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Abstract
Applying the method of analytical continuation of periodic orbits, we study quasi-satellite
motion in the framework of the three-body problem. In the simplest, yet not trivial model,
namely the planar circular restricted problem, it is known that quasi-satellite motion is asso-
ciated with a family of periodic solutions, called family f, which consists of 1:1 resonant
retrograde orbits. In our study, we determine the critical orbits of family f that are continued
both in the elliptic and in the spatial models and compute the corresponding families that are
generated and consist the backbone of the quasi-satellite regime in the restrictedmodel. Then,
we show the continuation of these families in the general three-body problem, we verify and
explain previous computations and show the existence of a new family of spatial orbits. The
linear stability of periodic orbits is also studied. Stable periodic orbits unravel regimes of
regular motion in phase space where 1:1 resonant angles librate. Such regimes, which exist
even for high eccentricities and inclinations, may consist dynamical regions where long-lived
asteroids or co-orbital exoplanets can be found.

Keywords 1:1 Resonance · Co-orbital motion · Quasi-satellites · Periodic orbits ·
Three-body problem

1 Introduction

The term quasi-satellite (QS) motion refers to retrograde satellite motion, which takes place
outside of the Hill’s sphere (Mikkola and Innanen 1997). In the framework of the three-
body problem (TBP), QS motion is a special case of 1:1 mean-motion resonance or, with
another term, co-orbital motion. In the planar circular restricted TBP, such a type of motion
has been identified by the existence of the family f of periodic orbits (Broucke 1968; Hénon
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1969; Benest 1974). In the planar general TBP, where co-orbital planetary motion is con-
sidered, a family of periodic QS orbits has been computed by Hadjidemetriou et al. (2009);
Hadjidemetriou and Voyatzis (2011) and was called family S.

Special interest for QS orbits, which are called also distant retrograde orbits (DRO), is
growing for the design of spacecraft missions around moons or asteroids (Perozzi et al. 2017;
Minghu et al. 2014). A first application was achieved for the Phobos program (Sagdeev and
Zakharov 1989) for which QS orbits were computed by Kogan (1989). In the last twenty
years, much attention has been given to QS asteroid motion. Evidence for the existence of
stable QS-type motion around giant planets of our Solar system has been found after having
considered analytical or semi-analytical perturbative methods (Mikkola and Innanen 1997;
Namouni 1999; Nesvorný et al. 2002; Mikkola et al. 2006; Sidorenko et al. 2014; Pousse
et al. 2017) or numerical integrations (Wiegert et al. 2000; Christou 2000a, b). A lot of studies
have also focused on particular observed asteroids and Centaurs, e.g. the 2002 VE68 around
Venus (Mikkola et al. 2004) and the 2015 BZ509 around Jupiter (Namouni andMorais 2018).
Furthermore, greatly interesting is the long-term stability of near-Earth asteroids, which are
located in the QS regime, e.g. 2004GU9, 2006FV35 and 2013LX28 (Connors et al. 2004;
Morais and Morbidelli 2006; Wajer 2010; Connors 2014) or of Earth trojans (Dvorak et al.
2012).

Exosolar planets in co-orbitalmotion, although having not been discovered yet, can consti-
tute exceptional planetary configurations, which include exomoons (Heller 2018), exotrojans
or, possibly, quasi-satellite-like orbits, where planets of equivalent masses may evolve into
(Giuppone et al. 2012; Funk et al. 2013; Leleu et al. 2017; Lillo-Box et al. 2018). Studies
on the possible existence and stability of such planetary configurations were performed for
the co-planar case. For instance, a numerical study for the stability of exotrojans is given in
Schwarz et al. (2009). Hadjidemetriou et al. (2009) computed a stable family, S, of orbits
which pass smoothly from planetary to satellite type orbits. In Giuppone et al. (2010), the sta-
bility regions are examined and, besides family S, new stable families, called anti-Lagrange
solutions, are given by using a numerical averaging approach. In Hadjidemetriou and Voy-
atzis (2011), the existence of anti-Lagrange solutions is confirmed in the general TBP and
it is shown that migration from planetary to satellite type of motion is possible under the
effect of Stoke’s-like dissipative forces. On the other hand, tidal forces may cause instabil-
ities in co-orbital motion and planetary collisions (Rodríguez et al. 2013). Analytical and
semi-analytical treatment of the phase space structure of co-orbital motion has been given
in Robutel and Pousse (2013); Leleu et al. (2017) by constructing appropriate averaged
Hamiltonians for the 1:1 resonance.

In an inertial frame of reference, QS motion is described by intersecting orbits of the
small bodies, and therefore, a resonant mechanism is necessary for avoiding close encounters
(Mikkola and Innanen 1997;Mikkola et al. 2006). Studying the system in the framework of the
TBPmodel in a rotating frame, periodic orbits are of major importance for understanding the
underlying resonant dynamics. They indicate the exact position of mean motion resonances
in phase space and should appear as equilibrium points of a model, where the fast component
of the motion is averaged. Linearly stable periodic solutions are associated with the existence
of a foliation of invariant tori, which form a regime of long-term stability, where the resonant
arguments librate regularly. For the 1:1 resonant QS motion, the main resonant argument is
the angle θ = λ2 − λ1, where λi , i = 1, 2, denotes the mean longitude of the two bodies
being in co-orbital motion. So, families of stable periodic orbits act as a guide for localising
regimes which can host asteroids or planets in QS motion.

In this study, by applying a methodological approach, we present a global view of the
main families of QS periodic orbits in all cases of the TBP model. By starting from the
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known family f of the planar circular restricted TBP, we obtain bifurcations and compute
the families of periodic orbits for more complicated versions of the TBP up to the general
spatial TBP. The results for the planar models verify previous studies. Additionally, the three-
dimensional motion is also studied, both in the restricted and in the general models. In Sect.
2, the restricted model is addressed, while in Sect. 3, we apply continuation with respect to
the mass of the smallest body and, thus, approach the families of the general TBP. In Sect. 4,
we present the spatial families of the general model for various planetary masses and, finally,
we conclude in Sect. 5.

2 QS periodic motion in the restricted three-bodymodel (RTBP)

In the restricted case, we consider the system Sun–planet–asteroid, where the Sun and the
planet (primary bodies) have massesm0 andm1, respectively, and revolve around their centre
of mass O in a Keplerian orbit. We consider the classical rotating frame Oxyz, where the
Oxy plane coincides with the inertial one that contains the orbit of the primaries, the x-axis
is directed along the direction line Sun–planet and Oz is perpendicular to the plane Oxy. In
this frame, and by considering the mass normalisation m0 + m1 = 1, the mass parameter
μ = m1 and the gravitational constant G = 1, the motion of the massless asteroid (body 2)
is described by the Lagrangian function

LR = TR − UR, (1)

where

TR = 1
2

(
ẋ2 + ẏ2 + ż2

) + (x ẏ − yẋ) υ̇ + 1
2

(
x2 + y2

)
υ̇2,

UR = −1 − μ

r02
− μ

r12
,

r02 = √
(x + μr01)2 + y2 + z2, r12 = √

(x − (1 − μ)r01)2 + y2 + z2,

and υ = υ(t) is the true anomaly and r01 = r01(t) the mutual distance of the primaries along
their relative Keplerian orbit.

In the following, we will refer also to the planetocentric, barycentric and heliocentric
osculating orbital elements of the orbits, ai (semi-major axis), ei (eccentricity),�i (longitude
of pericenter), Ωi (longitude of ascending node) and λi (mean longitude), where the index
i = 1 and 2 refers to the planet and the asteroid, respectively.

2.1 The planar circular restrictedmodel (PC-RTBP)

Considering the primaries moving in a circular orbit with unit mutual distance (e1 = 0,
a1 = 1) and the asteroid on the plane Oxy (z = 0), we obtain the planar circular restricted
three-body problem, where the Sun and the planet are fixed on the x-axis at position −μ

and 1 − μ, respectively (Murray and Dermott 1999). We have r01 = 1 and υ̇ = 1; thus, the
system (1) is autonomous of two degrees of freedom and possesses the Jacobi integral CJ or
the equivalent “energy integral” h given by

h = 1

2

(
ẋ2 + ẏ2

) − 1

2

(
x2 + y2

) − 1 − μ
√

(x + μ)2 + y2
− μ

√
(x − 1 + μ)2 + y2

= −CJ /2.

(2)
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(a)

(b)

(c)

(d)

Fig. 1 Family f of periodic orbits for μ = 0.001. a Orbits in the rotating frame, where S and P indicate the
Sun and the planet, respectively. b The characteristic curve x0 − h of the family f . c The eccentricity and d
the semi-major axis of the orbits along family f computed for the heliocentric, barycentric and planetocentric
reference system. The grey zone indicates the QSb domain defined in Pousse et al. (2017), which separates
the heliocentric quasi-satellite (QSh ) orbits from retrograde satellite orbits (sRS)

In this model, QS orbits are associated with the existence of a family of symmetric periodic
orbits, called family f (Broucke 1968; Hénon and Guyot 1970; Pousse et al. 2017). This
family tends to the Hénon’s family E+

11 of generating orbits which starts from a third species
orbit as μ → 0 (i.e. the orbit of the asteroid coincides with the planet’s) and terminates at
a collision orbit with the Sun (Hénon 1997). Thus, at least for small values of μ, family f
starts with orbits that encircle the planet at average distance that approaches zero. As the
distance from the planet increases, the family terminates at a collision orbit with the Sun. For
μ = 0.001, periodic orbits along family f are shown in the rotating frame in Fig. 1a. They can
be assigned to initial conditions x0, y0 = ẋ0 = 0 and ẏ0, where, from Eq. (2), ẏ0 = ẏ0(x0, h).
Assuming the interval −μ < x0 < 1 − μ, the orbits of family f can be mapped to a unique
value x0, which can be used as the parameter of the family. The characteristic curve x0 − h
of the family is shown in Fig. 1b.

When the motion of the massless body takes place close to the planet, where the gravita-
tional perturbation of the Sun is assumed relatively very small, we obtain almost Keplerian
retrograde satellite orbits. When the orbits of the family f are quite distant from the planet,
the gravitation of the Sun dominates and the orbits are almost Keplerian planetary-type orbits.
So, we can describe the orbits by using osculating orbital elements and by computing them
in a planetocentric system (for satellite orbits) or in a heliocentric system (for planetary-type
orbits). The distinction between the two types of orbits cannot be strictly defined. In panels
(c) and (d) of Fig. 1, we present the eccentricity, e2, and the semi-major axis, a2, for the
orbits of family f considering a heliocentric, a barycentric and a planetocentric reference
system. For all orbits, the longitude of perihelion is �2 = 0◦. In the plots, we present also
the regions sRS (retrograde satellite orbits), QSh (heliocentric quasi-satellite orbits) and the
separation grey region (called QSb, binary quasi-satellite), which are defined in Pousse et al.
(2017). The right border of the grey region, measured from the planet position, is the Hill’s
radius RH , which can alternatively be used for the distinction between QSh and sRS orbits.
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We can observe that as sRS orbits approach the planet (x0 → 1 − μ), their planetocentric
eccentricity tends to zero. The heliocentric eccentricity of QSh orbits increases and tends to
1, as we approach the collision orbit with the Sun. The slope of the increasing eccentricity,
as x0 decreases, is almost equal to 1, because x0 is the perihelion distance and a2 ≈ 1, as it is
shown in panel (d). Apparently, the periodic orbits of the family f indicate the exact position
of the 1:1 mean-motion resonance of QS orbits (Sidorenko et al. 2014).

All periodic orbits of family f are linearly (horizontally) stable for μ < 0.0477 (Benest
1974). Consequently, in a Poincaré surface of section they are presented as fixed points
surrounded by invariant tori that form “islands of stability”. Using the rotating reference
frame, we present in Fig. 2 surfaces of section y = 0 (ẏ > 0) for some energy values in the
QSh regime. Outside the islands of stability, strongly chaotic motion occurs. For the regular
orbits, the resonant angle θ = λ2 − λ1 librates. The maximum amplitude of libration, θmax ,
which corresponds to the orbit of the last invariant tori of the island region, increases as the
orbits become more distant from the planet. This has been shown also by Pousse et al. (2017)
with the use of an average model. However, due to the absence of chaos in the averaged
model, the maximum amplitude of libration is overestimated.

2.2 The planar elliptic model (PE-RTBP)

Assuming the primaries moving in an eccentric orbit (e1 �= 0, a1 = 1), the system (1)
becomes nonautonomous and periodic in time with period T ′ equal to the period of the
revolutions of the primaries, namely in our units T ′ = 2π . Concerning the continuation of
periodic orbits from the circular to the elliptic model, this is possible for the periodic orbits
of the circular model, which have period Tc = p

q T
′, with p and q being prime integers.

Starting from such a periodic orbit, which corresponds to e1 = 0, we can obtain by analytic
continuation monoparametric families of periodic orbits for e1 �= 0. Along these families,
the period of orbits is constant, T = q Tc = 2pπ , and q defines the multiplicity of the orbits
(Broucke 1969). In particular, two distinct families are generated according to the initial
location of the primary (perihelion or aphelion).

In Fig. 3a, we present the variation in the period along the family f of the circular model.
We have added an axis showing the eccentricity e2, which can be used also as the parameter
of the family f in the QSh regime. Considering the case of simple periodic orbits (q = 1),
we obtain the periodic orbit Bce of period T = 2π , eccentricity e2 = 0.8356 and semi-
major axis a2 = 1.0014 along the family f . This orbit can be assumed as a bifurcation (or
generating) orbit for a family of periodic QS orbits in the PE-RTBP. Certainly, many other
cases of higher multiplicity can be obtained in QSh regime. Lidov and Vashkov’yak (1994)
and Voyatzis et al. (2012) used the PE-RTBP and the elliptic Hill model, respectively, and
studied multiple QS periodic orbits (q ≥ 2).

In Fig. 4, we present the families, Ep (for �1 = 0, υ(0) = 0) and Ea (for �1 = π ,
υ(0) = π), which bifurcate from Bce. All orbits of family Ep are horizontally and vertically
unstable. The continuation of the family becomes computationally very slow for e1 > 0.44,
where e2 → 1. Family Ea continues up to e1 = 1 (rectilinear model, see Voyatzis et al.
(2018b)), and along it the asteroid’s eccentricity, e2, initially decreases. At e1 = 0.825,
it takes its minimum value (∼ 0.474) and increases afterwards. It consists of horizontally
stable periodic orbits, but as e2 → 1, they seem to become unstable. Since Bce is vertically
unstable (see section 2.3), family Ea also starts with vertically unstable periodic orbits, but at
e1 = 0.0858 (orbit denoted by Bes) the orbits turn into vertically stable. So, Bes is a vertical
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ẋ
(y

=
0,

ẏ
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(a) (b)

Fig. 3 a Period T of orbits along the family f . b The vertical stability index along the family f . The vertical
line indicates the location of Hill’s radius, RH , which is the right border of the QSb region (grey zone)

(a) (b)

Fig. 4 Families Ep and Ea of the PE-RTBP of simple multiplicity (T = 2π ). Characteristic curves with
parameter the eccentricity of the primaries (e1) in the plane a e1 − a2 and b e1 − e2. Blue solid segments
indicate horizontal and vertical stability, dotted parts are horizontally stable but vertically unstable, and red
parts are both horizontally and vertically unstable

critical orbit and is a potential generating orbit for a family of the spatial model, as we will
see in Sect. 2.4.

We mention that the families Ea and Ep have been also computed by Pousse et al. (2017),
as sets of equilibrium solutions (calledGe′

QS,1 andG
e′
QS,2, respectively) by using a numerically

averaged model. Their results are in a very good agreement with those presented in Fig. 4. A
worthy noted difference is that Ge′

QS,1 is stable up to e1 ≈ 0.8, while the equivalent family
Ea is stable up to e1 → 1. Also, the perturbative approach used by Mikkola et al. (2006)
showed the stability of QS planar orbits under the perturbation caused by the elliptic orbit of
the primaries and by assuming small inclinations. However, it could not provide the above
periodic solutions, due to the high eccentricities.

2.3 The spatial circular problem (SC-RTBP)

Vertical stability and three-dimensional families emanating from the short and long period
planar families of co-orbital trojan-like orbits have been studied extensively [see, for example,
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(a) (b) (c)

Fig. 5 Projections of the spatial family F on the planes a x0 − T , b x0 − z0 and c e2 − i2. The family starts
from the v.c.o. Bcs. The orbit Bsce is the orbit of F with period T = 2π

Perdios et al. (1991); Hou and Liu (2008)]. Here, we consider QS co-orbital motion and
examine the planar orbits of family f with respect to their vertical stability. For each orbit
of period T , we compute the index

bv = |traceΔ(T )|, (3)

where Δ(T ) is the monodromy matrix of the vertical variations (Hénon 1973). The orbit is
vertically stable iff |bv| < 2. Orbits with |bv| = 2 are called vertical critical orbits (v.c.o.),
and they can be analytically continued to the spatial problem, for z(0) �= 0 or ż(0) �= 0.

In Fig. 3b, we present the index bv along the family f . The index bv exhibits a minimum
at the orbit located at the Hill’s radius. Then, in the sRS regime, the index increases, but
bv < 2 always holds. In the QSh regime, bv is close to the critical value 2 for a long interval,
but actually exceeds the critical value at the orbit Bcs, where x0 ≈ 0.3 and e2 ≈ 0.7.

For the v.c.o. Bcs, we can apply numerical continuation by using differential corrections
and obtain a family of spatial periodic orbits in the spatial circular model (e1 = 0, z �= 0).
We call this family F with its orbits being identified by the nonzero initial conditions (x0, ẏ0,
z0) beside y0=ẋ0=ż0=0. In Fig. 5a, we present the evolution of the period T along the family
(using x0 as parameter). T increases monotonically and takes the value 2π at x0 ≈ 0.16. This
orbit, denoted by Bsce, is potential for continuation in the spatial elliptic model. In panel (b),
we obtain that z0 takes a maximum value for x0 = 0.183 and then decreases towards zero as
x0 → 0 (close approach to the Sun). The characteristic curve in the eccentricity - inclination
plane is shown in panel (c). The whole family is located in the high eccentricity regime and
the maximum inclination observed is ∼ 27◦. The orbit Bsce has inclination 22.5◦. All orbits
of the family F are linearly stable with �2 = 0.

2.4 The spatial elliptic problem (SE-RTBP)

We compute the index given by Eq. (3) for the elliptic planar model too, and particularly for
the orbits of the families Ep and Ea . As we can see from Fig. 3b, the orbit Bce, where these
families originate, is vertically unstable. Thus, both families start with vertically unstable
orbits. As we mentioned in Sect. 2.2, Ep is whole vertically unstable, while Ea becomes
vertically stable after the v.c.o. Bes, which can be analytically continued to the spatial problem
providing a family of spatial periodic orbits (Ichtiaroglou andMichalodimitrakis 1980). Also,
as we mentioned in Sect. 2.3, the spatial orbit Bsce is also a potential orbit for a continuation
with e1 �= 0 and with the planet located initially at its perihelion or aphelion.
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Fig. 6 Families Hp and Ha of
the SE-RTBP on the projection
space e1 − e2 − i2. Along the
families a2 ≈ 1.0 (a1 = 1).
Family Hp is linearly unstable,
while Ha is stable

By considering the planet at the perihelion, the continuation of the orbit Bsce for e1 �=
0 provides the family Hp . This family is linearly unstable and extends up to very high
eccentricities, e1 ≈ 0.91 and e2 → 1 and high inclination value, i2 ≈ 58◦. The initial
segment of Hp is presented in Fig. 6.

By continuing the periodic orbits Bes for i2 �= 0 and Bsce for e1 �= 0 (with the planet at
aphelion at t = 0), we obtain a unique stable family, denoted by Ha (Fig. 6). Thus, family Ha

forms a bridge linking the families Ea and F . The inclination along the family monotonically
increases from Bes (i2 = 0◦) to Bsce (i2 = 22.5◦).

3 From the restricted to the general three-body problem (GTBP)

We consider the general three-body problem in a configuration “Sun–planet–third body”,
where the third body is a second planet or a satellite. We will use the indices 0, 1 and 2 for
referring to the three bodies, respectively. In the GTBP, it ism2 �= 0 and, based on an inertial
frame OXY Z , with O being the centre of mass, we can assume a rotating frameGxyz where
(i) the origin G is the centre of mass of m0 and m1 (ii) Gz-axis is parallel to OZ and (iii) the
bodies m0 and m1 move always on the plane Gxz (Michalodimitrakis 1979). We denote by
υ the angle between the axes Gx and OX . In this rotating frame, the Lagrangian is written

LG = 1

2
M1

(
ẋ21 + ż21 + x21 υ̇

2) + M2TR − UG, (4)

where in TR the coordinates x ,y are denoted now by x2, y2 and

M1 = (m0+m1)m1
m0

, M2 = (m0+m1)m2
m0+m1+m2

, UG = −
2∑

i, j=0

mim j

ri j
(i �= j),

r201 = (1 + a)2(x21 + z21), a = m1
m0

,

r202 = (ax1 + x2)2 + y22 + (az1 + z2)2, r212 = (x1 − x2)2 + y22 + (z1 − z2)2.
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We use the mass normalisationm0 +m1 +m2 = 1 and note that form2 → 0 the Lagrangian
(4) provides the same equations of motion with those of (1). Apart from the Jacobi integral,
the vector of angular momentum L = (0, 0, pυ), where pυ = ∂LG/∂υ̇, is also conserved
and provides z1, ż1 and υ̇ as functions of the variables (x1, x2, y2 and z2) and their time
derivatives (Michalodimitrakis 1979; Katopodis 1986; Antoniadou and Voyatzis 2013). In
the following, we will present the characteristic curves with respect to their osculating orbital
elements that correspond to the initial conditions. For symmetric periodic orbits, the initial
angles Δ� = �2 − �1, ΔΩ = Ω2 − Ω1 and θ = λ2 − λ1 are either equal to 0 or π . Also,
we will refer to the mutual inclination of the small bodies, Δi .

3.1 The planar general problem (P-GTBP)

According to Hadjidemetriou (1975), all periodic orbits of the PC-RTBP (where m2 = 0)
can be continued for 0 < m2 	 1 with the same period, T , provided that their period is not
an integer multiple of the period of the primaries, i.e. T �= 2kπ , k ∈ N , in our normalisation.
A direct deduction is that all QS periodic orbits of family f are continued to the P-GTBP
except the orbit Bce, which is the generating orbit of the families Ea and Ep in the PE-RTBP.
Also, all periodic orbits of the PE-RTBP (e1 �= 0) are continued to the P-GTBP, but with
different periods (Ichtiaroglou et al. 1978; Antoniadou et al. 2011).

In order to obtain the families formed in the P-GTBP, we firstly perform the continuation
of an orbit of the family Ea (or Ep) with respect to m2 and we get a periodic orbit for a
particular value m2 �= 0. Then, by keeping fixed all the masses we perform continuation in
the P-GTBP by using as parameter the variable x1. Following this procedure, we obtain the
families g( f1, Ea) and g( f2, Ep). The characteristic curves of the families in the eccentricity
plane are shown in Fig. 7 for m1 = 10−3 and m2 = 10−6. In panel (a), a part of them near
the singular point Bce is presented beside the families of the planar RTBP. The family f
of the PC-RTBP is presented by the line e1 = 0 and is separated into two segments, f1
and f2, by the orbit Bce. The transition of the characteristic curves from the restricted to
the general problem has been discussed first by Bozis and Hadjidemetriou (1976) and has
been found in other resonances, 1:2 (Voyatzis et al. 2009) and 1:3 and 3:2 (Antoniadou et al.
2011). In particular, as m2 �= 0, the family Ea and the family segment f1 join smoothly
forming the family g( f1, Ea) and the family Ep joins the family segment f2 forming the
family g( f2, Ep). At the neighbourhood of the singular point Bce, we obtain a gap between
the two generated families. The formation of the two distinct families at this eccentricity
domain causes a change in the topological structures in phase space, which may be related
to that obtained in Leleu et al. (2017). The v.c.o. Bcs and Bes of the restricted problem are
continued for m2 �= 0 as the orbits gBcs and gBes, respectively.

In Fig. 7b, we present the complete characteristic curves of the families in the P-GTBP.We
use the scale log(e1), in order to emphasise the structure for e1 ≈ 0. All orbits of g( f1, Ea)

are horizontally stable. They are also vertically stable except those in the segment between the
v.c.o. gBcs and gBes, which are vertically unstable. The continuation to the general problem
does not affect the horizontal and vertical stability for sufficiently small values of m2. The
orbits of the family g( f2, Ep) which are continued from f2 are horizontally stable, while its
segment that originates from the Ep family consists of unstable orbits. All orbits of g( f2, Ep)

are vertically unstable. We mention also that for g( f1, Ea) it is θ = 0 and Δ� = π , while
for g( f2, Ep) it is θ = Δ� = 0.

In Fig. 7b, we also present the family segment gs( f1, Ea) of satellite periodic orbits which
continues the family g( f1, Ea). In the eccentricity plane, we obtain a cusp, where these
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(a) (b)

Fig. 7 Characteristic curves of the families g( f1, Ea) and g( f2, Ep) for m1 = 10−3 and m2 = 10−6 on the
eccentricities plane. a The characteristic curves close to the singular point Bce. The families f = f1 ∪ f2,
Ea and Ep of the restricted problem are also presented. b The total segments of the families (notice the
logarithmic horizontal axis) including the segment gs ( f1, Ea) of satellite orbits. Blue (red) colour indicates
horizontal stability (instability)

families meet, which can be assumed as a border between planetary-type orbits (like in QSh
domain) and satellite orbits (like in sRS domain) (Hadjidemetriou et al. 2009;Hadjidemetriou
and Voyatzis 2011). However, in the variables of the rotating frame the two families join
smoothly. Along the family gs( f1, Ea), the eccentricity e2 seems to increase rapidly and
takes values > 1. This is due to its computation in the heliocentric frame. In the planetary
frame, both e1 and e2 tend to zero. All orbits of gs( f1, Ea) are both horizontally and vertically
stable, in consistencywith the stability of the family segment of f , where they originate from.

3.2 The spatial general problem (S-GTBP)

Similarly to the planar problem, all orbits of the SC-RTBP are continued to the S-GTBP
if their period is not an integer multiple of the period of the primaries (Katopodis 1979).
Also, the periodic orbits of the SE-RTBP (e1 �= 0) are generically continued to the S-GTBP
(Ichtiaroglou et al. 1978). Subsequently, all orbits of family F are continued for m2 �= 0
except the orbit Bsce, which has a period equal to the period of primaries (T = 2π). This
critical orbit separates the spatial family F into two segments, F1 and F2 (Fig. 8) and generates
the families Hp and Ha of the SE-RTBP (see also Fig. 6), which are also continued in the
S-GTBP.

Our computations form1 = 10−3 andm2 = 10−6 show that a similar structurewith that of
the planar case is formed (Fig. 8). In particular, the continuation of the stable segment F1 and
the stable family Ha constructs the stable family g(F1, Ha), which forms a bridge between
the two orbits, gBcs and gBes of the planar family g( f1, Ea). Along the formed spatial family,
the orbits are symmetric with respect to the Oxz-plane and the initial conditions correspond
to

θ = 0, Δ� = π, ΔΩ = π.
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Fig. 8 Families g(F1, Ha) and
g(F2, Hp) of the S-GTBP in the
projection space e1 − e2 − Δi .
Blue (red) colour indicates linear
stability (instability). The
families of the restricted
problems and the planar family
g( f1, Ea) are also shown (family
f extends along the axis e1 = 0,
Δi = 0◦)

The peak of the bridge corresponds to e1 = 0.0095, e2 = 0.803 and the maximum mutual
inclination Δi = 20.1◦.

The continuation of the stable segment F2 and the unstable family Hp constructs for
m2 �= 0 the family g(F2, Hp). The stability changes close to the critical orbit Bsce,where there
exists a gap between the two families. Along g(F2, Hp), the initial conditions correspond to

θ = 0, Δ� = 0, ΔΩ = 0.

Computations of the bridge family g(F1, Ha) are also found in Antoniadou et al. (2014),
butwithout explaining its origin. Also, in that paper, computationswere performed by starting
from the v.c.o. of the planar families given in Hadjidemetriou and Voyatzis (2011). However,
by using such an approach, we were not able to detect the existence of the family g(F2, Hp).

4 Mass dependence of QS periodic motion

In Sect. 2, we presented the families of periodic orbits of the RTBP for μ = 0.001. In
particular, the structure of the families is described by the critical orbits Bcs, Bce, Bes and
Bsce (see Fig. 6). By performing numerical computations in the range m⊕ ≤ μ ≤ 10mJ , we
found that there are no structural changes, namely all critical orbits and the corresponding
families still exist and their stability, either horizontal or vertical, is unaltered. Therefore, the
picture depicted in Fig. 6 holds for all values of μ in the above interval at least. The location
of the critical orbits for some values of μ is given in Table 1.

In the GTBP, the two planetary masses are involved as parameters. For masses of the order
of Jupiter and less, the location and the stability of families of the planar model do not seem
to depend on the individual masses, but only on their ratio ρ = m2/m1 (Hadjidemetriou
et al. 2009; Hadjidemetriou and Voyatzis 2011). Considering m1 = 0.001, Fig. 8 shows the
structure of families for ρ = 0.001. For smaller mass ratios (ρ → 0), we approach the picture
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Table 1 Location of the critical
orbits of the restricted model for
some values of the mass
parameter μ

μ Bcs Bce Bes Bsce
e2 e2 e1 e2 e2 i2

3 × 10−6 0.697 0.835 0.087 0.798 0.816 22.6◦

3 × 10−4 0.698 0.836 0.087 0.799 0.816 22.6◦
0.001 0.700 0.836 0.086 0.799 0.816 22.5◦
0.004 0.710 0.837 0.083 0.801 0.818 22.2◦
0.010 0.723 0.838 0.077 0.806 0.821 21.4◦

Fig. 9 Families g(F1, Ha) and
g(F2, Hp) of the S-GTBP in the
space e1 − e2 − Δi for various
mass ratios ρ = m2

m1
mentioned in

the labels and for fixed
m1 = 0.001. The presentation is
similar as shown in Fig. 8. The
families g( f1, Ea) of the planar
general problem are also shown
in grey colour

of the RTBP. For larger values of ρ, we obtain that the critical orbits gBcs and gBes approach
each other and coincide at a critical value ρ∗ = 0.0205. Simultaneously, the “bridge” family
g(F1, Ha) shrinks as ρ increases and disappears at ρ = ρ∗ (see Fig. 9). The linear stability
of the family is unaltered.

The family g(F2, Hp) is also continued as ρ increases and its continuation is not restricted
by the critical mass ratio ρ∗. It consists of two main segments, a stable and an unstable one,
but for ρ � 0.005 a small unstable segment appears inside the stable one. We note that
in this case the numerical computation of the linear stability is quite ambiguous, since the
linear stability appears very close to the critical case. We used long-term computations of the
deviation vectors, as in Voyatzis et al. (2018a), in order to conclude accordingly.

By performing computations for m⊕ ≤ μ ≤ 10mJ , we obtain a similar structure for the
families. The values of the critical mass ratio, ρ∗, are shown in Table 2. Also in Table 3, we
present the orbital elements for some representative orbits of the “bridge” family g(F1, Ha)

for some values of ρ.
The maximum mutual inclination observed along the families g(F1, Ha) and g(F2, Hp)

is presented in the left panel of Fig. 10 as a function of ρ. Along the “bridge”, the maximum
mutual inclination, Δi ≈ 22.5◦, appears as ρ → 0. For the family g(F2, Hp), the maximum
Δi increases as ρ increases, but the particular orbits seem to become unstable for ρ � 0.005.
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Table 2 Critical mass ratios
ρ∗ = m2

m1
for various values of

m1

m1 ρ∗

0.000003 0.0212

0.00001 0.0210

0.0001 0.0209

0.001 0.0205

0.0015 0.0202

0.002 0.0200

0.005 0.0185

0.01 0.0162

Table 3 Orbital elements of
spatial periodic orbits samples of
family g(F1, Ha)

ρ a1/a2 e1 e2 i1(
◦)

0.001 0.99807216 0.0022 0.7587 15.23

0.99856609 0.0123 0.8051 20.00

0.99869836 0.0474 0.8042 15.10

0.01 0.99804105 0.0197 0.7435 10.00

0.99833646 0.0289 0.7665 12.61

0.99860354 0.0558 0.7825 10.07

0.018 0.99807499 0.0350 0.7361 3.51

0.99829821 0.0443 0.7518 5.86

0.99848330 0.0591 0.7633 3.47

For all orbits it is θ = 0◦, Δω = 0◦, ΔΩ = 180◦

In the right panel of Fig. 10, themostmutually inclined orbits are presented on the eccentricity
plane. It is clear that inclined periodic motion corresponds to low eccentricity value of the
heavier planet (planet 1), but very high eccentricities for the lighter one (planet 2).

5 Conclusions

Our study concerns the quasi-satellite (QS) motion of the 1:1 mean-motion resonance which
can find various applications in Celestial Mechanics. We consider both the problems of
QS motion of an asteroid in the framework of the RTBP and the QS planetary motion in
the framework of the GTBP. We focus on the computation of families of periodic orbits
by assuming the method of analytical continuation and applying differential corrections. It
is well known that periodic orbits play an important role in the dynamics and their linear
stability or instability indicates in general the existence of regions in phase space with stable
or chaotic motion, respectively.

For the case of asteroids (massless bodies), we started our study from the planar circular
RTBP, where the backbone of QS motion is the horizontally stable family f . The horizontal
and vertical stability of this family indicates also the existence of long-term stability, when
considering small perturbations by adding a small eccentricity in the motion of the primaries
or by assuming spatial orbits of small inclination. These results have been verified also
by other studies (e.g. Mikkola et al. 2006; Sidorenko et al. 2014; Pousse et al. 2017). We
determined two critical orbits along family f , called Bcs and Bce. The critical orbit Bcs

separates the family f in two segments, one vertically stable and one vertically unstable.
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(a) (b)

Fig. 10 a Maximum mutual inclination, Δimax , observed in families g(F1, Ha) and g(F2, Hp), when m1
equals to 0.003mJ (green), 1.0mJ (blue) and 10mJ (red) as the mass ratio, ρ, varies. b The eccentricity values
of the orbits presented in panel a

Therefore, Bcs is a v.c.o., which is continued in the spatial model by adding inclination
to the asteroid, and hence, we obtain the family F of spatial periodic QS orbits. The Bce

orbit belongs to the segment of vertically unstable orbits of f . It has period T = 2π and is
continued in the elliptic model and generates two families of planar periodic orbits, Ea and
Ep . Both critical orbits and all orbits of the above-mentioned generated families are highly
eccentric orbits for the massless body. Also, along family F the inclination reaches the value
of 27◦.

Family Ea contains the critical orbit Bes which is a v.c.o. Namely, at Bes the family Ea

turns from vertically unstable to vertically stable and a new stable family Ha is derived by
continuation in the spatial model. The spatial family F contains a critical orbit Bcse, which
has period T = 2π and is continued in the spatial elliptic model generating two new families.
Our computations showed that one of the families which arises from Bcse coincides with Ha

(it is the same family), which emanates from the planar v.c.o. Bes. So, the family Ha of the
spatial elliptic RTBP forms a bridge between the families Ea and F of the elliptic planar
and the spatial circular RTBP, respectively. The second generated family Hp is unstable and
extends up to very high eccentricity values. This structure of periodic solutions in phase space
holds at least in the mass range m⊕ ≤ μ ≤ 10mJ .

Apart from the isolated critical orbits Bce and Bcse, all other orbits of the above-mentioned
planar and spatial families are continued by adding mass, m2, to the massless body, i.e. by
passing from the RTBP to GTBP. We showed that for m2 �= 0 two families of inclined
orbits are formed, called g(F1, Ha) and g(F2, Hp). Family g(F1, Ha) is stable and forms
a bridge between two orbits of the QS family of the planar GTBP (Giuppone et al. 2010;
Hadjidemetriou and Voyatzis 2011) and reaches a maximum inclination value that depends
mainly on the mass ratio ρ = m2/m1. This “bridge” becomes lower and lower as ρ increases
and disappears for ρ ≈ 0.02. The family g(F2, Hp) is located at higher inclinations than
those of the “bridge”, and it consists mainly of two segments, one stable and one unstable.
From a qualitative point of view, the above structure of periodicQSmotion is almost unaltered
for m⊕ ≤ μ ≤ 10mJ .
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The QS periodic orbits studied in this paper consist the exact 1:1 resonant solutions. In
particular, stable periodic solutions should form islands in phase space, where the resonant
angle θ = λ2 − λ1 librates regularly. Considering a particular TBP model and a stable
periodic orbit of it, we obtain in its vicinity librations for the resonant angleΔ� = �2 −�1

too. For the planar models, such librations have been indicated by the studies cited along the
paper. The existence of inclined librations close to spatial periodic orbits has been checked
and verified by numerical integrations, though they are not presented in this paper. The width
of the area of inclined librations, for both asteroid and planetary QS orbits, requires further
studies.
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