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Abstract Satellite orbits around a central body with arbitrary zonal harmonics are consid-
ered in a relativistic framework. Our starting point is the relativistic Celestial Mechanics
based upon the first post-Newtonian approximation to Einstein’s theory of gravity as it has
been formulated by Damour et al. (Phys Rev D 43:3273–3307, 1991; 45:1017–1044, 1992;
47:3124–3135, 1993; 49:618–635, 1994). Since effects of order (GM/c2R)× Jk with k ≥ 2
for the Earth are very small (of order 7×10−10 × Jk) we consider an axially symmetric body
with arbitrary zonal harmonics and a static external gravitational field. In such a field the
explicit Jk/c2-terms (direct terms) in the equations of motion for the coordinate acceleration
of a satellite are treated first with first-order perturbation theory. The derived perturbation
theoretical results of first order have been checked by purely numerical integrations of the
equations of motion. Additional terms of the same order result from the interaction of the
Newtonian Jk-terms with the post-Newtonian Schwarzschild terms (relativistic terms related
to the mass of the central body). These ‘mixed terms’ are treated by means of second-order
perturbation theory based on the Lie-series method (Hori–Deprit method). Here we concen-
trate on the secular drifts of the ascending node <�̇> and argument of the pericenter <ω̇>.
Finally orders of magnitude are given and discussed.

List of symbols

xμ = (ct, x) Space-time coordinates
gμν Space-time metric tensor
σ Gravitating mass-energy density
G Universal gravitational constant
Pk Ordinary Legendre polynomials
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αk, j Coefficients in the derivatives of the Legendre polynomi-
als, see (13)

Jk Dimensionless post-Newtonian zonal harmonic
[x] Greatest integer that is less than or equal to x (Gauss’

bracket)
X pq
k (e) Hansen coefficient

Fkpq(I ) Kaula inclination function
�i, j,k,p( f, ω) Special function defined in (39a)
�∗

i, j,k,p( f, ω) Special function defined in (39b)
�i, j,k,p( f, M) Special function defined in (39c)
S, T,W Decomposition of perturbing acceleration into radial,

transversal and normal part
(l, g, h; L ,G, H) ≡ (y, Y) Post-Newtonian Delaunay variables
n Mean motion
bm Defined below (24)

1 Introduction

In this paper, we consider satellite orbits around a single isolated central body with a static
external gravitational field in a relativistic framework. Our discussions are based upon the
first post-Newtonian approximation to Einstein’s theory of gravity. A very general relativistic
Celestial Mechanics of N gravitating bodies of arbitrary time-dependent shape and composi-
tion has been formulated by Damour et al. (1991, 1992, 1993, 1994). This DSX-framework
uses very efficiently a special parametrization of the metric tensor, that presents the gravita-
tional field of the central body. In the harmonic gauge (e.g. Weinberg 1972) with space-time
coordinates xμ = (ct, x), the post-Newtonian metric tensor in the static case is written
with a single gravitational potential w, generalizing the usual Newtonian potential U , i.e.
w = U + (1/c2)−terms:

g00 = −1 + 2w

c2 − 2w2

c4 + O5

g0i = 0

gi j = δi j

(
1 + 2w

c2

)
+ O4 , (1)

where the symbol On indicates that terms of order c−n are neglected. The field equation for
w reads:


w = −4πGσ , (2)

where

σ = T 00 + T ss

c2 (3)

is the gravitating mass-energy density, Tμν are the components of the energy-momentum
tensor and T ss = T 11 + T 22 + T 33. G is the universal gravitational constant. According
to a Theorem by Blanchet and Damour (1989) the external potential w admits a multipole
expansion of the form:

w(x) = G
∑
0≤k

(−1)k

k! MK ∂K

(
1

r

)
, (4)
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that converges outside a coordinate sphere that completely contains the central body (the
energy-momentum tensor of the matter distribution). Here, MK are the Cartesian Blanchet–
Damour mass multipole moments of the central body, defined as integrals over the field
generating source that explicitly contain 1/c2-terms, i.e. terms of first post-Newtonian order.
The index K is a Cartesian multi-index, i.e. K ≡ i1 . . . ik , where each index runs over the
three spatial Cartesian coordinates, and ∂K ≡ ∂k/(∂i1 . . . ∂ik ). Assuming the central body to
be axially symmetric, the gravitational potentials can be written in quasi-Newtonian form:1

w(x) = GM

r
− GM

r

∞∑
k=2

(
R

r

)k

Jk Pk(cos θ) , (5)

where (r, θ, φ) are usual spherical coordinates, R is some suitably chosen radius of the
central body (e.g. some ‘equatorial radius’ of a reference ellipsoid) and Pk are Legendre’s
polynomials, given by Rodrigues’ formula

Pk(x) = 1

2kk!
dk

dxk
(
x2 − 1

)k
.

Though expression (5) for the potential w looks perfectly Newtonian, it is a post-Newtonian
result since the quantities Jk , the post-Newtonian zonal harmonics of our central body, are
defined to post-Newtonian accuracy.

The post-Newtonian equation of motion for the coordinate position xs of a satellite in
such an external gravitational field, given by (1), in harmonic coordinates takes the form (e.g.
Damour et al. 1994)

d2xs

dt2 = ∇w + 1

c2

[−2∇ (w2)− 4 (∇w · v) v + v2∇w
]

. (6)

The c-independent part of the satellite acceleration in (6) is the ‘quasi-Newtonian’ term, the
rest that explicitly depends upon 1/c2 describes the ‘post-Newtonian’ acceleration terms. So
formally we can write the satellite acceleration, as = d2xs/dt2 in the form

as = aN + aPN , (7)

where the quasi-Newtonian part, aN, contains the post-Newtonian zonal harmonics. We write

w(x) = w0(x) +
∑
k≥2

wk(x) (8)

with

w0(x) = GM

r
. (9)

The potentials wk(x) result from the non-spherical matter distribution of the central body. In
the following, we will concentrate on one multipole moment of order k ≥ 2 at a time. The
satellite acceleration can then be written in the form

as = aN[w0] + aN[wk] + aPN[w0] + aPN[wk] . (10)

The terms on the right hand side are: the quasi-Newtonian mass-monopole acceleration,
the quasi-Newtonian acceleration of Jk with k ≥ 2, the post-Newtonian Schwarzschild
acceleration and the post-Newtonian acceleration of Jk with k ≥ 2.
Satellite orbits in the post-Newtonian Schwarzschild field have been extensively discussed
in the literature (e.g. Brumberg 1972; Soffel et al. 1987; Soffel 1989). As is well known,

1 The dipole J1 vanishes because of the choice of coordinates (center of mass condition).
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satellite equations of motion (for timelike-geodesics) in the exact Schwarzschild field admit
exact solutions in terms of elliptic functions (e.g. Hagihara 1931; Mielnik and Plebanski
1962). Post-Newtonian effects related to the oblateness (J2) of the central body have been
discussed by Soffel et al. (1988), Heimberger et al. (1990) and Huang and Liu (1992). In
Soffel et al. (1988) the direct J2/c2-terms in the equations of motion (6) are discussed by
using the Gauss form of the usual perturbation equations to first order. In Heimberger et al.
(1990) the complete problem of direct and mixed terms is treated with the Hori–Deprit
Lie-series method. Finally, Huang and Liu (1992) again discussed the complete problem of
J2/c2-terms, using some mean elements method due to Kozai (1959). At this place also the
paper by Iorio (2015) and the references cited therein should be mentioned, where the full
quadrupole-problem is again discussed in great detail and for an arbitrary orientation of the
symmetry axis.

The present paper focuses on relativistic (post-Newtonian) effects related to zonal har-
monics Jk with k > 2, that have not been treated before. It therefore generalizes and extends
the above-mentioned papers (Soffel et al. 1988; Heimberger et al. 1990; Huang and Liu 1992).
The organization of this paper is as follows: Chapter 2 discusses the direct post-Newtonian
Jk-terms in the harmonic equations of motion by means of first-order perturbation theory.
The corresponding perturbation theoretical results will be checked by numerical integrations
of the equations of motion. Chapter 3 is devoted to the mixed terms that appear from the
(quasi-)Newtonian Jk terms and the post-Newtonian mass monopole (PN Schwarzschild)
term as second-order terms. These mixed terms are treated by means of the Hori–Deprit
Lie-series method. Finally, Chapter 4 presents a discussion based upon orders of magnitudes
of these new terms.

2 Direct terms of order Jk/c2

First, we derive direct Jk/c2-terms from the acceleration (7) and solve the Gauss form per-
turbation equations via the common S, T,W -decomposition, similar to Soffel et al. (1988).

2.1 Derivation

The direct terms are included in aPN [wk], which is explicitly given by

aPN [wk] = − 4

c2 ∇ (w0 · wk) − 4

c2 v · (v · ∇)wk + v2

c2 ∇wk

≡ a1,k + a2,k + a3,k , (11)

where w2
k -terms have been neglected. Calculating the perturbing accelerations ai,k , we find

a1,k = − 4

c2

μ2Rk Jk
rk+3 · [(2 + k) Pk(cos θ) · er + sin θ P ′

k(cos θ) · eθ

]
(11a)

a2,k = − 4

c2

μRk Jk
rk+3

[
(1 + k) (r · v) Pk(cos θ) + (r · v) · z

r
· P ′

k(cos θ)

− vz · r · P ′
k(cos θ)

] · v (11b)

a3,k = μRk Jk
rk+2 · [(1 + k) Pk(cos θ) · er + sin θ P ′

k(cos θ) · eθ

] · v2

c2 , (11c)
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from which the S, T,W -decomposition follows as

S = −μ2Rk Jk
c2rk+3

([
(14 + 10k) − 3 (1 + k)

r

a
− 4 (1 + k)

p

r

]
· Pk(cos θ)

− 4e sin f sin I cos (ω + f ) · P ′
k(cos θ)

)
(12a)

T = μ2Rk Jk
c2rk+3

[(
2 + r

a
+ 4

p

r

)
· sin I cos (ω + f ) · P ′

k(cos θ)

− 4 (1 + k) e sin f · Pk(cos θ)
]

(12b)

W = μ2Rk Jk
c2rk+3 ·

(
2 + r

a

)
· cos I · P ′

k(cos θ) . (12c)

P ′
k are the derivatives of Legendre’s polynomials with respect to the argument,

P ′
k =

[
k−1

2

]
∑
j=0

αk, j Pk−2 j−1 , (12d)

where the coefficients αk, j are given by

αk, j = 2 (k − 2 j) − 1 . (13)

2.2 First-order perturbation theory

From the S, T,W -decomposition of the perturbing acceleration aPN [wk] from (11), we
obtain the right hand sides of the perturbation equations in Gauss form (e.g. Beutler 2005).
These can be solved employing expansions into Kaula inclination functions (Kaula 1966)
and Hansen’s coefficients (Hansen 1974). The process is straightforward, though tedious.
Here we give only the most interesting parts of the solutions, the secular drifts in ω and �.
Results for the other orbital elements, as well as short- and long-periodic parts in ω and �,
are presented in “Appendix”. For k even, the drifts are given by (η ≡ √

1 − e2)

(
ω′)sec = μ

c2a
Jk

(
R

a

)k
η

e
Fk,0,k/2(I ) ·

(
(14 + 10k) · X−k−3,1

0 − 3 (1 + k) · X−k−2,1
0

− 4η2 (1 + k) · X−k−4,1
0 + 2e (1 + k) ·

[
(X−k−3,2

0 − X−k−3,0
0 )

+ 1

η2

(
X−k−2,2

0 − X−k−2,0
0

)])
· nt , (14)

(
�)sec = − μ

c2a
Jk

(
R

a

)k cot I

η

[
k−1

2

]
∑
j=0

αk, j · Fk−2 j−1,0,k/2− j (I )

×
[
2X−k−2,0

0 + X−k−1,0
0

]
· nt ,

where ω = ω′ − � cos I . (15)

123



40 Page 6 of 24 M. Schanner, M. Soffel

Here, a, e, I, ω,� are the usual osculating elements of the satellite orbit. X−q,m
0 (e) denotes

Hansen coefficients, given by (see Hughes 19812)

X−q,m
0 (e) =

( e
2

)m · 1(
1 − e2

)(2q−3)/2
·

[
q−m−2

2

]
∑
j=0

(
q − 2

2 j + m

)(
2 j + m

j

)
·
( e

2

)2 j

where 2 ≤ q , (16)

and Fk,0,m(I ) are Kaula inclination functions, given by (see Kaula 1966)

Fk,0,m(I ) = (−1)

[
3k
2

]
1

2k

(
k

m

)
·

σ2∑
σ=σ1

(−1)σ
(

2k − 2m

σ

)(
2m

k − σ

)
c3k−2m−2σ s2m+2σ−k

where c = cos
I

2
, s = sin

I

2
, σ1 = max {0, k − 2m} and σ2 = min {k, 2k − 2m} .

(17)

For k odd, there are no secular drifts in ω and �, except for the unphysical case, where one
considers only odd multipoles. In this case, the usually long-periodic part of the lowest (i.e.
biggest) multipole in ω will give rise to a secular drift of the form

(
ω)sec = μ

c2a
Jk

(
R

a

)k
η

e
· nt ·

⎡
⎢⎢⎣

k∑
m=0

m 
=(k/2)

(−1)k · Fk,0,m(I ) · sin
(
k′ω

)

×
(
(14 + 10k) · X−k−3,k′+1

0 − 3 (1 + k) · X−k−2,k′+1
0

− 4η2 (1 + k) · X−k−4,k′+1
0 + 2e (1 + k) ·

[(
X−k−3,k′+2

0 − X−k−3,k′
0

)

+ 1

η2

(
X−k−2,k′+2
s − X−k−2,k′

0

)])

+

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j sin I Fk−2 j−1,0,m(I ) · sin
(
k′′ω

)

×
(

1

2η2 ·
[
X−k−1,k′′+1

0 − X−k−1,k′′−1
0

]

+
(

1

2
+ 1

η2

)
·
[
X−k−2,k′′+1

0 − X−k−2,k′′−1
0

]

− 2e

η2

[
X−k−2,k′′

0 + 1

2
X−k−1,k′′

0

]

− e ·
[
X−k−3,k′′+2

0 − X−k−3,k′′−2
0

]

+ 3 ·
[
X−k−3,k′′+1

0 − X−k−3,k′′−1
0

]

+ 2η2 ·
[
X−k−4,k′′+1

0 − X−k−4,k′′−1
0

])]
,

where k′ = k − 2m and k′′ = k − 2 j − 2m , (18)

2 It is formula (11) in Hughes (1981), which gives the Hansen coefficients for the cases relevant for us. Note
however, that the formula there contains an error: it should read 1/22 j instead of 1/2 j (Schanner 2017).
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Table 1 Initial, dressed orbital elements for the numerical integrations

a0 12, 270 km ω0 53.12◦
e0 0.0044333 �0 289.74◦
I0 109.84◦ M0 302◦

The values are chosen to agree with the LAGEOS elements from Lucchesi et al. (2015)

and there will be no long-periodic perturbations in ω from this lowest odd Jk .

2.2.1 Checks by numerical integrations

In Soffel et al. (1988), explicit expressions for orbital perturbations resulting for the post-
Newtonian quadrupole terms in the equations of motion are given, which corresponds to
k = 2 in our calculations. We used a symbol manipulation program (SymPy), to evalu-
ate the general expressions for k = 2 and compare the results to the formulas given there;
complete agreement was found. To check the corresponding terms with k > 2, for which
so far no perturbation theoretical results exist, we numerically integrate the equations of
motion. As an integrator we choose an ODEX implementation in Fortran90, a description
of which can be found in Hairer et al. (1993). The initial values for the orbital elements
(a0, e0, ω0,�0, I0, M0) are chosen in accordance with LAGEOS data and are given in
Table 1.

Further parameters for numerical integration were chosen as: μ = 3.986005×1014 m3/s2,
R = 6371 km, c = 105 m/s, J2 = 0.0011 so that the magnitudes of perturbing accelerations
are of order |aN[w0]| ∼ 2.6, |aN[w2]|/|aN[w0]| ∼ 3.0 × 10−3, |aPN[w0]|/|aN[w0]| ∼
3.2 × 10−3 and |aPN[w2]|/|aN[w0]| ∼ 9.6 × 10−6. From the initial elements above, the
initial theoretical expressions for the perturbations are subtracted, to get the unperturbed
elements for perturbation theory.

For these numerical integrations, we chose the satellite acceleration to be of the form

as = − μ

r2

x
r

+ a1,k + a2,k + a3,k , (19)

where a1,k = − 4

c2

μ2Rk Jk
rk+3 ·

[
(2 + k) Pk

( z
r

)
· er + P ′

k

( z
r

)
·
( z
r

er − ez
)]

(19a)

a2,k = − 4

c2

μRk Jk
rk+3

[
(1 + k) (r · v) Pk

( z
r

)
+ (r · v) · z

r
· P ′

k

( z
r

)

−vz · r · P ′
k

( z
r

)]
· v (19b)

a3,k = μRk Jk
rk+2 ·

[
(1 + k) Pk

( z
r

)
· er + P ′

k

( z
r

)
·
( z
r

er − ez
)]

· v2

c2 . (19c)

When subtracting the perturbation theoretical results from the numerical ones, the difference
was several orders of magnitudes below the first-order perturbation theoretical results which
are checked in that way.
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3 Mixed terms of order Jk/c2

As already mentioned above, the second-order perturbation theory yields terms of the same
order as the direct terms discussed above, due to mixing of the post-Newtonian mass monopole
(the post-Newtonian Schwarzschild acceleration) and the (quasi-)Newtonian multipoles Jk .
Because of this, we employ canonical perturbation theory for the full problem in this section,
in analogy to Heimberger et al. (1990). The basic equation of motion (6) can be obtained
from a specific Lagrangian3 (e.g. Weinberg 1972)

L = 1

2
v2 + w + 1

c2

[
v4

8
− w2

2
+ 3

2
wv2

]
. (20)

The canonical momentum p is then given by

p = ∂L
∂v

.

Note, that p = v + δp, where δp is a post-Newtonian correction to the velocity v. Because
of this, the orbital elements in our post-Newtonian canonical formalism, often called contact
elements, are not osculating elements (e.g. Brumberg 1972; Kopeikin et al. 2011). The reason
for this can simply be understood: The osculating elements (aosc, eosc, ωosc,�osc, Iosc, Mosc)

are equivalent to the vectorial elements

hosc = x × v

fosc =
(

v2 − GM

r

)
x − (x · v) v .

h is the specific angular momentum vector and f the Runge–Lenz vector, pointing towards
pericenter. In the post-Newtonian canonical formalism, one has to replace v by the canon-
ical momentum p, so that the contact elements (acont, econt, ωcont,�cont, Icont, Mcont) are
determined by

hcont = x × p

fcont =
(

p2 − GM

r

)
x − (x · p) p .

The equations for (hosc, fosc) and (hcont, fcont) fix the relations between osculating and con-
tact elements. These relations are important when comparing results from the different
approaches. Evaluating such relations, that can be found in Brumberg (1972) or Kopeikin
et al. (2011), we find for the here considered � and ω:

�osc = �cont (21a)

ωosc = ωcont + sin f

eosc

μ

c2aosc

[
1 − 8

(a
r

)
osc

+ 6Jk

(
R

aosc

)k k∑
m=0

Fk,0,m(I ) ·
(a
r

)k+1

osc
cos ((k − 2m) · (ωosc + fosc))

]
. (21b)

From the discussion based on h and f , it is clear that �osc = �cont, since in our case the
orbital plane remains the same when using contact elements. Because we later concentrate

3 Consider that in the Euler–Lagrange equations d/dt = ∂/∂t + v∇, which will lead to terms proportional to
v̇ = a. To derive the direct terms of order Jk/c

2 in (6) we insert a = ∇w + O2 and neglect terms of order
c−4.
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on secular drifts only, we average the second relation and find, that the differences are short-
and long-periodic, i.e. for our purposes we use

ωosc = ωcont . (21c)

In the following, we will often not distinguish between osculating and contact elements for
the sake of convenience.
The Hamiltonian corresponding to the Lagrangian (20) reads

H = v · p − L = 1

2
p2 − w − 1

c2

[
p4

8
− w2

2
+ 3

2
wp2

]
. (22)

As canonical variables we choose post-Newtonian Delaunay variables (μ ≡ GM)4

l = M L = na2 = √
μa

g = ω G = na2
√

1 − e2 = ηL

h = � H = na2
√

1 − e2 cos I = ηL cos I ,

where we keep in mind, that (a, e, ω,�, I, M) are contact elements, that differ from oscu-
lating ones. We insert the potentials and use an expansion of Legendre’s polynomials into
functions of Delaunay variables, given by Garfinkel (1965)

Pk(cos θ) =
k∑

m=0

(
2 − δk,2m

) · bk−2m · cos
(
(k − 2m) ·

(
f + g − π

2

))
,

where bm = (l − m)!
(l + m)! · Pm

l (0) · Pm
l

(
H

G

)
(23)

and Pm
l are the associated Legendre polynomials

Pm
k (x) = (−1)m

(
1 − x2)m/2 dm

dxm
Pk(x) .

This way the Hamiltonian is written as

H = H0 + H1 + 1

2
H2 , (24)

where

H0 = − μ2

2L2 (24a)

is the unperturbed Kepler part,

H1 = Jk Rkμk+2

L2k+2

(a
r

)k+1
[k/2]∑
m=0

(
2 − δk,2m

) · bk−2m · cos
(
(k − 2m) ·

(
f + g − π

2

))

− μ4

c2L4

[
3
(a
r

)2 − 2
a

r
+ 1

8

]
(24b)

4 Here M is the central bodies mass, not to be confused with the mean anomaly M , meant when defining the
Delaunay variables.
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are the quasi-Newtonian- and Schwarzschild-parts (of first order) and

1

2
H2 = Jk Rkμk+4

c2L2k+4

[k/2]∑
m=0

(
2 − δk,2m

) · bk−2m · cos
(
(k − 2m) ·

(
f + g − π

2

))

×
[

2
(a
r

)k+2 − 3

2

(a
r

)k+1
]

(24c)

is the post-Newtonian higher-order multipole part (of second order).

3.1 Lie-series (Hori–Deprit) method

Hori (1966) and Deprit (1969) developed a formalism to cast the canonical equations into
a simpler form by means of Lie-transformations (see e.g. Heimberger et al. 1990 for more
details). Consider a Hamiltonian H, given as a series in some small perturbation parameter ε

H = H0 + εH1 + ε2

2
H2 + · · · , (25)

where the solutions to the equations of motion forH0 are known. Let (y′, Y′) denote the trans-
formed canonical variables, relating to the original variables (y, Y) via a Lie-transformation
generated by a function W = W1 + W2 + . . . . Then, to second order the transformed
Hamiltonian H∗ is given by Deprit (1969)

H∗
0 = H0 , (26a)

H∗
1 = {H0; W1} + H1 , (26b)

H∗
2 = {{H0; W1} ; W1} + 2 {H1; W1} + {H0; W2} + H2

= {
H∗

1 + H1; W1
}+ {H0; W2} + H2 . (26c)

The braces denote the Poisson bracket, given by

{H; W } =
∑
i

(
∂H
∂y′

i

∂W

∂Y ′
i

− ∂H
∂Y ′

i

∂W

∂y′
i

)
. (27)

The time evolution of the new variables (y′, Y′) is then given by the (ideally simpler) canonical
equations in H∗ and to second order (y′, Y′) relate to the old coordinates via

y = y′ + ε
∂W1

∂Y′ + ε2

2

(
∂W2

∂Y′ +
{

∂W1

∂Y′ ; W1

})
(28a)

Y = Y′ − ε
∂W1

∂y′ − ε2

2

(
∂W2

∂y′ +
{

∂W1

∂y′ ; W1

})
. (28b)

Following Heimberger et al. (1990), we choose W in a way, that the transformed Hamiltonian
H∗ corresponds to the l-average of the original Hamiltonian H. This way, the second-order
secular drifts we are interested in are contained in (26c), more precisely inH2 and the Poisson
bracket {

H1 + H∗
1; W1

} ≡ T2 . (29)

The other Poisson bracket {H0; W2} only contains short-periodic contributions and will not
be considered here. The explicit calculation of T2 is tedious. To simplify things, we concen-
trate on secular perturbations only. Formally, this is done by a second Lie-transformation,
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which includes the long-periodic perturbations and eliminates them from the equations of
motion. In this case, the Hori–Deprit equations read

H∗∗
0 = H∗

0 ,

H∗∗
1 = {

H0; W ∗
1

}+ H∗
1 ,

H∗∗
2 = {

H∗∗
1 + H∗

1; W ∗
1

}+ {
H0; W ∗

2

}+ H∗
2 .

We choose H∗∗
1 and H∗∗

2 as the averages of H∗
1 and H∗

2 with respect to g′, respectively. We
find for

〈〈T2〉l
〉
g′ :

〈〈T2〉l
〉
g′ = Jk Rkμk+4

c2L ′′5G ′′2k−1
· b0

×
(

(k + 1)

k+2∑
s=0

s∑
q=0

(
e′′

2

)s (k + 2

s

)(
s

q

)
δs,2q−1

3

e′′
L ′′4

G ′′4

− (k + 1)

k+1∑
s=0

s∑
q=0

(
e′′

2

)s (k + 1

s

)(
s

q

)[
δs,2q

9

2

L ′′4

G ′′4

+ δs,2q−1
2

e′′
L ′′2

G ′′2 + δs,2q−2
3

2

L ′′4

G ′′4

]

+ (k + 1)

k∑
s=0

s∑
q=0

(
e′′

2

)s (k
s

)(
s

q

)[
δs,2q

(
3
L ′′2

G ′′2 + 3

2

L ′′4

G ′′4

)

+ δs,2q−1

(
2

e′′ − 3

e′′
L ′′

G ′′

)
− δs,2q−2

(
3

2

L ′′4

G ′′4 − L ′′2

G ′′2

)]

+
k−1∑
s=0

s∑
q=0

(
e′′

2

)s (k − 1

s

)(
s

q

)

×
(

δs,2q

[
− 4k − 12 + 6k

L ′′

G ′′ + 15
L ′′

G ′′ + (k + 1)e′2 L ′′2

G ′′2 + 7
L ′′2

G ′′2

]

+ δs,2q−1

[
6e′′ L ′′2

G ′′2 + 4

e′′
L ′′2

G ′′2

]

+ δs,2q−2

[
3
L ′′2

G ′′2 − (k + 1)e′′2 L ′′2

G ′′2

]

− sδs,2q ·
[

2 + 3

16
e′′4 L ′′2

G ′′2 − 6
L ′′2

G ′′2

]

+ s

s − 2q

[
δs,2q−1

(
2

e′′ − 6

e′′
L ′′2

G ′′2

)
− δs,2q−23

L ′′2

G ′′2

]))
. (30)

H∗∗
1 and

〈〈H2〉l
〉
g′ follow directly:

H∗∗
1 = Jk Rkμk+2

L3G2k−1 · b0 ·

[
k−1

2

]
∑
s=0

( e
2

)2s
(
k − 1

2s

)(
2s

s

)

− μ4

c2L4

[
3
L

G
− 15

8

]
(31)

123



40 Page 12 of 24 M. Schanner, M. Soffel

〈〈H2〉l
〉
g′ = Jk Rkμk+4

c2L ′′5G ′′2k−1
· b0

×
[

4

η2

[
k
2

]
∑
s=0

(
e′′

2

)s (k
s

)(
2s

s

)
− 3

[
k−1

2

]
∑
s=0

(
e′′

2

)s (k − 1

s

)(
2s

s

)]
. (32)

The drifts are then given by the Hamilton equations

ġ′′ = ∂H∗∗

∂G ′′ ḣ′′ = ∂H∗∗

∂H ′′ (33a,b)

where H∗∗ = H0 + H∗∗
1 + 1

2

(〈〈H2〉l
〉
g′ + 〈〈T2〉l

〉
g′
)

.

The second term in H∗∗ simply gives the first-order secular drifts, namely the Schwarzschild
precession in ω and quasi-Newtonian secular drifts in both ω and �. The (. . . )/2-term
contains the Jk/c2-contributions, i.e. the direct secular and the mixed term drifts. Explicit
expressions are given in “Appendix”. For the case k = 2 our results agree with those in
Heimberger et al. (1990). Note that b0 = 0 for k odd, which means that our second-order
discussion does not include the (unphysical) odd drifts mentioned above.
Because of several reasons, a detailed comparison of our second-order perturbation theoretical
results for k > 2 with those of a purely numerical integration was beyond the scope of this
paper, e.g. short-periodic perturbations of second order, that play a role for the precise initial
conditions in the frame of perturbation theory, have not been derived. Another point are the
quasi-Newtonian secular drifts, which are here given in terms of contact elements. When
converting these expressions into osculating elements, the corrections (for example in the
semi-major axis) again produce terms of order Jk/c2 which have to be included carefully.

4 Discussion

We have discussed direct and mixed perturbations in the satellite orbit around an axisymmet-
ric central body, that are of order Jk/c2. Our results for the direct terms have been checked
numerically. Most of the work went into the calculation of perturbations due to second-order
terms, that arise from mixing of the post-Newtonian Schwarzschild- and the quasi-Newtonian
multipole terms. Previous results for the quadrupole (Soffel et al. 1988; Heimberger et al.
1990) have been reproduced and correspond to the case k = 2 in our calculations. We are
able to give the secular drifts in the argument of pericenter ω and the ascending node � for
all higher even multipole orders and for the explicit perturbations also in the (unphysical)
special cases where one considers only odd multipoles. For example, the nodal drift �̇J4 due
to J4 is for the direct terms given by

�̇J4,direct = − J4 · 15

256

( μ

c2a

)( R

a

)4

· n

(1 − e2)5
· (28 cos3(I

)− 12 cos(I ))

× (
12 + 26e2 − 3e4) . (34)

At this place, we might ask if some of the effects discussed in this paper will be measurable
from the orbits of artificial Earth satellites. Since the determination of the geoid using high
precession satellite data reaches an accuracy at the mm level, it is clear that one has to
model satellite orbits in the framework of Einstein’s theory of gravity, at least in the first
post-Newtonian approximation. It is clear from the very beginning, that relativistic effects
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Table 2 Secular drifts in the argument of pericenter ω and the ascending node � in mas/y, due to relativistic
effects related to higher-order multipoles. The index ‘direct’ refers to the explicit Jk/c

2-terms in the acceler-
ation (from Sect. 2). The index ‘mixed’ refers to second-order mixed perturbations that have been calculated
in Sect. 3. We get these numbers by deriving the respective special case for each order k from the general
formulas for ω and �, given in Sect. 2 and “Appendix,” and inserting the LAGEOS elements from Lucchesi
et al. (2015)

Order k ω̇k,direct ω̇k,mixed �̇k,direct �̇k,mixed

2 0.150 − 3.675 − 0.495 2.063

4 8.904 × 10−5 − 6.020 × 10−4 2.662 × 10−4 − 1.819 × 10−3

6 −5.760 × 10−5 7.370 × 10−4 − 2.305 × 10−5 2.190 × 10−4

8 1.192 × 10−5 − 1.834 × 10−4 6.940 × 10−7 − 8.444 × 10−6

on the orbit of artificial Earth’s satellites are small, since the Earth gravitational radius RG =
GME/c2 is only 0.44 cm, so that they play a role mainly for high precision orbit determinations
(HPOD). If an orbit cannot be determined with cm accuracy or better, relativistic effects might
be absorbed in the orbital parameters (Soffel and Frutos 2016). Such HPODs are possible
for the Laser Geodynamics satellites LAGEOS, LAGEOS II and LARES. Mean Keplerian
elements for these satellites for some reference epoch can be found, e.g. in Lucchesi et al.
(2015). The dominant relativistic effects for these orbits are well known, concerning secular
drifts of the ascending node and argument of perigee: the (secular) perigee precession ω̇Schw

due to the Schwarzschild field of the Earth, �̇LT and ω̇LT due to the Lense-Thirring precession
(a gravito-magnetic effect caused by the Earth’s intrinsic angular momentum or spin dipole)
and �̇GP, the nodal drift due to geodetic precssion. For LAGEOS the orders of magnitude
for the related accelerations are in the range of 10−9 . . . 10−12 m/s2 (Schanner 2017). Drift
rates can be found in Lucchesi et al. (2015).
These numbers imply that for a measurement of relativistic effects by means of SLR
data from a single satellite, the even zonal harmonics of the Earth would have to be
known with extreme precision. A comprehensive list for the secular nodal drifts of the
two LAGEOS satellites has been published in Iorio (2006). To get an idea of the orders
of magnitude of effects due to the Newtonian Jk-zonal harmonics of the LAGEOS II orbit:
�̇k ≈ − 8.284 × 108,+ 5.933 × 102,+ 2.794 for k = 2, 10 and 16, respectively (values
are in mas/y = 1 milli-arc-second per year). Corresponding orders of magnitude for ω̇k are:
+ 5.733 × 108,+ 3.723 × 103,+ 2.721 (Soffel and Frutos 2016). At such level of precision
tidal perturbations and a variety of non-gravitational forces acting on a satellite have to be
modelled with sufficient accuracy: atmospheric drag, solar radiation pressure, albedo radia-
tion pressure, thermal emission, dynamic solid Earth tide, dynamic ocean tide (e.g. Milani
et al. 1987), etc. These accelerations are for LAGEOS of orders between 10−6 . . . 10−19 m/s2.
Explicit numbers can be found in Lucchesi et al. (2015). These numbers suggest that for the
modelling of the LAGEOS orbits there exists some fundamental noise limit of the order
10−15 m/s2, depending not only upon the orbit itself, but also upon the physical properties
of the satellite, where certain ‘Newtonian’ forces can no longer be controlled and modelled
sufficiently well (Soffel and Frutos 2016). Modelling with an accuracy beyond this critical
noise floor becomes practically impossible.
Typical satellite accelerations related to Jk/c2 that are considered in this paper are roughly
of order

(
GME

a2

)(
GME

c2RE

)(
RE

a

)k+1

Jk .
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The first term is the Earth’s monopole contribution of 2.7 m/s2. The second term has a value
of 6.96 × 10−10 and RE/a for the LAGEOS orbits is given by 0.53. So for the k = 4 terms
with J4 = − 1.5 × 10−6, we obtain an acceleration of order 10−16 m/s2, that is below the
noise floor and likely can never be detected in the data for the LAGEOS orbits. Effects from
higher values of k are even smaller. Nonetheless, we conclude by giving the drifts in ω and
� for higher k values, calculated in this paper (see Table 2).
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Appendix

A. Orbital averages

In this paper, certain averages of functions F over one complete revolution in the unperturbed
Keplerian orbit are employed:

〈F〉 ≡ 1

2π

∫ 2π

0
F dM = 1

2πη

∫ 2π

0
F
(a
r

)−2
d f , (35)

where M and f are the mean and true anomaly, respectively, η ≡ √
1 − e2 and

a

r
= 1 + e cos f

η2 . (36)

The following averages are used:

〈(a
r

)n〉 = 1

η2n−3

[
n−2

2

]
∑
s=0

( e
2

)2s
(
n − 2

2s

)(
2s

s

)
(37a)

〈(a
r

)n
cos f

〉
= 1

η2n−3

n−2∑
s=0

s∑
q=0

( e
2

)s (n − 2

s

)(
s

q

)
δs,2q+1. (37b)

From these relations, the following special cases can be derived:
〈(a

r

)4
〉

= e2 + 2

2

L5

G5
(38a)

〈(a
r

)3
〉

= L3

G3 (38b)

〈(a
r

)2
〉

= L

G
(38c)

〈(a
r

)〉
= 1 (38d)
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〈(a
r

)5
cos f

〉
= 3e3 + 12e

8

L7

G7 (38e)

〈(a
r

)4
cos f

〉
= e

L5

G5
(38f)

〈(a
r

)3
cos f

〉
= e

2

L3

G3 (38g)

〈(a
r

)2
cos f

〉
= 0 (38h)

〈(a
r

)4
sin2 f

〉
= e2 + 4

8

L5

G5
(38i)

〈(a
r

)3
sin2 f

〉
= 1

2

L3

G3 (38j)

〈(a
r

)2
sin2 f

〉
= 1

2

L

G
, (38k)

with

η =
√

1 − e2 = G

L
,

where G and L are Delaunay elements.

B. Solutions for the direct terms

Here, we list the results for all orbital elements. The subscript SP stands for short-periodic,
LP for long-periodic and S for secular perturbations. To condense the short-periodic results,
we use the functions

�i, j,k,l( f, ω) =
k+i∑
s=0

s∑
q=0

(
k + i
s

)(
s
q

)( e
2

)s 1

l + j + s − 2q

×
[

sin
cos

] k even

k odd
((l + j + s − 2q) f + lω) (39a)

�∗
i, j,k,l( f, ω) =

k+i∑
s=0

s∑
q=0

(
k + i
s

)(
s
q

)( e
2

)s 1

l + j + s − 2q

×
[

cos
sin

] k even

k odd
((l + j + s − 2q) f + lω) (39b)

�i, j,k,l( f, M) =
k+i∑
s=0

s∑
q=0

(
k + i
s

)(
s
q

)( e
2

)s
( f − M)δl,0δs+ j,2q (39c)
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Note, that there are poles in the denominator for certain combinations of indices. For the
short-periodic solutions these correspond to long-periodic terms and for the long-periodic
solutions they correspond to secular drifts, i.e. they have to be excluded from the sums.

Semi-major axis a

(
a)SP = μ

c2

(
R

a

)k Jk
η2k+4 ·

[ k∑
m=0

e · Fk,0,m(I )

×
(

(14 + 10k) ·
(
�∗

1,1,k,k′ − �∗
1,−1,k,k′

)

− 3 (1 + k) η2 ·
(
�∗

0,1,k,k′ − �∗
0,−1,k,k′

))

− 2 sin I

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j (−1)k Fk−2 j−1,0,m(I )

×
(

4�∗
3,0,k,k′′ + 2�∗

2,0,k,k′′ + η2�∗
1,0,k,k′′

− e2 ·
(
�∗

1,2,k,k′′ − 2�∗
1,0,k,k′′ + �∗

1,−2,k,k′′
))]

, (40)

(
a)LP = Jk
μ

c2

(
R

a

)k 2n

η
·
[ k∑
m=0

e · Fk,0,m(I )

k′ω̇
·
[

cos
sin

] k even

k odd

(
k′ω

)

×
(

(14 + 10k) · X−k−3,k′+1
0 − 3 (1 + k) · X−k−2,k′+1

0

)

− (−1)k sin I

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j
Fk−2 j−1,0,m(I )

k′′ω̇
·
[

cos
sin

] k even

k odd

(
k′′ω

)

×
(

4η4X−k−5,k′′
0 + 2η2X−k−4,k′′

0 + η2X−k−3,k′′
0

− e2
[
X−k−3,k′′+2

0 − 2X−k−3,k′′
0 + X−k−3,k′′−2

0

])]
,

(41)

where k′ = k − 2m and k′′ = k − 2 j − 2m .

Eccentricity e

(
e)SP = μ

c2a

(
R

a

)k Jk
η2k+2 ·

[ k∑
m=0

Fk,0,m(I )

×
(

(7 + 5k) ·
(
�∗

1,1,k,k′ − �∗
1,−1,k,k′

)
− 3

2
(1 + k) η2 ·

(
�∗

0,1,k,k′ − �∗
0,−1,k,k′

)

− 2 (1 + k) ·
(
�∗

2,1,k,k′ − �∗
2,−1,k,k′

)
+ 2e2(1 + k) ·

(
�∗

0,1,k,k′ − �∗
0,−1,k,k′

)

+ e (1 + k) ·
(
�∗

1,2,k,k′ − �∗
1,−2,k,k′ + �∗

0,2,k,k′ − �∗
0,−2,k,k′

))
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−

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

(−1)kαk, j · sin I · Fk−2 j−1,0,m(I )

×
(

η2

2
·
(
�∗

−1,1,k,k′′ + �∗
−1,−1,k,k′′

)
+
(

1 + η2

2

)(
�∗

0,1,k,k′′ + �∗
0,−1,k,k′′

)

− e ·
(
�∗

1,2,k,k′′ − 2�∗
1,0,k,k′′ + �∗

1,−2,k,k′′
)

+ 3 ·
(
�∗

1,1,k,k′′ + �∗
1,−1,k,k′′

)
+ 2 ·

(
�∗

2,1,k,k′′ + �∗
2,−1,k,k′′

)

+ e ·
(
η2�∗

−1,0,k,k′′ + 2�∗
0,0,k,k′′ + 4�∗

1,0,k,k′′
))]

, (42)

(
e)LP = μ2

c2a

(
R

a

)k

Jkη · n ·
[ k∑
m=0

Fk,0,m(I )

k′ω̇
·
[

cos
sin

] k even

k odd

(
k′ω

)

×
(

(14 + 10k) X−k−3,k′+1
0 − 3 (1 + k) X−k−2,k′+1

0 − 4η2 (1 + k) X−k−4,k′+1
0

+ 2e (1 + k)
[
X−k−3,k′+2

0 + 1

η2 X
−k−2,k′+2
0

]
+ 4e2

η2 (1 + k)X−k−2,k′+1
0

)

− (−1)k

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j · sin I · Fk−2 j−1,0,m(I )

k′′ω̇
·
[

cos
sin

] k even

k odd

(
k′′ω

)

×
(

1

2η2 ·
[
X−k−1,k′′+1

0 + X−k−1,k′′−1
0

]

+
(

1

2
+ 1

η2

)
·
[
X−k−2,k′′+1

0 + X−k−2,k′′−1
0

]

− e ·
[
X−k−3,k′′+2

0 − 2X−k−3,k′′
0 + X−k−3,k′′−2

0

]

+ 3 ·
[
X−k−3,k′′+1

0 + X−k−3,k′′−1
0

]
+ 2η2 ·

[
X−k−4,k′′+1

0 + X−k−4,k′′−1
0

]

+ e

η2 ·
[
X−k−1,k′′

0 + 2X−k−2,k′′
0 + 4η2X−k−3,k′′

0

])]
,

where k′ = k − 2m and k′′ = k − 2 j − 2m . (43)

Inclination I

(
I )SP = − μ

c2a
Jk

(
R

a

)k cos I

η2k

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

(−1)kαk, j Fk−2 j−1,0,m(I )

×
(

2

η2 �∗
0,0,k,k′′ + �∗

−1,0,k,k′′

)
, (44)

123



40 Page 18 of 24 M. Schanner, M. Soffel

(
I )LP = − μ

c2a
Jk

(
R

a

)k n cos I

η

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

(−1)kαk, j
Fk−2 j−1,0,m(I )

k′′ω̇

×
[

cos
sin

] k even

k odd

(
k′′ω

) ·
(

2X−k−2,k′′
0 + X−k−1,k′′

0

)
,

where k′′ = k − 2 j − 2m . (45)

Argument of periapsis ω

We give the results for ω′ = ω + � cos I . As mentioned above, one has to pay attention to
ω, if one considers only odd multipoles, in which case the lowest odd multipole will not give
rise to long-periodic perturbations.

(
ω′)LP = μ

c2a
Jk

(
R

a

)k nη

e
·
[ k∑
m=0

·(−1)k · Fk,0,m(I )

k′ω̇
·
[

cos
sin

] k even

k odd

(
k′ω

)

×
(

(14 + 10k) · X−k−3,k′+1
0 − 3 (1 + k) · X−k−2,k′+1

0

− 4η2 (1 + k) · X−k−4,k′+1
0 + 2e (1 + k) ·

[ (
X−k−3,k′+2

0 − X−k−3,k′
0

)

+ 1

η2

(
X−k−2,k′+2

0 − X−k−2,k′
0

) ])

−

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j sin I · Fk−2 j−1,0,m(I )

k′′ω̇
·
[

cos
sin

] k even

k odd

(
k′′ω

)

×
(

1

2η2 ·
[
X−k−1,k′′+1

0 − X−k−1,k′′−1
0

]

+
(

1

2
+ 1

η2

)
·
[
X−k−2,k′′+1

0 − X−k−2,k′′−1
0

]

− e ·
[
X−k−3,k′′+2

0 − X−k−3,k′′−2
0

]

+ 3 ·
[
X−k−3,k′′+1

0 − X−k−3,k′′−1
0

]

+ 2η2 ·
[
X−k−4,k′′+1

0 − X−k−4,k′′−1
0

])
.

where k′ = k − 2m and k′′ = k − 2 j − 2m. (46)

(

ω′)

SP = μ

c2a
Jk

(
R

a

)k 1

eη2k+2 ·
[ k∑
m=0

(−1)k Fk,0,m(I )

×
(

(14 + 10k) · (�1,1,k,k′ + �1,1,k,k′
)

− 3 (1 + k) η2 · (�0,1,k,k′ + �0,1,k,k′
)

− 4 (1 + k) · (�2,1,k,k′ + �2,1,k,k′
)

+ 2e (1 + k) ·
[
�1,2,k,k′ − �1,0,k,k′ + �1,2,k,k′ − �1,0,k,k′
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+ �0,2,k,k′ − �0,0,k,k′ + �0,2,k,k′ − �0,0,k,k′
])

−

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j · sin I · Fk−2 j−1,0,m(I )

×
(

η2

2
·
(
�−1,1,k,k′′ − �−1,−1,k,k′′)

+
(

1 + η2

2

)
·
(
�0,1,k,k′′ − �0,−1,k,k′′)

− e ·
(
�1,2,k,k′′ − �1,−2,k,k′′)

+ 3 ·
(
�1,1,k,k′′ − �1,−1,k,k′′)

+ 2 ·
(
�2,1,k,k′′ − �2,−1,k,k′′)

)]
,

where k′ = k − 2m and k′′ = k − 2 j − 2m . (47)

Longitude of the ascending node �

(
�)SP = − μ

c2a
Jk

(
R

a

)k cot I

η2k

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j · Fk−2 j−1,0,m(I )

×
(
�−1,0,k,k′′ + 2

η2 �0,0,k,k′′ + �−1,0,k,k′′ + 2

η2 �0,0,k,k′′
)

, (48)

(
�)LP = − μ

c2a
Jk

(
R

a

)k n cot I

η

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j · Fk−2 j−1,0,m(I )

k′′ω̇

×
[

cos
sin

] k even

k odd

(
k′′ω

) ·
(

2X−k−2,k′′
0 + X−k−1,k′′

0

)
,

where k′′ = k − 2 j − 2m . (49)

Mean anomaly M

We give results for M ′ = M − n · t + ω · η + �η cos I . For k odd there are no secular
perturbations in the mean anomaly.

(

M ′)

S =
( μ

ac2

)
Jk

(
R

a

)k

· Fk,0,k/2(I )

×
[

(28 + 20k) X−k−2,0
0 − 6(1 + k)X−k−1,0

0 − 8(1 + k)η2X−k−3,0
0

]
· nt ,

(50)
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(

M ′)

SP = Jk
η2k+1

μ

ac2

(
R

a

)k

·
[ k∑
m=0

(−1)k Fk,0,m(I ) ·
(

(28 + 20k)
(
�0,0,k,k′ + �0,0,k,k′

)

− 6 (1 + k) η2 (�−1,0,k,k′ + �−1,0,k,k′
)− 8 (1 + k)

(
�1,0,k,k′ + �1,0,k,k′

) )

+ 4e sin I

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j · Fk−2 j−1,0,m(I ) ·
(

�0,1,k,k′′ − �0,−1,k,k′′
)]

,

(51)

(

M ′)

LP = μn

c2a
Jk

(
R

a

)k

·
[
(−1)k

k∑
m=0

Fk,0,m(I )

k′ω̇
·
[

cos
sin

] k even

k odd

(
k′ω

)

×
(

(28 + 20k) X−k−2,k′
0 − 6(1 + k)X−k−1,k′

0 − 8(1 + k)η2X−k−3,k′
0

)

+ 4e sin I

[
k−1

2

]
∑
j=0

k−2 j−1∑
m=0

αk, j · Fk−2 j−1,0,m(I )

k′′ω̇
·
[

cos
sin

] k even

k odd

(
k′′ω

)

×
(
X−k−2,k′′+1

0 − X−k−2,k′′−1
0

)]
,

where k′ = k − 2m and k′′ = k − 2 j − 2m . (52)

C. Expressions in the canonical approach

First, we list two remaining expressions from the calculation process in the canonical
approach. From these the (quasi-)Newtonian results for arbitrary Jk can be reproduced.
Finally we list the expressions for the second-order drifts in h = � and g = ω.

H∗
1 = Jk Rkμk+2

L ′3G ′2k−1

[k/2]∑
m=0

(
2 − δk,2m

) · bk−2m ·
k−1∑
s=0

s∑
q=0

(
e′

2

)s (k − 1

s

)(
s

q

)

× δs−2q,k−2m · cos ((k − 2m) · (g′ − π

2
))

− μ4

c2L ′4

[
3
L ′

G ′ − 15

8

]
(53)

W1 = Jk Rkμk

G ′2k−1

[k/2]∑
m=0

(
2 − δk,2m

) · bk−2m

k−1∑
s=0

s∑
q=0

(
e′

2

)s (k − 1

s

)(
s

q

)

×
[
δs−2q,k−2m( f ′ − l ′) · cos ((k − 2m) · (g′ − π

2
))

+ (
1 − δs−2q,k−2m

) sin ((s − 2q + k − 2m) f ′ + (k − 2m) · (g′ − π
2 ))

s − 2q + k − 2m

]

− μ2

c2L ′

[
3
L ′

G ′ ( f
′ − l ′) − 2(E ′ − l ′)

]
(54)
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Since the two Lie-transformations contain the short-periodic and long-periodic perturbations
only, the secular drifts in h = � and g = ω are given by the drifts in h′′ and g′′, respectively.
For these we find to second order

g′′ = g′′
0 + 3μ4

c2L ′′5
L ′′2

G ′′2 · t

− Jk Rkμk+2

L ′′3G ′′2k ·
k−1∑
s=0
s even

(
e′′

2

)s (k − 1

s

)(
s

s/2

)

·
[
(2k − 1)b0 + b̃0

H ′′

G ′′ + b0 · G ′′ s
e′′

∂e′′

∂G ′′

]
· t

+ 1

2

(
∂
〈〈H2〉l

〉′
g

∂G ′′ +
∂
〈〈T2〉l

〉′
g

∂G ′′

)
· t , (55)

h′′ = h′′
0 + Jk Rkμk+2

L ′′3G ′′2k · b̃0 ·
k−1∑
s=0
s even

(
e′′

2

)s (k − 1

s

)(
s

s/2

)
· t

+ 1

2

(
∂
〈〈H2〉l

〉
g′

∂H ′′ +
∂
〈〈T2〉l

〉
g′

∂H ′′

)
· t ,

where b̃m = (k − m)!
(k + m)! · Pm

k (0) · ∂Pm
k (z)

∂z

∣∣∣∣
z=H ′/G ′

(56)

and the derivatives, giving the second-order secular drifts, are

∂
〈〈H2〉l

〉
g′

∂H ′′ = Jk Rkμk+4

c2L ′′5G ′′2k · b̃0

×
[

4

η2

k∑
s=0
s even

(
e′′

2

)s (k
s

)(
s

s/2

)
− 3

k−1∑
s=0
s even

(
e′′

2

)s (k − 1

s

)(
s

s/2

)]
, (57)

∂
〈〈H2〉l

〉
g′

∂G ′′ = − Jk Rkμk+4

c2L ′′5G ′′2k ·
([

(2k − 1)b0 + b̃0 · H
′′

G ′′

]

×
[

4
L ′′2

G ′′2
k∑

s=0
s even

(
e′′

2

)s (k
s

)(
s

s/2

)
− 3

k−1∑
s=0
s even

(
e′′

2

)s (k − 1

s

)(
s

s/2

)]

+ b0

[ k∑
s=0
s even

(
e′′

2

)s (k
s

)(
s

s/2

)(
4s

e′′2 + 8
L ′′2

G ′′2

)

− 3
k−1∑
s=0
s even

(
e′′

2

)s (k − 1

s

)(
s

s/2

)
s

e′′2
G ′′2

L ′′2

])
, (58)
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∂
〈〈T2〉l

〉
g′

∂H ′′ = Jk Rkμk+4

c2L ′′5G ′′2k · b̃0

×
(

(k + 1)

k+2∑
s=0

s∑
q=0

(
e′′

2

)s (k + 2

s

)(
s

q

)
δs,2q−1

3

e′′
L ′′4

G ′′4

− (k + 1)

k+1∑
s=0

s∑
q=0

(
e′′

2

)s (k + 1

s

)(
s

q

)[
δs,2q

9

2

L ′′4

G ′′4

+ δs,2q−1
2

e′′
L ′′2

G ′′2 + δs,2q−2
3

2

L ′′4

G ′′4

]

+ (k + 1)

k∑
s=0

s∑
q=0

(
e′′

2

)s (k
s

)(
s

q

)[
δs,2q

(
3
L ′′2

G ′′2 + 3

2

L ′′4

G ′′4

)

+ δs,2q−1

(
2

e′′ − 3

e′′
L ′′

G ′′

)
− δs,2q−2

(
3

2

L ′′4

G ′′4 − L ′′2

G ′′2

)]

+
k−1∑
s=0

s∑
q=0

(
e′′

2

)s (k − 1

s

)(
s

q

)

×
(

δs,2q

[
− 4k − 12 + 6k

L ′′

G ′′ + 15
L ′′

G ′′ + (k + 1)e′′2 L ′′2

G ′′2 + 7
L ′′2

G ′′2

]

+ δs,2q−1

[
6e′′ L ′′2

G ′′2 + 4

e′′
L ′′2

G ′′2

]

+ δs,2q−2

[
3
L ′′2

G ′′2 − (k + 1)e′′2 L ′′2

G ′′2

]

− sδs,2q ·
[

2 + 3

16
e′′4 L ′′2

G ′′2 − 6
L ′′2

G ′′2

]

+ s

s − 2q

[
δs,2q−1

(
2

e′′ − 6

e′′
L ′′2

G ′′2

)
− δs,2q−23

L ′′2

G ′′2

]))
, (59)

∂
〈〈T2〉l

〉
g′

∂G ′′ = − Jk Rkμk+4

c2L ′′5G ′′2k ·
([

(2k − 1)b0 + b̃0 · H
′′

G ′′

]
·
(

. . .

)

+ b0 ·
(

(k + 1)

k+2∑
s=0

s∑
q=0

(
e′′

2

)s (k + 2

s

)(
s

q

)

× δs,2q−1

(
12

e′′
L ′′4

G ′′4 − 3

e′′3
L ′′2

G ′′2 + 3s

e′′3
L ′′2

G ′′2

)

− (k + 1)

k+1∑
s=0

s∑
q=0

(
e′′

2

)s (k + 1

s

)(
s

q

)[
δs,2q

(
18

L ′′4

G ′′4 + 9s

2e′′2
L ′′2

G ′′2

)

+ δs,2q−1

(
4

e′′
L ′′2

G ′′2 − 2

e′′3 + 2s

e′′3

)
+ δs, 2q − 2

(
6
L ′′4

G ′′4 + 3s

2e′′2
L ′′2

G ′′2

)]

+ (k + 1)

k∑
s=0

s∑
q=0

(
e′′

2

)s (k
s

)(
s

q

)[
δs,2q

(
6
L ′′2

G ′′2 + 6
L ′′4

G ′′4 + 3s

e′′2 + 3s

2e′′2
L ′′2

G ′′2

)
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− δs,2q−1

(
2

e′′3
G ′′2

L ′′2 − 3

e′′3
G ′′

L ′′ + 3

e′′
L ′′

G ′′ − 2s

e′′3
G ′′2

L ′′2 + 3s

e′′3
G ′′

L ′′

)

− δs,2q−2

(
6
L ′′4

G ′′4 − 2
L ′′2

G ′′2 + 3s

2e′′2
L ′′2

G ′′2 − s

e′′2

)]

+
k−1∑
s=0

s∑
q=0

(
e′′

2

)s (k − 1

s

)(
s

q

)

×
(

δs,2q

[
6k

L ′′

G ′′ + 15
L ′′

G ′′ + 2(k + 1)e′′2 L ′′2

G ′′2 + 2(k + 1) + 14
L ′′2

G ′′2

+ s

e′′2
G ′′2

L ′′2

(
−4k − 12 + 6k

L ′′

G ′′ + 15
L ′′

G ′′ + (k + 1

)
e′′2 L ′′2

G ′′2 + 7
L ′′2

G ′′2 )

]

+ δs,2q−1

[
6

e′′ + 12e′′ L ′′2

G ′′2 + 8

e′′
L ′′2

G ′′2 − 4

e′′3 + 6s

e′′ + 4s

e′′3

]

+ δs,2q−2

[
6
L ′′2

G ′′2 − 2(k + 1) − 2(k + 1)e2 L ′′2

G ′′2 + 3s

e′′2 − s(k + 1)

]

− sδs,2q ·
[

3

4
e′′2 + 3

8
e′′4 L ′′2

G ′′2 − 12
L ′′2

G ′′2 + 2s

e′′2
G ′′2

L ′′2 + 3s

16
e′′2 − 6s

e′′2

]

+ s

s − 2q

[
δs,2q−1

(
− 2

e′′3
G ′′2

L ′′2 + 6

e′′3 − 12

e′′
L ′′2

G ′′2 + 2s

e′′3
G ′′2

L ′′2 − 6s

e′′3

)

− δs,2q−2

(
6
L ′′2

G ′′2 + 3s

e′′2

)])))
. (60)

The dots-term (. . . ) denotes the respective part in
〈〈T2〉l

〉
g′ (Eq. 30).
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