 4γ1 G(e)

|∂2e F | ≤ 2
(
r21 (e) + r0(e)r2(e) + 2

(
γ 2
1 + G(e)γ2(e)

))
,

which is equivalent to

|F | ≤ (1 + e)2

4
+ 2G2(e)

|∂eF | ≤ 1 + e

2(1 − e)
+ 4γ1 G(e)

|∂2e F | ≤ 2

(
2 − e2

4(1 − e)2
+ 2

(
γ 2
1 + G(e)γ2(e)

))
(13)

and

|H | ≤ 1

r5

|∂eH | ≤ 26 5

(1 − e)7
(
(1 + e)r1(e) + 2γ1G(e)

)

|∂2e H | ≤ 35
(
γ1G(e) + r0(e)r1(e)

)2
r9

+ 5
(
γ 2
1 + γ2(e)G(e) + r21 (e) + r0(e)r2(e)

)
r7

,
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which is equivalent to

|H | ≤ 25

(1 − e)5

|∂eH | ≤ 25 5

(1 − e)7

(
1 + e

(1 − e)
+ 4γ1G(e)

)

|∂2e H | ≤ 27 5

(1 − e)7

(
28

(1 − e)2

(
γ1G(e) + 1 + e

4(1 − e)

)2
)

+ 3 − e2

4(1 − e)3
+ γ 2

1 + γ2(e)G(e).

(14)

The previous computations [Eqs. (13) and (14)] allow us to compute explicitly the following
constants

ϒ1 := ‖∂eq‖∞ and ϒ2 := ∥∥∂2e q
∥∥∞ .

Therefore,

|�′′(e)| ≤ 2NπR2
(
3ϒ1 + ϒ2

)
:= K∗. (15)

Appendix B: Initial conditions for the calculations

For completeness, we enclose the numerical values of the initial conditions for the vertical
separation from the primaries plane. We take zero initial velocities to ensure the appropriate
symmetry for the 15 branches analysed in this paper. They were computed by imposing
periodic boundary conditionswith fixed period equal to TN = 2Nπ and a closing condition of
10−12 for positions and velocities. These periodic orbits have been computed with a standard
Dormand–Prince algorithm (Dormand and Prince 1980) and act as the initial solutions of
the numerical continuation of the branches which have been performed with a tolerance of
10−10 in Auto (Doedel et al. 1997) (Table 1).

Table 1 Initial vertical
displacements for the 15
branches of symmetric periodic
orbits analysed in this paper with
a precision of 10−12

p N = 1 N = 2 N = 3

1 1.04379804265 1.84845961378 2.49539355255

2 0.44987027357 1.04379804265 1.47641674032

3 – 0.68497919388 1.04379804265

4 – 0.44987027357 0.78386153295

5 – 0.24569817368 0.59868635160

6 – – 0.44987027357

7 – – 0.31520742193

8 – – 0.16550272001
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Appendix C: Perturbative results

The initial orbits of the branches in this paper are solutions of the circular Sitnikov problem
where the implicit Kepler equation is unnecessary. This solution along with the information
of the linearized system allowed us following the technique of Galán et al. (2018) to derive
explicit expression for many quantities at e = 0. Note that these results are completely
independent of the continuation of the branches.

While trying to compare our branches with the computational results of Jiménez-Lara
and Escalona-Buendía (2001), we found opposite signs for the initial slope of some of the
branches. The authors of Jiménez-Lara and Escalona-Buendía (2001) make use of a highly
nonlinear change of scales to separate the different families of curves that make difficult a
direct comparison. To validate our continuation results, we have computed ξ ′(0)which is the
slope of the branch at e = 0 in the bifurcation diagram.

An explicitly computable expression for the initial slope can be deduced in terms of the
even, 2Nπ-periodic solution ϕp(t) of the circular Sitnikov problem that satisfies the initial
value problem

z̈ + z

(z2 + 1/4)3/2
= 0, z(0) = ξp, ż(0) = 0.

From Theorem 1 and the equation (13) in Galán et al. (2018), the slope ξ ′(0) is given by

ξ ′(0) = − ∂eFN (ξp, 0)

∂ξ FN (ξp, 0)
,

where FN (ξ, e) = ż(Nπ, ξ(e), e), e ∈ [0, e∗
N ,p] and ξ(e) := HN ,p(e) with ξ(0) = ξp .

Furthermore, a direct computation shows that the canonical solutions y1(t, e) and y2(t, e) of
(5) for e = 0 satisfy

y1(t, e) := ∂ϕp(t, ξp)

∂ξ
, y2(t, 0) := − ϕ̇p(t)

f (ξp, 1/2)
,

where f (z, r) = z

(z2 + r2)3/2
. Define

φ1(t) := y1(t, 0) and μ = f (ξp, 1/2).

Then

φ1(Nπ) = ∂ϕ̇p(t, ξp)

∂ξ
and ẏ2(Nπ, 0) = − ϕ̈p(Nπ)

μ
= − ϕp(Nπ)

μ f (ϕp(Nπ), 1/2)

From here and the Eq. (28) in Galán et al. (2018), we have

∂ξ FN (ξp, 0) = φ̇(Nπ),

∂eFN (ξp, 0) = −3

4

∫ Nπ

0
Gt (Nπ, s, 0)

ϕp(s) cos(s)(
ϕp(s)2 + 1

4

) 5
2

ds,

where Gt (t, s, e) = y1(s, e)ẏ2(t, e) − ẏ1(t, e)y2(s, e). Notice that

Gt (Nπ, s, 0)

ẏ1(Nπ, 0)
= y1(s, 0)ẏ2(Nπ, 0)

ẏ1(Nπ, 0)
− y2(s, 0)

= ϕ̇p(s)

μ
− φ1(s)

ϕ̈p(Nπ)

μ φ̇1(Nπ)
.
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Fig. 10 Comparison of the
computed branch (blue) and the
linear approximation (red) with
the slope computed by evaluating
the slope with Eq. 16. In the ξ, e
plot the branches emanates form
the circular case with a negative
slope and the linear
approximation remains accurate
up to e ∼ 0.2
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Fig. 11 Comparison of the
computed behaviour of the
discriminant function (blue) and
the linear approximation (black)
with the slope computed by
evaluating the slope with Eq. 17
for N = 2 and p = 1. The red
horizontal lines delimit the stable
region

-0.1 -0.05 0 0.05 0.1

e

-4

-2

0

2

4

6

8

(e
)

Finally, the explicit formula for the slope ξ ′(0) is given by

ξ ′(0) = 3

4μ

∫ Nπ

0

(
ϕ̇p(s) − φ1(s)

ϕ̈p(Nπ)

φ̇1(Nπ)

)
ϕp(s) cos(s)(
ϕp(s)2 + 1

4

) 5
2

ds. (16)

For the case N = 1 and p = 1,we have computed this initial slope for the 15 brancheswith
excellent agreement. In Fig. 10,we plot the original branch (blue) and its linear approximation
(red) for e ∈ [0, 0.25].

The slope of the discriminant functions can be explicitly computed by a lengthy but
straightforward calculation as shown in Section 4 of Galán et al. (2018). An even simpler
but equivalent expression for �′(0) has been obtained in Zhang et al. (2018) in terms of the
flow of the circular Sitnikov problem and the canonical solutions of its linearized version:

�′(0) = φ′
1(2Nπ, 0)

4μ2

∫ 2Nπ

0

cos s
(
ϕ(s)2 + 1

4

) 3
2

ds. (17)
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The numerical evaluation of this integral confirms the claim that for even values of N
the discriminant function does not necessarily vanish. In the case of N = 2 and p = 1, the
numerical value given by Eq. 17 is �′(0) = −78.34 which matches perfectly the computed
behaviour of the continuation calculation as shown in Fig. 11.
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