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Abstract
This paper deals with a new formulation of the creep tide theory (Ferraz-Mello in Celest
Mech Dyn Astron 116:109, 2013—Paper I) and with the tidal dissipation predicted by the
theory in the case of stiff bodies whose rotation is not synchronous but is oscillating around
the synchronous state with a period equal to the orbital period. We show that the tidally
forced libration influences the amount of energy dissipated in the body and the average
perturbation of the orbital elements. This influence depends on the libration amplitude and
is generally neglected in the study of planetary satellites. However, they may be responsible
for a 27% increase in the dissipation of Enceladus. The relaxation factor necessary to explain
the observed dissipation of Enceladus (γ = 1.2−3.8 × 10−7 s−1) has the expected order
of magnitude for planetary satellites and corresponds to the viscosity 0.6−1.9 × 1014 Pa s,
which is in reasonable agreement with the value recently estimated by Efroimsky (Icarus
300:223, 2018) (0.24×1014 Pa s) and with the value adopted by Roberts and Nimmo (Icarus
194:675, 2008) for the viscosity of the ice shell (1013−1014 Pa s). For comparison purposes,
the results are extended also to the case of Mimas and are consistent with the negligible
dissipation and the absence of observed tectonic activity. The corrections of some mistakes
and typos of paper II (Ferraz-Mello in Celest Mech Dyn Astron 122:359, 2015) are included
at the end of the paper.
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1 Introduction

The calculus of the energy dissipation inside a stiff body is generally done by estimating
the dissipation resulting from the action of the primary tidal force in deforming the planet
(Kopal 1963; Kaula 1963, 1964; Peale and Cassen 1978; Segatz et al. 1988; Wisdom 2008;
Shoji et al. 2013; Frouard and Efroimsky 2017). Such approach involves the choice of the
physical model of the forces acting on the body at the microscopic level and of the dissipation
parameters inside the body. An indirect approach was discussed by Kaula (1964, p. 677) in
which the bulk dissipation is calculated from the estimation of the total mechanical energy
lost by the system. This approach was used by Yoder and Peale (1981) to estimate the tidal
energy dissipated in a synchronous satellite, by Lissauer et al. (1984) to study the melting
of Enceladus, by Ferraz-Mello et al. (2009) and Ferraz-Mello (2013) to estimate the energy
dissipated in the frame of Darwin’s and creep tide theories, respectively, and by Correia et al.
(2014) in the frame of a Maxwell model.

In this paper, we revisit the indirect approach to evaluate the bulk loss ofmechanical energy
by the system. This approach has the merit of its simplicity. If the companion body (the body
responsible for the tide raised in the stiff body) is considered as a mass point, the energy
tidally dissipated in the primary body (the stiff body under consideration) may only take
origin in its rotation and in the orbit of the system. The secular variations of the semimajor
axis and of the rotation of the body are the two gauges allowing us to evaluate the mechanical
energy lost by the system. No other non-primeval source exists able to continuously add
energy to the system. We thus consider the energy exchanged with the orbit due to the direct
attraction of the two bodies, the stored rotational energy in the primary body. Several minor
contributions, considered for the sake of completeness, are shown to be negligible.

We remind that the only assumption of the adopted tide theory is that self-gravitation
and tidal stress permanently adjust the surface of the body to an equilibrium surface with
speed given by the Newtonian creep law. The adjustment is ruled by an approximate solution
of the Navier–Stokes equation for the flow of matter in the immediate neighborhood of
the equilibrium surface of the body. No constitutive equation linking strain and stress is
introduced at any point in the creep tide theory. All developments to reach the conclusion are
the solution of the creep differential equation and the use of classical Physics to compute the
force and torque acting on the companion due to the tidal deformation of the primary. The
observed dissipation law results directly from the above described first principles of Physics,
with approximations, but no additional ad hoc hypotheses. However, the integration of the
basic equation of the creep tide theory in papers I and II assumes that the rotation of the body
and theKeplerian elements of the orbit do not show significant variations in one orbital period.
In the case of stiff bodies with a nearly synchronous rotation, however, it has been shown
that the rotation of the bodies is not damped to a stationary value (as gaseous bodies) but is
rather driven to a periodic attractor with the same period as the orbital motion and amplitude
proportional to the orbital eccentricity (see Correia et al. 2014; Ferraz-Mello 2015; Folonier
2016).1 Consequently, in such case, this physical libration needs to be considered in the
integration of the basic differential equation of the creep. In this way, we propose a new
model for the classical theory, assuming that the shape of the tidally deformed body may
be approximated by a triaxial ellipsoid, where its flattenings and orientation are unknown
functions of the time. (This idea is supported by the analytical solutions of the creep equation

1 This forced libration is related to the asymmetries of the tides raised on the body; it is different from the
asymmetries resulting from the assumption of a permanent triaxiality of the body (see Frouard and Efroimsky
2017).
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given in papers I and II.) Then, the creep equation allows us to find the differential equations
that describe the time evolution of this ellipsoidal bulge and its orientation, resulting in a
very simpler and compact approach.

The results are applied to Enceladus and Mimas. These satellites are selected for this
study because of the amount of observational information available. We know from Cassini’s
observations the second-degree components of the gravitational field (Iess et al. 2014). We
also know that the crust of Enceladus presents a forced libration of 0.120◦ ±0.014◦ (Thomas
et al. 2016) and that a huge quantity of heat flows from the satellite (5–16GW cf Howett
et al. 2011; Spencer et al. 2013; Le Gall et al. 2017). In contrast, Mimas presents a larger
forced libration of 0.838◦±0.002◦ (Tajeddine et al. 2014) and the absence of current tectonic
activity is evidence of a small dissipation (smaller than 1GW). In addition, in both cases the
three radii of the best ellipsoid representing the satellite surface are known (see Archinal
et al. 2018).

The presence of the physical libration affects the dissipation increasing it, but the increase
is not so important as to affect the order of magnitude of the dissipation and certainly not so
important as some preliminary results of this investigation seemed to indicate. The amount
of dissipation observed by Cassini corresponds to a relaxation factor in the range γ =
1.2−3.8 × 10−7 s−1 for Enceladus and γ ∼ 10−9 s−1 for Mimas. The difference between
these values is consistent with the fact that the gravitational acceleration at the surface and
the density are both much larger in Enceladus than in Mimas. On the other hand, these
values of relaxation factors indicate a viscosity η = 0.6−1.9 × 1014 Pa s for Enceladus and
η ∼ 1016 Pa s for Mimas. This estimation for the Enceladus viscosity has the same order
as the value recently estimated by Efroimsky (2018) (0.24 × 1014 Pa s) and as the value
adopted by Roberts and Nimmo (2008) for the viscosity of the ice shell (1013 − 1014 Pa s). It
is also close to the reference viscosity of water at 255 K (1015 Pa s) adopted by Bĕhounková
et al. (2012) in their modeling of the melting events at origin of the south-pole activity on
Enceladus. More recent research carried out by Čadek et al. (2019) demonstrates that the
viscosity of ice at the melting temperature may be equal to or higher than 3× 1014 Pa s, for
the ice shell to remain stable.

The forced libration obtained with the creep tide theory for homogeneous bodies, in the
case of Enceladus, is 3.1 times smaller than the libration amplitude obtained from Cassini’s
observations. However, results close to the observation were obtained in a preliminary
extension of the core-shell model developed by the authors (Folonier 2016; Folonier and
Ferraz-Mello 2017, Folonier et al., in preparation), in which one liquid layer is assumed to
exist between the crust and the core.

In the found range of values of γ , the contribution of the satellite tides to the variations
of the semimajor axis and eccentricity of Enceladus are 〈ȧ〉 = −(0.4−1.3) × 10−5 km/y
and 〈ė〉 = −(1.9−6.0) × 10−9 y−1. The eccentricity variation is very small. Nonetheless, in
the case of Enceladus, we need to consider the effects of the almost 2:1 resonance between
Enceladus and Dione that produces a forced eccentricity of 0.00459 (see Ferraz-Mello 1985;
Vienne and Duriez 1995). In the case of Mimas, we have found that the variations of the
semimajor axis and eccentricity are 〈ȧ〉 ∼ −10−6 km/y and 〈ė〉 ∼ −10−10 y−1. In both
cases, the variations found are much smaller than those due to the tides on the planet.

This paper is organized as follows: We first proceed, in Sects. 2–4, to a revisit of the
creep tide theory proposing a new approach in which the differential equations for the tidal
deformation of the primary, and for its rotation, are integrated simultaneously. Then, in
Sect. 5, we study the case in which the rotation of the primary is nearly synchronous but
not uniform showing a forced libration. In Sects. 6 and 7, we do an inventory of the main
mechanical processes involving the storage of mechanical energy in the system and discuss
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the law ruling the dissipation in stiff satellites, with application to Enceladus. In Sect. 8,
we extend the results to obtain the average variations of the metrical elements of the orbit:
semimajor axis and eccentricity. In the final sections, we extend the results to Mimas and
present the conclusions. The paper is completed by two appendices, where are given some
technical details of the model used to evaluate the orbital energy (“Appendix 1”) and the
analytical approximation of the spin-orbit quasi-synchronous attractor (“Appendix 2”). In
addition, an Online Supplement is provided, where the classical creep tide approach is also
extended to include the near-synchronous, but not uniform, rotation case.

2 The creep tide equations

Let us consider one system formed by the extended body m (primary) and the mass point
M (companion), and let r be the radius vector in a system of reference centered on m. We
assume that the primary is a homogeneous body and have an angular velocity of rotation �,
perpendicular to the orbital plane.

In the creep tide theory, the tidal deformation ofm is obtained by solving the Newtonian
creep law

ζ̇ = γ (ρ − ζ ), (1)

where γ is the relaxation factor (see paper I), ζ = ζ(ϕ̂,̂θ, t) is the distance of the surface
point of coordinates ϕ̂ (longitude) and̂θ (co-latitude) to the center of gravity of the body, and
ρ = ρ(ϕ̂,̂θ, t) is the surface of the static figure of equilibrium of m under the gravitational
attraction ofM. ρ is approximated by a triaxial ellipsoid whose major axis is oriented toward
M, and whose equatorial prolateness and polar oblateness are

ερ = a − b

Re
= 15MR3

e

4mr3
, (2)

and

εz = 1 − c

Re
= ερ

2
+ 5Ω2R3

e

4Gm
, (3)

where a, b, c are the semimajor axes of the triaxial ellipsoid, Re is the mean equatorial radius,
G is the gravitational constant, and
 is the spin rate ofm (see Tisserand 1891; Choblet et al.
2017; Folonier et al. 2015). Its equation is2

ρ(̂θ, ϕ̂, t) = R

(

1 + 1

2
ερ sin

2
̂θ cos (2ϕ̂ − 2ϕ) + εz

(

1

3
− cos2 ̂θ

))

, (4)

where ϕ is the true longitude of the companion in its equatorial orbit around the primary and
R is the mean radius of the primary. The angles are such that the major axis of the ellipsoid
is always oriented toward the companion (left panel of Fig. 1). The right-hand side is a time
function depending on the longitude ϕ̂ (such that dϕ̂/dt = 
(t)) and on the polar coordinates
of the companion, r and ϕ. The radius vector of M, r , is introduced in the equation by the
flattenings ερ and εz .

In previous papers (papers I and II) the forced terms in the solution of Eq. (1) were
approximated by the sum of an arbitrary number of ellipsoidal bulges over one sphere of

2 In paper II (Ferraz-Mello 2015), the variation of Re has been neglected. However, when the equatorial
prolateness varies due to a variation in the distance of m to M, the polar flattening and Re vary accordingly:
Re � R(1 + 1

3 εz) where R is the mean radius of the primary (constant).
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Fig. 1 Equatorial sections of the ellipsoids ρ(̂θ, ϕ̂, t) and ζ(̂θ, ϕ̂, t) corresponding to the tide onm generated
by M. Angles: ϕ and ϕ̂ are the longitudes, in a fixed reference system, of the companion and of one point on
the surface of the primary, respectively. δ is the orientation angle of the tidal bulge (labeled B) with respect to
the companion

radius R (see papers I and II), where each bulge has different flattenings and orientation. To
the first order in the flattenings, the sum of two or more ellipsoidal bulges can be expressed by
a new ellipsoidal bulge with its flattenings and orientation (see “Appendix 3” of Folonier and
Ferraz-Mello 2017). For this reason, ζ can be approximated by a homogeneous ellipsoid:

ζ(̂θ, ϕ̂, t) = R

(

1 + 1

2
Eρ sin

2
̂θ cos (2ϕ̂ − 2ϕB) + Ez

(

1

3
− cos2 ̂θ

))

, (5)

where the instantaneous flattenings Eρ , Ez and the orientation longitude of the bulge ϕB =
ϕ + δ are unknown functions of the time. Here, δ is the orientation angle of the bulge vertex
with respect to M (right panel of Fig. 1).

In order to find the time evolution of these unknown functions, we differentiate (5) with
respect to the time and replace the result into the creep Eq. (1). We obtain:

((

Ėρ + γ Eρ

)

cos 2δ + Eρ(2Ω − 2ϕ̇ − 2δ̇) sin 2δ
) 1

2
R sin2 ̂θ cos (2ϕ̂ − 2ϕ)

+
(

−Eρ(2
 − 2ϕ̇ − 2δ̇) cos 2δ +
(

Ėρ + γ Eρ

)

sin 2δ
) 1

2
R sin2 ̂θ sin (2ϕ̂ − 2ϕ)

+R
(Ėz + γ Ez

)

(

1

3
− cos2 ̂θ

)

= 1

2
R sin2 ̂θγ ερ cos (2ϕ̂ − 2ϕ) + Rγ εz

(

1

3
− cos2 ̂θ

)

.

(6)

Since the flattenings Eρ, Ez and the angle of orientation δ cannot depend on one specific
point on the surface of m (that is ̂θ, ϕ̂), we can decompose Eq. (6) into three equations, one
for each trigonometric argument, which may be written as

δ̇ = Ω − ϕ̇ − γ ερ

2Eρ

sin 2δ

Ėρ = γ
(

ερ cos 2δ − Eρ

)

Ėz = γ
(

εz − Ez
)

. (7)
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This system of differential equations of first order allows us to calculate the time evolution of
the instantaneous flattenings and the instantaneous orientation angle, when the orbital motion
of the companion (that is, r and ϕ̇) and the spin rate 
 are known. This new version of the
creep equations is formally analogous to the one used by Correia et al. (2014), Boué et al.
(2016), Correia et al. (2018) and Beaugé (personal communication).

3 The disturbing potential

The disturbing potential created by the homogeneous triaxial ellipsoidm, the bulge of which
is rotated of an angle ϕB with respect to the axis x , at the companion M(r , θ = π/2, ϕ),
neglecting the harmonics of degree higher than 2, is:

δU (r) = −G(B − A)

2r3

(

3 cos2 ΨB − 1
)

− G(C − B)

2r3
, (8)

where G is the gravitational constant, ΨB is the angle between the direction of the point
where the potential is taken and the direction of the bulge vertex, labeled by B (see Fig. 1),
and A, B,C are the moments of inertia of the ellipsoid with respect to its principal axes
(A < B < C).

The cosine can be written as

cosΨB = r̂ · r̂B, (9)

where r̂ and r̂B are the unitary vectors oriented toward the companion and the bulge direction,
respectively. The differences B − A and C − B, to the first order in the flattenings, can be
approximated by

B − A ≈ CEρ; C − B ≈ C

(

Ez − 1

2
Eρ

)

. (10)

The moment of inertia with respect to the polar axis is C = m(a2 +b2)/5 or, introducing the
flattenings of the ellipsoid resulting from the integration of the creep differential equation

C = 2

5
mR2

(

1 + 2

3
Ez + O(E2)

)

. (11)

Hence, using the definition of ερ , the resulting disturbing potential is

δU (r) = −2Gm2ερ

25MR
Eρ

(

2(̂r · r̂B)2 − 1

)

− 4Gm2ερ

75MR
Ez . (12)

It is important to emphasize that, since the beginning of this paper, we have used the
same notation r to indicate the radius vector of the companion in all situations. We have thus
broken with the tradition of using r∗ (or r′) to indicate the radius vector of the companion
in the equations used to calculate the tidal deformation of the primary (Darwin 1880; Kaula
1964; MacDonald 1964; Efroimsky 2012). The dichotomy r, r∗ was introduced by Darwin
for the only reason that, in the calculus of the force as the gradient of the potential U , the
derivatives of the potential must be done with respect to the coordinates of the mass point
where the force is applied. Thus, it was important to use a different notation for the radius
vector and its components in the calculation of the flattenings, and to write the potential as
a function U (r, r∗) making explicit which of the radii vectors was to be considered when
the force is calculated. But, physically, there is only one radius vector being considered and,
after the gradient calculation, r and r∗ are identified. As in Correia et al. (2014), Boué et al.
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(2016), Ragazzo and Ruiz (2017) and Correia et al. (2018), in the approach proposed in this
paper, the potential does not depend explicitly on both instances of the radius vector. The
radius vector used in the calculation of the flattenings is substituted by the time functions
Eρ and Ez , and the only radius vector r appearing in Eq. (7) is the radius vector of the point
where the force is being applied.

4 The tidal force and torque

To calculate the tidal forceF acting on themassM located inM, we take the negative gradient
of the disturbing potential ofm and multiply it by the mass placed in the point. Hence

F = −M∇rδU . (13)

The sign in this expression comes from the fact that we are using the conventions of Physics
(δU is a potential not a force function). It is important to stress that in agreement with Newton
laws, there exists a reaction force−F acting onm due to the attraction ofM (see Ferraz-Mello
et al. 2003). This fact is generally neglected in studies where one of the masses is negligible
when compared to the other but its neglect in general problems is an error. Then, we obtain:

F = −2Gm2ερ

25Rr2
Eρ

(

10(̂r · r̂B)2r − 4r (̂r · r̂B )̂rB − 3r
)

− 4Gm2ερ

25Rr2
Ezr. (14)

The unitary vector r̂B can be decomposed in terms of the unitary vectors r̂ and (̂z × r̂),
where r̂ and ẑ are the unitary vectors oriented toward M and along the z-axis, respectively:

r̂B = cos δ r̂ + sin δ (̂z × r̂). (15)

Hence, the resulting tidal force acting on M can be written as:

F = −2Gm2ερ

25Rr2
Eρ

(

3 cos 2δ r − 2 sin 2δ (̂z × r)
)

− 4Gm2ερ

25Rr2
Ezr. (16)

Finally, the tidal torque acting on M isM = r × F, or:

M = 4Gm2ερ

25R
Eρ sin 2δ ẑ. (17)

It is important to note that, in order to calculate the angular acceleration of the primary, we
need to consider the reaction on the primary, that is

− M = C�̇ + Ċ�, (18)

where the time variation of the axial moment of inertia is

Ċ ≈ 4

15
mR2Ėz . (19)

We note that, at this order of approximation, the equatorial tidal prolateness does not affect
the moment of inertia (the deformations inward and outward compensate themselves).

The scheme considered in this approach differs from the scheme used in papers I and II.
Here, the equations of the instantaneous ellipsoidal bulge and its orientationmay be integrated
together with the rotational equation, while, in papers I and II, the shape of the primary is
calculated assuming 
 as a known time function through the longitude ϕ̂ = 
(t − t0). Once
the shape has been determined, it is used to obtain the rotational evolution of the deformed
body.
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Themodel presentedhere allowsus also to calculate the orbital evolutionof the companion,
as well as the evolution of the ellipsoidal bulge, its orientation and the rotational evolution of
the primary. However, in general, the variation of the orbital elements is much slower and, for
short time spans, we may assume a Keplerian motion for the companion. The instantaneous
shape, orientation and rotation of the primary are then calculated using Eqs. (7) and (17) and
the classical two-body expressions for r and ϕ̇.

5 Solution in the neighborhood of the synchronous rotation

In the neighborhood of the synchronization, the rotation of close-in satellites and exoplanets
is generally damped toward a final stable state which depends on the nature of the body. The
rotation of gaseous planets, of fast relaxation (high γ , low viscosity), tends to a stationary
rotation slightly faster than the orbital motion (a.k.a. supersynchronous motion). The excess
of angular velocity is ∼ 6ne2 (see paper I). On the other end, the rotation of planetary
satellites and Earth-like planets, of slow relaxation (low γ , high viscosity), is damped to
attractors with the same period as the orbital period and the final rotations are not uniform.
They are forced oscillations (physical librations) around one center. In this case, the solution
of the creep equation can no longer be calculated as in papers I and II. The use of the uniform
approximation for 
 is no longer appropriate because the rotation is, in this case, affected
by a significant short-period oscillation.3 It is important to emphasize that in the approach
adopted in this paper, no hypotheses on the rotation behavior are necessary since all equations
are integrated simultaneously. The synchronous attractor may be approximated by

ν
def= 2(Ω − n) ∼= B0 + B1 cos � + B2 sin �, (20)

where � is the mean anomaly of the companion; the mean value B0 and the amplitudes B1, B2

are constants (for the details of the calculation of the synchronous attractor, see “Appendix
2”).

In the case of Enceladus, the numerical solution of the exact equations for low values of
γ is an almost symmetric oscillation of ν. The semi-amplitude of this oscillation depends on
the adopted relaxation factor (see Fig. 2). If γ < 10−5 s−1, the forced oscillation amplitude
is 0.36 deg/d.

This valuemay be compared to the observed values (see Table 2).Measurements of control
points on the surface of Enceladus accumulated over seven years of Cassini’s observations
allowed Thomas et al. (2016) to determine the satellite’s rotation state. They have found a
libration of 0.120◦ ± 0.014◦. If we assume that these oscillations follow a harmonic law we
obtain, correspondingly, for the oscillation of the velocity of rotation: 0.56 ± 0.06 deg/day,
and for the semidiurnal frequency 1.12 ± 0.12 deg/day. The immediate conclusion from
the comparison of these values is that it is not possible to reproduce exactly the observed
forced libration of Enceladus with a homogeneous body model. The predicted oscillation is
smaller. However, results close to the observation were obtained in a preliminary extension
of the core-shell model developed by the authors, when one liquid layer is assumed to exist
between the crust and the core (Folonier 2016; Folonier and Ferraz-Mello 2017, Folonier et
al., in preparation).

3 The extension of the theory of papers I and II to the case in which the rotation is trapped in a periodic
attractor is given in the Online Supplement linked to this paper.
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Fig. 2 Tidal forced oscillation of
the semidiurnal frequency of one
body like Enceladus in function
of the viscosity η and the
relaxation factor γ (shown on the
upper axis). The black lines are
the limits of the oscillation. The
red dashed line is the mean value
of ν. In the right axis we show the
corresponding limit of the
physical libration when a
harmonic oscillation is assumed
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For the sake of comparison, we may note that viscoelastic models adopting a permanent
triaxiality give a result yet smaller:� 0.03 deg depending on the adopted triaxiality (Rambaux
et al. 2010).

6 The energy balance

In this section, we examine the various manifestations of the mechanical energy in a system
formed by two mutually attracting bodies: the extended body m and one mass point M. Let
their masses be, respectively, m and M . We consider only the case where M lies on the
equatorial plane of m. Our aim is to evaluate the amount of the energy dissipated by the
body.4

Let us first review some known facts of a system formed by the extended bodym and the
mass point M (see Scheeres 2002). Let r,V be the radius vector and the velocity of M in a
system of reference centered onm. The kinetic energy referred to the center of gravity of the
system formed by the two bodies and the rotational energy of M are

Ekin = 1

2

Mm

M + m
V2; Erot = 1

2
CΩ2, (21)

the time-dependent gravitational potential generated by the primary in the point r is

MU
(

r; t) = −GMm

r
− 2Gm2

25R

(

ερEρ cos
(

2ϕ − 2ϕB
) − 2

3
ερEz

)

, (22)

and Eint is the internal gravitational energy of the primary. Using the explicit formulas given
by Essén (2004) (see “Appendix 1”), we obtain

Eint = −3Gm2

5R

(

1 − 1

15
E2

ρ − 4

45
E2
z

)

. (23)

4 Thedissipation in eachoneof the twobodiesmaybe considered separately.Within the order of approximation
generally adopted (first order in the tidal deformations), the variation of the energy can be split into two
parts, each one associated with the tidal deformation in one of the bodies while the other—source of the tidal
potential—is kept as a mass point. Therefore, only the dissipation in one of the two bodies need to be explicitly
considered.
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The time derivatives of the energies are

Ėkin = Mm

M + m
V · V̇ = f · V; Ėrot = −M · Ω − 1

2
ĊΩ2 (24)

(since inNewton’s law the accelerationmust be referred to the barycenter, that is, f = Mm
M+m V̇)

MU̇ = MgradrU · V + M
∂U

∂t
= −f · V + M

∂δU

∂ϕB
ϕ̇B + M

∂δU

∂Eρ

Ėρ + M
∂δU

∂Ez
Ėz, (25)

and

Ėint = ∂Eint

∂Eρ

Ėρ + ∂Eint

∂Ez
Ėz . (26)

Hence,

Ėtot = Ėkin + MU̇ + Ėint + Ėrot, (27)

or

Ėtot = M
∂δU

∂ϕB
ϕ̇B + M

∂δU

∂Eρ

Ėρ + M
∂δU

∂Ez
Ėz + ∂Eint

∂Eρ

Ėρ + ∂Eint

∂Ez
Ėz + Ėrot, (28)

that is, the energy variation associated with the power f · V is exchanged with the kinetic
energy and cannot account for the dissipation of the system energy [see Eqs. (24) and (25)].
This is a well-known fact in the study of the motion of satellites around non-spherical rigid
bodies.5

Using Eq. (7), the time derivative of the total mechanical energy can be written as

Ėtot = −6

5

Gm2

γ R

(

1

15
Ė2

ρ + 1

15
E2

ρ

(

2
 − 2ϕ̇ − 2δ̇
)2 + 4

45
Ė2
z

)

≤ 0. (29)

The time derivative of the total mechanical energy is always negative.
Finally, the orbital energy is:

Eorb = Ekin + MU
(

r; t), (30)

and, using Eqs. (24)–(25), the time derivative of the orbital energy is

Ėorb = Ėkin + MU̇
(

r; t), (31)

This definition of the orbital energy variation is the same as adopted by Correia et al. (2014).

7 Dissipation

The actual variation of the main components of the mechanical energy is shown in the left
panel of Fig. 3. It is large, indicating a great periodic energy exchange between the rotational
energy (labeled rot) and the sum of the orbital energy and the internal gravitational energy
(labeled sum). The amplitudes of variation of the orbital and rotational energies have the same
order of magnitude and the variation of the total energy (labeled tot in Fig. 3), shows only a
very small variation (of the order of one part in 105 of the variation of the two components).
This very small periodic variation of the time derivative of the total mechanical energy is
always negative (right panel of Fig. 3).

5 It is worth stressing that we are referring to the actual energy of the system. At variance with it, the energy
of the osculating Keplerian motion may vary (as well as the osculating semimajor axis) but such variation is
only a consequence of the way in which osculating variables are defined.
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Fig. 3 Left: tidal variation of themechanical energy (after the vanishing of the transients): the sumof the orbital
energy and the internal gravitational energy (black line labeled sum), the rotational (blue line labeled rot), and
the total mechanical energy (red line labeled tot). Right: Ėtot in a magnified scale. N.B. γ = 2 × 10−7s−1

In the long run, the only sources for the energy dissipated by the tides are the orbital and
the rotational energies. The usual operation to get rid of periodic variations is the averaging of
the total mechanical energy. The canonical tool to separate conservative and dissipative terms
is the analysis of the differential form expressing the variation of the orbital energy. However,
in the adopted model, only the attraction of the external body M by the deformed bodym is
available. The dynamics of the action of M creating the deformation in m is concealed by
the creep equation used to determine the shape of m. The averaging to zero of the periodic
variations may be considered as the equivalent of the zero variation of the energy on a closed
path characteristic of the conservative phenomena.

7.1 Analytical approximation

The variable characterizing the variation in a short time interval is the mean anomaly �, and
the averaging operation is just 1

2π

∫ 2π
0 Ėtotd�. In the case of Enceladus, the result is shown in

Fig. 4. We note that the resulting 〈Ėtot〉 = 〈Ėorb + Ėrot + Ėint〉 (black solid line) is negative,
hence, the system is losing mechanical energy, as expected. Using the analytical solution
detailed in “Appendix 2,” the time average of the total mechanical energy (given by Eq. 29),
for the synchronous attractor, can be approximated as

〈Ėtot〉sync = −21GMmR2ερe2

5a3
n2γ

n2 + γ 2 , (32)

to the first order in the flattenings.
For sake of completeness, it is worth repeating some properties of this result: (1) the result

is always negative (energy is lost); (2) the variation of the dissipationwith the relaxation factor
has the inverted V-shape, characteristic of the Maxwell rheology; (3) in the neighborhood of
the stationary solution, the quantity defined by Eq. (32) is of the order O(e2).

In the case of Enceladus, the estimations of the heat dissipated in the SPT (south polar
terrain) area based on the observations with Cassini are in the range 5–16GW (cf Howett
et al. 2011; Spencer et al. 2013; Le Gall et al. 2017). This observed dissipation corresponds to
a relaxation factor γ = 1.2−3.8×10−7 s−1 (red box in Fig. 4). The viscosity corresponding
to this relaxation6 is 0.6−1.9 × 1014 Pa s. The physical libration is responsible for a 27%

6 According with the relation γ = wR/2η given in papers I and II (w is the specific weight at the surface of
the body).
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Fig. 4 Dissipation curve: average
of the net variation of the
mechanical energy. The body and
orbital parameters used
correspond to a homogeneous
Enceladus. The actual range of
the observed dissipation and the
corresponding ranges for the
viscosity (and for the relaxation
factor) are shown by a red box
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increase in the dissipation of Enceladus (See Section 5 in the Online Supplement). This last
result is in good agreement with the value 30% found by Efroimsky (2018).

8 Semimajor axis and eccentricity average perturbations

8.1 Semimajor axis

The variation of the osculating semimajor axis due to the tides raised onm may be obtained
using the corresponding Lagrange variational equation:

ȧ = 2

na

∂R
∂�

, (33)

where the disturbing function is R = −(1 + M/m)δU (see Brouwer and Clemence 1961,
Chap. XI). The minus sign is included because δU is a potential (not a force function), and
the factor (1 + M/m) is introduced to account for the fact that the disturbing force is not of
external origin but an interaction between the two bodies. We thus consider the force per unit
mass acting on one body minus its reaction on the other body (see discussion in Ferraz-Mello
et al. 2009, Section 18).

Hence, considering the third Kepler law (n2a3 = G(M +m)) and comparing to the work
calculated above,

ȧ = 2a2

GmM
Ėorb. (34)

This is the same equation obtained when taking the time derivatives of both sides of the
two-body classical equation relating the orbital energy and the osculating semimajor axis,
Eorb = −GmM/2a (see Brouwer and Clemence 1961), which has been used in previous
papers (see paper I). It shows that Ėorb is equal to the time derivative of the Keplerian orbital
energy of the system.

The variation of the semimajor axis due to the tidal deformations of the primary is given
by Eq. (34). The results corresponding to a homogeneous Enceladus are shown in Fig. 5
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Fig. 5 Variation of the averages of −da/dt (Left) and −de/dt (Right) in function of the viscosity η (or γ ,
see the top axis) for a body like Enceladus. In each plot the red box indicates the values corresponding to the
actual range of the observed dissipation of Enceladus

(Left). In that figure the average variation of da/dt is shown for a wide range of values of
γ . The average has the same aspect as the dissipation law shown in Fig. 4. This similarity
happens because, near the stationary solution, the dissipated energy comes almost totally
from 〈Ėorb〉 (the average variation of rotational energy 〈Ėrot〉 is several orders of magnitude
smaller). When γ = 1.2−3.8 × 10−7 s−1, we obtain 〈ȧ〉 = −(0.4−1.2) × 10−5 km/y (the
red box in Fig. 5 Left).

It is important to emphasize that this is not the actual rate of change of the semimajor
axis. This is only the part of it due to the tides on the satellite. To obtain the actual rate of
change of a, it is necessary to consider also the part of it due to the tides raised on the planet,
which is given by the same equations but where the variables are interchanged to express
the dissipation on the planet instead of the satellite. In the case of Enceladus, the two effects
appear to have similar orders of magnitude; according to Lainey et al. (2012), the variation
of the semimajor axis due to the tides raised by Enceladus on Saturn is 4.2 × 10−5 km/y.
The variation of the semimajor axis of Saturnian satellites is important for some theories of
the formation of these satellites (see Lainey et al. 2012). The orbital variations due to the
tides raised on the planet are more important than the variations due to the tides raised on the
satellite and correspond to a present expansion of the satellite’s orbit.

8.2 Eccentricity

The variation of the eccentricity is given by the corresponding Lagrange variational equation:

ė = −
√
1 − e2

na2e

∂R
∂ω

+ 1 − e2

na2e

∂R
∂�

, (35)

(see Brouwer and Clemence 1961). This equation is equivalent to

ė = 1 − e2

e

(

ȧ

2a
− L̇

L

)

, (36)

where L = GMm
na

√
1 − e2 is the orbital angular momentum. In order to use the averages

given in the previous sections, we may introduce a change in this equation reminding that
L̇ = Mz = −Ėrot/
. Hence
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〈ė〉 = 1 − e2

e

( 〈ȧ〉
2a

+ 1

L

〈

Ėrot

Ω

〉)

. (37)

The variation of the averaged de/dt as a function of the relaxation factor γ is shown
in Fig. 5 (Right). When γ = 1.2−3.8 × 10−7 s−1, the averages are very small (less than
10−10 y−1). In general, the eccentricity variation may become important in long-term studies
but, in the case of Enceladus, the effects of the almost 2:1 resonance between Enceladus and
Dione produces a forced eccentricity of 0.00459 that must be considered (see Ferraz-Mello
1985; Vienne and Duriez 1995). We remind that the proper eccentricity of Enceladus is only
0.00012.

8.3 Analytical approximations

Proceeding similarly to the previous section, the average of the variation of the osculating
semimajor axis due to the tide in the primary can be approximated, in the neighborhood of
the synchronous rotation, as

〈ȧ〉sync = 2a2

GMm
〈Ėtot〉sync = −42R2ερe2

5a

n2γ

n2 + γ 2 , (38)

and the approximation of the average of the variation of the osculating eccentricity, in the
neighborhood of the synchronous rotation, is

〈ė〉sync = 1 − e2

2ae
〈ȧ〉sync = −21R2ερe(1 − e2)

5a2
n2γ

n2 + γ 2 . (39)

In both cases, the averages vanish when e → 0. We may easily see that, when the quasi-
synchronous rotation is assumed, both 〈da/dt〉 as 〈de/dt〉 become proportional to 〈Ėtot〉sync.

9 Extension toMimas

One challenge to every theory for the dissipation of the Enceladus is that it shall work also
for the neighbor Mimas. Mainly, it must be coherent with the absence of tectonic activity
in Mimas, evidence of a much smaller dissipation. The results obtained with the theory
developed in this paper are shown in Fig. 6.

The first result concerns the physical libration. Measurements of control points on the
surface of Mimas accumulated over seven years of Cassini’s observations allowed Tajeddine
et al. (2014) to determine the satellite’s rotation state. They found several libration components
including one short-period oscillation of 50.3±1 arcmin. If we assume that these oscillations
follow a harmonic law, we obtain, correspondingly, for the oscillation of the velocity of
rotation: 5.6 ± 0.1 deg/day, and for the semidiurnal frequency 11.2 ± 0.2 deg/day (see
Tables 1 and 2). The comparison of these results to those shown in Fig. 6 (left) is that, like in
the case of Enceladus, the observed value is larger than the tidal forced libration of Mimas
(1.45 times) predicted by using a homogeneous body model. It is worth mentioning that this
factor is not very different from the one obtained by Tajeddine et al. (2014) using models
founded on the observed quadrupole moments of the gravitational potential of Mimas. In that
case the relationship between the observed and the calculated amplitudes is 1.93 instead of
1.45 (compare with the 3.1 factor obtained in the case of Enceladus).

The absence of current tectonic activity inMimas is evidence of a small dissipation. Figure
6 (right) shows that a small dissipation indicates that the relaxation factor γ ofMimas is much
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Fig. 6 Left: tidal forced oscillation of the semidiurnal frequency (and the corresponding limits of the physical
libration) of one body like Mimas in function of the viscosity η and the relaxation factor γ (shown on the
upper axis). The black lines are the limits of the oscillation and the red dashed line is the mean value of ν.
Right: average of the net variation of the mechanical energy

Table 1 Satellites data used in
the calculations

Enceladus Mimas

Mass (1020 kg) 1.08 0.379

Mean radius (km) 252.1 198.2

Sidereal period (d) 1.370218 0.942422

Semimajor axis (103 km) 238.02 185.52

Eccentricity 0.0045 0.01986

Mean motion (10−5 s−1) 5.300508 7.696292

Table 2 Observed libration and dissipation and results of the homogeneous model

Enceladus Mimas

Observed

Libration (deg) 0.120 ± 0.014 0.838 ± 0.002

Dissipation (GW) 5–16 –

Equatorial prolateness (2.0 ± 0.2) × 10−2 (5.5 ± 0.4) × 10−2

Polar oblateness (2.2 ± 0.1) × 10−2 (5.7 ± 0.2) × 10−2

Calculated

Libration (deg) 0.039 0.589

Relaxation factor (s−1) 1.2−3.8 × 10−7 ∼ 10−9 (*)

Viscosity (Pa s) 0.6−1.9 × 1014 ∼ 1016 (*)

Semimajor axis variation (km/y) −(0.6−1.8) × 10−5 ∼ −10−6 (*)

Eccentricity variation (y−1) −(1.9−6.0) × 10−9 ∼ −10−10 (*)

Equatorial prolateness 2.34 × 10−2 6.84 × 10−2

Polar oblateness 1.95 × 10−2 5.72 × 10−2

(*) Assuming dissipation ∼ 1GW
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Fig. 7 Variation of the averages of −da/dt (Left) and −de/dt (Right) in function of the viscosity η (or γ , see
the top axis) for a body like Mimas

smaller than that of Enceladus. Let us consider it as γ ∼ 10−9 s−1 that corresponds to a
dissipation smaller than 1GW.The differencewith the value found for Enceladus is surprising
but it is consistentwith the fact that the gravitational acceleration at the surface and the density
are both much larger in Enceladus than in Mimas. Thus, the viscosity corresponding to the
considered γ is ∼ 1016 Pa s, which is a reasonable value.

For the sake of completeness, we may add the results on the contribution of the satellite
tides to the orbital evolution of Mimas. With the relaxation factor considered above, we
obtain 〈ȧsat〉∼ − 10−6 km/y and 〈ėsat〉∼ − 10−10 y−1 (Fig. 7). These variations are much
smaller than those due to the tides on the planet. Anyway, the current eccentricity of Mimas
cannot be explained by tidal effects alone and is rather related to the crossing of mean motion
resonances in the past evolution of the satellite (Meyer and Wisdom 2008).

10 Conclusions

In this paper we propose an improved approach of the original creep tide theory. Supported
by the analytical solutions given in the previous papers (papers I and II), we assume that the
tidally deformed body has a triaxial ellipsoidal shape, where the flattenings and orientation
are unknown functions of the time to be determined. The creep tide equation allows us to
find the differential equations that describe the time evolution of this ellipsoidal bulge and
its orientation, resulting in a very simpler and compact approach.

The other main result of the present investigation is the dissipation law and its application
to quasi-synchronous homogeneous bodies discussed in Sects. 6 and 7. It is important to stress
that the only hypothesis done in the theory is that the surface of the body permanently adjust
itself to an equilibrium surface with speed given by the Newtonian creep law. No constitutive
equation linking strain and stress is introduced at any point in the creep tide theory. All
developments to reach the conclusion are the solution of the creep differential equation and
the use of classical Physics to compute the force and torque acting on the external body
due to the tidal deformation of the considered extended body. The observed dissipation law
results directly from the above described first principles of Physics, with approximations but
no additional ad hoc hypotheses.

In the case of Enceladus, used in this paper as example of application, the estimations
of the heat dissipated in the SPT (south polar terrain) area based on the observations with
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Cassini are in the range 5–16GW (cf Howett et al. 2011; Spencer et al. 2013; Le Gall
et al. 2017). In addition, a recent study by Kamata and Nimmo (2017) showed that a value
about ten times higher than the old estimate of 1.1GW is necessary if the ice shell is in
thermal equilibrium. The given values correspond, using the creep tide theory, to a relaxation
factor γ = 1.2−3.8 × 10−7 s−1. The viscosity corresponding to this relaxation factor is
0.6−1.9 × 1014 Pa s. It is of the same order as the value recently estimated by Efroimsky
(2018) (0.24 × 1014 Pa s) and as the value adopted by Roberts and Nimmo (2008) for the
viscosity of the ice shell (1013 − 1014 Pa s). This value is also close to the reference viscosity
of water at 255 K (1015 Pa s) adopted by Bĕhounková et al. (2012) in their modeling of the
melting events at origin of the south-pole activity on Enceladus. More recent research carried
out by Čadek et al. (2019) demonstrates that the viscosity of ice at the melting temperature
is equal to or higher than 3 × 1014 Pa s, for the ice shell to remain stable.

For this range of values of γ , we can calculate the variation of the semimajor axis 〈ȧ〉 =
−(0.4−1.3) × 10−5 km/y. For the variation of the eccentricity, we obtained a very small
value 〈ė〉 = −(1.9−6.0) × 10−9 y−1. However, in the case of Enceladus, the effects of the
almost 2:1 resonance between Enceladus and Dione produce a forced eccentricity of 0.00459
that must be considered (see Ferraz-Mello 1985; Vienne and Duriez 1995).

In contrast with Enceladus, the absence of current tectonic activity in Mimas is evidence
of a small dissipation. A dissipation∼ 1GWcorresponds to a relaxation factor γ ∼ 10−9 s−1

and a viscosity η ∼ 1016 Pa s, which are reasonable values. The difference with the values
found for Enceladus is consistent with the fact that the gravitational acceleration at the surface
and the density are both much larger in Enceladus than in Mimas. The different dissipations
of Enceladus and Mimas may be simply associated with the fact that the outer layers of
Enceladus have low viscosity (ice near the melting point) while Mimas with no tectonic
activity due to internal heating has a viscosity at least one order of magnitude larger (ice at
temperatures well below the melting point).

Rough models of heat conduction considering the known conductivity of the ice at low
temperatures show that the crust ability to convey heat produced in the interior is of some
10−2 W/m2 and can be larger or smaller than the values discussed in this paper, depending on
the ice crust width and properties. The temperaturemeasurements of the surface of Enceladus
(Spencer et al. 2006) show that most of the internally produced heat is flowing through the
faults existing in the SPT and this confirms the inability of the existing crust ice to fully convey
the produced heat. This behavior is a clue for a non-stationary process in which an increase
in temperature means a decrease in the viscosity and a larger dissipation. In Enceladus, such
a process may have been triggered by some transitory event enhancing the eccentricity of
Enceladus and may have been progressing slowly, subsisting even after the eccentricity was
damped to its current value. The transient increase of the eccentricity may have happened
at any moment because of the small distance separating the inner satellites of Saturn (see
Nakajima et al. 2018).

Finally, measurements of control points on the surface of the satellites accumulated over
seven years of Cassini’s observations allowed Thomas et al. (2016) and Tajeddine et al.
(2014) to determine their rotation state. They had found a libration of 0.120◦ ± 0.014◦
for Enceladus and 50.3 ± 1 arcmin for Mimas. Assuming that these oscillations follow a
harmonic law, we obtain, correspondingly, for the oscillation of the semidiurnal frequency
1.12 ± 0.12 deg/day for Enceladus and 11.2 ± 0.2 deg/day for Mimas. These observed
values are larger than the tidal forced libration predicted by using a homogeneous bodymodel
(0.36 deg/day and 7.7 deg/day for Enceladus andMimas, respectively). These disagreements
between theory and observations aremainly due to the assumed homogeneity of the satellites.
Indeed, the Enceladus libration can be obtained using a multilayered model (Folonier et al.,
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in preparation), in which one liquid layer is assumed to exist between the crust and the core.
All these results are summarized in Table 2.

The origin of the low dissipation value obtained in many papers using the classical models
may be traced back to the use of Kelvin’s formula for k2 and arbitrarily fixed values for the
rigidity leading to k2 ≤ 0.002. If more realistic values of k2 (and Q), are used, as those
determined by Choblet et al. (2017, Supplement), the dissipation obtained with classical
models is of the order of the observed values and coincide with the dissipation obtained in
this paper when the viscosity is assumed to be that of melting ice. Efroimsky (2015, 2018)
claims that for bodies of this kind, the rigidity plays virtually no role in tidal friction and k2 is
mainly defined by the viscosity of the body; thus, the use of Kelvin’s formula in such cases is
not correct. The tide theory used in the present paper also considers the viscosity rather than
the rigidity and the comparison of the approximate formulas established in Sect. 8.3 of this
paper with the corresponding ones in classical theories gives, for synchronous stiff bodies,
k2/Q � 1.5γ /n = 0.75wR/nη. This formula is virtually equivalent to the one relating= k2
and the viscosity given by Efroimsky (2018), with only a difference in the numerical factor.
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Appendix 1: Gravitational energy of an ellipsoid. Results after Essén
(2004)

The gravitational energy of an ellipsoid of mass m and semi-axes a > b > c is explicitly
given by

Eint = −3

5

Gm2

R
X(ξ, τ ), (40)

(Essén 2004) where the Taylor expansion of X around ξ = 1, τ = 0 is

X(ξ, τ ) = 1 − 4

5
(ξ − 1)2 − 4

15
τ 2 + · · · , (41)

and ξ , τ are functions of the flattening such that

a = (ξ + τ)R; b = (ξ − τ)R; c = (ξ2 − τ 2)−1R. (42)

Hence, to the first order,

τ = 1

2
Eρ; ξ − 1 = 1

3
Ez, (43)

and

Eint = −3

5

Gm2

R

(

1 − 1

15
E2

ρ − 4

45
E2
z

)

. (44)

The variation of the binding energy then is given by

Ėint = 3

5

Gm2

R

(

2

15
Eρ Ėρ + 8

45
Ez Ėz

)

. (45)
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Equation (44) agrees with the result of the direct integration showing that the difference
between the binding gravitational energy of an ellipsoid and that of the corresponding sphere
is of the order of the square of the flattenings Eρ, Ez .

It is worth mentioning that the alternative formulation due to Neutsch (1979) does not
agree neither with the results of Essén (2004) nor with the results of a direct integration.

Appendix 2: Near-synchronous analytical approximation

In order to find an analytical approximation to the instantaneous flattenings Eρ, Ez , the rota-
tion angle δ and the semidiurnal frequency ν = 2Ω − 2n in the quasi-synchronous attractor,
let us first consider a Keplerian motion for the companionM. Then, we consider the approx-
imations:

(a

r

)3 ≈ 1 + 3e2

2
+ 3e cos �

n − ϕ̇ ≈ −2ne cos �. (46)

Since, the rotation is quasi-synchronous, we may assume δ � 1. Hence

cos 2δ ≈ 1 − 2δ2; sin 2δ ≈ 2δ. (47)

Introducing these approximations into the creep tide and torque equations, (7) and (17)
(using that ν = 2
 − 2n, and ν̇ = 2
̇) and neglecting the term Ċ�, we obtain

ν̇ = −6κn2
(

1 + 3e2

2
+ 3e cos �

)

Eρδ

δ̇ = ν

2
− 2ne cos � − γ ερ

Eρ

(

1 + 3e2

2
+ 3e cos �

)

δ

Ėρ = γ ερ

(

1 + 3e2

2
+ 3e cos �

)

(1 − 2δ2) − γ Eρ

Ėz = γ ερ

2

(

1 + 3e2

2
+ 3e cos �

)

+ γ εz

2

n2
− γ Ez, (48)

where κ = M/(M + m), and

ερ = 15MR3
e

4ma3
; εz = 5n2R3

e

4Gm
. (49)

It is important to note that both ερ as εz are constants.
Let us assume the particular solution

ν = B0 + B1 cos � + B2 sin �

δ = D0 + D1 cos � + D2 sin �

Eρ = E0 + E1 cos � + E2 sin �

Ez = Z0 + Z1 cos � + Z2 sin �, (50)
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the derivatives of which are

ν̇ = −nB1 sin � + nB2 cos �

δ̇ = −nD1 sin � + nD2 cos �

Ėρ = −nE1 sin � + nE2 cos �

Ėz = −nZ1 sin � + nZ2 cos �. (51)

Finally, replacing (50) and (51) into the system (48), collecting the terms with same
trigonometric argument and neglecting terms of higher order, we obtain

B0 = 12ne2

1 + p2
1 + α p2

1 + α2 p2

D0 = 3pe2

1 + p2
2 + (1 + α)p2

1 + α2 p2

E0 = ερ

(

1 + 3e2

2
− 4p2e2

1 + α2 p2

)

Z0 = ερ

2

(

1 + 3e2

2

)

+ εz

(

1 + 12e2

1 + p2
1 + α p2

1 + α2 p2
+ 2(1 − α)2 p2e2

1 + α2 p2

)

, (52)

and
(

B1

B2

)

= 12κερnpe

1 + α2 p2

(−α p
1

)

(

D1

D2

)

= − 2pe

1 + α2 p2

(

1
α p

)

(

E1

E2

)

= 3ερe

1 + p2

(

1
p

)

(

Z1

Z2

)

= 1.5ερe

1 + p2

⎛

⎝

1 − 16κ p2εz
1+α2 p2

p + 8κ p(1−α p2)εz
1+α2 p2

⎞

⎠ , (53)

where α = 1 − 3κερ and p = n/γ . We mention that the mean values B0, D0, E0, Z0 are
given to the second order in eccentricity while the amplitudes Bi , Di , Ei , Zi (i �= 0) are
given to the first order in eccentricity.

Figure 8 shows the comparison of the near-synchronous attractors as given by the complete
nonlinear system defined by Eqs. (7) and (17) and the approximate analytical solution given
above in the case of one body like Enceladus, in function of the viscosity η. The dashed red
lines show themaximum,minimumandmean values of ν, δ, Eρ and Ez (from top left to bottom
right) given by the approximate solution, while the solid black lines show the maximum,
minimum and the mean values of ν, δ, Eρ and Ez when the complete nonlinear system is
integrated. The approximate solution is in excellent agreement with numerical integration of
the equations.

Corrections to Paper II (Ferraz-Mello 2015)

1. Typo in Eq. (2). The right definition is εz = 1 − ce
Re
.
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Fig. 8 Tidal forced oscillation of the semidiurnal frequency ν (top left), of the orientation angle of δ (top
right), of the equatorial prolateness Eρ (bottom left) and of the polar oblateness Ez (bottom right) of one body
like Enceladus in function of the viscosity η. The black solid lines are the limits of the oscillations and the
mean values given by the numerical integration of Eqs. (7) and (17). The red dashed lines are the limits of the
oscillations and the mean values given by the analytical approximation given by Eqs. (50), (52) and (53)

2. In Eq. (16) the radial terms

δζrad = −1

3
R

∑

k∈Z
C′′
k cos σ ′′

k cos(k� − σ ′′
k )

are missing. (N.B. They are torqueless and conservative and do not affect the results.)
3. Typo in Eq. (31). The argument should be k� − σ ′′

k .
4. Mistake in Eq. (61). In the last line the arguments should be v+k�−σ ′′

k and v−k�+σ ′′
k .

5. Mistake in Eqs. (62–68) The sign in front of the zonal part is wrong. The sign in front of
C′′
k in Eqs. (62–63) should be +, the sign in front of kE2

0,k in Eqs. (64–66) should be −,

and the sign in front of knE2
0,k in Eq. (68) should be +.

6. Typo in Eq. (69). The sign in front of the right-hand side should be changed to −.
7. Mistakes in Eq. (70). The correct equation is

ė = −3GMR2
e ερ

10na5e

∑

k∈Z
E2,k cos σ k

∑

j∈Z

(

2
√

1 − e2 − (2 − k − j)(1 − e2)
)

E2,k+ j sin( j� + σ k)

−GMR2
e

10na5e

∑

k∈Z
(ερE0,k + 2δ0,kεz)(1 − e2) cos σ ′′

k

∑

j∈Z
(k + j)E0,k+ j sin( j� + σ ′′

k ).
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8. Mistakes in Eq. (71). The correct equation is

ė = −3GMR2
e ερ

20na5e

∑

k∈Z

(

2
√

1 − e2 − (2 − k)(1 − e2)
)

E2
2,k sin 2σ k

−GMR2
e ερ

20na5e

∑

k∈Z
(1 − e2)kE2

0,k sin 2σ
′′
k .

9. Mistake in Eq. (B.6) (Online Supplement). The sign in front of 2
√
1 − e2E (5)

2,k should be
changed to −.
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