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Abstract
TheMercury Orbiter Radio science Experiment (MORE) is one of the experiments on-board
the ESA/JAXABepiColombomission toMercury, to be launched inOctober 2018. Thanks to
full on-board and on-ground instrumentation performing very precise tracking from theEarth,
MOREwill have the chance to determinewith very high accuracy theMercury-centric orbit of
the spacecraft and the heliocentric orbit of Mercury. This will allow to undertake an accurate
test of relativistic theories of gravitation (relativity experiment), which consists in improving
the knowledge of some post-Newtonian and related parameters, whose value is predicted by
General Relativity. This paper focuses on two critical aspects of the BepiColombo relativity
experiment. First of all, we address the delicate issue of determining the orbits of Mercury
and the Earth–Moon barycenter at the level of accuracy required by the purposes of the
experiment and we discuss a strategy to cure the rank deficiencies that appear in the problem.
Secondly, we introduce and discuss the role of the Solar Lense–Thirring effect in theMercury
orbit determination problem and in the relativistic parameters estimation.

Keywords Radio science · Mercury · BepiColombo mission · General relativity tests

1 Introduction

BepiColombo is a space mission for the exploration of the planet Mercury, jointly developed
by the European SpaceAgency (ESA) and the JapanAerospace eXplorationAgency (JAXA).
The mission includes two spacecraft: the ESA-ledMercury Planetary Orbiter (MPO), mainly
dedicated to the study of the surface and the internal composition of the planet (Benkhoff
2010), and the JAXA-led Mercury Magnetospheric Orbiter (MMO), designed for the study
of the planetary magnetosphere (Mukai 2006). The two orbiters will be launched together in
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October 2018 on an Ariane 5 launch vehicle fromKourou and they will be carried toMercury
by a common Mercury Transfer Module (MTM) using Solar-electric propulsion. The arrival
at Mercury is foreseen for December 2025, after 7.2years of cruise. After the arrival, the
orbiters will be inserted in two different polar orbits: the MPO on a 480×1500 km orbit with
a period of 2.3h, while the MMO on a 590 × 11639 km orbit. The nominal duration of the
mission in orbit is 1year, with a possible 1year extension.

The Mercury Orbiter Radio science Experiment (MORE) is one of the experiments on-
board the MPO spacecraft. The scientific goals of MORE concern both fundamental physics
and, specifically, the geodesy and geophysics of Mercury. The radio science experiment will
provide the determination of the gravity field of Mercury and its rotational state, in order
to constrain the planet’s internal structure (gravimetry and rotation experiments). Details
can be found, e.g., in (Milani 2001; Sanchez Ortiz et al. 2006; Iess et al. 2009; Cicalò and
Milani 2012; Cicalò 2016; Schettino 2016; Schettino et al. 2017).Moreover, taking advantage
from the fact that Mercury is the best-placed planet to investigate the gravitational effects of
the Sun, MORE will allow an accurate test of relativistic theories of gravitation (relativity
experiment; see, e.g.,Milani 2002, 2010; Schettino et al. 2015; Schuster et al. 2015; Schettino
and Tommei 2016). The global experiment consists in a very precise orbit determination of
both theMPO orbit aroundMercury and the orbits of Mercury and the Earth around the Solar
System Barycenter (SSB), performed by means of state-of-the-art on-board and on-ground
instrumentation (Iess and Boscagli 2001). In particular, the on-board transponder will collect
the radio tracking observables (range, range-rate) up to a goal accuracy (in Ka-band) of
about σr = 15 cm at 300s for one-way range and σṙ = 1.5 × 10−4 cm/s at 1000s for one-
way range-rate (Iess and Boscagli 2001). The radio observations will be further supported
by the on-board Italian Spring Accelerometer (ISA; see, e.g., Iafolla 2010). Thanks to the
very accurate radio tracking, together with the state vectors (position and velocity) of the
spacecraft, Mercury and the Earth, the experiment will be able to determine, by means of a
global nonlinear least squares fit (see, e.g.,Milani andGronchi 2010), the following quantities
of general interest:

– coefficients of the expansion of Mercury gravity field in spherical harmonics with a
signal-to-noise ratio better than 10 up to, at least, degree and order 25 and Love number
k2 (Kozai 1965);

– parameters defining the model of Mercury’s rotation;
– the post-Newtonian (PN) parameters γ , β, η, α1 and α2, which characterise the expansion

of the space-time metric in the limit of slow motion and weak field (see, e.g., Will
1993), together with some related parameters, as the oblateness of the Sun J2�, the Solar
gravitational factor μ� = GM� (where G is the gravitational constant and M� the mass
of the Sun) and possibly its time derivative ζ = (1/μ�)dμ�/dt .

The aim of the present paper is to address two critical issueswhich affect the BepiColombo
relativity experiment and to introduce a suitable strategy to handle these aspects. The first
issue concerns the determination of two PN parameters, the Eddington parameter β and
the Nordtvedt parameter η. The criticality of determining these parameters by ranging to a
satellite around Mercury has been already pointed out in the past [see, e.g., the discussion
in Milani (2001) and Ashby et al. (2007)]. More recently, in De Marchi et al. (2016), the
issue of how the lack of knowledge in the Solar System ephemerides can affect, in particular,
the determination of η has been discussed. Moreover, in Schettino et al. (2016), the authors
considered the downgrading effect on the estimate of PN parameters due to uncalibrated
systematic effects in the radio observables and concluded that these effects turn out to be
particularly detrimental for the determination of β and η. Aside from these remarks, we
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observed that the accuracy by which β and η can be determined turns out to be very sensitive
to changes in the epochof the experiment in orbit. Indeed, during the last years, the simulations
of the radio science experiment in orbit have been performed assuming different scenarios
and epochs, due to the repeated postponement of the launch date of the mission because
of technical problems. As will be described in the following, a deeper analysis reveals that
the observed sensitivity to the epoch of estimate is related to the rank deficiencies found in
solving simultaneously the Earth and Mercury orbit determination problem, which affect in
particular the estimate of β and η.

The second critical aspect we investigated concerns how the Solar Lense–Thirring (LT)
effect affects the Mercury orbit determination problem. The general relativistic LT effect
on the orbit of Mercury due to the Sun’s angular momentum (Lense and Thirring 1918)
is expected to be relevant at the level of accuracy of our tests (Iorio et al. 2011) and was
not included previously in our dynamical model (see a brief discussion on this issue in
Schettino and Tommei 2016). Due to the resulting high correlation between the Sun’s angular
momentum and its quadrupole moment, we will discuss how the mismodelling deriving from
neglecting this effect can affect specifically the determination of J2�.

The paper is organised as follows: in Sect. 2, we describe the mathematical background
at the basis of our analysis, focusing on the two highlighted critical issues. In Sect. 3, we
describe how these issues can be handled in the framework of the orbit determination software
ORBIT14, developed by the Celestial Mechanics group of the University of Pisa and we
outline the simulation scenario and assumptions. In Sect. 4, we present the results of our
simulations and some sensitivity studies to strengthen the confidence in our findings. Finally,
in Sect. 5, we draw some conclusions and final remarks.

2 Mathematical background

The challenging scientific goals ofMORE can be fulfilled only by performing a very accurate
orbit determination of the spacecraft, ofMercury and of the Earth–Moon barycenter (EMB)1.
Starting from the radio observations, i.e. the distance (range) and the radial velocity (range-
rate) between the MORE on-board transponder and one or more on-ground antennas, we
perform the orbit determination together with the parameters estimation by means of an
iterative procedure based on a classical nonlinear least squares (LS) fit.

2.1 The differential correctionmethod

Following, e.g.,Milani andGronchi (2010)—Chap. 5, the nonlinearLSfit aims at determining
a set of parameters u which minimises the target function:

Q(u) = 1

m
ξT(u)W ξ(u),

where m is the number of observations, W is the matrix of the observation weights and
ξ(u) = O−C(u) is the vector of the residuals, namely the difference between the observations
O (i.e. the tracking data) and the predictions C(u), resulting from the light-time computation
as a function of all the parameters u (see Tommei et al. (2010) for all the details).

1 The strategy adopted in our orbit determination code is to determine the EMB orbit instead of the Earth
orbit.
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The procedure to compute the set of minimising parameters u� is based on a modified
Newton’s method called differential correction method. Let us define the design matrix B
and the normal matrix C :

B = ∂ξ

∂u
(u), C = BTWB.

The stationary points of the target function are the solution of the normal equation:

C
u� = −BTW ξ , (1)

where 
u� = u� − u. The method consists in applying iteratively the correction:


u = uk+1 − uk = −C−1BTW ξ

until, at least, one of the following conditions is met: Q does not change significantly between
two consecutive iterations; 
u becomes smaller than a given tolerance. In particular, the
inverse of the normal matrix, Γ = C−1, can be interpreted as the covariance matrix of
the vector u� (see, e.g., Milani and Gronchi 2010—Chap. 3), carrying information on the
attainable accuracy of the estimated parameters.

The task of inverting the normal matrix C can be made more difficult by the presence of
symmetries in the parameters space. A group G of transformations of such space is called
group of exact symmetries if, for every g ∈ G, the residuals remain unchanged under the
action of g on u, namely:

ξ(g[u]) = ξ(u).

It can be easily shown that if the latter holds, the normal matrix is singular. In practical cases,
the symmetry is usually approximate, that is there exists a small parameter s such that:

ξ(g[u]) = ξ(u) + O(s2),

leading to a ill-conditioned normal matrix C , anyway yet invertible. When this happens,
solving for all the parameters involved in the symmetry leads to a significant degradation of
the results. Possible solutions will be described in Sect. 2.3.

2.2 The dynamical model

To achieve the scientific goals of MORE, both the Mercury-centric dynamics of the probe
and the heliocentric dynamics of Mercury and the EMB need to be modelled to a high level
of accuracy. On the one hand, the MPO orbit around Mercury is expected to have a period
of about 2.3h; on the other hand, the motion of Mercury around the Sun takes place over
88days. Thus, due to the completely different time scales, we can handle separately the two
dynamics. Thismeans that, althoughweare dealingwith a unique set ofmeasurements,we can
conceptually separate between gravimetry-rotation experiments on one side, mainly based on
range-rate observations, and the relativity experiment on the other, performed ultimately with
rangemeasurements. Comparing the goal accuracies for range and range-rate, scaled over the
same integration time according to Gaussian statistics, we indeed find that σr/σṙ ∼ 105 s. As
a result, range measurements are more accurate when observing phenomena with periodicity
longer than 105 s, like relativistic phenomena, whose effects become significant over months
or years. On the contrary, since the gravity and rotational state of Mercury show variability
over time scales of the order of hours or days, the determination of the related parameters is
mainly based on range-rate observations.

All the details on theMercury-centric dynamicalmodel of theMPOorbiter can be found in
Cicalò (2016) and Schettino and Tommei (2016), including the effects due to the gravity field
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of the planet up to degree and order 25, the tidal effects of the Sun onMercury (Love potential;
see, e.g., Kozai 1965), a semi-empirical model for the planet’s rotation (see Cicalò and
Milani 2012), the third-body perturbations from the other planets, the Solar non-gravitational
perturbations, like the Solar radiation pressure, and some non-negligible relativistic effects
(see, e.g., Moyer 2000 and Cicalò 2016). In the following, we will focus on the relativity
experiment, hence on the heliocentric dynamics ofMercury and the EMB. In the slowmotion,
weak-field limit, known as post-Newtonian (PN) approximation, the space-timemetric can be
written as an expansion about the Minkowski metric in terms of dimensionless gravitational
potentials. In the parametrisedPN formalism, eachpotential term in themetric is characterised
by a specific parameter, whichmeasures a general property of themetric (see, e.g.,Will 2014).
Each PN parameter assumes a well-defined value (0 or 1) in General Relativity (GR). The
effect of each term on the motion can be isolated, therefore the value of the associated PN
parameter can be constrained within some accuracy threshold, testing any agreement (or
not) with GR. The PN parameters that will be estimated are the Eddington parameters β

and γ (β = γ = 1 in GR), the Nordtvedt parameter η (Nordtvedt 1960) (η = 0 in GR)
and the preferred frame effects parameters α1 and α2 (α1 = α2 = 0 in GR). Moreover, we
include in the solve-for list a few additional parameters, whose effect on the orbital motion
can be comparable with that induced by some PN parameters (Milani 2002): the oblateness
factor of the Sun J2�, the gravitational parameter of the Sun μ� and its time derivative
ζ = (1/μ�) dμ�/dt .

The modification of the space-time metric due to a single PN parameter affects both the
propagation of the tracking signal and the equations of motion. As regards the observables,
they must be computed in a coherent relativistic background. This implies to account for
the curvature of the space-time metric along the propagation of radio signals (Shapiro effect
Shapiro 1964) and for the proper times of different events, as the transmission and reception
times of the signals. All the details concerning the relativistic computation of the observables
can be found in Tommei et al. (2010). A relativistic model for the motion of Mercury is
necessary in order to accurately determine its orbit and, hence, constrain the PN and related
parameters. The complete description of the relativistic setting can be found inMilani (2002)
and Schettino and Tommei (2016).

2.3 Determination of Mercury and EMB orbits

As already pointed out, the relativity experiment is based on a very accurate determination of
the heliocentric orbits of Mercury and the EMB, that is we estimate the corresponding state
vectors (position and velocity) w.r.t. the SSB at a given reference epoch. A natural choice is
to determine the state vectors at the central epoch of the orbital mission, whose duration is
supposed to be 1year. In this way, the propagation of the orbits is performed backwards for
the first 6months of the mission and forwards for the remaining 6months, thus minimising
the numerical errors due to propagation. Of course, the determination of the PN and related
parameters should not depend significantly from the choice of the epoch of the estimate. To
verify this point, in Fig. 1, we have shown the behaviour of the accuracy of β (left) and η

(right), obtained from the diagonal terms of the covariance matrix, as a function of the epoch
of the estimate, from the beginning of the orbitalmission (Modified JulianDate (MJD) 61114,
corresponding to 15March 2026) to the end (MJD 61487, corresponding to 23March 2027).
The value of the formal accuracy at the central epoch (MJD 61303, corresponding to 20
September 2026) is highlighted in red. It is clear that there is a strong dependency of the
achievable accuracy on the epoch of the estimate. If the planetary orbits are determined at
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Fig. 1 Formal accuracy of β (left) and η (right) as a function of the epoch of the estimate (in MJD) over the
mission time span. In red the value of the accuracy for the estimate at central epoch

MJD 61183 (23 May 2026), the accuracy of η turns out to be σ(η) � 2.3 × 10−6, whereas
estimating atMJD61291 (8 September 2026) results in σ(η) � 1.1×10−4, almost two orders
of magnitude larger. On the contrary, the uncertainty of the other PN parameters showed very
little variability with the epoch of the estimate.

Such behaviour indicates the presence of some weak directions in orbit determination,
possibly connected to the strategy adopted until now for the MORE Relativity Experiment:
we determine only 8 out of 12 components of the initial conditions ofMercury and EMB. This
assumption, first introduced in Milani (2002), is a solution to the presence of an approximate
rank deficiency of order 4, arising when we try to determine the orbits of Mercury and the
Earth (or, similarly, the EMB as in our problem) w.r.t. the Sun only by means of relative
observations. Indeed, if there were only the Sun, Mercury and the Earth, and the Sun was
perfectly spherical (J2� = 0), there would be an exact symmetry of order 3 represented by
the rotation group SO(3) applied to the state vectors ofMercury and the Earth. Because of the
coupling with the other planets and due to the nonzero oblateness of the Sun, the symmetry
is broken but only by a small amount, of the order of the relative size of the perturbations of
the other planets on the orbits of Mercury and the Earth and of the order of J2�.

Moreover, there is another approximate symmetry for scaling. The symmetry would be
exact if there were only the Sun, Mercury and the Earth: if we change all the lengths involved
in the problem by a factor λ, all the masses by a factor μ and all the times by a factor τ ,
with the factors related by λ3 = τ 2μ (Kepler’s third law), then the equation of motion of the
gravitational 3-body problemwould remain unchanged. Sincewe can assume2 that τ = 1, the
symmetry for scaling involves the state vectors of Mercury and the Earth (i.e. the “lengths”
involved in the problem) and the gravitational mass of the Sun, which is among the solve-for
parameters. The symmetry for scaling can also be expressed by the well-known fact that it is
not possible to solve simultaneously for the mass of the Sun and the value of the astronomical
unit. Since the state vectors of the other planets, perturbing the orbits of Mercury and the
Earth, are given by the planetary ephemerides and thus they cannot be rescaled, the symmetry
is broken but, again, only by a small amount. In conclusion, an approximate rank deficiency
of order 4 occurs in the orbit determination problem we want to solve. Solving for all the 12
components of the initial conditions and the mass of the Sun would result in considerable
loss of accuracy for all the parameters of the relativity experiment, as will be quantified in
Sect. 4.

The only solution in case of rank deficiency is to change the problem. When no additional
observations breaking the symmetry are available, a convenient solution is to remove some
parameters from the solve-for list. Starting from N parameters to be solved, in case of a rank

2 There are accurate definitions of the time scales based upon atomic clocks.
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deficiency of order d , we can select a new set of N − d parameters to be solved, in such a
way that the new normal matrix C̄ , with dimensions (N − d) × (N − d) instead of N × N ,
has rank N − d . The remaining d parameters can be set at some nominal value (consider
parameters). This solution has been applied up to now in the MORE relativity experiment
(see, e.g., Schettino and Tommei 2016): the three position components and the out-of-plane
velocity component of the EMB orbit, for a total of 4 parameters, have been removed from
the solve-for list, curing in this way the rank deficiency of order 4.

Another option can be investigated: the use of a priori observations. When some infor-
mation on one or more of the parameters involved in the symmetry is already available—for
instance from previous experiments—it can be taken into account in our experiment and
could lead to an improvement in the results. In this case, the search for the minimum of the
target function is restricted to the vector of parameters fulfilling a set of a priori equations.
In practice, we add to the observations a set of a priori constraints, u = uP , on the value
of the parameters, with given a priori standard deviation σi (i = 1, ..N ) on each constraint
ui = uP

i . This is equivalent to add to the normal equation in Eq. (1) an a priori normal
equation of the form:

CPu = CPuP ,

with CP = diag[σ−1
i ]. In this way, an “a priori penalty” is added to the target function:

Q(u) = 1

N + m
[(u − uP )TCP (u − uP ) + ξT(u)W ξ(u)]

and the complete normal equation becomes:

(CP + C)
u = −BTW ξ + CP (uP − uk).

If the a priori uncertainties σi are small enough, the new normal matrix C̄ = CP + C has
rank N and the complete orbit determination problem can be solved.

In our problem, the a priori information is represented by four constraint equations which
inhibit the symmetry for rotation and scaling, to be added to the LS fit as a priori observations.
A complete description of the form that the constraint equations assume will be given in
Sect. 3.1.

2.4 The Solar Lense–Thirring effect

General relativity predicts that the orbital plane of a test particle in the vicinity of a rotating
celestial body experiences a dragging effect, also called Lense–Thirring (LT) effect (Lense
and Thirring 1918; Mashhoon et al. 1984; Schiff 1960). In the case of the planet Mercury,
the LT effect due to the Sun rotation, and depending on the Sun angular momentum, would
induce a precession of the argument of the pericentre of Mercury at the level of ω̇LT =
− 2milliarcsec/century, according to GR (De Sitter 1916).

Since its discovery, lots of attempts have been made to directly measure the general
relativistic LT effect in the framework of the Solar System. Historically, the first efforts have
been devoted tomeasure the LT effect in the gravitational field of the Earth. OnApril 2004, the
dedicated Gravity Probe Bmission was launched to test the GR geodetic and frame-dragging
effects on a test particle due to the Earth rotation, by means of cryogenic gyroscopes in
Earth orbit. The outcome was in agreement with GR, measuring the frame-dragging effect
with a precision of about 20% (Everitt 2011). A different way to investigate the LT effect
due to the Earth is to measure the relative precession of the line of node of the LAGEOS
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(LAser GEOdynamics Satellite)—LAGEOS 2 pair of laser-ranged satellites in Earth orbit.
Using the Earth’s gravity field determination by the GRACE (Gravity Recovery and Climate
Experiment) satellites, the observation of frame dragging at a level of accuracy of about 10%
was achieved (Ciufolini and Pavlis 2004; Ciufolini et al. 2010). Coupling the orbital data
from the laser-ranged LARES (LAser RElativity Satellite) satellite with those from the two
LAGEOS satellites, a level of accuracy of 10%, or even better, was confirmed (Ciufolini
2016). Concerning the LT effect in the gravity field of the Sun, the forthcoming availability
of very accurate planetary ranging data will lead the way to detect the frame dragging due
to the Sun rotation with an unprecedented level of accuracy (Iorio et al. 2011). A limiting
factor to such measurement of the Solar frame dragging is the uncertainty in the value of the
Sun angular momentum which is at the level of about 10%. The BepiColombo mission, with
its precise measurements of the Earth–Mercury range and range-rate, represents a suitable
opportunity for such tests (Iorio 2017).

In Schettino and Tommei (2016), we pointed out that the Lense–Thirring (LT) effect on
the orbit of Mercury due to the angular momentum of the Sun has been neglected, in order
to simplify the development and implementation of the dynamical model. In fact, the Solar
LT effect is expected to be relevant at the level of accuracy of our tests (Iorio et al. 2011).
As it will be clear in Sect. 4.2, the mismodelling resulting from neglecting this effect affects
specifically the determination of the oblateness of the Sun, J2�.

We modelled the effect as an additional perturbative acceleration in the heliocentric
equation of motion of Mercury. Following, e.g., Will (2014), in a suitable gauge, the frame-
dragging precession turns out to be proportional to the combination of PN parameters
(1 + γ + α1/4). By analogy with Moyer (2000), we adopt the following expression for
the acceleration due to LT:

aLT = GS�
c2 r3

(
1 + γ + α1

4

) [
− ŝ × ṙ + 3

(ŝ · r) (r × ṙ)
r2

]
, (2)

where S� = S�ŝ is the angular momentum of the Sun (ŝ is assumed along the rotation axis
of the Sun). Within the framework of GR, the first term in parenthesis reduces to 2, since γ

equals unity and the contribution due to α1 vanishes. We remark that, as it will be described
in Section 3.1, the MORE relativity experiment is currently built under the assumption that
gravitation is a metric theory. However, the first term in parenthesis in Eq. (2) can vary upon
the adopted metric [for example, in the Brans–Dicke metric theory of gravitation it reduces
to (1 + γ ) (Barros and Romero 2003)]. Here we present our first attempt to account for the
LT effect in the experiment assuming the validity of Eq. (2), but we point out that different
expressions for aLT can be implemented in our software to specifically test alternative metric
theories of gravitation.

To assess the role of the Solar LT in the dynamics, in Fig. 2, we plot the effect of the Solar
LT acceleration, given by Eq. (2), on the simulated range of the orbiter. In other words, this
is the difference between simulated range with and without LT effect over the 1-year mission
time span. As it can be seen, the mismodelling due to the lack of the Solar LT perturbation
in the dynamical model can be as high as some metres. This result is in very good agreement
with Fig. 1 in Iorio et al. (2011), which shows the numerically integrated EMB-Mercury
ranges with and without the perturbation due to the Solar Lense–Thirring field over 2years
in the ICRF/J2000.0 reference frame, with the mean equinox of the reference epoch and the
reference x−y plane rotated from the mean ecliptic of the epoch to the Suns equator, centred
at the SSB.
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Fig. 2 Difference (in cm) of
simulated spacecraft range with
and without Solar LT perturbation
in the dynamical model, over
1-year mission time span
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3 The ORBIT14 software

Since 2007, the Celestial Mechanics Group of the University of Pisa has developed3 a com-
plete software, ORBIT14, dedicated to the BepiColombo and Juno radio science experiments
(Tommei et al. 2015; Serra et al. 2016), which is now ready for use. All the code is written in
Fortran90. The software includes a data simulator, which generates the simulated observables
and the nominal value for the orbital elements of the Mercury-centric orbit of the MPO and
the heliocentric orbits of Mercury and the EMB, and the differential corrector, which is the
core of the code, solving for the parameters of interest by a global nonlinear LS fit, within
a constrained multi-arc strategy (Alessi et al. 2012). The general structure of the software is
described, e.g., in Schettino and Tommei (2016).

3.1 Handling the a priori constraints

The equations needed to a priori constrain the LS solution are given as an input to the
differential corrector. In general, the nth constraint has the expression: fn(u) = 0. ORBIT14
has been designed to handle only linear constraints. Thus, the equation for the nth constraint,
involving d parameters to be determined, reads:

fn(u) =
d∑

i=1

ai (xi − θi ) = N (0, diag[σi ]),

where σi are the weights associated to each parameter involved in the constraint, assuming
a Gaussian distribution with zero mean. Following the notation of Sect. 2.3, its contribution
to the normal matrix is given by:

CP
n =

(
∂ fn
∂u

)T

W
∂ fn
∂u

,

and to the right-hand side of the equations of motion by:

DP
n =

(
∂ fn
∂u

)T

W fn,

where W = diag[σ−2
i ].

3 Under an Italian Space Agency commission.
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In order to write the linear constraint equations of our orbit determination problem, let us
introduce the following notation for the components of the state vectors of Mercury and the
EMB:

– M, Ṁ: position and velocity of Mercury at the reference epoch from ephemerides
(nominal values); m, ṁ: estimated position and velocity of Mercury; 
M = M − m,

Ṁ = Ṁ − ṁ: deviation between ephemerides and estimate.

– E, Ė: position and velocity of EMB at the reference epoch from ephemerides; e, ė:
estimated position and velocity of EMB; 
E = E − e, 
Ė = Ė − ė: deviation between
ephemerides and estimate.

Symmetry for rotations. The symmetry for rotation is described by a three-parameter group,
whose generators are, for example, the rotations around three orthogonal axis (x, y, z) of
the reference frame used for orbit propagation. The constraint equation which inhibits an
infinitesimal rotation by an angle s around the x-axis has the expression:


M
|m| · ∂(Rs,x̂M̂)

∂s

⏐⏐⏐⏐⏐
s=0

+ 
E
|e| · ∂(Rs,x̂ Ê)

∂s

⏐⏐⏐⏐⏐
s=0

+ 
Ṁ
|ṁ| · ∂(Rs,x̂

ˆ̇M)

∂s

⏐⏐⏐⏐⏐
s=0

+ 
Ė
|ė| · ∂(Rs,x̂

ˆ̇E)

∂s

⏐⏐⏐⏐⏐
s=0

= N (diag[σi ], 0), (3)

where σi are the weights for the state vectors components, N represents a Gaussian distribu-
tion with zero mean, Rs,x̂ is the rotation matrix by an angle s around the x-axis:

Rs,x̂ =
⎛
⎝
1 0 0
0 cos s − sin s
0 sin s cos s

⎞
⎠

and (∂Rs/∂s)|s=0 is a generator of the Lie algebra of the rotations SO(3). Two similar
equations hold for the rotations by an angle s around the y- and z-axes.
Symmetry for scaling. To find the equation to constrain for scaling, we can start from the
simple planar two-body problem of a planet around the Sun, with the nonlinear dependency
of the mean motion n upon the semi-major axis a, in the hypothesis of circular motion:

da

dt
= 0,

dλ

dt
= n(a) = k

a3/2
, (4)

where k2 = GM� = μ�, with solution given by:

a(t) = a0, λ(t) = k

a3/20

t + λ0. (5)

This problem has a symmetry with multiplicative parameter w ∈ R
+:

k �→ w3k, a0 �→ w2a0, (6)

leaving n = k/a3/2 invariant. The symmetry can be represented by means of an additive
parameter s by setting w = es . The derivative of the symmetry group action with respect to
s is:

da0
ds

= 2w2a0,
dk

ds
= 3w3k. (7)
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Table 1 Ratio between the formal accuracy and the estimated value for the 8 components of Mercury and the
EMB orbits and for μ�
σ(xM )
xM

σ(yM )
yM

σ(zM )
zM

σ(ẋM )
ẋM

σ(ẏM )
ẏM

σ(żM )
żM

σ(ẋE )
ẋE

σ(ẏE )
ẏE

σ(μ�)
μ�

0.22 0.61 3.1 0.23 0.26 3.2 4.4 0.29 0.78

All values are normalised to 10−12

Finally, the constraint takes the form:

− 3

a

a0

da0
ds

⏐⏐⏐⏐
s=0

+ 2

k

k0

dk

ds

⏐⏐⏐⏐
s=0

= 0. (8)

In our fit, we estimate the parameter μ�, that is k1/2. Since we need to deal with linear
constraints, we can linearise the problem by expanding the nonlinear equation up to the first
order around the nominal value. In this way, the final expression adopted for the scaling
constraint reads:

3∑
j=1

[

Mj

|M| Mj + 
Ṁ j

|Ṁ| Ṁ j + 
E j

|E| E j + 
Ė j

|Ė| Ė j

]
+ 3
μ� = N (diag[σi ], 0), (9)

where j = 1, 2, 3 refers to the three orthogonal directions x, y, z.
Setting the weights σi . Together with the constraint equations given in input to the differential
corrector, it is necessary to provide also the a priori standard deviations σi by which the
involved parameters are constrained. The strength of the weights σi is the result of a trade-off
between two opposite trends: on the one hand, the tighter the constraint the less the solution
is affected by the corresponding rank deficiency; on the other hand, if the constraint is too
tight, the approach becomes equivalent to descoping, i.e. the involved parameters are handled
as consider parameters.

The formulation given inEqs. (3) and (9) implies the employment of adimensionalweights,
which constrain the relative accuracy of each involved parameter. To find a suitable value
for the weights, we start from a standard simulation of the relativity experiment, obtained by
estimating only 8 out of the 12 components of the orbits of Mercury and the EMB, and we
consider the ratio between the formal accuracy of each component and the corresponding
estimated value. The results are shown in Table 1, where we included also the ratio of the
accuracy over the estimated value ofμ�. All the values range between 10−12 and 10−13, thus
suitable values to be adopted areσi ∼ 10−13−10−14. In the following,wewill adopt a relative
weight σi = 10−14 for each parameter involved in the a priori constraints. Nevertheless, we
checked that adopting σi = 10−13 for each parameter, the worsening of the global solution
is negligible.

3.2 Simulation scenario

To perform a global simulation of the radio science experiment, we make use of some
assumptions both at simulation stage and during the differential correction process, which
are briefly described in the following.

Error models. To simulate the observables in a realistic way, we need to make some assump-
tions concerning the error sources which unavoidably affect the observations. We assume
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that the radio tracking observables are affected only by random effects with a standard devi-
ation of σr = 15 cm at 300s and σṙ = 1.5 × 10−4 cm/s at 1000s, respectively, for Ka-band
observations. The software is capable of including also a possible systematic component to
the range error model and to calibrate for it,4 but we did not account for this detrimental
effect in the present work, which has been partially discussed in Schettino et al. (2016).

The accelerometer readings themselves suffer from errors of both random and systematic
origin, which can significantly bias the results of the orbit determination. Systematic effects
due to the accelerometer readings turn out to be particularly detrimental for the purposes of
gravimetry and rotation (see, e.g., the discussion in Cicalò 2016), while they induce a minor
loss in accuracy for what concerns the relativity experiment (see, e.g., Schettino et al. 2015
and Schettino et al. 2016). The adopted accelerometer error model, provided by the ISA team
(private communications) and the digital calibration method applied during the differential
correction process have been extensively discussed in Cicalò (2016).

Additional rank deficiencies in the problem. A critical issue which significantly affects the
success of the relativity experiment concerns the high correlation between the Eddington
parameter β and the Solar oblateness J2�. Indeed, from a geometrical point of view the main
orbital effect ofβ is a precession of the argument of perihelion, which is a displacement taking
place in the plane of the orbit of Mercury, while J2� affects the precession of the longitude of
the node, producing a displacement in the plane of the Solar equator. Since the angle between
the two planes is almost zero, the two effects blend each other and the parameters turn out
to be highly correlated, causing a deterioration of the solution. A meaningful solution to the
problem is to link the PN parameters through the Nordtvedt equation (Nordtvedt 1960):

η = 4(β − 1) − (γ − 1) − α1 − 2

3
α2 (10)

and add such relation as an a priori constraint to the LS fit. In such a way, the knowledge of
β is mainly determined from the value of η and γ , removing the correlation with J2�. This
assumption corresponds to hypothesise that gravity is a metric theory.

Moreover, a Solar superior conjunction experiment (SCE) for the determination of the PN
parameter γ is expected during the cruise phase of the BepiColombo mission (see, e.g., the
description in Milani 2002), similar to the one performed by Cassini (Bertotti et al. 2003).
The resulting estimate of γ will be adopted as an a priori constraint on the parameter in
the experiment in orbit. The complete results and a thorough discussion on the simulations
of SCE with ORBIT14 will be presented in a future paper; however, we include in the fit a
constraint on the value of γ given by: γ = 1±5×10−6, coming from our cruise simulations.
In this way, from Eq. (10), it turns out that β is mainly determined from η, with a ratio 1 : 4 in
the corresponding accuracies and a near-one correlation between the two parameters. Indeed,
this fact was already clear from Fig. 1: the accuracy of the two parameters shows exactly the
same behaviour as a function of the epoch of the estimate and, at each given epoch, the ratio
of the accuracies is around 4.
Solve-for list. The latest mission scenario consists of a 1-year orbital phase, with a possible
extension to another year, starting from 15 March 2026. The orbital elements of the initial
Mercury-centric orbit of the MPO orbiter are:

1500 × 480 km, i = 90◦, Ω = 67.8◦, ω = 16◦.

4 Two additional parameters to estimate a possible bias and rate over time in the range observations can be
added to the solve-for list to avoid biasing in the solution due to systematic errors in ranging.
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We assume that only one ground station is available for tracking, at the GoldstoneDeep Space
Communications Complex in California (USA), providing observations in the Ka-band. We
solved for a total of almost 5000 parameters simultaneously in the nonlinear LS fit adopting
a constrained multi-arc strategy and accounting for the correlations. The list of solve-for
parameters includes:

– state vector (position and velocity) of the Mercury-centric orbit of the spacecraft at each
arc and of Mercury and Earth–Moon barycenter at the central epoch of the mission, in
the Ecliptic Reference frame at epoch J2000;

– the PN parameters β, γ , η, α1, α2 and the related parameters J2�, μ�, ζ and GS� of the
Sun;

– the calibration coefficients for the accelerometer readings at each arc (six parameters per
arc).

4 Numerical results

In this section, we describe the results of the numerical simulations of the MORE relativity
experiment. In Sect. 4.1, we compare the two possible strategies described in Sect. 2.3 to
remove the rank deficiency of order 4 due to the symmetry for rotation and scaling. Then, in
Sect. 4.2, we discuss the effects on the solution due to the addition of the Solar LT effect in
the dynamical model, with a particular attention on the estimate of J2�.

4.1 Removing the planetary rank deficiency

We briefly recall the two possible strategies to remove the approximate rank deficiency of
order 4 found when we try to solve simultaneously for the orbits of Mercury and the EMB
(12 parameters) and the Solar gravitational mass μ�:

– strategy I (descoping):5 we remove 4 out of the 13 parameters from the solve-for list (the
three position components of the EMB and the z-component of the velocity of the EMB);

– strategy II: we solve simultaneously for the 13 parameters by adding 4 a priori constraint
equations in the LS fit.

In Table 2, the expected accuracies for the PN and related parameters obtained following
both strategies are compared with the current knowledge of the same parameters. Table 3
provides the achievable accuracies for the state vectors components. For all parameters, the
reference date for the estimate is the central epoch of the mission. In both tables, the last
column contains the accuracies that would be obtained if all the state vectors components and
μ� are determined simultaneously without any a priori constraint whatsoever. Because of
the approximate rank deficiency of order 4 (described in Sect. 2.3), the normal matrix is still
invertible, yet the global solution is highly downgraded.We note indeed a loss in accuracy up
to 2–3 orders of magnitude in the components of the planetary state vectors, while an order
of magnitude is lost in the solution for β and η. As far as the other relativistic parameters are
concerned, it turns out that knowing the orbits of Mercury and the EMB at the level of some
metres is sufficient to determine their value at the goal level of accuracy of MORE.

The results achievable with strategies I and II are almost comparable and represent a sig-
nificant improvement with respect to the current knowledge (see the discussion in Schettino

5 Strategy I has been adopted until now for the MORE relativity experiment.
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Table 2 Comparison of the accuracies of PN and related parameters following the two possible strategies; the
fourth column contains the current knowledge of each parameter; the last column shows the solution achieved
by solving for all the parameters without a priori constraints on Mercury and EMB state vector

Parameter Strategy I Strategy II Current knowledge No constraints

β 2.4 × 10−6 2.9 × 10−6 7 × 10−5 (Fienga et al. 2015),
3.9 × 10−5 (Park 2017)

2.7 × 10−5

γ 7.6 × 10−7 7.6 × 10−7 2.3 × 10−5 (Bertotti et al. 2003) 7.7 × 10−7

η 9.3 × 10−6 1.1 × 10−5 4.5× 10−4 (Williams et al. 2009) 1.1 × 10−4

α1 4.9 × 10−7 4.8 × 10−7 6.0 × 10−6 (Iorio 2014) 7.5 × 10−7

α2 1.1 × 10−7 1.1 × 10−7 3.5 × 10−5 (Iorio 2014) 1.2 × 10−7

μ� 1.0 × 1014 1.1 × 1014 8 × 1015 (jpl 2017) 1.9 × 1014

J2� 4.9 × 10−9 5.0 × 10−9 1.2 × 10−8 (Fienga et al.
2015), 9 × 10−9 (Park 2017)

5.5 × 10−9

ζ 3.2 × 10−14 3.3 × 10−14 4.3 × 10−14 (Pitjeva and Pitjev
2013)

3.5 × 10−14

The accuracy of μ� is in cm3/s2, of ζ in y−1

Table 3 Comparison of the
accuracies of the state vectors
components following the two
possible strategies and solving
for all the parameters without a
priori constraints

Parameter Strategy I Strategy II No constraints

xM 0.81 0.65 4.50 × 102

yM 3.6 3.0 2.68 × 102

zM 4.2 2.2 1.633 × 103

xE – 0.70 5.89 × 101

yE – 2.8 1.093 × 103

zE – 4.3 4.275 × 103

ẋM 7.3 × 10−7 3.6 × 10−7 2.83 × 10−4

ẏM 6.1 × 10−7 2.4 × 10−7 2.58 × 10−4

żM 1.5 × 10−6 8.1 × 10−7 1.01 × 10−3

ẋE 5.0 × 10−7 1.2 × 10−7 2.16 × 10−4

ẏE 8.6 × 10−7 9.2 × 10−7 8.26 × 10−6

żE – 7.3 × 10−7 6.27 × 10−4

Accuracies in position are in cm, in velocity in cm/s

and Tommei 2016 for a comparison with the actual knowledge). This is true if orbit determi-
nation is performed at the central epoch of the orbital mission. Indeed, from Fig. 1, we have
seen that, adopting strategy I, there is a strong dependency of the solution from the epoch.
In Fig. 3, we compare the behaviour of the formal accuracy of β (on the left) and η (on the
right) adopting strategy I (blue curve) and strategy II (green curve). The red circle refers to
the estimate at the central epoch (MJD 61303). Choosing the second strategy, we observe that
the dependency of the accuracy from the epoch of the estimate is definitely reduced. If we
consider the evolution of the formal of η from the beginning of the orbital mission up to MJD
61350, the variability in case of strategy I spans from a minimum of σ(η) = 2.3× 10−6 to a
maximum of σ(η) = 1.1×10−4, while adopting strategy II the formal accuracy ranges from
aminimum of σ(η) = 3.5×10−6 to a maximum of σ(η) = 1.4×10−5, with a net variability
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Fig. 3 Comparison of the formal accuracy of β (left) and η (right) as a function of the epoch of the estimate
(in MJD) over the mission time span adopting strategy I (blue curve) and strategy II (green curve). In red the
value of the accuracy for the estimate at central epoch

of only a factor 4 instead of a factor 50. If the orbits of Mercury and the EMB are determined
in the second part of the mission, we observe a stronger variability in the accuracies adopting
the second approach. Such behaviour could suggest that some degeneracy is still affecting
the orbit determination problem. This issue will be investigated in the future. Nevertheless,
the standard strategy of orbit determination codes is to adopt, as the reference epoch, the
initial or the central date, thus for the purpose of our simulations we can ignore the behaviour
of the curves in the second half of the mission time span.

Of course, if the mission scenario is exactly the one adopted in our simulations, i.e. assum-
ing the beginning of scientific operations on 15 March 2026 and the end on 21 March 2027
(corresponding to 365 observed arcs6), choosing strategy I or II does not lead to significant
differences in the solution. However, Fig. 3 states that strategy II provides a more stable
solution. Indeed, as an example, in Table 4, we show the results for the accuracy of relativ-
ity parameters in the hypothesis of moving up the beginning of the orbital experiment by
approximately 2weeks, on 3 March 2026, still keeping the 1-year duration. The last two
columns of Table 4 show the ratio between the accuracy achieved for each parameter in the
scenario of 3 March 2026 and the one of the 15 March 2026 scenario, for strategies I and
II, respectively. It is clear that adopting the second approach, a slight variation in the initial
date of the mission in orbit leads only to slight variations in the accuracy of the relativity
parameters, as it has to be. Conversely, in the case of the first strategy, the solution turns out
to be less stable. Indeed, the accuracy of β and η varies by an order of magnitude between
the two scenarios, weakening the reliability of the achieved results.

For completeness, Table 5 shows the correlations between PN and related parameters
in the case of strategy I (top) and strategy II (bottom). Values higher than 0.8 have been
highlighted.

In both cases, we find a high correlation only between the two physical parameters of the
Sun, i.e. μ� and J2�, and between β and η, whose correlation is near 1 due to the assump-
tion that PN parameters are linked through the Nordtvedt equation. In general, correlations
between the parameters, although restrained, are higher in the case of strategy II. This fact
was expected since, from Table 2, formal accuracies at the central epoch are slightly worse
than adopting strategy I. Nevertheless, except the correlation between μ�-J2� and β-η, they
are always lower than 0.8.

6 For the definition of observed arc see, e.g., Cicalò (2016).
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Table 4 Comparison of the
accuracies of PN and related
parameters following the two
possible strategies in the
hypothesis of beginning of
scientific operations in orbit on 3
March 2026 instead of 15 March
2026

Parameter Strategy I Strategy II Ratio I Ratio II

β 3.0 × 10−5 2.3 × 10−6 12.5 0.79

γ 6.4 × 10−7 7.7 × 10−7 0.84 1.0

η 1.2 × 10−4 8.7 × 10−6 12.5 0.79

α1 7.6 × 10−7 4.4 × 10−7 1.5 0.92

α2 9.6 × 10−8 8.0 × 10−8 0.87 0.73

μ� 1.8 × 1014 7.9 × 1013 1.8 0.72

J2� 4.7 × 10−9 4.3 × 10−9 0.9 0.86

ζ 2.6 × 10−14 2.7 × 10−14 0.81 0.82

The last two columns show the ratio of accuracy attained, for each param-
eter, on the scenario of 3 March over that achieved on the scenario of 15
March, in the case of strategy I and strategy II, respectively. The accuracy
of μ� is in cm3/s2, of ζ in y−1

Table 5 Correlations between PN
and related parameters in the case
of strategy I (top) and strategy II
(bottom)

β γ η α1 α2 μ� J2� ζ

ζ < 0.1 0.12 < 0.1 0.12 0.49 0.74 0.76 –

J2� < 0.1 < 0.1 < 0.1 < 0.1 0.26 0.86 –

μ� 0.22 < 0.1 0.22 0.42 0.38 –

α2 0.44 0.14 0.46 0.28 –

α1 0.25 0.12 0.21 –

η 0.99 0.56 –

γ 0.62 –

β –

ζ 0.63 0.11 0.64 < 0.1 0.51 0.76 0.77 –

J2� 0.54 < 0.1 0.55 0.11 0.29 0.86 –

μ� 0.76 < 0.1 0.76 0.35 0.42 –

α2 0.73 0.13 0.73 0.24 –

α1 0.36 0.17 0.31 –

η 0.99 < 0.1 –

γ 0.16 –

β –

Values higher than 0.8 have been highlighted

4.2 Solar LT effect and the determination of J2�

In Sect. 2.4, we showed that the Solar LT effect on Mercury produces a signal with a peak-
to-peak amplitude up to about ten metres after 1year, hence it should be taken into account
in the BepiColombo radio science data processing, otherwise it would alias the recovery of
other effects, as already pointed out in Iorio et al. (2011). In that paper, it was also underlined
that the measurement of the Solar quadrupole J2� at the 1% level or better, which is one of
the goals of MORE, cannot be performed aside from accounting for the Solar LT effect; the
impact of neglecting the gravitomagnetic field of the Sunmay affect indeed the determination
of J2� at the 12% level. Moreover, in Park (2017) the authors observe that, processing 3years
of ranging data to MESSENGER by explicitly modelling the gravitomagnetic field of the
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Table 6 Estimated value and
formal accuracy of J2� with
Solar LT on and off, respectively,
in differential correction stage

Case Estimated value σ(J2�)

LT ON 1.992 × 10−7 6.0 × 10−10

LT OFF 1.837 × 10−7 6.0 × 10−10

The parameter GS� is not determined and it is assumed at its nominal
value

Sun, the small precession of the perihelion of Mercury induced by Solar LT turns out to be
highly correlated with the precession due to J2�.

In this section, we investigate two different aspects of the problem with BepiColombo
MORE: firstly, we measure the impact on the estimated value of J2� if we do not include the
Solar LT in the dynamical model; secondly, we check whether solving for GS� introduces
some weakness in the orbit determination problem, for instance deteriorating the formal
uncertainties of the other parameters, especially J2�.

In order to address the first matter, we simulated 1year of BepiColombo observations
including the Solar LT effect and then we applied the differential corrections in two different
cases: (i) we included Solar LT in the corrector model; (ii) we did not include Solar LT in
differential corrections. The set of estimated parameters is the same of Sect 3.2, except for the
Solar angular momentum, which is assumed at the nominal value S� = 1.92× 1048 g cm2/s
(Iorio 2012). The results for the estimated value and formal accuracy of J2� in the two cases
are shown in Table 6. As expected, the formal accuracy is the same in both cases, while
the estimated value of J2� at convergence is different.7 More precisely, we observe that
neglecting the Solar LT effect on the orbit of Mercury (second simulation) introduces a bias
in the estimated value of J2� as large as 27σ . The effect on the other parameters is only
marginally relevant: we remarked a bias in μ� of ∼ 5σ and in some components of the orbit
ofMercury, of the same amount. On the contrary, in the first simulation the estimated value of
J2� lies within 1.3σ with respect to the nominal value. In conclusion, this test confirms that
the Solar LT acceleration produces effects on the orbit of Mercury which can be absorbed
by J2�, if not properly modelled. Under no circumstances should the LT effect be neglected
for the BepiColombo MORE experiment.

Now that we proved that it is crucial to include the gravitomagnetic acceleration due to
the Sun in the dynamical model, we go on to discuss the second point. We introduce the
GS� parameter in the solve-for list: due to the high correlation with J2�, we expect to
find a significant worsening in the solution for the Solar oblateness. A similar behaviour
was already found in the case of the mission Juno and described in Serra et al. (2016). We
considered three explanatory cases: (i) J2� and GS� are determined simultaneously without
any a priori information on their values (same setup of Sect. 3.2); (ii) the value of J2� is a
priori constrained to its present knowledge 2± 0.12× 10−7 (cf. Fienga et al. 2015); (iii) the
value of GS� is a priori constrained to 10% level.8 The results are shown in Table 7. The
simultaneous determination of J2� and GS� without any a priori (case (i)) leads to a 0.99
correlation between the two parameters, as expected. As a result, the solution with respect to
the first row of Table 6 is downgraded by almost an order of magnitude. Add an a priori on
J2� at the level of the current knowledge (case (ii)) does not change much the result, as the
correlation between J2� and GS� does not decrease significantly. Conversely, a rather weak

7 The nominal value of J2� in simulation has been set to 2.0 × 10−7.
8 From helioseismology, the angular momentum of the Sun can be constrained significantly better than the
10% level (see, e.g., Pijpers 1998), thus our assumption is fully acceptable and is consistent with what done
in Park (2017).
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Table 7 Achievable accuracy on J2� and correlation with GS� in the following cases: (i) J2� and GS�
are determined assuming no a priori information on their value; (ii) J2� is constrained to the a priori value
2 ± 0.12 × 10−7 (present knowledge); (iii) GS� is a priori constrained to 10% of its value

Case (i) Case (ii) Case (iii)

σ(J2�) 5.0 × 10−9 4.6 × 10−9 1.7 × 10−9

correlation with GS� 0.9928 0.9919 0.9354

constraint on GS� (case (iii)) is capable of significantly improving the solution, breaking
the correlation between the two parameters (from 0.99 to 0.93). A tighter constraint on GS�
would provide a further improvement in the results. As a conclusion, we can state that the
achievable accuracy on J2� will be mainly limited by the knowledge of the Solar angular
momentum.

5 Conclusions and remarks

The present paper addresses two critical aspects of the BepiColombo relativity experiment
we aim to solve. The first one concerns the approximate rank deficiency of order 4 found
in the Earth and Mercury orbit determination problem. In particular, we highlighted that,
according on how the rank deficiency is cured, the dependency of the PN parameters β and
η from the epoch of the estimate can be highly pronounced. As a consequence, the reliability
of the solution can be compromised. We considered two possible strategies: the set of 13
critical parameters (initial conditions of Mercury and EMB and the gravitational mass of
the Sun) can be reduced to only 9 parameters to be determined, as done up to now in the
relativity experiment settings, or we can solve for the whole set of parameters providing 4 a
priori constraint equations in input to the differential correction process. We concluded that,
although by chance the present mission scenario does not imply considerable differences
between the two strategies, the second strategy leads to a more stable solution and, thus, is
the more advisable approach.

Secondly, we studied the impact on the determination of the Solar oblateness parameter
J2� of a failure to include the Solar LT perturbation in Mercury’s dynamical model. The
parameter J2� turns out to be highly correlated with the LT parameter GS�, containing
the Solar angular momentum. We pointed out that neglecting the Solar LT effect leads to
a considerable bias in the estimated value of J2�, and to an illusory high accuracy in the
determination of the same parameter. Nevertheless, we have shown that including in the LS
fit some reasonable a priori information on GS� can help contain the deterioration of the
solution for J2�.
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