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Abstract
We propose a method to account for the Earth oblateness effect in preliminary orbit deter-
mination of satellites in low orbits with radar observations. This method is an improvement
of the one described in Gronchi et al. (Mon Not R Astron Soc 451(2):1883–1891, 2015b),
which uses a pure Keplerian dynamical model. Since the effect of the Earth oblateness is
strong at low altitudes, its inclusion in the model can sensibly improve the initial orbit, giving
a better starting guess for differential corrections and increasing the chances to obtain their
convergence. The input set consists of two tracks of radar observations, each one composed
of at least four observations taken during the same pass of the satellite. A single observation
gives the topocentric position of the satellite, where the range is very accurate, while the
line-of-sight direction is poorly determined. From these data, we can compute by a poly-
nomial fit the values of the range and range rate at the mean epochs of the two tracks. In
order to obtain a preliminary orbit, we wish to compute the angular velocity, which is the
rate of change of the line of sight. In the same spirit of Gronchi et al. (Mon Not R Astron Soc
451(2):1883–1891, 2015b), we also wish to correct the values of the angular measurements,
so that they fit the selected dynamical model if the same holds for the radial distance and
velocity. The selected model is a perturbed Keplerian dynamics, where the only perturbation
included is the secular effect of the J2 term of the geopotential.
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1 Introduction

The growth in the number of space debris orbiting the Earth has increased the interest for
the studies of new orbit computation methods, for example Farnocchia et al. (2010), Gronchi
et al. (2015a), and of the dynamical properties of Earth satellites, for example Celletti and
Galeş (2018), Daquin et al. (2016), Rosengren and Scheeres (2013). Correlating short arcs
of observations that belong to the same object and initial orbit determination (IOD) are of
crucial importance for surveillance of the current population of space debris. In the case
of optical measurements, this problem has been addressed by many authors using different
techniques (see, e.g., Siminski et al. 2014 and references therein). On the other hand, only
a few methods have been proposed for the case of radar observations (Vananti et al. 2017).
In this paper, we investigate an IOD method that is conceived to compute orbits of Earth
satellites at low altitudes (LEO) with radar observations.

Let us assume that each radar measurement at epoch t is composed of a precise value of
the range ρ (with standard deviation in the order of meters) and poorly determined values of
the topocentric right ascension α and declination δ (with standard deviation for example of
0.2 degrees). The available data are radar tracks of the form

(ti , ρi , αi , δi ), i = 1, . . . ,m, (1)

where �t = ti+1 − ti is usually a few seconds andm ≥ 4. Given a radar track, we can derive
the vector

(t̄, ᾱ, δ̄, ρ, ρ̇), (2)

where ᾱ, δ̄ are the mean values while ρ, ρ̇ can be obtained through a cubic fit because the
measurements of the range are more precise.

We describe the osculating two-body orbit of the satellite by spherical coordinates (also
known as attributable coordinates)

Eatt = (α, δ, α̇, δ̇, ρ, ρ̇). (3)

Therefore, given the data in (2), to compute an orbit, we need the values of α̇, δ̇, which are the
unknowns of our orbit determination problem. We want to correlate two radar attributables
at two different epochs corrected for the aberration of light,

t̃1 = t̄1 − ρ1/c, t̃2 = t̄2 − ρ2/c, (4)

where c is the speedof light, to determine the values of α̇1, α̇2, δ̇1, δ̇2 and compute a preliminary
orbit (see Milani and Gronchi 2010).

Assuming that themotion is Keplerian, Taff andHall (1977) andmore recently Farnocchia
et al. (2010) proposed to use the conservation of the angular momentum vector and energy to
write a polynomial system which is quadratic in the unknowns. Gronchi et al. (2015b) have
recently improved this method by allowing for the correction of the values of ᾱ, δ̄. For this
purpose, they introduce the quantities �α, �δ, which are unknown small deviations from
the mean values ᾱ, δ̄:

α = ᾱ + �α, δ = δ̄ + �δ. (5)

The deviations �α, �δ are called infinitesimal angles. Moreover, in place of the unknowns
α̇, δ̇ they use the variables

ξ = ρα̇ cos δ, ζ = ρδ̇, (6)
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which are the components of the topocentric velocity of the satellite orthogonal to the line
of sight. The orbit at time t̄ − ρ/c is completely determined by the modified attributable
coordinates

E ∗
att = (ᾱ + �α, δ̄ + �δ, ξ, ζ, ρ, ρ̇). (7)

We extend the algorithm introduced in Gronchi et al. (2015b), where a two-body approx-
imation is employed, by considering the secular effect of the J2 term of the geopotential
in the dynamical model. The Earth oblateness has been already considered by Farnocchia
et al. (2010) for the computation of preliminary orbits but without introducing corrections
to the angles. Their IOD method is iterative, and at each iteration, the problem has the same
algebraic structure as the unperturbed one.

We want to determine the values of the eight unknowns (�α1,�δ1, ξ1, ζ1) and
(�α2,�δ2, ξ2, ζ2) at t̃1, t̃2 from the input dataset:

(t̄1, ᾱ1, δ̄1, ρ1, ρ̇1), (t̄2, ᾱ2, δ̄2, ρ2, ρ̇2), (8)

using the Keplerian integrals evolution, the equations of motion projected onto the line of
sight and a suitable version of Lambert’s equation.

2 Notation

Let us denote by eρ the unit vector corresponding to the line of sight, and by q the geocentric
position of the observer. Then, the geocentric position of the observed body is

r = q + ρeρ, (9)

where ρ is the range. Using as angular coordinates the topocentric right ascension α and
declination δ in an equatorial reference frame (e.g., J2000), we have

eρ = (cos δ cosα, cos δ sin α, sin δ)T. (10)

We introduce the unit vectors

eα = (− sin α, cosα, 0)T , (11)

eδ = (− sin δ cosα,− sin δ sin α, cos δ)T . (12)

The set {eρ, eα, eδ} is an orthonormal system. Denoting by ṙ the geocentric velocity of the
satellite, we have

ṙ = ξeα + ζeδ + (ρ̇eρ + q̇). (13)

We will use the following different sets of coordinates for the orbits:

Ekep = (a, e, I ,�, ω, 
), (14)

Ecar = (x, y, z, ẋ, ẏ, ż), (15)

Eatt = (α, δ, α̇, δ̇, ρ, ρ̇), (16)

E ∗
att = (ᾱ + �α, δ̄ + �δ, ξ, ζ, ρ, ρ̇) (17)

that are, respectively, Keplerian, Cartesian, attributable andmodified attributable coordinates.
Note that the Keplerian elements in (14) have their usual meaning and 
 denotes the mean
anomaly.
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We also consider the coordinate changes

Ekep
φ1−→ Ecar, Ecar

φ2−→ Eatt, Eatt
φ3−→ E ∗

att, (18)

and the composite transformation

� = φ3 ◦ φ2 ◦ φ1 (19)

from Ekep to E ∗
att .

3 The equations of motion

Let us consider Newton’s equation

r̈ = ∇U (r), (20)

for themotion of a pointmass in the Earth gravity fieldwhere the force functionU is truncated
at the J2-term that is

U (r) = μ

r

[
1 − J2

( R⊕
r

)2
P2(sin δ)

]
. (21)

Here, r = |r| is the geocentric distance, R⊕ is the equatorial radius of the Earth and P2 is
the Legendre polynomial of second degree

P2(sin δ) = 3

2
sin2 δ − 1

2
= 3

2

z2

r2
− 1

2
. (22)

The problem defined by Eq. (20) is non-integrable (see Celletti and Negrini 1981). If we
average out the short period term in (20), we obtain an integrable system (see Roy 2004)
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧ = 0,

ė = 0,

İ = 0,

�̇ = −3

2
J2

R2⊕
p2

ñ cos I ,

ω̇ = 3

4
J2

R2⊕
p2

ñ(4 − 5 sin2 I ),


̇ = ñ = n
[
1 + 3

2
J2

R2⊕
p2

(
1 − 3

2
sin2 I

)√
1 − e2

]
,

(23)

with p = a(1 − e2) the parameter of the two-body trajectory and n = √
μ/a3 the mean

motion. Note that in the dynamics defined by (23), the elements a, e, I remain constant while
the ascending node �, the argument of perigee ω and the mean anomaly 
 change uniformly
with time. Equation (23) can be written shortly as

Ėkep = Xkep(Ekep). (24)

In the following,we shall assume that the observed body ismoving according to the integrable
dynamics defined by Eqs. (23), (24), and we shall call oblateness effect (or J2 effect) the
deviation from the pure Keplerian motion which is defined by these equations.
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To solve our problem, we express the equations of motion in terms of the coordinates E ∗
att .

First, we write Eq. (24) in Cartesian coordinates Ecar = (r, ṙ). We obtain

Ėcar = Y(Ecar), (25)

where

Y =
( ∂φ1

∂Ekep
Xkep

)
◦ φ−1

1 (26)

is the transformed vector field. From the expression above, we obtain the acceleration r̈ as a
function of Ecar along the solutions of (25):

r̈ =
( ∂ ṙ

∂Ekep
Xkep

)
◦ φ−1

1 =: ỹ(r, ṙ). (27)

As done in Gronchi et al. (2015b) for the pure Keplerian dynamics, we project the perturbed
equation of motion (27) along the line of sight eρ and obtain the equation

K = 0, (28)

with

K = (r̈ − ỹ) · eρ = ρ̈ − ρη2 + q̈ · eρ − ỹ · eρ, (29)

where η =
√

α̇2 cos2 δ + δ̇2 is the proper motion.
Equation (29) can be expressed as a function of the unknown variables (�α,�δ, ξ, ζ )

using the expressions of r, ṙ given in (9), (13).

4 The J2 effect on the two-body integrals

We recall the expressions of the conserved quantities in the Keplerian dynamics, i.e., the
angular momentum c, the energy E and the Laplace–Lenz vector L, as a function of r, ṙ.
These quantities can be read as functions of the attributable coordinates Eatt using (9), (13)
and

|ṙ|2 = ξ2 + ζ 2 + 2q̇ · eαξ + 2q̇ · eδζ + |ρ̇eρ + q̇|2, (30)

ṙ · r = q · eαξ + q · eδζ + (ρ̇eρ + q̇) · r. (31)

We have

c = Aξ + Bζ + C, (32)

E = 1

2
|ṙ|2 − μ

|r| , (33)

μL = ṙ × c − μ
r
|r| =

(
|ṙ|2 − μ

|r|
)
r − (ṙ · r)ṙ, (34)

where

A = r × eα, B = r × eδ, C = r × q̇ + ρ̇ q × eρ. (35)
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Fig. 1 According to the secular
effect of the J2 term [see
Eq. (23)], the shape of the conic
and its inclination remain
unchanged between two epochs
t̃1, t̃2. The directions of the
angular momentum (ĉ), line of
nodes (n̂) and Laplace–Lenz
vector (L), by contrast, are
rotated due to the secular
variations ��, �ω accumulated
by �, ω during the time interval
t̃2 − t̃1

Including the J2 effect in the dynamics, the angular momentum and the Laplace–Lenz
vectors are not conserved anymore. However, the following relations hold:

Rcc1 = c2, (36)

E1 = E2, (37)

RLL1 = L2, (38)

where

Rc = Rẑ(��), RL = Rĉ2(ω1 + �ω) Rẑ(��) Rĉ1(−ω1). (39)

Here, we denote by Rv̂(ϕ) the rotation matrix defined by the rotation of an angle ϕ around
the axis of the unit vector v̂. Then, the unit vectors ẑ, ĉi , i = 1, 2, are given by

ẑ = (0, 0, 1)T, (40)

ĉi = (sin�i sin Ii , − cos�i sin Ii , cos Ii )
T. (41)

Moreover, using Eq. (23), the angular variations �� and �ω are obtained as

�� = �̇1(t̃2 − t̃1), �ω = ω̇1(t̃2 − t̃1), (42)

where t̃1, t̃2 are the epochs corrected by aberration. We display the J2 effect on the two-body
integrals in Fig. 1.

Remark 1 We can also write

�� = �2 − �1, �ω = ω2 − ω1, (43)

and

RL = R2R
T
1 , (44)

with

Ri = Rĉi (ωi ) Rẑ(�i ), i = 1, 2. (45)
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5 Lambert’s theoremwith the J2 effect

Let us denote byL the expression definingLambert’s equation. In the dynamics given by (23),
the mean motion evolves linearly; thus, Lambert’s equation can be written as

L = ñ(t̃1 − t̃2) + (β − sin β) − (γ − sin γ ) + 2kπ = 0, (46)

with ñ given by the last equation in (23). Moreover, k ∈ N is the number of revolutions in
the time interval [t̃1, t̃2]. The angles β, γ are defined by

sin2
β

2
= r1 + r2 + dL

4a
, sin2

γ

2
= r1 + r2 − dL

4a
, (47)

where 0 ≤ β − γ ≤ 2π and r1, r2 are the distances from the center of force. In (47), the
distance

dL = |R̃r1 − r2| (48)

is the length of the chord joining the two positions of the body at epochs t̃1, t̃2 after rotating
the osculating ellipse at epoch t̃1 so that it overlaps with the osculating ellipse at epoch t̃2.
The rotation R̃ is given explicitly by

R̃ = R̃2 R̃
T
1 , (49)

with R̃1 and R̃2 the transformations from the selected equatorial reference frame to the orbital
reference frame at the epochs t̃1 and t̃2, respectively:

R̃1 = Rĉ1(ω1) Rn̂1(I1) Rẑ(�1), (50)

R̃2 = Rĉ2(ω1 + �ω) Rn̂2(I2) Rẑ(�1 + ��), (51)

where

n̂i = (cos�i , sin�i , 0)
T, i = 1, 2, (52)

are the directions of the lines of nodes. For a fixed number of revolutions k, we have four
different choices for the pairs (β, γ ) (see Appendix A1 in Gronchi et al. 2015b, for the
details).

6 Linkage

We wish to link two sets of radar data of the form (2), with mean epochs t̄i , i = 1, 2,
and compute one (or more) preliminary orbits. In the following, we use labels 1, 2 for the
quantities introduced in the previous sections, according to the epoch.Moreover, let us define
v2 = eρ

2 × q2.
Taking into account the J2 effect, we consider the following system:

(Rcc1 − c2, E1 − E2, K1, K2, (RLL1 − L2) · v2, L) = 0 (53)

of eight equations in the eight unknowns (X, �), with

X = (ξ1, ζ1, ξ2, ζ2), � = (�α1, �δ1, �α2, �δ2). (54)

Note that the unknowns are divided into two sets so that � is the vector of infinitesimal
angles.
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In Gronchi et al. (2015a, b), because the motion is assumed Keplerian, X(�) is obtained
explicitly from the conservation of the angular momentum and energy. The remaining equa-
tions are solved for� using an iterative scheme. In our method, we also separate system (53)
into two subsystems which can be solved by a double-iterative scheme. We search for solu-
tions of equation

G(�) = G(X(�),�) = 0, (55)

where

G = (K1, K2, (RLL1 − L2) · v2, L) (56)

and X(�) is implicitly defined by the relation

J(X,�) = 0, (57)

where

J = (Rcc1 − c2, E1 − E2). (58)

Newton–Raphson method is used to compute � from the iterative formula

�h+1 = �h −
[ ∂G
∂�

(�h)
]−1G(�h), �0 = 0. (59)

Here, taking advantage of the assumed smallness of the solutions �, we consider � = 0
as starting guess. At each iteration for �, we apply the Newton–Raphson method to obtain
X(�) from system (57). Precisely, for� = �h , we computeX(h) = X(�h) from the iterative
formula

X j+1 = X j −
[∂J
∂X

(X j )
]−1J(X j ), (60)

where

J(X) = J(X,�h). (61)

For h = 0 the starting guessX0 is computed from the interpolated values of δ, α̇, δ̇, ρ through
Equations (6), while for h > 0 we set X0 = X(h−1).

Remark 2 Equation (57) is not polynomial in X, unlike the corresponding equations in
Gronchi et al. (2015b).

7 Computing X,1

The algorithm to compute the vectors X, � that satisfy Eq. (53) consists of two nested
Newton–Raphson methods. Starting from �0 = 0, we determine the vector X(0) such
that J(X(0),�0) = 0, by applying the Newton–Raphson formula (60), wherein J(X) =
J(X,�0). Then, after computing the number of revolutions k required in Lambert’s equa-
tion (46), by

k =
⌊
n(t̃2 − t̃1)

2π

⌋
, (62)

where n is the mean motion and 
x� denotes the integer part of x , we make the first iteration
of the outer Newton–Raphson method through Eq. (59), wherein G(�0) = G(X(0),�0).
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The iterations in � are carried out until for some h ≥ 1 the magnitude of the difference
�h − �h−1 is smaller than a suitable tolerance. Finally, X(h) is obtained by the iterative
formula (60), and the solution of (53) is given by the pair of vectors X(h),�h .

In Eq. (55), the components of the vector G(X,�) are similar to the ones of the corre-
sponding vector in Gronchi et al. (2015b). However, the following differences occur:

(i) in place of the angular momentum conservation law, we have Eq. (36);
(ii) inK at epochs t̃1, t̃2, the term ỹ ·eρ replaces the radial component of the Keplerian force,

i.e., −μr · eρ/|r|3;
(iii) in place of the Laplace–Lenz conservation law, we have Eq. (38);
(iv) in L, the quantity ñ takes a different expression from the mean motion n, coming from

the dynamical model (23). Moreover, the length of the chord is computed in a different
way; see (48).

To search for the values of � that solve Eq. (55), we have to compute the first derivatives of
G(�) with respect to �, appearing in (59), that is

∂G
∂�

(�h) = ∂G
∂X

(X(h),�h)
∂X
∂�

(�h) + ∂G
∂�

(X(h),�h). (63)

From the implicit function theorem applied to Eq. (57), we have

∂X
∂�

(�) = −
[ ∂J
∂X

(X,�)
]−1 ∂J

∂�
(X,�). (64)

Since these computations are similar to the ones reported in Gronchi et al. (2015b, Sect. 7),
we describe below only the differences coming from the adopted dynamical model.

7.1 The derivatives of Rcc1 − c2, E1 − E2

The derivatives of Rcc1−c2 with respect to a component x of the vectorsX,� can be written
as

∂(Rcc1 − c2)
∂x

= ∂Rc

∂x
c1 + Rc

∂c1
∂x

− ∂c2
∂x

. (65)

We have

∂Rc

∂x
=

⎡
⎣

− sin�� − cos�� 0
cos�� − sin�� 0
0 0 0

⎤
⎦ ∂��

∂x
, (66)

where

∂��

∂x
= ∂�̇1

∂x
�t, (67)

and the expressions of ∂�̇1
∂x are reported in “Appendix C”.

Considering the angular momentum, we get

∂ci
∂ξi

= Ai ,
∂ci
∂ζi

= Bi , i = 1, 2. (68)
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The derivatives with respect to � are computed through the intermediate variables eρ
i , e

α
i ,

eδ
i , i = 1, 2. After introducing the vector

Ei =
⎛
⎝
eρ
i
eα
i
eδ
i

⎞
⎠ , (69)

we can write

∂ci
∂Ei

= ∂Ai

∂Ei
ξi + ∂Bi

∂Ei
ζi + ∂Ci

∂Ei
, (70)

with

∂Ai

∂Ei
= (O3, S(qi ), ρi I3), (71)

∂Bi

∂Ei
= (O3, −ρi I3, S(qi )), (72)

∂Ci

∂Ei
= (−ρi S(q̇i ) + ρ̇i S(qi ), O3, O3), (73)

where O3, I3 denote the 3 × 3 zero and identity matrix, respectively. Note that S(a) is the
skew-symmetric matrix associated with a vector a = (a1, a2, a3)T by

S(a) y = a × y, ∀y ∈ R
3, (74)

that is

R
3  a �→ S(a)

de f=
⎡
⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎦ . (75)

Concerning the energy, we have1

∂Ei

∂ξi
= ξi + q̇i · eα

i ,
∂Ei

∂ζi
= ζi + q̇i · eδ

i , (76)

∂Ei

∂Ei
=

(
ρ̇i q̇i + μρi

qi
r3i

, ξi q̇i , ζi q̇i
)
. (77)

Finally, the derivatives ∂Ei
∂(�αi ,�δi )

, i = 1, 2, can be found in Gronchi et al. (2015b, Sect. 7.2).

7.2 The derivatives of (RLL1 − L2) · v2,L

The derivative of RL with respect to a component x of the vectors X, � is obtained from
Eq. (44) as

∂RL

∂x
= ∂R2

∂x
RT
1 − R2R

T
1

∂R1

∂x
RT
1 , (78)

where we have used that R1 is an orthogonal matrix. A similar expression can be written for
R̃ starting from (49). The rotation matrices in (39), (50), (51) are represented by means of
Euler–Rodrigues formula (see Gallego and Yezzi 2015)

Rv̂(ϕ) = I3 + sin ϕ S(v̂) + (1 − cosϕ)S2(v̂), (79)

1 There is a typo in the equation for ∂E1
∂X reported in Gronchi et al. (2015b, Sect. 7.1)
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where I3 is the identity matrix and S(v̂) is the skew-symmetric matrix associated with the
unit vector v̂ = (v1, v2, v3)

T. Then, we have

∂Rv̂(ϕ)

∂x
=

3∑
k=1

∂Rv̂(ϕ)

∂vk

∂vk

∂x
+ ∂Rv̂(ϕ)

∂ϕ

∂ϕ

∂x
, (80)

where

∂Rv̂(ϕ)

∂vk
= sin ϕ

∂S(v̂)
∂vk

+ (1 − cosϕ)
(∂S(v̂)

∂vk
S(v̂) + S(v̂)

∂S(v̂)
∂vk

)
(81)

and

∂Rv̂(ϕ)

∂ϕ
= cosϕ S(v̂) + sin ϕ S2(v̂). (82)

The derivatives of v̂ are obtained from (41), (52) and using ∂�−1

∂x , which is given in “Appendix
B”. Note that

∂�2

∂x
= ∂�1

∂x
+ ∂�̇1

∂x
(t̃2 − t̃1), (83)

∂ω2

∂x
= ∂ω1

∂x
+ ∂ω̇1

∂x
(t̃2 − t̃1) (84)

and ∂(�̇1,ω̇1)
∂x are reported in “Appendix C”.

Regarding Laplace–Lenz conservation law, the derivatives of L1 · v2, L2 · v2 are provided
in Gronchi et al. (2015b, Sections 7.1, 7.3).

For Lambert’s equation, we have

∂L
∂x

= ∂ ñ1
∂x

(t̃1 − t̃2) + ∂(β − sin β)

∂x
− ∂(γ − sin γ )

∂x
. (85)

The derivatives of ñ1 are computed from (23) as shown in “Appendix C”. Moreover,2

∂(β − sin β)

∂x
= ± 2

√
�+

1 − �+
∂�+
∂x

, (86)

∂(γ − sin γ )

∂x
= ± 2

√
�−

1 − �−
∂�−
∂x

, (87)

where the positive sign holds for 0 < β, γ < π . The quantities �± = (�+,�−) are defined
as in Gronchi et al. (2015b, Sect. 7.1), where d is replaced by dL , so that

∂�±
∂X

= −r1 + r2 ± dL
2μ

∂E1

∂X
∓ E1

2μ

∂dL
∂X

, (88)

∂�±
∂�

= −r1 + r2 ± dL
2μ

∂E1

∂�
− E1

2μ

∂(r1 + r2 ± dL)

∂�
, (89)

where
∂ri

∂(�αi ,�δi )
= ρi

ri
(cos δiqi · eα

i , qi · eδ
i ), (90)

∂dL
∂x

= 1

dL

(∂ R̃

∂x
r1 + R̃

∂r1
∂x

− ∂r2
∂x

)
· (R̃r1 − r2), (91)

2 There is a typo in the corresponding formulae in Gronchi et al. (2015b, Sections 7.1, 7.3).
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and
∂ri

∂(�αi ,�δi )
= ρi (cos δieα

i , eδ
i ). (92)

7.3 The derivatives ofK1,K2

The value of ρ̈ is required in the equation of motion (94) at the two epochs t̃1, t̃2. The quantity
ρ̈ is regarded as a constant whose value is updated by means of Eq. (94) at each iteration of
Newton–Raphson method for computing �. Note that in this way the values taken by K1,
K2 are always identically 0.

Since K depends on quantities that are referred to the same epoch, we will drop the
subscript i .

We need to compute:

∂K
∂E ∗

att
= ∂(r̈ · eρ)

∂E ∗
att

− ∂(ỹ · eρ)

∂E ∗
att

. (93)

From the equation

r̈ · eρ = ρ̈ − ρη2 + q̈ · eρ, (94)

we obtain

∂(r̈ · eρ)

∂E ∗
att

=
(
q̈ · ∂eρ

∂�α
, q̈ · ∂eρ

∂�δ
, −2ξ

ρ
, −2ζ

ρ
, η2, 0

)
, (95)

with

∂eρ

∂�α
= ∂eρ

∂α
= eα cos δ,

∂eρ

∂�δ
= ∂eρ

∂δ
= eδ. (96)

In (96), we made a little abuse of notation: eρ stands for both a function of (α, δ) and
(�α,�δ).
Then, we introduce y∗, i.e., the vector ỹ (see 27) as a function of the coordinates E ∗

att:

y∗ = ỹ ◦ φ−1
2 ◦ φ−1

3 =
( ∂ ṙ

∂E ∗
att
Xkep

)
◦ �−1. (97)

Denoting by x(k) the k-th component of x (where x can be here either a vector or a map), we
can write

y∗
(k) =

( ∂ ṙ(k)

∂Ekep
Xkep

)
◦ �−1, k = 1, 2, 3. (98)

Their derivatives are given by

∂y∗
(k)

∂E ∗
att

=
[

∂

∂Ekep

( ∂ ṙ(k)

∂Ekep
Xkep

)]
◦ �−1 ∂�−1

∂E ∗
att

, (99)

where

∂

∂Ekep

( ∂ ṙ(k)

∂Ekep
Xkep

)
= ∂2ṙ(k)

∂E 2
kep

Xkep + ∂ ṙ(k)

∂Ekep

∂Xkep

∂Ekep
, (100)

with

∂ ṙ(k)

∂Ekep
= ∂φ1(k+3)

∂Ekep
,

∂2ṙ(k)

∂E 2
kep

= ∂2φ1(k+3)

∂E 2
kep

, (101)
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Table 1 Keplerian elements at
epoch 54127.1553819MJD for
object 1 and
54127.2991319MJD for object 2

Obj. a e I � ω 


1 7818.10 0.0658 65.81 213.92 356.70 202.25

2 7396.00 0.0341 26.88 255.49 357.13 198.67

The values of a, e, I are exact, the others are approximated. Distances
are expressed in km, angles in degrees

Table 2 Standard deviation (rms)
of the errors added to the radar
tracks

α, δ (◦) ρ (m)

Case 1 0.20 1

Case 2 0.20 10

Case 3 0.15 1

Case 4 0.15 10

and

∂Xkep

∂Ekep
=

[
O3 O3

∂(�̇,ω̇,
̇)
∂(a,e,I ) O3

]
. (102)

The expressions of

∂φ1

∂Ekep
,

∂2φ1

∂E 2
kep

,
∂�−1

∂E ∗
att

,
∂Xkep

∂Ekep

are reported in “Appendices A, B, C”.

8 Numerical tests

We show some numerical tests with two simulated objects whose orbital elements at some
epoch are defined in Table 1. For the selected orbits, the perturbation due to the J2 is dominant
if we assume a small area-to-mass ratio of the two objects (see Montenbruck and Gill 2000,
Figure 3.1). Moreover, the J2 effect will be stronger for object 2 because of the smaller values
of the inclination and semi-major axis.

A two-body propagation with the J2 effect (Eq. 23) is used to generate pairs of radar tracks
at epochs t̃1, t̃2 of four observations each taken at time intervals of 10 s; see (1). Then, we add
to ρ, α, δ a Gaussian error with zero mean and the standard deviation (rms) shown in Table 2.
In Cases 1, 3, a small error is added to ρ,3 while in Cases 2, 4 a significant noise affects both
the angles and the range. For each object, we consider two pairs of radar tracks, separated by
a different number of revolutions k. The interpolated data that we get after adding the noise
to the simulated observations are given in Tables 3, 4 for object 1 and Tables 5, 6 for object 2.
Note that also the values of α̇, δ̇ are shown because they are needed to initialize the unknown
variables ξ , ζ .

Tables 7 and 8 report the absolute errors in each orbital element of objects 1, 2 at epoch
t̃1. For both objects, the new method, here referred to as IA-J2, is able to correct the errors
in α, δ and to recover the Keplerian elements of the known orbits with a satisfactory level

3 Note that even if the rms of ρ was 0, the interpolated values of ρ, ρ̇ at time t̃1 would not be exact in general.
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Table 3 Data interpolated from two radar tracks of object 1 at epochs t̄1 = 54127.1553820MJD and t̄2 =
54127.5824653MJD, using two different noise levels of Table 2

Epoch Case ᾱ (◦) δ̄ (◦) α̇ (◦/s) δ̇ (◦/s) ρ (km) ρ̇ (km/s)

Object 1, k = 5

t̄1 1 40.71190 − 4.34972 0.06933 − 0.17402 1965.89061 − 1.26651

2 40.71190 − 4.34972 0.06933 − 0.17402 1965.88651 − 1.26557

t̄2 1 243.02897 − 79.04074 − 0.02136 0.16045 1875.99129 − 4.84869

2 243.02897 − 79.04074 − 0.02136 0.16045 1876.00141 − 4.85139

The number of revolutions k, as defined in Eq. (62), is also reported

Table 4 Same as in Table 3 for two radar tracks at t̄1 = 54127.5824653MJD and t̄2 = 54128.6241320MJD

Epoch Case ᾱ (◦) δ̄ (◦) α̇ (◦/s) δ̇ (◦/s) ρ (km) ρ̇ (km/s)

Object 1, k = 13

t̄1 3 242.95755 − 79.11215 − 0.01356 0.16825 1875.98971 − 4.84829

4 242.95755 − 79.11215 − 0.01356 0.16825 1875.98562 − 4.84735

t̄2 3 204.34455 53.03103 0.11860 0.10845 2061.14383 5.59005

4 204.34455 53.03103 0.11860 0.10845 2061.15395 5.58735

Table 5 Data interpolated from two radar tracks of object 2 at epochs t̄1 = 54127.2991320MJD and t̄2 =
54127.3828126MJD, using two different noise levels of Table 2

Epoch Case ᾱ (◦) δ̄ (◦) α̇ (◦/s) δ̇ (◦/s) ρ (km) ρ̇ (km/s)

Object 2, k = 1

t̄1 1 72.88079 34.57579 0.20066 − 0.04293 1942.23386 − 3.40688

2 72.88079 34.57579 0.20066 − 0.04293 1942.22977 − 3.40593

t̄2 1 193.80043 − 31.71774 0.13680 0.03447 2057.69443 5.00361

2 193.80043 − 31.71774 0.13680 0.03447 2057.70455 5.00091

The number of revolutions k, as defined in Eq. (62), is also reported

Table 6 Same as in Table 5 for two radar tracks at t̄1 = 54127.6906251MJD and t̄2 = 54128.3300348MJD

Epoch Case ᾱ (◦) δ̄ (◦) α̇ (◦/s) δ̇ (◦/s) ρ (km) ρ̇ (km/s)

Object 2, k = 8

t̄1 3 162.41862 − 0.70695 0.12744 0.07974 1914.59715 − 5.09806

4 162.41862 − 0.70695 0.12744 0.07974 1914.59305 − 5.09712

t̄2 3 169.53245 − 20.90422 0.14196 − 0.01396 2013.14698 4.73488

4 169.53245 − 20.90422 0.14196 − 0.01396 2013.15710 4.73218

of accuracy. Note that the performance of the new method is only slightly affected by the
increase of the noise level in ρ (Cases 2, 4).

We have also compared IA-J2 to themethod IAQproposed inGronchi et al. (2015b)which
does not take into account the effect of the J2 term of the geopotential. The advantage of
IA-J2 over IAQ becomes evident when the time interval between two radar tracks increases.
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Table 7 Difference (in absolute value) between the computed and true orbital elements of objects 1, 2 at epoch
t̃1 for the interpolated data of Tables 3 and 5

Object 1, k = 5 Object 2, k = 1 Case

IAQ IA-J2 IAQ IA-J2

δa 6.1476 1.1441 5.0957 1.7662 1

171.4962 1.8259 10.3163 1.3280 2

δe 1.79 × 10−4 4.43 × 10−5 4.57 × 10−4 4.30 × 10−4 1

1.48 × 10−2 7.21 × 10−5 2.04 × 10−3 2.75 × 10−4 2

δ I 1.8416 0.4283 0.9966 0.3384 1

0.8353 0.7366 0.1597 0.2694 2

δ� 0.0677 0.2408 1.1446 0.4020 1

3.1663 0.4204 0.1827 0.3051 2

δω 3.7614 1.1999 0.8886 1.6806 1

6.2622 1.8956 6.1047 1.3220 2

δ
 4.3016 1.2948 0.0334 1.4552 1

7.9420 2.0320 6.8222 1.1558 2

The new method is compared to the method IAQ proposed in Gronchi et al. (2015b). Distances are expressed
in km, angles in degrees

Table 8 Same as in Table 7 for
the interpolated data of Tables 4
and 6

Object 1, k = 13 Object 2, k = 8 Case

IAQ IA-J2 IA-J2

δa 502.4785 0.0105 0.1615 3

502.4096 0.0116 0.1378 4

δe 4.32 × 10−3 7.08 × 10−5 2.00 × 10−4 3

4.76 × 10−3 1.44 × 10−4 1.50 × 10−4 4

δ I 6.2022 0.0977 0.9485 3

6.2071 0.0830 0.6724 4

δ� 5.1509 0.0469 0.5746 3

5.1487 0.0454 0.3900 4

δω 129.2975 0.0203 4.7886 3

129.3858 0.0388 3.5505 4

δ
 239.9665 0.0124 4.2105 3

239.8206 0.0095 3.1483 4

The method IAQ does not work for object 2 when we take two radar
tracks separated by 8 revolutions

Table 8 shows that by taking two radar tracks of object 1 separated by 13 revolutions, the
method IAQ does not find a good orbit, while IA-J2 is able to determine very accurate values
of the orbital elements. Also, IAQ does not work with two radar tracks of object 2 separated
by 8 revolutions, while IA-J2 keeps the errors small. Finally, the corrections to the angles α,
δ computed by the method IA-J2 are shown in Tables 9 and 10.
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Table 9 Infinitesimal angles (◦)
found by the proposed method
using the radar tracks of Tables 3
and 4 for object 1

Case 1 Case 2 Case 3 Case 4

�α1 − 1.31448 − 2.30805 0.25737 0.08057

�δ1 − 0.37447 − 0.69638 0.08058 0.07575

�α2 0.71856 1.23111 − 0.23547 − 0.24423

�δ2 0.32881 0.58535 − 0.02666 − 0.04653

Table 10 Infinitesimal angles (◦)
found by the proposed method
using the radar tracks of Tables 5
and 6 for object 2

Case 1 Case 2 Case 3 Case 4

�α1 0.42261 0.31791 − 0.01612 − 0.00648

�δ1 0.35088 0.26697 − 1.54546 − 1.12770

�α2 0.30596 0.24228 0.03328 0.00800

�δ2 − 0.82680 − 0.67820 − 3.45550 − 2.44161

9 Conclusions

Wepropose a newmethod to compute preliminary orbits of Earth satellites taking into account
the Earth oblateness. The method attempts to link together two radar tracks, which may be
separated by several revolutions. It consists in solving system (53) by a double-iterative
scheme to determine the corrections of α, δ and the angular velocity. Numerical tests show
that this IOD method works also in the presence of a significant noise level on the range and
the angles. Future work will be to include the effect of the atmospheric drag and perform
large-scale tests on LEO objects with real observations.
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Appendix A

The Jacobian matrix of the Cartesian coordinates Ecar with respect to the Keplerian elements
Ekep (see Eqs. 14, 15) can be obtained from Table 2 in Broucke (1970) by setting t = 0 in
the expressions of ∂φ1

∂a and noting that ∂φ1
∂


= ∂φ1
∂M0

, where M0 denotes the mean anomaly at
epoch in Broucke (1970).

Let us adopt here and in “Appendix B” the same notation explained in Section 7.3 to refer

to the component of a vector and a map. The derivatives ∂2φ1(i)

∂E 2
kep

, i = 4, 5, 6, are given by:

∂2φ1(i)

∂Ekep∂a
= − 1

2a

(
−3ṙ(k)

2a
,

∂φ1(i)

∂e
,

∂φ1(i)

∂ I
,

∂φ1(i)

∂�
,

∂φ1(i)

∂ω
,

∂φ1(i)

∂


)
,

∂

∂(a, e, 
)

∂φ1(i)

∂e
= ∂ L̇

∂(a, e, 
)
P(k) + ∂ Ṁ

∂(a, e, 
)
Q(k),
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∂

∂(I ,�, ω)

∂φ1,(i)

∂e
= L̇

∂P(k)

∂(I ,�, ω)
+ Ṁ

∂Q(k)

∂(I ,�, ω)
,

∂

∂(a, e, 
)

∂φ1(i)

∂ I
=

( ∂ Ẋ

∂(a, e, 
)
sinω + ∂Ẏ

∂(a, e, 
)
cosω

)
R(k),

∂

∂(I ,�)

∂φ1(i)

∂ I
= (Ẋ sinω + Ẏ cosω)

∂R(k)

∂(I ,�)
,

∂2φ1(i)

∂ω∂ I
= (Ẋ cosω − Ẏ sinω)R(k),

∂

∂Ekep

∂φ1(4)

∂�
= −∂φ1(5)

∂Ekep
,

∂

∂Ekep

∂φ1(5)

∂�
= ∂φ1(4)

∂Ekep
,

∂

∂Ekep

∂φ1(6)

∂�
= 0,

∂

∂(a, e, 
)

∂φ1(i)

∂ω
= ∂ Ẋ

∂(a, e, 
)
Q(k) − ∂Ẏ

∂(a, e, 
)
P(k),

∂

∂(I ,�, ω)

∂φ1(i)

∂ω
= Ẋ

∂Q(k)

∂(I ,�, ω)
− Ẏ

∂P(k)

∂(I ,�, ω)
,

∂φ2
1(i)

∂a∂

= n

a2

r3

(3
2
r(k) − a

∂φ1(k)

∂a

)
,

∂

∂(e, 
)

∂φ1(i)

∂

= n

a3

r3

(
3
r(k)

r

∂r

∂(e, 
)
− ∂φ1(k)

∂(e, 
)

)
,

∂

∂(I ,�, ω)

∂φ1(i)

∂

= −n

a3

r3
∂φ1(k)

∂(I ,�, ω)
,

where k = i − 3, and the quantities Ẋ , Ẏ , L̇ , Ṁ , P, Q, R are defined in Broucke (1970). We
have

∂P
∂ I

= (P3 sin�,−P3 cos�, sinω cos I )T,

∂P
∂�

= (−P2,P1, 0)
T,

∂P
∂ω

= Q,

∂Q
∂ I

= (Q3 sin�,−Q3 cos�, cosω cos I )T,

∂Q
∂�

= (−Q2,Q1, 0)
T,

∂Q
∂ω

= −P,

∂R
∂ I

= (sin� cos I , − cos� cos I , − sin I )T,

∂R
∂�

= (cos� sin I , sin� sin I , 0)T,

∂R
∂ω

= 0,
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and

∂ L̇

∂a
= − L̇

2a
,

∂ Ṁ

∂a
= − Ṁ

2a
,

∂ L̇

∂e
= n

a4

r4
(2r + a)sin3 E − 3L̇

r

∂r

∂e
,

∂ Ṁ

∂e
= Ṁ

( e

1 − e2
− 3

r

∂r

∂e

)

+ n√
1 − e2

a4

r3

[
2e − 3 cos E + (2 + a

r
)cos3 E + a

r
(e − 2 cos E)

]
,

∂ L̇

∂

= n

a4

r4

[
2rsin2 E + (e − 2cos E + ecos2 E)

(
acos E − 3

∂r

∂


)]
,

∂ Ṁ

∂

= n√

1 − e2
a5

r4
sin E

[
e − 4cos E + 3ecos2 E − 3ae

r
(e2 − 1 − ecos E

+ 2cos2 E − ecos3 E)
]
.

Finally, the derivatives of Ẋ , Ẏ , r that appear in the previous expressions can be found in
Broucke (1970, Table 1).

Appendix B

Let us introduce the coordinate change from E ∗
att to Ecar as the composite transformation

ψ = φ−1
2 ◦ φ−1

3 .

Then, we have

∂�−1

∂E ∗
att

=
( ∂φ1

∂Ekep

)−1 ∂ψ

∂E ∗
att

,

where (k = 1, 2, 3)

∂ψ(k)

∂E ∗
att

= (ρeα
(k) cos δ, ρeδ

(k), 0, 0, e
ρ

(k), 0)
T,

∂ψ(k+3)

∂E ∗
att

= (ξe⊥
(k) + eα

(k)(ρ̇ cos δ − ζ sin δ), ρ̇eδ
(k) − ζeρ

(k), e
α
(k), e

δ
(k), 0, e

ρ

(k))
T,

with

e⊥ = (− cosα, − sin α, 0)T.

Appendix C

We can write

∂(Xkep ◦ �−1)

∂E ∗
att

= ∂Xkep

∂Ekep

∂�−1

∂E ∗
att

,
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where

∂�̇

∂a
= −3

2
J2

R2⊕
p2

cos I
(∂ ñ

∂a
− 2ñ

a

)
,

∂�̇

∂e
= −3

2
J2

R2⊕
p2

cos I
(∂ ñ

∂e
+ 4ñe

1 − e2

)
,

∂�̇

∂ I
= −3

2
J2

R2⊕
p2

(∂ ñ

∂ I
cos I − ñ sin I

)
,

∂ω̇

∂a
= 3

4
J2

R2⊕
p2

(4 − 5 sin2 I )
(∂ ñ

∂a
− 2ñ

a

)
,

∂ω̇

∂e
= 3

4
J2

R2⊕
p2

(4 − 5 sin2 I )
(∂ ñ

∂e
+ 4ñe

1 − e2

)
,

∂ω̇

∂ I
= 3

4
J2

R2⊕
p2

[∂ ñ

∂ I
(4 − 5 sin2 I ) − 5 sin(2I )ñ

]
,

∂ ñ

∂a
= ∂n

∂a
− 21

4
J2

R2⊕
p2

n

a

(
1 − 3

2
sin2 I

)√
1 − e2,

∂ ñ

∂e
= 9

2
J2

R2⊕
p2

(
1 − 3

2
sin2 I

) ne√
1 − e2

,

∂ ñ

∂ I
= −9

2
J2

R2⊕
p2

nsin Icos I
√
1 − e2.

References

Broucke, R.A.: On the Matrizant of the Two-Body Problem. Astron. Astrophys. 6, 173–182 (1970)
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