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Abstract
We use numerical continuation and bifurcation techniques in a boundary value setting to
follow Lyapunov families of periodic orbits and subsequently bifurcating families. The Lya-
punov families arise from the polygonal equilibrium of n bodies in a rotating frame of
reference. When the frequency of a Lyapunov orbit and the frequency of the rotating frame
have a rational relationship, then the orbit is also periodic in the inertial frame. We prove
that a dense set of Lyapunov orbits, with frequencies satisfying a diophantine equation, cor-
respond to choreographies. We present a sample of the many choreographies that we have
determined numerically along the Lyapunov families and along bifurcating families, namely
for the cases n = 3, 4, and 6–9. We also present numerical results for the case where there is
a central body that affects the choreography, but that does not participate in it. Animations
of the families and the choreographies can be seen at the link below.

1 Introduction

The study of n equal masses that follow the same path has attracted much attention in recent
years. The first solution that differs from the classical Lagrange circular orbit was discovered
numerically byMoore (1993), where three bodies follow one another around the now famous
Figure-Eight orbit. This orbit was located by minimizing the action among symmetric paths.
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Independently Chenciner and Montgomery (2000) gave a rigorous mathematical proof of
the existence of this orbit, by minimizing the action over paths that connect a colinear and
an isosceles configuration. Such solutions are now commonly known as “choreographies,”
after the work in Simó (2001), Simó presented extensive numerical computations of chore-
ographies for many choices of the number of bodies.

The results in Chenciner and Montgomery (2000) mark the beginning of the development
of variational methods, where the existence of choreographies can be associated with the
problem of finding critical points of the classical action of Newton’s equations of motion.
The main obstacles encountered in the application of the principle of least action are the
existence of paths with collisions and the lack of compactness of the action. Ferrario and
Terracini (2004) applied the principle of least action systematically over symmetric paths to
avoid collisions, using ideas introduced byMarchal (2002). For the action in a rotating frame,
it is shown inBarutello andTerracini (2004) that, depending on the frequency of rotation, there
is no minimizer, or the n-polygon is a minimizer, or different choreographies are minimizers.
For a discussion of these and other variational approaches, we refer to Barutello et al. (2008),
Chen (2003), Ferrario (2006), Ferrario and Portaluri (2008), Terracini and Venturelli (2007),
and the references therein.

Chenciner and Féjoz (2009) pointed out that choreographies appear in dense sets along
Vertical Lyapunov families that arise from n bodies rotating in a polygon; see also Chenciner
et al. (2005). In Chenciner and Féjoz (2009), the existence of theVertical Lyapunov families is
proved using the Weinstein–Moser theory. A fact established in Chenciner and Féjoz (2009),
for orbits close to the polygonal equilibrium with n ≤ 6, is that when the frequency varies
along theVertical Lyapunov families, then an infinite number of choreographies exists.While
similar computations can be carried out for other values of n, there is no general analytical
proof for all n.

Theorems 30 and 38 in García-Azpeitia and Ize (2013) prove the existence of Planar and
Vertical Lyapunov families using equivariant degree theory. The norm or the period of the
orbits along a family tends to infinity, or the family ends in a collision, or otherwise it returns
to other trivial solutions (equilibria). Similar bifurcation theorems have been proved for the
restricted body problem in García-Azpeitia and Ize (2011a, b). Numerical computations in
Calleja et al. (2016) show that each of the families ends in a collision orbit, goes to infinity in
Sobolev norm, has unbounded period, returns to other equilibria, or exhibits a mix of these
alternatives.

The purpose of our current work is to use advanced computational methods to determine
the families and subsequently bifurcating families of the n body problem and to locate
choreographies along such families in a systematic fashion. To explain our numerical results,
we first recall some relevant results fromGarcía-Azpeitia and Ize (2013). Let (q j (t), z j (t)) ∈
C × R be the position of the j th body in space at time t . Then, (u j , z j ) ∈ C × R are the
positions of the bodies in a rotating frame, with q j (t) = eiωt u j (t). The equations of motion
of n bodies of unit mass in this rotating frame are given by

ü j + 2ω i u̇ j = ω2u j −
n∑

j ′=1( j ′ �= j)

u j − u j ′∥∥(u j , z j ) − (u j ′ , z j ′)
∥∥3

,

z̈ j = −
n∑

j ′=1( j ′ �= j)

z j − z j ′∥∥(u j , z j ) − (u j ′ , z j ′)
∥∥3

. (1)
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The polygonal relative equilibrium consists of the positions

u j = ei jζ , z j = 0, ζ = 2π

n
, (2)

which is an equilibrium of (1) when the frequency is fixed to be ω = √
s1, where s1 =

1
4

∑n−1
j=1

1
sin( jζ/2) .

The emanating Lyapunov families have starting frequencies that are equal to the normal
frequencies of oscillation of equilibrium (2). To be precise, let ν be the frequency of the
Lyapunov orbit (u j , z j ), i.e., the period is T = 2π/ν. Then,

w j (t) = u j (t/ν), ξ j (t) = z j (t/ν),

are renormalized 2π-periodic functions. The theorem inGarcía-Azpeitia and Ize (2013) states
that for n ≥ 6 and for each integer k such that

3 ≤ k ≤ n − 3,

the polygonal relative equilibrium has one family of planar periodic solutions with symme-
tries

w j (t) = ei jζ wn(t + jkζ ). (3)

The proof in García-Azpeitia and Ize (2013) predicts solutions with k = 2 or n − 2 if the
linear equations at the polygonal equilibrium have normal modes corresponding to these
symmetries. In fact, three cases occur for different values of n: for n = 4, 5, 6, there are no
solutions with k = 2 or n − 2; for n = 7, 8, 9, there are two solutions with k = 2 and no
solutions with k = n − 2; and for n ≥ 10, there is one solution with k = 2 and one with k =
n − 2.

In the case of spatial Lyapunov families, the eigenvalues of the linearized system of
equations are given explicitly by i

√
sk with

sk = 1

4

n−1∑

j=1

sin2(k jζ/2)

sin3( jζ/2)
, (4)

for k = 1, . . . , n − 1; see Chenciner and Féjoz (2009) and García-Azpeitia and Ize (2013).
The eigenvalues i

√
sk are resonant due to the fact that sn−k = sk for 1 ≤ k < n/2. Moreover,

the first eigenvalue i
√
s1 is resonant with the triple planar eigenvalue i

√
s1 and hence is

highly degenerate. These resonances can be dealt with using equivariant degree theory in Ize
and Vignoli (2003). The theorem in García-Azpeitia and Ize (2013) states that for n ≥ 3 and
for each k such that

1 ≤ k ≤ n/2,

the polygonal relative equilibrium has one family of spatial periodic solutions which start
with frequency ν = √

sk , have symmetries (3),

ξ j (t) = ξn(t + jkζ ), (5)

and
wn(t) = wn(t + π), ξn(t) = − ξn(t + π). (6)

For example, for the case where k = n/2 and n is even, we have kζ = π . Then, symmetries
(3), (5) and (6) imply that

w j (t) = ei jζ wn(t + jπ) = ei jζ wn(t),
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ξ j (t) = ξn(t + jkζ ) = (−1) jξn(t).

Solutions having these symmetries are known as Hip-Hop orbits and have been studied in
Barrabés et al. (2006). Solutionswith symmetries (3) and (5) are “travelingwaves” in the sense
that each body follows the same path, but with a rotation and a time shift. The symmetries
allow us to establish that a dense set of solutions along the family are choreographies in the
inertial frame of reference.

We say that a Planar or Spatial Lyapunov orbit is � : m resonant if its period and frequency
are

T = 2π√
s1

(
�

m

)
, ν = √

s1
m

�
,

where � and m are relatively prime, and such that

k� − m ∈ nZ.

In Theorem 1, we prove that � : m resonant Lyapunov orbits are choreographies in the
inertial frame. Each of the integers k, �, and m plays a different role in the classification of
the choreographies. Indeed, the projection of the choreography onto the xy-plane haswinding
number � around a center and is symmetricwith respect to theZm -group of rotations by 2π/m.
In addition, the n bodies form groups of d-polygons, where d is the greatest common divisor
of k and n. Some choreographies wind around a toroidal manifold with winding numbers �

and m, i.e., the choreography path is an (�,m)-torus knot. In particular, such orbits appear in
families that we refer to as “Axial families,” e.g., in Fig. 7. We note that for other values of �

and m the orbits of the n bodies in the inertial frame are also closed, but consist of multiple
curves, called “multiple choreographic solutions” in Chen (2003).

We use robust and highly accurate boundary value techniques with adaptive meshes to
continue the Lyapunov families. An extensive collection of python scripts that reproduce the
results reported in this article for a selection of values of nwill bemade freely available. These
scripts control the software AUTO to carry out the necessary sequences of computations. One
advantage of the continuation approach is that this procedure can be implemented for other
equations with similar symmetries, e.g., this approach to the computation of choreographies
can be extended to the n-vortex problem, to a periodic lattice of Schrödinger sites, and to the
n-body problem with Lennard-Jones or other integrable potential. In Chenciner and Féjoz
(2009), the numerical continuation of the Vertical Lyapunov families is implemented as local
minimizers in subspaces of symmetric paths. Presumably, not all families are localminimizers
restricted to subspaces. Our procedure allows the numerical continuation of all Planar and
all Vertical Lyapunov families that arise from simple eigenvalues and some families that
arise from double eigenvalues. The systematic computation of periodic orbits that arise from
eigenvalues of higher multiplicity remains under investigation. Computer-assisted proofs of
the existence of choreographies have been given in, for example, Kapela and Zgliczynski
(2003) and Kapela and Simó (2007, 2017). Such techniques can validate our numerical
computations, to prove the existence of the dense sets of choreographies presented in our
article.

Previous numericalwork has explored the existence ofmany choreographies asminimizers
of the action; see, for example, Barutello and Terracini (2004), Chen (2003), Chenciner et al.
(2002), Montaldi and Steckles (2013) and Simó (2001). The choreographies obtained in
these papers have many similarities with solutions that we obtain by continuation methods.
However, it is not easy to establish a systematic relation between the minimizers of the action
and solutions along continuation families. For instance, one of the main goals in Chenciner
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and Féjoz (2009) is to give evidence of a connection via families of periodic solutions between
the triangle and a Figure-Eight choreography of Marchal, which is a minimizer of the action.
This remains an open problem. However, we do present an analogous connection for the case
of seven bodies, where the heptagon connects indirectly to a Figure-Eight choreography,
namely via a Vertical Lyapunov family with k = 2 and an Axial family that bifurcates from
the Vertical family. The Figure-Eight choreography then corresponds to a 1:2-resonant orbit
along this Axial family. Although the Figure-Eight orbit discovered by Moore is still the
only choreography that has been proved to be stable Kapela and Simó (2007), we have found
strong evidence of other stable choreographies.

The classification of the choreographies by numbers k, �, and m appears in a natural
manner in our continuation method. In Barutello and Terracini (2004) and Montaldi and
Steckles (2013), other classifications that are more natural for variational methods are used
for planar choreographies. The classification in Barutello and Terracini (2004) holds for three
bodies in shape space, while Montaldi and Steckles (2013) contains a classification for an
arbitrary number of bodies. Many connected components of loop space exist for a given
symmetry class in Montaldi and Steckles (2013). There is a choreography minimizer for the
case of strong potentials in each connected component. It is an open problem whether there
is a choreography minimizer for the Newton potential in every component. Therefore, our
approach presents complementary information in the classification of choreographies with
respect to previous classifications.

In Sect. 2, we prove that a dense set of orbits along the Lyapunov families correspond
to choreographies. In Sect. 3, we describe the numerical continuation procedure used to
determine the periodic solution families, and in Sect. 4, we give examples of numerically
computed Lyapunov families and some of their bifurcating families. In Sect. 5, we provide a
sample of the choreographies that appear along Planar Lyapunov families. Section 6 presents
choreographies along the Vertical Lyapunov families and along some of their bifurcating
families. In particular, a family of axially symmetric orbits forms a connection between a
Vertical family and a Planar family. Choreographies along such tertiary Planar families are
referred to as “unchained polygons” in Chenciner and Féjoz (2009).

In Sect. 7, we present results of the numerical continuation of a Planar family, starting from
the 3-body Figure-Eight choreography. Along this family, we locate other choreographies of
interest. In Sect. 7, we also determine families that arise from the Maxwell relative equilib-
rium, i.e., with an additional body added at the center of the n-polygon. This configuration
has been used as amodel to study the stability of the rings of Saturn, as established inMoeckel
(1994) and in García-Azpeitia and Ize (2013), Vanderbei and Kolemen (2007), and Roberts
(2000) for n ≥ 7. Using a similar approach as in the earlier sections, we determine solutions
where n bodies of equal mass 1 follow a single trajectory, but with an additional body of
mass μ at or near the center. While this extra body does not participate in the choreography,
it does affect its structure and its stability properties.

2 Choreographies and Lyapunov families

Let x j = (w j , ξ j ), x = (x1, . . . , xn), and let Ψ = {x ∈ R
3n : xi = x j } be the collision

set, when two or more of the bodies collide, and let H2
2π (R3n\Ψ ) be the open subset of the

Sobolev space H2(R3n) consisting of the collision-free periodic (and continuous) functions.
We define the set of parameters Λ = {ν > 0} and the space of zero z-average functions
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x(t) ∈ R
3n ,

X = {x ∈ L2
2π (R3n) :

n∑

j=1

∫ 2π

0
ξ j dt = 0}.

Define the operator

f : X ∩ H2
2π (R3n\Ψ ) × Λ → X

as f (x; ν) = ( f1, . . . , fn) with components given by

f j (x) =
(−ν2ẅ j − 2ν

√
s1 i ẇ j − Vw j

−ν2ξ̈ j − Vξ j

)
,

where the amended potential is

V (x) = 1

2

∑

j

∥∥w j
∥∥2 +

∑

j ′< j

1∥∥(w j , ξ j ) − (w j ′ , ξ j ′)
∥∥ .

The operator f is well defined in X due to the conservation of momentum in the z-coordinate.
With a change of variables in the Newton equations, the period of (w j , ξ j ) is fixed at 2π

and the frequency ν becomes a bifurcating parameter. Thus, the zeros (x; ν) of the operator
f correspond to 2π/ν-periodic solutions of the Newton equations of the form

q j (t) = ei
√
s1tw j (νt), z j (t) = ξ j (νt).

In García-Azpeitia and Ize (2013), the global property of the bifurcation of periodic solu-
tions is obtained as a bifurcation of zeros of the Fredholm operator f in the open set
X ∩ H2

2π (R3n\Ψ ) × Λ. The analog of the global Rabinowitz theorem in García-Azpeitia
and Ize (2013) is that a Lyapunov family forms a continuum C in X ∩ H2

2π (R3n\Ψ ) × Λ

that is not compact or returns to other bifurcation points (equilibria). The continuum C is
not compact if either the family of periodic solutions (x, ν) ends at an orbit with collisions
when x(t) → Ψ , the period goes to infinity when ν → 0, the Sobolev norm goes to infinity
when |x |H2

2π
→ ∞, or the branch goes to an equilibrium when ν → ∞ (see Alexander

and Yorke 1978). Actually, the results in García-Azpeitia and Ize (2013) are obtained for a
general polygon with a central mass μ within the context of the Maxwell model for the rings
of Saturn. We present a brief description of the numerical computations for μ �= 0 in Sect. 7.

We rescale time in the Lyapunov orbits to simplify the computations,

q j (t) = eit
√
s1/νw j (t), z j (t) = ξ j (t), (7)

where w j and ζ j are 2π -periodic with symmetries (3) and (5). For these orbits, we prove the
following:

Lemma 1 Let

Ω = 1

n

(
k
√
s1
ν

− 1

)
.

Then, a rescaled Planar Lyapunov orbit with frequency ν, given by

q j (t) = ei
√
s1t/νw j (t),

satisfies

q j (t) = e−i j(2π)Ωqn(t + jkζ ).
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Proof We have

q j (t) = eit
√
s1/νw j (t) = eit

√
s1/νei jζ wn(t + jkζ ).

Since

qn(t + jkζ ) = ei(t+ jkζ )
√
s1/νwn(t + jkζ ),

it follows that

q j (t) = eit
√
s1/νei jζ

(
e−i(t+ jkζ )

√
s1/νqn(t + jkζ )

)
= e−i jζnΩqn(t + jkζ ).

��

In particular, if Ω ∈ Z, then the Lyapunov solution satisfies

q j (t) = qn(t + jkζ ), (8)

and is a choreography. In fact, planar choreographies exist for any rational numberΩ = p/q
where q is relatively prime to n.

Proposition 1 If Ω = p/q, with q relatively prime to n, then

q j (t) = qn
(
t + jk′ζ

)
, (9)

where k′ = q ′qk with q ′ the n-modular inverse1 of q. Moreover, the solutions qn(t) is
2πm-periodic, where m and � are relatively prime such that

�

m
= np + q

kq
. (10)

Proof If Ω = p/q , the solution satisfies

q j (t) = e−i2π j p/qqn(t + jkζ ). (11)

Since q ′q = 1 + bn for some positive number b, we have

q j (t) = q j(1+nb)(t) = e−i2π jq ′ pqn
(
t + j(q ′qkζ )

) = qn
(
t + jk′ζ

)
. (12)

Since
√
s1
ν

= nΩ + 1

k
= np + q

qk
= �

m
,

it follows that eit
√
s1/ν is 2πm-periodic, and since wn(t) is 2π-periodic, we also have that

the function qn(t) = eit
√
s1/νwn(t) is 2πm-periodic. ��

Proposition 2 For Ω = p/q, with q and n relatively prime, the spatial Lyapunov solution is
a choreography that satisfies

(q j , z j )(t) = (qn, zn)
(
t + jk′ζ

)
, (13)

where k′ = q ′qk and (qn, zn)(t) is 2πm-periodic.

1 We say that q′ is the n-modular inverse of q if q′q is congruent to 1 modulus n.
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Proof For the planar component of the spatial Lyapunov families, we have q j (t) = qn(t +
j (aqkζ )), where qn(t) is 2πm-periodic. Since aq = 1 + bn and ζ = 2π/n, we have in
addition that the spatial components satisfy

z j (t) = zn(t + jkζ ) = zn
(
t + jk′ζ

)
,

where zn(t) is 2π-periodic. ��
For fixed n, the set of rational numbers p/q such that q and n are relatively prime is dense.

If the range of the frequency ν along the Lyapunov family contains an interval, then there
is a dense set of rational numbers Ω = p/q inside that interval. Hence, there is an infinite
number of Lyapunov orbits that correspond to choreographies. To be precise, the resonant
Lyapunov orbit gives a choreography that has period

mT = m
2π

ν
= 2π√

s1
�,

where T is the period of the resonant Lyapunov orbit. Furthermore, the number � is related to
the number of times that the orbit of the choreography winds around a central point. Rational
numbers p/q , where q is relatively prime to n, appear infinitely often in an interval, with
p and q arbitrarily large. In such a frequency interval, the infinite number of rationals p/q
that correspond to choreographies gives arbitrarily large � and m as well. This gives rise
to an infinite number of choreographies, with arbitrarily large periods 2π√

s1
�, and orbits of

correspondingly increasing complexity.
Although the previous results give sufficient conditions for the existence of infinitelymany

choreographies, there can be additional choreographies due to the fact that the orbit of the
choreography qn(t) has additional symmetries by rotations of 2π/m. We now describe these
symmetries and the necessary conditions.

Definition 1 We define a Lyapunov orbit as being � : m resonant if it has period

T�:m = 2π√
s1

�

m
,

where � and m are relatively prime such that

k� − m ∈ nZ.

Theorem 1 In the inertial frame, an � : m resonant Lyapunov orbit is a choreography,

(q j , z j )(t) = (qn, zn)(t + jk′ζ ),

where k′ = k − (k� − m)�′ with �′ the m-modular inverse of �. The projection on the xy-
plane of the choreography is symmetric with respect to rotations by an angle 2π/m andwinds
around a center � times. The period of the choreography is m T�:m.

Proof Since un(t) is 2π -periodic and

eit
√
s1/ν = eit�/m

is 2πm-periodic, the function qn(t) = eit
√
s1/νun(t) is 2πm-periodic. Furthermore, since

qn(t − 2π) = e−i2π�/mqn(t), (14)

the orbit of qn(t) is invariant under rotations of 2π/m. By Lemma 1, since

Ω = k� − m

nm
= r

m
,
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with r = (k� − m)/n ∈ Z, the solutions satisfy

q j (t) = e−i2π j(r/m)qn(t + jkζ ). (15)

Since � and m are relatively prime we can find �′, the m-modular inverse of �. Since ��′ = 1
mod m, it follows from symmetry (14) that

qn(t − 2π jr�′) = e−i2π j(r/m)qn(t).

Therefore,
q j (t) = e−i2π j(r/m)qn(t + jkζ ) = qn(t + j(k − rn�′)ζ ). (16)

For the planar component q j (t) of spatial Lyapunov families, we have the same relation.
In addition, we have that the spatial component zn is 2π-periodic and satisfies z j (t) =
zn(t + jkζ ). Since rn�′ζ = 2πr�′ ∈ 2πZ, it follows that

z j (t) = zn(t + jkζ ) = zn(t + j(k − rn�′)ζ ),

and thus, zn(t) is also 2πm-periodic. ��

3 Numerical continuation of Lyapunov families

To continue the Lyapunov families numerically, it is necessary to take the symmetries into
account. Equations (1) in the rotational frame have two symmetries that are inherited from
Newton’s equations in the inertial frame, namely rotations in the plane eθ i u j and translations
in the spatial coordinate z j +c. This implies that any rotation in the plane and any translation
of an equilibrium is also an equilibrium and that the linear equations have two conserved
quantities and two trivial eigenvalues.

To determine the conserved quantities, we can sum equation (1) over the z j coordinates
to obtain that

∑n
j=1 z̈ j = 0, i.e., the linear momentum in z is conserved,

n∑

j=1

ż j (t) = constant. (17)

The other conserved quantity can be obtained easily in real coordinates. Identifying i with the
symplectic matrix J , taking the real product of the u component of Eq. (1) with the generator
of the rotations Ju j , and summing over j , we obtain

0 =
n∑

j=1

〈
ü j + 2

√
s1 J u̇ j , Ju j

〉
R2 = d

dt

n∑

j=1

〈
u̇ j + √

s1 Ju j , Ju j
〉
R2 .

Therefore, the second conserved quantity is

n∑

j=1

u̇ j · Ju j − √
s1

∣∣u j
∣∣2 .

To continue the Lyapunov families numerically, we need to take the conserved quantities
into account. Let x j = (u j,z j ) be the vector of positions and v j = (u̇ j, ż j ) the vector of
velocities. In our numerical computations, we use the augmented equations

ẋ j = v j ,
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48 Page 10 of 28 R. Calleja et al.

v̇ j = 2
√
s1 diag(J , 0) v j + ∇x j V +

3∑

k=1

λk F
k
j , (18)

where F1
j = e3 corresponds to the generator of the translations in z, F2

j = diag(J , 0)x j to

rotations in the plane, and F3
j = v j to the conservation of the energy. The solutions of Eq.

(18) are solutions of the original equations of motion when the values of the three parameters
λk are zero. It is known that the converse of this statement is also true (for instance see Ize
and Vignoli (2003) and Muñoz-Almaraz et al. (2003)).

Proposition 3 Assume that the functions Fk = (Fk
1 , . . . , Fk

n ) for k = 1, 2, 3, are orthogonal
(or linearly independent). Then, a solution (x, v) of the equation is a solution of augmented
Eq. (18) if and only if λ j = 0 for j = 1, 2, 3.

Proof By scalarmultiplication of the equation in (18) by Fk
j , summing over j , and integrating

by parts, we obtain

∫ 2π

0

n∑

j=1

v̇ j · Fk
j dt = λk

∫ 2π

0

n∑

j=1

∣∣∣Fk
j

∣∣∣
2
dt .

Suppose that (x, v) is a solution. Then, it conserves the aforementioned quantities, and
therefore

∫ 2π

0

n∑

j=1

v̇ j · Fk
j dt = 0.

The result that λ j = 0 then follows from the orthogonality of the fields Fk . ��
For the purpose of numerical continuation, the period of the solutions is rescaled to 1, so

that it appears explicitly in the equations. Let ϕ(t, x, v) be the flow of the rescaled equations.
Then, we define the time-1 map for the rescaled flow as

ϕ(1, x, v; T , λ1, λ2, λ3) : R6n × R
4 → R

6n .

Let X(t) be the solution computed in the previous step along a family.We implement Poincaré
restrictions given by the integrals

I1 =
∫ 1

0
xn · e2 dt = 0, I2 =

∫ 1

0
xn · e3 dt = 0,

I3 =
∫ 1

0
(xn(t) − Xn(t)) · Ẋn(t) dt = 0,

which correspond to rotations, translations in z, and the energy, respectively.
The results in Muñoz-Almaraz et al. (2003) are based on the continuation of zeros of the

map

F(x, v; T , λ1, λ2, λ3) := ((x, v) − ϕ(x, v), I1, I2, I3) : R6n+4 → R
6n+3.

Actually, continuation is done with AUTO for the complete operator equation in function
space. That is, the numerical computation of the maps ϕ and I j is done for the corresponding
operators in C2

2π (R6n). This operator equation is discretized using highly accurate piecewise
polynomial collocation at Gauss points.
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4 Lyapunov families and bifurcating families

In this section, we give a brief description of some of the many solution families that we have
computed using python scripts that drive the AUTO software. We start with Planar families
that arise from the circular, polygonal equilibrium state of the n-body problem when n ≥ 6.
For the case n = 6, there is a single such Planar family. While of interest, its orbits are of
relatively small amplitude, and for this reason, we have chosen to illustrate the numerical
results for the case n = 7 in this section. One of the four Planar families that exist for
n = 7 also consists of relatively small amplitude orbits. The other three Planar families
are illustrated in Fig. 1, where the panels on the left show an orbit along each of three
distinct Planar Lyapunov families. These orbits are well away from the polygonal relative
equilibrium from which the respective families originate, while they are also still well away
from the collision orbits which these families appear to approach. The panels on the right in
Fig. 1 show orbits along the three families that are further away from the relative equilibria.
Orbits along the Planar families for the cases n = 8 and n = 9 share many features with
those for the case n = 7.

Families of spatial orbits, which have nonzero z-component, emanate from the polygonal
relative equilibrium when n ≥ 3. These families and their orbits are often referred to as
“ Vertical,” because the solution of the linearized Newton equations at the equilibrium is
perfectly Vertical, i.e., the x- and y-components are identically zero. For the case n = 3,
the Vertical Lyapunov family is highly degenerate, as it corresponds to an eigenvalue of
algebraic multiplicity 5, and there are no further eigenvalues that give rise to Vertical orbits.
For the case n = 4, there is an equally degenerate eigenvalue (k = 1). However, there is
also a nondegenerate eigenvalue that gives rise to a Vertical family, namely the one known
as the “Hip-Hop family” (k = 2). The top-left panel of Fig. 2 shows orbits along this family,
which terminates in a collision orbit. The coloring of the orbits along the family gradually
changes from solid blue (near the equilibrium) to solid red (near the terminating collision
orbit). The same coloring scheme is used when showing other entire families of orbits in
rotating coordinates. The top-right panel of Fig. 2 shows a single orbit from the Hip-Hop
family, namely the first bifurcation orbit encountered along it. The color of this orbit gradually
changes from blue to red as the orbit is traversed, so that one can infer the direction of motion.
The masses are shown at their “initial” positions. The same coloring scheme is used when
showing other individual orbits in rotating coordinates.

The center-left panel of Fig. 2 shows the Axial family that bifurcates from the Hip-Hop
family. The name “Axial” alludes to the fact that the orbits of this family are invariant under the
transformation (− y,− z), when the x-axis is chosen to pass through the “center” of the orbit.
The Axial family connects to a Planar family, namely at the Planar bifurcation orbit shown
in the center-right panel of Fig. 2. We refer to this Planar family as “Unchained,” because
some of its orbits give rise to choreographies called “Unchained polygons” in Chenciner and
Féjoz (2009). The Hip-Hop family for n = 4, and its bifurcating families, are qualitatively
similar to corresponding families that we have computed for the cases n = 6 and n = 8.

The examples of orbit families given in this section are representative of the many Planar
and spatial Lyapunov families that we have computed, their secondary and tertiary bifurcating
families, aswell as corresponding families for other values ofn. Complete bifurcation pictures
are rather complex, but our algorithms are capable of attaining a high degree of detail, which
at this point excludes only the degenerate bifurcations mentioned earlier.

In the following sections,we focus our attention on choreographies that arise from resonant
periodic orbits. The statements proved for the Lyapunov families also hold true for subsequent
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spatial and planar bifurcations, as long as symmetries (3) and (5) are present. Figure 3
illustrates the appearance of choreographies from resonantLyapunovorbits and from resonant
orbits along subsequent bifurcating families. Specifically, the top-left panel of Fig. 3 shows
a resonant Planar Lyapunov orbit for the case n = 7, and the top-right panel shows the same
orbit in the inertial frame, where it is seen to correspond to a choreography. Similarly, the
center panels show a resonant spatial Lyapunov orbit and corresponding choreography for
n = 9, while the bottom panels show a resonant Axial orbit and corresponding choreography
for n = 4.

5 Choreographies along Planar Lyapunov families

In this section, we present some of the infinitely many choreographies that appear along the
Planar Lyapunov families, namely for the cases n = 7, n = 8 and n = 9, as shown in Figs. 4
and 5, respectively. Corresponding data are given in Tables 1, 2 and 3. Each choreography
winds � times around a center and is invariant under rotations of 2π/m. The bodies move in
groups of d-polygons, where d is the greatest common divisor of n and k. In addition, these
choreographies are symmetric with respect to reflection in the plane generated by the second
symmetry in (3).

When there is an infinite number of choreographies, then the winding number � and the
symmetry indicatorm can be arbitrarily large and the choreography arbitrarily complex. From
the observed range of values of the periods along a Lyapunov family, we mostly choose the
simpler resonances and hence the simpler choreographies. For example, the family k = 2
for n = 7 has a relatively simple choreography. Here, � = 5 and m = 3 are relatively prime,
with

k� − m = 2 × 5 − 3 = 7 ∈ nZ.

In this example, 2πs−1/2
1 = 4.1387, and since T5:3 = (2πs−1/2

1 )(5/3) = 6.8978 is within
the range of periods of the Lyapunov family, it follows that the 5:3 resonant Lyapunov orbit
corresponds to a choreography in the inertial frame. Similar statements apply to other planar
choreographies.

The choreography for n = 7, with k = 2 and resonance 5:3, is shown in the top-left panel
of Fig. 4. It has period 3T5:3, winding number 5, and it is invariant under rotations by 2π/3.
For n = 7, there is in fact a sequence of Planar Lyapunov families, having k = 2, 3, 4, 2,
respectively. Two more choreographies for n = 7, with k = 3 and k = 4, are shown in the
top-right and center-left panels of Fig. 4. For n = 8, there is a sequence of Planar Lyapunov
families having k = 2, 3, 4, 5, 2, respectively. We have chosen four choreographies from
these families for different k, as included in Figs. 4 and 5. Similarly, for n = 9 there is
a sequence of Planar Lyapunov families having k = 2, 3, 4, 5, 6, 2, respectively. Figure 5
includes five choreographies for different k from these families.

6 Choreographies along Vertical Lyapunov families and their
bifurcating families

In this section, we give examples of choreographies along the Vertical Lyapunov families and
along their bifurcating families. The projections of these choreographies onto the xy-plane
are invariant under rotations of 2π/m. The bodies form groups of d-polygons, where d is the
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Fig. 1 Some orbits along Planar families for the case n = 7. The color ranges from blue to red according to
the time for one period to be completed. Top: two orbits with k = 2. Center: two orbits with k = 3. Bottom:
two orbits with k = 4
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Fig. 2 Top left: the vertical Lyapunov family for n = 4 and k = 2. Top right: the first bifurcation orbit along
the Vertical family. Center left: the Axial family that bifurcates from the Vertical family. Center right: the
bifurcation orbit where the Axial family connects to a Planar family. Bottom left: one branch of the Planar
family to which the Axial family connects. Bottom right: the other branch of the family to which the Axial
family connects
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Fig. 3 The panels on the left show orbits in the rotating frame, while the panels on the right show the same
orbits in the inertial frame, where they correspond to choreographies. Top: a resonant Planar Lyapunov orbit.
Center: a resonant Vertical Lyapunov orbit. Bottom: a resonant Axial orbit
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Fig. 4 Top left: a 5:3-resonant orbit for k = 2 and n = 7. Top right: a 3:2-resonant orbit for k = 3 and n = 7.
Center left: a 2:1-resonant orbit for k = 4 and n = 7. Center right: a 11:6-resonant orbit for k = 2 and n = 8.
Bottom left: a 11:9-resonant orbit for k = 3 and n = 8. Bottom right: a 5:4-resonant orbit for k = 4 and n = 8
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Fig. 5 Top left: a 5:1-resonant orbit for k = 5 and n = 8. Top right: a 5:2-resonant orbit for k = 4 and n = 9.
Center left: a 2:1-resonant orbit for k = 5 and n = 9. Center right: a 4:3-resonant orbit for k = 3 and n = 9.
Bottom left: a 5:3-resonant orbit for k = 6 and n = 9. Bottom right: a 5:1-resonant orbit for k = 2 and n = 9
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Table 1 Data for n = 7 bodies k Eigenvalue Period interval Resonant orbit

2 1.53960i [4.0811, 28.328] 5:3

3 1.85058i [3.3953, 27.974] 3:2

4 1.50806i [4.1664, 28.499] 2:1

2 0.761477i [8.2513 ,8.3328] –

Table 2 Data for n = 8 bodies k Eigenvalue Period interval Resonant orbit

2 1.94947i [3.2230, 14.836] 11:6

3 2.39714i [2.6211, 29.654] 11:9

4 2.41171i [2.6053, 7.4935] 5:4

5 1.91468i [3.2814, 29.122] 5:1

2 0.435437i [5.4804, 14.430] –

greatest common divisor of n and k. Sincewe obtain choreographies by rotating closed orbits,
each choreography is contained in a surface of revolution. Indeed, due to the symmetries of
the Vertical families, the choreographies wind around a cylindrical manifold with winding
number �, while for the Axial families the choreographies wind around a toroidal manifold
with winding numbers � and m.

The spatial choreographies along the Vertical Lyapunov families are symmetric with
respect to the reflections −y and −z, when the x-axis is chosen to pass through the “center”
of the orbit. While planar choreographies for large values of � and m are somewhat difficult
to appreciate, spatial choreographies of this type are easier to visualize because they wind
around a cylindrical manifold. For even values of n, we mention the case k = n/2, for which
the orbits of the Vertical family are known as Hip-Hop orbits. Choreographies along such
families have been described before in Terracini and Venturelli (2007) and in Chenciner and
Féjoz (2009), where they were found numerically as local minimizers of the action restricted
to symmetric paths. Along Hip-Hop families, we have located the choreography for n = 4
found in Terracini and Venturelli (2007). Several choreographies along Hip-Hop families
are shown the top four panels of Fig. 6. We have not computed all Vertical families that
are not Hip-Hop families, due to the presence of double resonant eigenvalues. We show
choreographies along some of these resonant Vertical families, namely in the bottom panels
of Fig. 6 for n = 9 and in the center panels of Fig. 8 for n = 7. Such families were not
determined inChenciner andFéjoz (2009) because they do not correspond to localminimizers
of the action. Further investigation is needed for a systematic approach to determine these
families.

We have also determined choreographies along families that emanate from the first bifur-
cation alongVertical families in the rotating frame, namely theAxial families. The projections
of these spatial choreographies onto the xy-plane are somewhat similar to those along the
Planar Lyapunov orbits. However, the spatial periodic orbits in the rotating frame that corre-
spond to these choreographies have only one symmetry, which is given by the transformation
(−y,−z), when the x-axis is chosen to pass through the “center” of the orbit in the rotat-
ing frame; see the bottom-left panel of Fig. 3. This is due to the fact that the Axial family
arises from the Vertical Lyapunov family via a symmetry-breaking bifurcation. The symme-
try implies that choreographies along the Axial families wind around a toroidal manifold with
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Table 3 Data for n = 9 bodies k Eigenvalue Period interval Resonant orbit

2 2.27175i [2.7660, 30] 5:1

3 2.85442i [2.2012, 10.298] 4:3

4 3.06012i [2.0534, 30.411] 5:2

5 2.90713i [2.1613, 30.612] 2:1

6 2.26399i [2.7197, 10.008] 5:3

2 0.196565i [15.400, 31.927] –

winding numbers � and m. Since we assume that � and m are co-prime, the choreography
path is known as a torus knot. The simplest nontrivial example is the (2, 3)-torus knot, also
known as the trefoil knot. We note that for other integers � and m such that k�−m /∈ nZ, the
orbit of the n bodies in the inertial frame consists of separate curves that form a torus link.

Some of the choreographies along the Axial families are shown in Fig. 7 for n = 4, 6, 8.
For the cases n = 7, 9, we have found bifurcating families with axial symmetries similar
to n = 4, 6, 8. The case of seven bodies is particularly interesting, since along the Axial
family with k = 2 we find a Figure-Eight choreography that corresponds to a 1 : 2 resonant
Lyapunov orbit; see the bottom panels of Fig. 8. The tori that contain the Axial family in the
inertial frame become degenerate at the 1 : 2 resonant orbit. By degenerate, we mean that
the inner circle of the torus in the plane xy collapses into the origin. Moreover, the 1 : 2
choreography is a torus knot that corresponds to a Figure-Eight in the plane xz, which is
classified as D′(7, 2) in Montaldi and Steckles (2013).

In Sect. 4, we already mentioned that there are Planar bifurcation orbits along Axial fam-
ilies that give rise to Planar families. Such an Axial family and its planar bifurcation orbit
are shown in the center panels of Fig. 2, namely for the case n = 4. Orbits along the two
branches of the bifurcating Planar family are shown in the bottom panels. Specifically, our
numerical computations indicate that Hip-Hop families connect indirectly to Planar fami-
lies via the above-described tertiary bifurcation. Choreographies along such Planar families
have symmetries that are similar to those of Planar Lyapunov families, although in fact these
families do not correspond to Lyapunov families. While there are no Planar Lyapunov fam-
ilies for n = 4, 5, and 6, there are such tertiary Planar families for these values of n, and
these contain planar choreographies. Such choreographies are called unchained polygons in
Chenciner and Féjoz (2009), and there are infinitely many of these. In particular, the Vertical
family for n = 3 and k = 1 leads indirectly to the Planar P12-family of Marchal (2000).
We have continued such families numerically for k = n/2, where n = 4, 6, and 8, and six
choreographies along them are shown in the panels of Fig. 9.

7 Numerical continuation from other configurations

7.1 TheMaxwell configuration

The choreographies in the preceding sections are unstable, in part because they arise directly
or indirectly from an unstable relative equilibrium. To determine more stable solutions, it
is helpful to consider orbits that emanate from a stable relative equilibrium. The polygonal
equilibrium is never stable; about half of its eigenvalues are stable and about half are unstable.
For this reason, we also considered the Maxwell configuration, consisting of an n-polygon
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Fig. 6 Vertical Lyapunov families. Top left: a 3:2-resonant Hip-Hop orbit along V1 for n = 4. Top right: a
9:10-resonant Hip-Hop orbit along V1 for n = 4. Center left: a 5:3-resonant Hip-Hop along V1 for n = 6.
Center right: a 7:4-resonant Hip-Hop along V1 for n = 8. Bottom left: an 11:5 resonance along V3 for n = 9.
Bottom right: a 31:10 resonance along V3 for n = 9
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Fig. 7 Resonant Axial orbits with k = n/2. Top left: a 7:10 resonant Axial orbit for n = 4. Top right: a
9:14 resonant Axial orbit for n = 4. Center left: a 5:9 resonant Axial orbit for n = 6. Center right: an 11:15
resonant Axial orbit for n = 6. Bottom left: a 7:12 resonant orbit for n = 8. Bottom right: a 15:28 resonant
Axial orbit for n = 8
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Fig. 8 Connecting families from the heptagon to the Figure-Eight choreography for seven bodies (n = 7).
Top left: an orbit along the Vertical family with k = 2. Top right: the bifurcation orbit that gives rise to an
Axial family. Center left: a 5:3-resonant orbit along the Vertical family. Center right: the choreography that
corresponds to the 5:3 resonant orbit. Bottom left: the 1:2 resonant orbit along the bifurcating Axial family.
Bottom right: the Figure-Eight choreography that corresponds to the 1:2 resonant orbit along the bifurcating
Axial family
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Fig. 9 Unchained polygons for k = n/2. Top left: a 1:6 resonant orbit for n = 4. Top right: a 1:2 resonant
orbit for n = 4. Center left: a 5:9 resonant orbit for n = 6. Center right: a 1 : 3 resonant orbit for n = 6.
Bottom left: a 3:4 resonant orbit for n = 8. Bottom right: a 1:4 resonant orbit for n = 8
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Fig. 10 Top left: a 4:3 resonant orbit for 7 + 1 bodies and k = 6. Top right: a 5:2 resonant orbit for 7 + 1
bodies and k = 6. Center left: a 7:3 resonant orbit for 8 + 1 bodies for k = 8. Center right: an 8:7 resonant
orbit for 7+ 1 bodies and k = 7. Bottom left: a 9:8 resonant orbit for 8+ 1 bodies and k = 8. Bottom right: a
15:12 resonant orbit for 8 + 1 bodies and k = 4. Although not quite visible in these panels, the central body
also executes a small, nontrivial orbit
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Fig. 11 The panels on the left show orbits which are resonant along the Planar family from the Figure-Eight
in the rotating frame, while the panels on the right show the same orbits in the inertial frame, where they
correspond to choreographies. Top: An 11:8 resonant orbit along the Planar family. Center: An 8:5 resonant
orbit along the Planar family. Bottom: A 7:4 resonant orbit along the Planar family
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with an additional massive body at the center. This equilibrium is known to be stable when
n ≥ 7. Specifically, the central body has mass m0 = μ, and the other n bodies have equal
mass m j = 1 for j ∈ {1, . . . , n}. Let (q j , z j ) ∈ C × R be the position of body j ∈
{0, 1, . . . , n}. The Newton equations of motion for the n + 1 bodies in rotating coordinates
q j (t) = ei

√
ωt u j (t) have an equilibrium with (u0, z0) = (0, 0) and

(
u j , z j

) = (
ei jζ , 0

)
for

j ∈ {1, . . . , n} when ω = μ + s1. This well-known Maxwell configuration reduces to the
polygonal relative equilibrium when μ = 0.

For n ≥ 7, all planar eigenvalues are imaginary and produce Planar Lyapunov families.
The n + 1 spatial eigenvalues include 0 (due to symmetries), i

√
μ + n for k = n, and

i
√

μ + sk, k = 1, . . . , n − 1.

The frequency
√

μ + n produces the Vertical Lyapunov family, which corresponds to the
oscillatory ring in Meyer and Schmidt (1993). For k = n/2, with n even, we obtain a
Hip-Hop family Meyer and Schmidt (1993). For the Maxwell configuration, we say that a
Lyapunov orbit is � : m resonant when its period satisfies

T�:m = 2π√
μ + s1

�

m
,

where � and m are relatively prime such that k� − m ∈ nZ. For an � : m resonant Lyapunov
orbit, the n bodies of equal mass follow the same path as in Theorem 1. From the many
families and the many resonant orbits that we have determined, we show only a few Planar
and spatial resonant orbits in Fig. 10, namely for n = 7, with μ = 200, and for n = 8, with
μ = 300.

7.2 The Figure-Eight choreography

In this article, we have shown that pseudo-arclength continuation is a powerful tool for
following periodic solutions of conservative systems, and with it the detection of resonant
orbits, including choreographies. A basic assumption is the presence of a single eigenvalue in
the kernel. The continuation of families of periodic solutions starting with frequencies

√
s1

from Lagrange solutions of the 3-body problem represents a bifurcation problem with five
eigenvalues in the kernel, i.e., multiple planar and spatial solutions bifurcate with frequency√
s1. In Chenciner and Féjoz (2009) and García-Azpeitia and Ize (2013), it is proved that a

Vertical family of periodic solutions bifurcates from theLagrange solution.Also, inChenciner
et al. (2005), it is proved that three families of periodic solutions bifurcate from the Figure-
Eight choreography. It is also conjectured that one of them, theMarchal P12 family, connects
to the Vertical family from the Lagrange solution. The proof of this conjecture remains open.
In principle, higher multiplicity cases can also be dealt with by continuation, and we intend
to do so in more generality in future work. However, here we do follow one of the families
that arise from the Figure-Eight choreography, namely a Planar family that contains a dense
set of resonant orbits that correspond to choreographies, as shown in Fig. 11. Some of these
choreographies have been found in Chenciner et al. (2002) as subharmonic solutions of the
Poincaré return map around the Figure-Eight choreography. Numerically, we find that these
subharmonic solutions correspond to resonant orbits along a continuous family in rotating
coordinates, which has been proved to exist in Chenciner et al. (2005). We find that the
solutions along this Planar family have characteristic multipliers that are on the unit circle or
very close to the unit circle, i.e., some of the choreographies along the family may be linearly
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stable. Other continuations form the Figure-Eight choreography have been done in Doedel
et al. (2002) by varing the masses.
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