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Abstract
The term “jumping” Trojan was introduced by Tsiganis et al. (Astron Astrophys 354:1091–
1100, 2000) in their studies of long-term dynamics exhibited by the asteroid (1868) Thersites,
which had been observed to jump from librations around L4 to librations around L5. Another
example of a “jumping” Trojan was found by Connors et al. (Nature 475:481–483, 2011):
librations of the asteroid 2010 TK7 around the Earth’s libration point L4 preceded by its
librations around L5. We explore the dynamics of “jumping” Trojans under the scope of the
restricted planar elliptical three-body problem. Via double numerical averaging we construct
evolutionary equations,which allowanalyzing transitions betweendifferent regimes of orbital
motion.

Keywords Restricted three-body problem · Trojan asteroids · Secular evolution

1 Introduction

An asteroid at 1:1 mean motion resonance with one of the main planets most often moves
either in a “tadpole” orbit (T -orbit) or in a “horseshoe” orbit (HS-orbit). T -orbits cycle
around one of the triangular libration points, whereas HS-orbits encompass both triangular
libration points as well as the collinear libration point L3. Other types of resonant co-orbital
motion—in particular, quasi-satellite (QS) regimes or compound QS+HS orbits—are also
possible, although they are less common. The formal difference between these orbits is the
behavior of the resonance phase ϕ = λ − λ′, where λ and λ′ are the mean longitudes of the
asteroid and the planet, respectively (Namouni et al. 1999).

If several modes of motion are possible for a Hamiltonian system at resonance, then under
certain conditions the transitions between these modes can be observed. It was shown in
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Tsiganis et al. (2000) that Trojan asteroid (1868) Thersites will make a TL → TT transition
(TL and TT denote T -orbits enclosing the “leading” and the “trailing” libration points L4 and
L5, respectively). Numerical integration also indicates that the asteroid 2010TK7 (the first
Trojan asteroid of the Earth) makes transitions between the motions in the neighborhood of
L4 and L5 (Connors et al. 2011; Dvorak et al. 2012). Further examples of similar “jumps” in
the dynamics of real Trojans were discussed by de la FuenteMarcos and de la Fuente Marcos
(2012), Schwarz and Dvorak (2012) and Galliazzo and Schwarz (2014).

Secular evolution of Trojan asteroids has been a point of interest for many specialists. A
detailed bibliography can be found in Erdi (1997), Marzari et al. (2002) and Robutel and
Souchay (2010). The necessity to investigate the Trojans’ jumps in simplified dynamical
models was emphasized by Schwarz and Dvorak (2012). For the time being, it seems that
only Oshima and Yanao (2015) attempted an analytical study of the transitions

TL → TT , TT → TL , TL,T → HS, HS → TL,T . (1)

Their analysis was based mainly on the consideration of the planar restricted circular three-
body problem. Oshima and Yahao ascribe the motions with transitions (1) to the region of
chaotic dynamics generated by the intersection of stable and unstable manifolds of periodic
solutions encircling the libration point L3. However, the interpretation of transitions (1) as a
certain homoclinic phenomenonhas a serious drawback—themeasure of the initial conditions
giving rise to motions with transitions (1) turns out to be very small (∼ exp(−C/

√
μ), where

μ characterizes the relative part of the planet’s mass in the total mass of the system “Sun +
planet,” C = const > 0; the presented estimate follows from some general results, obtained
by Neishtadt (1984).

We aim to demonstrate that in the context of the planar-restricted elliptic three-body
problem “Sun + planet + asteroid” there is another mechanism underlying the transitions (1).
To reveal this mechanism, we apply the basic ideas of the approach proposed by Wisdom to
study the transformations of the resonancemotions (Wisdom1985). It also allows establishing
dynamical robustness of the discussed transitions in the elliptic problem—they occur for the
set of initial conditions,whosemeasure does not depend onμ. The core object in this approach
is an auxiliary 1DOFHamiltonian system,which governs the variation of the resonance phase
ϕ. Quantities that characterize the shape and the orientation of asteroid’s osculating orbit are
interpreted as slowly varying parameters whose change leads to qualitative transformations
in the behavior of ϕ. Previously such an approach was used to study the transitions between
different regimes of co-orbital motion in Namouni et al. (1999), Nesvorny et al. (2002) and
Sidorenko et al. (2014).

We hope our analysis to become a useful addition to the prior research on the secular effects
in the dynamics of Trojan asteroids on the basis of themodern theory of resonance phenomena
in Hamiltonian systems (Beaugè and Roig 2001; Morais 2001). Of course, the consideration
of the three-body problem does not explain the transition TL → TT , demonstrated by the
asteroid (1868) Thersites—the numerical results presented by Tsiganis et al. (2000) indicate
a significant influence of secular resonances on the dynamics of this asteroid. Themechanism
of transitions that we are discussing is probably realized in the dynamics of the so-called
temporary Trojans (Karlsson 2004). Since their stay in certain regimes of motion is relatively
short, the effects due to secular resonances can be neglected.
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2 Averagedmotion equations for studying the dynamics of the
asteroid at 1:1 meanmotion resonance

2.1 Averaging over orbital motion

We assume that the planet’s orbit around the star to have an eccentricity e′, semimajor axis
of unit length, and the sum of masses of the star and the planet to make the unit mass. The
unit time is chosen so that the orbital period of the planet equals 2π . The mass of the planet
μ is substantially smaller than that of the star and is further treated as a small parameter. The
motion of the asteroid is restricted to the plane of the primaries’ motion (i.e., we consider
the planar problem).

Following general recommendations on analysis of the resonance phenomena (e.g.,Arnold
et al. 2006), we focus our attention on the region Z res of the system’s phase space, defined
by the condition

∣
∣n − n′∣∣ � μ1/2.

Here n and n′ = 1 are the mean motions of the asteroid and the planet, respectively. The
phase variables are

x, y, L, ϕ,

where x , y, and L are the Poincaré elements, which are related to osculating elements by the
formulae

x =
√

2
√

(1 − μ)a
[

1 −
√

(1 − e2)
]

cos�,

y = −
√

2
√

(1 − μ)a
[

1 −
√

(1 − e2)
]

sin�,

L = √

(1 − μ)a. (2)

Here � , e, and a, are the longitude of the periapsis, the eccentricity, and the semimajor axis
of the asteroid orbit, respectively.

The equations of motion have the canonical form

dx

dt
= −∂K

∂ y
,

dy

dt
= ∂K

∂x
,

dL

dt
= −∂K

∂ϕ
,

dϕ

dt
= ∂K

∂L
, (3)

with the Hamiltonian

K = − (1 − μ)2

2L2 − L − μR. (4)

The disturbing function R in the expression for K is defined as

R = 1

|r − r′| −
(

r, r′)

r ′3 ,

where r = r(x, y, L, λ(ϕ, λ′)) and r′ = r′(λ′) are the position vectors of the asteroid and
the planet relative to the star.

Averaging of (3) over the orbital motion of the asteroid and the planet is equivalent to
substituting the function
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W (x, y, L, ϕ) = 1

2π

∫ 2π

0
R(x, y, L, λ(λ′, ϕ), λ′) dλ′ (5)

instead of the function R in the expression (4) for K.
Such averaging eliminates themean longitude of the planetλ′ = t+λ′

0 from the right-hand
sides of the equations of motion. Therefore, these equations become autonomous.

In our study, the averaging (5) is carried out numerically. Technically, this is similar to the
averaging of the disturbing function at 3:1 MMR described in detail in Sidorenko (2006). Let
us note that numerical averaging of a disturbing function at MMR is a common technique
(e.g., Schubart 1964).

2.2 The“slow-fast” system

We shall now proceed with the scale transformation

τ = √
μt, Φ = (1 − L)/

√
μ.

Without loss of accuracy the averaged equations of motion in the resonance zoneZres can be
rewritten as follows:

dϕ

dτ
= 3Φ,

dΦ

dτ
= −∂V

∂ϕ
,

dx

dτ
= ε

∂V

∂ y
.

dy

dτ
= −ε

∂V

∂x
. (6)

Here

ε = √
μ, V (x, y, ϕ) = W (x, y, 1, ϕ).

Generally speaking, variables x , y, ϕ, and Φ in (6) vary with different rates:

dϕ

dτ
,
dΦ

dτ
∼ 1,

dx

dτ
,
dy

dτ
∼ ε.

Taking into account this separation of variables into fast and slow ones, we shall call
the system (6) the “slow-fast” system (or SF-system). The “fast” subsystem consists of the
equations for the variablesϕ,Φ. The “slow” subsystemdescribes the behavior of the variables
x, y.

SF-system (6) is a Hamiltonian one, whose symplectic structure is defined by the differ-
ential form

Ψ = ε−1dy ∧ dx + dΦ ∧ dϕ.

The corresponding Hamiltonian is

Ξ = 3Φ2

2
+ V (x, y, ϕ). (7)

2.3 Properties of the function V and related asteroid dynamics

As ε tends to zero, the resonance zoneZres becomes smaller, whereas the time scale of the res-
onance phase variations increases as ε−1 (in the initial units of time). The behavior of the vari-
ables ϕ,Φ on this time scale can be described approximately by 1DOF Hamiltonian system

dϕ

dτ
= 3Φ,

dΦ

dτ
= −∂V

∂ϕ
, (8)
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where x, y are considered as fixed parameters (this approximation evidently corresponds to
the formal limit ε = 0 in (6)).

The properties of the solutions to the system (8) are determined by the function V (x, y, ϕ)

properties. Figure 1 presents the graphs of this function for different values of x, y. Thick
blue lines in Fig. 1 characterize variations of the resonance phase ϕ in solutions to the system
(8) with corresponding values of the Hamiltonian Ξ . The abbreviations QS, HS, and TL,T

near the horizontal lines specify the type of the secular evolution demonstrated by the asteroid

in associated motions. If x �=
√

2(1 −
√

1 − e′2) and y �= 0 (i.e., e �= e′,� �= 0), then in
the interval [0, 2π] the function V (x, y, ϕ) has two singular points ϕ = ϕSL(x, y) and ϕ =
ϕST(x, y) (ϕSL(x, y) < ϕST(x, y)). If x =

√

2(1 −
√

1 − e′2) and y = 0 (e = e′,� = 0),
then V (x, y, ϕ) → +∞ at ϕ → 0(mod2π). The singular points correspond to the motions
of the asteroid ending up with its collision with the planet.

Unlike the upper two graphs in Fig. 1, the lower graph of V (x, y, ϕ) does not have a
bounded local maximum. Figure 2 provides the examples of the set Λ(e′), consisting of the
elements x, y, for which —given the values of e′— the function V (x, y, ϕ) has a bounded
maximum (as a function of ϕ). The value of the resonance phase, which provides it, is denoted
by ϕ∗(x, y), assuming that ϕ∗(x, y) ∈ (ϕSL(x, y), ϕST(x, y)). From the symmetry, inherent
in the system, it follows that

V (x, y, ϕ) = V (x,−y, 2π − ϕ) (9)

and consequently

ϕ∗(x, 0) = π.

For (x, y) ∈ Λ(e′) the values of ϕ, for which V (x, y, ϕ) has a minimum in the intervals
(ϕSL(x, y), ϕ∗(x, y)) and (ϕ∗(x, y), ϕST(x, y)), are denoted by ϕ∗L (x, y) and ϕ∗T (x, y),
respectively.

If the eccentricities of the asteroid and the planet orbits are small, the following approxi-
mate formula can be applied:

V (x, y, ϕ) ≈ V0(ϕ) + V1(x, y, ϕ). (10)

Here ϕ ∈ [c∗, 2π −c∗], c∗ is a positive constant, satisfying the condition max{e, e′} � c∗ �
1,

V0(ϕ) = 1√
2(1 − cosϕ)

− cosϕ,

V1(x, y, ϕ) = (x2 + y2 + e′2)g0(ϕ) + e′(xg1(ϕ) + yg2(ϕ)),

g0(ϕ) = cosϕ

2
+ 9 − 5 cos2 ϕ − 4 cosϕ

4(2 − 2 cosϕ)5/2
,

g1(ϕ) = 1 − 2 cos2 ϕ + cos3 ϕ + 8 cos2 ϕ − 5 cosϕ − 4

2(2 − 2 cosϕ)5/2
,

g2(ϕ) = 2 cosϕ sin ϕ + sin ϕ(9 − cos2 ϕ − 8 cosϕ)

2(2 − 2 cosϕ)5/2
.

The approximate expression (10) for the disturbing function is actually a special case of
a more general formula obtained by Morais (1999), although the expression presented in
Morais (1999) lacks the term of the order e′2.
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Fig. 1 Behavior of the function V
with fixed x, y. Upper panel:
x = 0.15176, y = −0.26285
(e = 0.3, � = 60◦). Middle
panel: x = 0.31623,
y = −0.54772 (e = 0.6,
� = 60◦). Lower panel:
x = 0.53100, y = −0.91987
(e = 0.9, � = 60◦). In all cases,
the eccentricity of the planet
e′ = 0.3

Following (Sidorenko 2006; Sidorenko et al. 2014) we introduce the auxiliary functions

H∗(x, y) = V (x, y, ϕ∗(x, y)), H∗ = min
ϕ∈(ϕSL(x,y),ϕST(x,y))

V (x, y, ϕ),

H∗∗ = max{V (x, y, ϕ∗L (x, y)), V (x, y, ϕ∗T (x, y))}.

The auxiliary functions H∗(x, y) and H∗∗ are defined on Λ(e′), and the function H∗(x, y)
is defined on the disk D = {x2 + y2 < 1}. Figure 3 presents sample graphs of the functions
H∗(x, y), H∗(x, y), and H∗∗(x, y) for e′ = 0.3.
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Fig. 2 The location of Λ(e′) (drawn in deep blue) in the set of possible values of slow variables for different
values of eccentricity of the planet. Left panel: e′ = 0. Middle panel: e′ = 0.3. Right panel: e′ = 0.6. We find
it more clear to present diagrams and phase portraits in terms of the variables e,� . To relate these variables
with the variables x, y we use the formulae (2) with μ = 0, which is in accordance with the accuracy of our
analysis

If e′ �= 0, then the function H∗(x, y) has a global maximum when

x∗ = −
√

2(1 −
√

1 − e′2), y∗ = 0.

Taking into account the relations

∂H∗

∂x
= ∂V

∂x

∣
∣
∣
∣
ϕ=ϕ∗(x,y)

,
∂H∗

∂ y
= ∂V

∂ y

∣
∣
∣
∣
ϕ=ϕ∗(x,y)

,
∂V

∂ϕ

∣
∣
∣
∣
ϕ=ϕ∗(x,y)

= 0,

we conclude that SF-system (6) has a stationary solution

x ≡ x∗, y ≡ 0, ϕ ≡ π, Φ ≡ 0.

This solution corresponds to the asteroid being at the collinear libration point L3.
The function H∗(x, y) has a minimum when

x±∗ = ±
√

3(1 −
√

1 − e′2)
2

, y∗ =
√

3(1 −
√

1 − e′2)
2

.

The corresponding stationary solutions to (6)

x ≡ x±∗ , y ≡ y∗, ϕ ≡ ±π

3
, Φ ≡ 0,

describe the stay of the asteroid at “leading” and “trailing” libration points, respectively.
If the planet’s eccentricity is sufficiently small, then the formula (10) allows obtaining an

approximate expression for the function H∗(x, y) in a neighborhood of the origin (0, 0):

H∗(x, y) ≈ ξ∗ + (x2 + y2 + e′2)g0(π) + e′xg1(π) = ξ∗ − 7

16

[

(x + e′)2 + y2
]

. (11)

Here

ξ∗ = V0(π) = 3

2
.

It is worth noting that e′ � 1 entails

x∗ ≈ −e′.
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Fig. 3 Graphs of the functions
H∗, H∗, and H∗∗ (e′ = 0.3)
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Fig. 4 Graphs of the functions
H∗ and H∗ in for e′ = 0

For e′ = 0 the value of the auxiliary function at a point (x, y) is determined by the distance
from this point to the origin:

H∗(x, y) = H∗(r), H∗(x, y) = H∗(r), H∗∗(x, y) = H∗∗(r),

where r = √

x2 + y2. Similarly, the function V depends in this case on r and ϕ; instead of
(9) we have

V (r , ϕ) = V (r , 2π − ϕ). (12)

In the resonance zone Zres with accuracy of order ε

e =
√

1 −
(

1 − r2

2

)2

and, consequently, at e′ = 0 the auxiliary functions actually depend on the value of the
asteroid’s eccentricity e. In particular, the numerically obtained relation

e < eb, eb = 0.91755 . . .

specifies the set Λ(0) where the function H∗ is defined. The symmetry (12) implies that for
e ↑ eb, we have

ϕ∗L , ϕ∗T → ϕ∗ = π. (13)

The graphs of the functions H∗(e), H∗(e) are shown in Fig. 4. It follows from (13) that

H∗(e) → H∗(e)

at e ↑ eb. The graph of the third auxiliary function is not given, since for e′ = 0

H∗∗ = H∗

for all (x, y) ∈ Λ(0).

2.4 The solutions to the fast subsystem at " = 0

Let
ϕ(τ, x, y, ξ), Φ(τ, x, y, ξ) (14)
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67 Page 10 of 18 V. V. Sidorenko

denote a solution to Eq. (8), satisfying the condition

Ξ(ϕ(τ, x, y, ξ),Φ(τ, x, y, ξ), x, y) = ξ.

In general, the angle ϕ in the solution (14) oscillates with a period T (x, y, ξ).
If (x, y) ∈ Λ(e′), then for ξ ∈ (H∗∗(x, y), H∗(x, y)) at the level set Ξ = ξ there are

two periodic solutions corresponding to motions in TL -orbit (ϕSL < ϕ < ϕ∗(x, y)) and
TT -orbit (ϕ∗ < ϕ < ϕST(x, y)), respectively. In other cases a periodic solution, in which
ϕ ∈ (ϕSL(x, y), ϕST(x, y)), is either unique or does not exist at all.

We shall associate with the solution (14) the action integral

I (x, y, ξ) = 3

2π

∫ T (x,y,ξ)

0
Φ2(τ, x, y, ξ) dτ. (15)

When ε �= 0, the variables x(τ ), y(τ ) can be regarded as slowly varying parameters of
the fast subsystem. Therefore, the relation (15) defines the adiabatic invariant (AI) of the
SF-system (6).

2.5 Averaging along the fast subsystem solutions

Averaging along (14) the right-hand sides of the equations for the slow variables x, y in the
system (6) yields the evolutionary equations

dx

dτ
= ε

〈
∂V

∂ y

〉

,
dy

dτ
= −ε

〈
∂V

∂x

〉

, (16)

where 〈
∂V

∂ζ

〉

= 1

T (x, y, ξ)

∫ T (x,y,ξ)

0

∂V

∂ζ
(x, y, ϕ(τ, x, y, ξ)) dτ. (17)

Applying the averaging procedure (17) it is necessary to take into account that the solution
(14), lying at the chosen level Ξ = ξ , can be aperiodic. (In other words, it can correspond
to the separatrix on the phase portrait of the fast subsystem.) To distinguish these situations,
we introduce the set

Γ (ξ) = {

(x, y) ∈ Λ(e′), H∗(x, y) = ξ
}

.

The set Γ (ξ) consists of points with such coordinates (x, y) that there exists an aperiodic
solution (14)–(8). Similarly to Wisdom (1985) and Neishtadt (1987a), this set is further
referred to as the uncertainty curve. A detailed discussion of the dynamical effects is possible
when the projection of the phase point

z(t) = (x(t), y(t), L(t), ϕ(t))T

onto the plane x, y approaches the uncertainty curveΓ (ξ) given in Neishtadt (1987b), Neish-
tadt and Sidorenko (2004) and Sidorenko et al. (2014).

For simplicity, we limit our analysis to the case when the uncertainty curve Γ (ξ) is an
oval. This is the case when ξ ∈ (ξ∗∗, ξ∗), where

ξ∗∗ = max
(x,y)∈∂Λ

H
∗
(x, y),

H
∗
(x, y) denotes the continuous extension of the function H∗(x, y) to the boundary ofΛ(e′).

It follows from the formula (11), under the condition

0 < ξ∗ − ξ � 1
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Fig. 5 Phase portrait of the
system (16) for ξ = 1.3, e′ = 0.3

and for small values of the planet eccentricity the uncertainty curve is close to a circle of
radius

R(ξ) = 4

√

ξ∗ − ξ

7

with the center at the point (−e′, 0).
Let D(ξ) be a set of points lying inside the curve Γ (ξ). If (x, y) ∈ D(ξ), then there are

two periodic solutions on the level Ξ = ξ , corresponding to the asteroid’s motion in TL - and
TT -orbits. Averaging (6) along these solutions yields, generally speaking, a different result.
Thus, in the region D(ξ) the evolutionary Eqs. (16) have two families of phase trajectories
describing the secular evolution of TL -orbits and TT -orbits, respectively. Examples will be
given in the next Section.

3 Secular evolution and transitions between different types of the
orbital motion

Numerical investigation has shown that at ξ = ξb ≈ ξ∗ − 7
4 , a bifurcation occurs leading to a

change in the number of fixed points of the system (16). For this reason, we shall separately
consider the cases

ξ ∈ (ξ∗∗, ξb) (18)

and
ξ ∈ (ξb, ξ

∗). (19)

3.1 Secular evolution for ξ ∈ (ξ∗∗, ξb)

Figure 5 presents a typical phase portrait of the system (16), when ξ satisfies the condition
(18). To obtain this and other phase portraits, we integrated Eq. (16) numerically. Trajectories
approaching the uncertainty curve are formally glued with trajectories starting on this curve.
At some points of the curve Γ (ξ) two trajectories start simultaneously. It means that the
projection of a phase point z(t) onto the plane x, y can leave the neighborhood of Γ (ξ) along
any of these trajectories. This phenomenon allows a probabilistic interpretation (Sect. 4). A
more detailed discussion of a similar situation can be found in Sidorenko et al. (2014), where
temporal transitions to quasi-satellite orbits are considered under the scope of 3D RC3BP.
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Red and green trajectories in Fig. 5 characterize the secular evolution in the cases of
the asteroid’s motion in TL -orbit and TT -orbit, respectively. Up to the directions of the
arrows, these families of the trajectories are symmetric with respect to the horizontal axis.
For (x, y) ∈ Λ(ξ ′), the blue trajectories correspond to the motion in HS-orbit, whereas
outside of Λ(e′) the usual classification of orbits at 1 : 1 MMR almost loses its sense.

There are eight fixed points on the described phase portrait. The fixed points A and B lie
outside the region D(ξ). The points CL , DL , and EL are the fixed points of evolutionary
Eq. (16) averaged along TL -orbits. Similarly, the points CT , DT , and ET are the fixed points
of (16) averaged along TT -orbits. In Fig. 5, only the fixed points DL and DT are shown,
since the remaining points are very close to the curve Γ (ξ). The enlarged fragments of the
phase portrait in the vicinity of the points A, B, CT , and ET are presented in Fig. 6. The
behavior of the phase trajectories in the vicinity of the fixed points CL and EL is similar to
the fragments with the points CT and ET , respectively, up to the reflection with respect to
the horizontal axis, followed by a change of colors and directions of the arrows.

Figure 6a shows the behavior of phase trajectories in the vicinity of the unstable fixed
point B lying outside D(ξ). The point R ∈ Γ (ξ) is the limit point for a family of trajectories
in the curvilinear triangle, whose sides are formed by the separatrices of the saddle point B
and the segment of the uncertainty curve Γ (ξ).

Figure 6b demonstrates the behavior of trajectories in the vicinity of the stable fixed point
A also lying outside the region D(ξ). It can be seen, that as a limit, the family of trajectories,
encircling this point, contains a trajectory tangent to the curve Γ (ξ) at the point Q.

Figure 6c shows a vicinity of the fixed point CT of the averaged equations describing the
evolution of TT -orbits. The family of trajectories encirclingCT includes as a limit a trajectory
tangent to Γ (ξ) at the point RT .

Figure 6d illustrates the behavior of the phase trajectories in the vicinity of the unstable
fixed point ET of Eq. (16) averaged along the TT -orbits. The point QT ∈ Γ (ξ) is the limit
point for a family of trajectories in curvilinear triangle formed by the separatrices of the
saddle point ET and the segment of the uncertainty curve Γ (ξ).

The properties of the stable stationary solutions A, CL , and CT have been given a closer
look in Morais (1999) for different values of a parameter that is actually equivalent to the
parameter ξ .

The points Q, QL , QT , R, RL , RT generate the partition of the curve Γ (ξ) into segments
with different asteroid’s motion transformations (Fig. 7). All possible scenarios are listed in
Table 1. As an example, Fig. 8 shows the results of numerical integration of non-averaged
motion equations, demonstrating the transition TT → TL in the vicinity of the segment RT R.
It should not come as a surprise that the resonance phase ϕ in Fig. 8 does not oscillate around
300◦ for trailing orbit and around 60◦ for leading orbit. Oscillations around these values take
place when e ≈ e′, � ≈ 300◦ or � ≈ 60◦, respectively (i.e., when the configuration of the
system “Sun + planet + asteroid” is close to rotating and pulsating equilateral triangle). As
shown in Fig. 1, in other cases the location of the minima of the function V in the interval
(ϕSL, ϕST) can be elsewhere.

If the uncertainty curve encircles the origin (0, 0) in the plane of the slow variables, then
the longitude of periapsis � can be used as a parameter that determines the position of the
phase point on Γ (ξ):

� =
⎧

⎨

⎩

2π − arccos x√
x2+y2

, y ≥ 0;
arccos x√

x2+y2
, y < 0.
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Fig. 6 Behavior of the phase trajectories in the vicinity of the fixed points (ξ = 1.3, e′ = 0.3)

Table 1 Transformations of the motion regimes in the vicinity of the uncertainty curve

Segment QQL QL RT RT R RRL RL QT QT Q

Possible
transitions

HS

TL

↘
↗ TT HS

↗
↘

TL

TT

HS

TT

↘
↗ TL TT

↗
↘

HS

TL

TL

TT

↘
↗HS TL

↗
↘

HS

TT

Numerical studies did not reveal any other motion transformations in the vicinity of Γ (ξ) for ξ ∈ (ξ∗∗, ξ∗).
The value of ξ affects only the position of points Q, QL , QT , R, RL , RT on the uncertainty curve and the
position of the uncertainty curve in the plane of the slow variables

The phase flow of the averaged equations generates a map Γ → Γ . For motion in T -
orbit, it is easy to establish a correspondence between the initial value of� (i.e., just after the
transition to this orbit) and its value, when the transition to another orbital regime takes place.
An example is presented in Fig. 9. It is noteworthy that this correspondence is not uniquely
defined: For some “input” values of the longitude of periapsis �in, the next approach to the
curve Γ (ξ) is possible with two different values �fin.
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Fig. 7 Partition of the curve Γ (ξ)

into segments with different
motion transformations. The
position of the points Q, QL ,
QT , R, RL , RT is determined by
the properties of some families of
phase trajectories described in
Sect. 3.1

Fig. 8 An example of a transition TT → TL obtained by numerical integration of non-averaged equations of
motion (μ = 0.0001, e′ = 0.3). The black curve on the right panel characterizes the evolution of the slow
variables in this solution

Fig. 9 A correspondence
between the value of the
longitude of periapsis just after
the transition and its value just
before the next transition for
motion in T -orbit (ξ = 1.3,
e′ = 0.3). Red and green curves
correspond to TL -regime and
TT -regime, respectively

3.2 Secular evolution for ξ ∈ (ξb, ξ∗)

A typical phase portrait of the system (16) for ξ ∈ (ξb, ξ
∗) is shown in Fig. 10. Its main

difference from the phase portrait in Fig. 5 is the absence of the fixed points DL,T and
EL,T . Nevertheless, the pairwise merging of these points at ξ = ξb does not affect the
behavior of the phase trajectories in the vicinity of the uncertainty curve. And, consequently,
there are no qualitative changes in the partition of Γ (ξ) into segments with different motion
transformations.
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Fig. 10 Phase portrait of the
system (16) at ξ = 1.4, e′ = 0.3

4 The transitions between different types of the co-orbital motions:
probabilistic characteristics

Figure 11 presents the results of numerical integration of non-averaged motion equations
demonstrating the transition to different orbital regimes when the projection of the phase
point z(t) onto the plane of the slow variables intersects the uncertainty curve virtually in the
same place. The fact that the qualitatively different variants of the secular evolution can be
realized, when the phase points leave the vicinity of Γ (ξ), means faster “chaotization” of the
dynamics of the system in comparison with the case when the “scattering” of the trajectories
in the vicinity of Γ (ξ) is associated only with a violation of adiabaticity (as, for example, in
Neishtadt (1987a, b) and Wisdom (1985)).

In case of a strong mixing of the initial conditions corresponding to different dynamical
regimes, the probabilistic estimates of the possible motion transformations become mean-
ingful. Indeed, even a small uncertainty in the initial conditions does not allow to predict
uniquely the qualitative character of the motion over long time intervals. Not being rigorous
enough, we define the probability of a certain motion regime as the relative measure of the
set of initial conditions leading to this regime in the sufficiently small region of the phase
space. Strict definition is given in Arnold (1963) and Neishtadt (1987b).

To obtain the transition probabilities, we calculate the values of the auxiliary quantities
introduced in Neishtadt (1987b) and Artemyev at al. (2013):

ΘL,T =
∫ +∞

−∞

(
∂H∗

∂x

∂V

∂ y
− ∂H∗

∂ y

∂V

∂x

)

ϕs
L,T (τ,x,y)

dτ.

Here ϕs
L,T (τ, x, y) denotes aperiodic solutions of the fast subsystem lying on the critical

level Ξ = H∗(x, y).
The quantities ΘL and ΘT are time derivatives of the area of the regions bounded by

the separatrices on the phase portraits of the fast subsystem, when the slow variables evolve
according to Eq. (16).

If the projection of the phase point z(t) onto the plane of slow variables approaches the
uncertainty curve Γ (ξ), then the probabilities of the subsequent motion regimes are given
by formulae by Artemyev at al. (2013):

PL,T = Θ̂L,T

Θ̂L + Θ̂T + Θ̂
, PHS = 1 − PL − PT , (20)

where Θ̂L,T = max(ΘL,T , 0), Θ̂ = max(−ΘL − ΘT , 0).

123



67 Page 16 of 18 V. V. Sidorenko

Fig. 11 Example of the motion with transformations of resonance regimes on the uncertainty curve Γ . Black
curve on the top panel characterizes the evolution of the slow variables in this solution of the non-averaged
equations (μ = 0.00002, ξ = 1.4, e′ = 0.3). Segments I and V of the presented solution practically coincide
(up to a quasi-random component of AI variation in the vicinity of Γ ) and end at close points of the uncertainty
curve

Figure 12 provides an example of the probability distribution of various transitions along
the curve Γ (ξ). Calculations were carried out using the formulae (20) for the case ξ = 1.3,
e′ = 0.3. Although the comprehensive investigation of the transitions probabilities was
beyond our goals, we carried out the similar calculations for some other values of ξ for
which the uncertainty curveΓ (ξ) encircles the origin (0, 0) on the plane of the slow variables
(more precisely, for ξ ∈ (1.24, 1.45), e′ = 0.3). The results show no significant qualitative
difference in the distribution of probabilities.

Having obtained more or less comparable probabilities for transitions HS → TL and
HS → TT , we can suppose that the observed predominance of the TL -orbits among the
Jupiter Trojan asteroids (Emery et al. 2015) is caused by some factors that are not present in
our model.
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Fig. 12 The probabilities of transitions to different regimes of co-orbital motion when the projection of the
phase point z(t) onto the plane of the slow variables approaching the curve Γ (ξ = 1.3, e′ = 0.3). The
probabilities of further motion in TL -orbit and TT -orbit are indicated by red and green curves, respectively,
blue curve corresponds to the motion in HS-orbit

5 Conclusion

The goal of this paper is to present a simple, but robust mechanism of the motion transforma-
tions are 1:1MMRas a result of which leading Trojan asteroids become trailing ones and vice
versa. To reveal such mechanism, we applied a semianalytical approach based on ideas of
“adiabatic approximation” introduced by J.Wisdom in his studies of resonant phenomena in
the asteroid belt. The remarkable feature of this approach is the absence of any restrictions on
the studied resonance motion (in particular, it is not limited to the case of small eccentricities
and inclinations).

For clarity, we plotted the phase portraits characterizing the secular effects in the orbital
motion of an asteroid at 1:1 MMR. The transformation of the motion takes place when the
phase point reaches the so-called uncertainty curve on the phase portrait. Analyzing different
transformations, we established that the transfers between populations of leading and trailing
Trojans are indeed possible under the scope of planar-restricted elliptic three-body problem.
We also computed the probability distributions of various transitions along the uncertainty
curve.

Similar transitions between different resonance regimes occur at other MMR as well.
Examples can be found in Chiang and Jordan (2002) and Ketchum et al. (2013). To describe
the motion with such transitions, Ketchum et al. (2013) proposed a rather illustrative term
“nodding behavior.” We consider the analysis of “nodding behavior” as a very interesting
trend in the studies on MMR and hope to have contributed to its progress.
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