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Abstract The inclinations of exoplanets detected via radial velocity method are essentially
unknown. We aim to provide estimations of the ranges of mutual inclinations that are com-
patible with the long-term stability of the system. Focusing on the skeleton of an extrasolar
system, i.e. considering only the two most massive planets, we study the Hamiltonian of
the three-body problem after the reduction of the angular momentum. Such a Hamiltonian
is expanded both in Poincaré canonical variables and in the small parameter D2, which
represents the normalised angular momentum deficit. The value of the mutual inclination
is deduced from D2 and, thanks to the use of interval arithmetic, we are able to consider
open sets of initial conditions instead of single values. Looking at the convergence radius
of the Kolmogorov normal form, we develop a reverse KAM approach in order to estimate
the ranges of mutual inclinations that are compatible with the long-term stability in a KAM
sense. Our method is successfully applied to the extrasolar systems HD 141399, HD 143761
and HD 40307.
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1 Introduction

Nowadays, the number of catalogued multiple-planet systems is rapidly reaching one thou-
sand. Their orbital characteristics are often quite different with respect to those of our Solar
system (for a review containing a classification of the possible architectures see e.g. Winn
and Fabrycky 2015). In the present work, we will focus on the analysis of the long-term
evolution of the observed exoplanets, in a spirit similar to the classical studies of stability of
our Solar system.

Multiplanetary extrasolar systems raise new interesting challenges concerning the math-
ematical aspects of the orbital dynamics. For instance, in our Solar system the eccentricities
of the celestial bodies play the role of small parameters in the power series expansions con-
sidered in classical perturbation theory. On the other hand, the observed eccentricities of
the major planets in extrasolar systems are often so large (see e.g. Butler et al. 2006), that
they prevent the convergence of the Laplacian expansion of the disturbing function (see
e.g. Ferraz-Mello 1994). Nevertheless, accurate analytical results based on classical expan-
sions have been obtained even for systems having moderate eccentricities via high-order
expansions (see e.g. Libert and Sansottera 2013).

In the present work, we limit our study to the exoplanets observed via radial velocity
(hereafter, RV) method, because of its ability to detect massive bodies. Therefore, RV-based
observations are expected to capture information about the skeleton of an extrasolar system,
i.e. its major planets. As a main drawback, the RV method cannot detect the inclinations
relative to the invariant plane; moreover, its measure of the mass of each planet is affected
by the uncertainty factor sin i , being i the inclination of the plane of motion with respect to
the tangent plane to the celestial sphere (see e.g. Beaugé et al. 2012). However, ranges of the
most probable values of the inclinations can be deduced by prescribing the long-time stability
of the system. This is done for instance in Laskar and Correia (2009), where the properties of
the numerically computed orbital motions are investigated by using the frequency analysis
method (see Laskar 2003 and references therein for an introduction to this kind of numerical
explorations). We propose here a novel procedure: a reverse KAM approach by using normal
forms depending on a free parameter related to the unknown mutual inclinations between the
orbital planes. Our approach is based on a careful adaptation of the algorithm constructing
the Kolmogorov normal form for the secular part of the Sun-Jupiter-Saturn (SJS) system
(see Locatelli and Giorgilli 2000; see also Kolmogorov 1954; Arnold 1963a, b; Moser 1962,
that are the original articles giving the name to the KAM theorem). The differences between
the two contexts are remarkable. In Locatelli and Giorgilli (2000) the parameters and the
orbital elements of the SJS system were very well known; all these data were used to prove
the existence of KAM tori confining the motion and, therefore, the stability of the secular
model. Here, we deal with systems for which some of the orbital elements are unknown: we
aim to infer information about their values by prescribing the stability and therefore requiring
that the algorithm constructing KAM tori is convergent. Actually, from a practical point
of view, its implementation is rather delicate. For instance, we use the interval arithmetic
to represent the coefficients of the secular expansions; this allows us to consider sets of
values of the free parameter in a comprehensive way instead of studying many different
numerical integrations, each corresponding to a single value of that same parameter ranging
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in a suitably chosen discrete grid. Thus, our implementation is an interesting example of
alternative use of validated numerics outside the context of a rigorous proof where it is often
used (see e.g. Celletti et al. 2000). We emphasise that this is done by handling the difficulty
due to the fact that the free parameter, related to the unknown mutual inclination, directly
contributes to the so-called Laplace–Lagrange approximation (see e.g. Libert and Sansottera
2013). Therefore, it affects the secular frequencies possibly introducing dangerous resonance
relations.

We think that our approach can interestingly complement some recent results: in partic-
ular, the concept of “AMD-stability” introduced in Laskar and Petit (2017) to analyse the
dynamics of the multiple-planet extrasolar systems (see also Petit et al. 2017 for an extension
to the resonant case). Roughly, that criterion requires that the angular momentum deficit1

(hereafter AMD) is smaller than a critical threshold, in order to ensure that the planetary
orbits cannot collide; therefore, the system is considered to be AMD-stable. In Laskar and
Petit (2017), five planetary systems are recognised to belong to the so-called subcategory of
“hierarchical AMD-stable systems that are AMD-unstable but become AMD-stable when
they are split into two parts”. Among them, our Solar system is a typical example when
considering the two subsystems formed by the giant planets on one side and the inner ones
on the other. We emphasise that AMD-stability of the giant planets is not sufficient to prove
the global stability of the system as it does not provide a detailed enough information about
the regularity of their motions. Indeed, it is well known that the chaoticity of the secular
motions of the inner planets is induced by the gravitational perturbations due to Jupiter
(see Laskar 1990). Because of this chaoticity, it has been possible to select some scenarios
(depicted by suitably chosen numerical integrations) leading to the ejection of Mercury or
to destructive collisions between the terrestrial planets in a few billions of years (see Laskar
1989b in the context of the secular dynamics and Laskar and Gastineau 2009, respectively).
It is very natural to expect that these destabilising effects would act dramatically faster,
if also the secular dynamics of the outer system were chaotic, instead of being extremely
regular as it has shown to be (see e.g. Laskar 1996, also as a review covering most of the
properties of the Solar system that have been briefly recalled here). A deeper knowledge
of the dynamics of the outer planets is therefore crucial in order to prove the effective (or
long-time) stability of the complete system. When a specific extrasolar system cannot be
classified as globally AMD-stable, the problem of ensuring its stability properties can be
attacked by following a strategy that is based on our reverse KAM approach, as outlined
below.

In the case of hierarchical AMD-stable systems, when successful our approach can ensure
that there are values of the inclinations for which the subsystem formed by the major planets
is stable in a much stronger sense with respect to the AMD-criterion: the eventual diffusion
would be so weak that the orbit could not significantly go away from a KAM torus before an
extremely2 long interval of time (see Giorgilli et al. 2017). In such a situation, the motion of
the biggest planets is indistinguishable from a quasi-periodic one. Such a preliminary result
would be essential in order to prove (at least) the metastability of the less massive planets
over times that are comparable with the expected lifetime of the system. This highlights the
usefulness of our reverse KAM approach.

1 The angular momentum deficit is defined as the difference between the total value of the angular momentum
and its value in the case of Keplerian circular coplanar orbits having radii equal to the semi-major axes of the
planets.
2 Actually, when the mild hypotheses assumed in Morbidelli and Giorgilli (1995) are satisfied, the diffusion
time is estimated to be super-exponentially big. This means that its order of magnitude is given by the
exponential of the exponential of the inverse of a fractional power of the distance from a reference KAM torus.
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In the present paper, we apply our KAM-stability to three extrasolar systems that are
modelled by a three-body approximation, which includes the star and the two biggest planets.
Quite remarkably, one of these systems, HD 141399, is hierarchical AMD-stable according
to the classifications given in Laskar and Petit (2017); another one, HD 40307, is included in
the category of the AMD-unstable systems. This work represents the first step in the direction
of a complete proof of the so-called effective stability of such exoplanetary systems, when
they are studied in the framework of models including all their already discovered planets
(see Sansottera et al. 2013 for a recent application of these concepts to the secular dynamics of
the Sun-Jupiter-Saturn-Uranus system). Of course, the whole implementation of our strategy
is not priceless: the required amount of computations (mainly by the algebraic manipulations
of the expansions) is extremely demanding.

Our paper is organised as follows. In Sect. 2 we recall the initial expansions of the secular
Hamiltonian model of the three-body planetary problem. In Sect. 3 we deal with the algorithm
constructing invariant tori for such a model. In Sect. 4 we describe the way to infer information
about the range of values of the mutual inclination. The applications of our method to three
extrasolar systems are discussed in Sect. 5. Finally, the conclusions are outlined in Sect. 6.

2 Settings for the definition of the Hamiltonian model

As it has been mentioned in the Introduction our approach is based on a careful adaptation of
that described in Locatelli and Giorgilli (2000). However, for the sake of completeness, it is
convenient to briefly recall both the definitions and the preliminary canonical transformations
that properly introduce the secular model we are going to study.

2.1 The expansion of the Hamiltonian

Object of this study is a three-body planetary problem, formed by a central star (indicated by
the index 0) and two planets revolving around it, marked by the indexes 1 (inner) and 2 (outer).
In the barycentric frame, the three-body problem has 6 degrees of freedom. The reduction of
the total angular momentum allows to describe the system as a 4-degree-of-freedom problem,
using the planar canonical Poincaré variables

Λ j = m0m j

m0 + m j

√
(m0 + m j )a j , λ j = Mj + ω j ,

ξ j = √
2Λ j

√
1 −

√
1 − e2

j cos(ω j ), η j = −√
2Λ j

√
1 −

√
1 − e2

j sin(ω j ),

(1)

where a j , e j , Mj and ω j are the semi-major axis, the eccentricity, the mean anomaly and
perihelion argument of the j-th planet, respectively.

We expand the Hamiltonian both in the Poincaré variables and, following (Robutel 1995),
in the parameter D2 defined as

D2 = (Λ1 + Λ2)
2 − C2

Λ1Λ2
, (2)
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where C is the norm of the total angular momentum. In the Laplace plane, the following two
relations hold:

Λ1

√
1 − e2

1 cos i1 + Λ2

√
1 − e2

2 cos i2 = C, (3)

Λ1

√
1 − e2

1 sin i1 − Λ2

√
1 − e2

2 sin i2 = 0, (4)

so that combining (2), (3) and (4), we obtain the relation between the mutual inclination and
the parameter D2:

i1 + i2 = acos

⎛
⎝Λ2

1e
2
1 + Λ2

2e
2
2 + (2 − D2)Λ1Λ2

2Λ1Λ2

√
1 − e2

1

√
1 − e2

2

⎞
⎠ . (5)

The parameter D2 can be seen as a normalised angular momentum deficit, similar to the one
introduced in Laskar (1997).3 By definition, the main terms appearing in the expansion of
D2 are quadratic in eccentricities or inclinations. This parameter is therefore a measure of
the difference between the actual total angular momentum and the one of a similar system
having circular and coplanar orbits (for which D2 = 0). As a main difference with respect
to the approach in Locatelli and Giorgilli (2000), which we constantly refer to, here we keep
D2 as a free parameter in the expansions, while there it was replaced by its particular value
(computed for the Sun-Jupiter-Saturn system). We introduce the translation L j = Λ j − Λ∗

j ,
where Λ∗

j is the value of Λ j for the observed semi-major axis a j . The Hamiltonian expansion
in power series of the variables L, ξ , η, parameter D2 and in Fourier series of λ writes

H (TF ) =
∞∑
j1=1

h(Kep)

j1,0
(L) + μ

∞∑
s=0

∞∑
j1=0

∞∑
j2=0

Ds
2 h

(TF )
s; j1, j2(L,λ, ξ , η), (6)

where μ = max{m1/m0,m2/m0} and

– h(Kep)

j1,0
is a homogeneous polynomial function (hereafter h.p.f.) of degree j1 in L; in

particular, h(Kep)

1,0 = n∗ · L, where the components of the angular velocity vector n∗ are
defined by the third Kepler law.

– h(TF )
s; j1, j2 is a h.p.f. of degree j1 in L, degree j2 in ξ and η, and with coefficients that are

trigonometric polynomials in λ, related to the term Ds
2.

The superscript TF stresses the fact that H (TF ) is the Hamiltonian obtained after having
applied a translation of the fast actions.

2.2 The secular Hamiltonian at order two in the masses

The main idea of this work is based on the construction of invariant tori through the application
of a Kolmogorov normalisation algorithm. The Kolmogorov normalisation scheme is also
adapted to preliminary produce the secular approximation at order two in the masses (see
e.g. Locatelli and Giorgilli 2000; Libert and Sansottera 2013). This means that in our model
the torus corresponding to L = 0 in the new coordinates will be invariant up to order two
in the masses. For this aim, we proceed by averaging over the fast angles the terms of the

3 Precisely, being C the total angular momentum, i.e. C = ∑2
k=i Λk

√
1 − e2

k cos ik , the angular momentum

deficit is defined as AMD = ∑2
k=i Λk (1 −

√
1 − e2

k cos ik ).
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Hamiltonian (6) that do not depend or are linear in the actions L. This elimination is obtained
via a composition of two Kolmogorov-like steps.

First, the transformed Hamiltonian writes, in the Lie series formalism (see for example
Gröbner and Knapp 1967),

expL
χ

(O2)
1

H (TF ) =
∞∑
j=0

1

j !L
j

χ
(O2)
1

H (TF ), (7)

where the generating function χ
(O2)
1 is determined as the solution of the following homo-

logical equation

2∑
i=1

n∗
i · ∂χ

(O2)
1

∂λi
+ μ

∑
s=0, j2=0
2s+ j2≤NS

⌈
Ds

2 h
(TF )
s;0, j2

⌉
λ:KF

= μ
∑

s=0, j2=0
2s+ j2≤NS

Ds
2

〈
h(TF )
s;0, j2

〉
λ
, (8)

being 〈·〉ϕ the average over the generic angles ϕ. In the previous formula, we have denoted
with �g�λ:KF the truncation of the expansion of the generic function g up to a trigonometric
degree KF . The parameter KF is fixed so as to include the main quasi-resonance of the
system on hand: for instance, let us suppose the system is near to a k∗

1 : k∗
2 resonance, then

we set KF ≥ |k∗
1 | + |k∗

2 | . Moreover, in (8) the integer parameter NS rules the considered
order of magnitude in eccentricity and inclination: the choice of the particular value of NS

is again related to the main quasi-resonance of the system. In fact, for the D’Alembert rules
we know that the terms containing harmonics (k∗

1λ1 − k∗
2λ2) have order in eccentricity and

inclination greater or equal than |k∗
1 − k∗

2 | and with the same parity. Therefore, in order to

include the effects of the k∗
1 : k∗

2 resonance in the generating function χ
(O2)
1 , we have to

truncate the expansion up to NS ≥ |k∗
1 − k∗

2 |. This constraint takes into account that both ξ

and η are linear in the eccentricities and D2 is quadratic in eccentricities or inclinations. To fix
the ideas, let us focus on the main extrasolar planets HD 141399 c and HD 141399 d, whose
periods are approximately equal to 202 and 1070 days, respectively. Therefore, the quasi-
resonance 5 : 1 is expected to substantially affect the dynamics: according to the previous
discussion, we then fix KF ≥ 6 and NS ≥ 4. Of course, these criteria determine just the
lower bounds on the integer parameters KF and NS : we stress that one could be interested
in producing larger expansions according to the available computational power. In Sect. 5,
Table 2, we will list the particular value of KF and NS for each of the systems considered by
our applications.

The second Kolmogorov-like step is performed in an analogous way so as to intro-
duce the normalised Hamiltonian up to order two in the masses H (O2) = expL

χ
(O2)
2

◦
expL

χ
(O2)
1

H (TF ) , where the new generating function χ
(O2)
2 is the solution of the homolog-

ical equation

2∑
i=1

n∗
i · ∂χ

(O2)
2

∂λi
+ μ

∑
s=0, j2=0
2s+ j2≤NS

⌈
Ds

2 h
(TF )
s;1, j2

⌉
λ:KF

+L
χ

(O2)
1

h(Kep)

2,0 = μ
∑

s=0, j2=0
2s+ j2≤NS

Ds
2

〈
h(TF )
s;1, j2

〉
λ
. (9)

As we already mentioned, we will focus on the secular part of the Hamiltonian 〈H (O2)〉λ: for
such an Hamiltonian, the actions L are first integrals. We consider the basic approximation
of the fast dynamics corresponding to quasi-periodic motions with an angular velocity vector
equal to n∗, by setting L = 0.
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Let us define

H̃ = H (TF ) + 1

2

{
χ

(O2)
1 ,L

χ
(O2)
1

h(Kep)

2,0

}
L,λ

+

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

χ
(O2)
1 , μ

∑
s=0, j2=0
2s+ j2≤NS

Ds
2 h̃

(TF )
s;1, j2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

L,λ

+ 1

2

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

χ
(O2)
1 , μ

∑
s=0, j2=0
2s+ j2≤NS

Ds
2 h̃

(TF )
s;0, j2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

ξ ,η

, (10)

where {·, ·}L,λ and {·, ·}ξ ,η are the terms of the Poisson bracket involving only the derivatives
with respect to the variables (L , λ) and (ξ, η), respectively. Then, according to Locatelli and
Giorgilli (2000), we have that

〈H (O2)〉λ
∣∣∣
L=0

= 〈H̃ 〉λ
∣∣∣
L=0

+ O(μ3).

We can finally introduce our secular model up to order two in the masses, by setting

H (sec)(D2, ξ , η) =
⌈

〈H̃ 〉λ
∣∣∣
L=0

⌉
(D2,ξ ,η) : 2NS

, (11)

where
⌈〈H̃ 〉λ

∣∣
L=0

⌉
(D2,ξ ,η) : 2NS

indicates the averaged expansion (over the fast angles λ) of

the part of H̃ that is both independent from the actions L and truncated up to a total order
of magnitude NS in eccentricity and inclination. This means that a monomial Ds

2 ξm1ηm2 is
included in the truncation if and only if 2s+|m1|+|m2| ≤ 2NS . By comparing (10) and (11),
one can notice that our secular Hamiltonian model represented by H (sec) does not depend on
the second generating function χ

(O2)
2 whose explicit calculation is therefore unnecessary.

The explicit form of (11) writes

H (sec) = h(sec)
1,1 +

NS∑
s=2

s∑
l=1

Ds−l
2 h(sec)

s,l , (12)

where hs,l is a homogeneous polynomial function of degree 2l in ξ and η , ∀ 1 ≤ l ≤ s ≤ NS .
The even parity of the exponents is determined by the D’Alembert rules: having removed
all the harmonics, the order in eccentricity that the terms must held is of the same parity of
zero. The expansion of the final Hamiltonian H (sec) presents terms in D2, ξ and η up to a
degree that is twice the one of the truncated expansions of χ

(O2)
1 as it is determined by (8):

this is set to ensure that all the terms generated by the Poisson brackets in (10) are going to
be taken into account.

3 Construction of invariant tori for our secular model

3.1 Preliminary set-up for the Kolmogorov algorithm

We will perform a series of preliminary transformations in order to obtain the most conve-
nient formulation of our Hamiltonian for the construction of the invariant torus. Firstly, we
will diagonalise the quadratic part of the Hamiltonian; secondly, we will transform the vari-
ables into an action-angle set; we will then proceed with a partial Birkhoff’s normalisation,
so as to remove the degeneration of the unperturbed Hamiltonian; finally, we will shift the
origin of the actions so that they are centred around a value consistent with the observations.
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We will indicate with Roman numbers the intermediate Hamiltonians and generating func-
tions necessary to determine the Hamiltonian H (0), that is suitable to start the Kolmogorov
normalisation procedure.

It is well known that under mild assumptions on the quadratic part of the Hamiltonian
which are satisfied in our case (see Sect. 3 of Biasco et al. 2006, where such hypotheses
are shown to be generically fulfilled for a planar model of our Solar system) one can find
a canonical transformation (ξ , η) = D(x, y) with the following properties: (i) the map
(ξ , η) = (

ξ(x), η( y)
)

is linear, (ii) D diagonalises the quadratic part of the Hamiltonian,

so that we can write h(sec)
1,1 in the new coordinates as

∑2
j=1 ν j (x2

j + y2
j )/2 , where both the

entries of the vector ν have the same sign.
Action-angle variables are introduced via the canonical transformation

x j = √
2I j cos ϕ j , y j = √

2I j sin ϕ j , j = 1, 2. (13)

With these two last changes of coordinates the Hamiltonian (12) takes the form

H (I)(I,ϕ) = ν · I +
∞∑
s=2

s∑
l=1

Ds−l
2 h(I)

s;l(I,ϕ), (14)

where h(I)
s;l is an homogeneous polynomial function of degree 2l in the square roots of actions

I and a trigonometric polynomial of degree 2s in angles ϕ , i.e. it writes

h(I)
s,l(I,ϕ) =

∑
i1+i2=2l

i1∑
j1=0

i2∑
j2=0

c(I)
s;i1;i2; j1; j2

√
I i11 I i22 cos

[
(i1 − 2 j1)ϕ1 + (i2 − 2 j2)ϕ2

]
. (15)

In the previous formula only cosines occur because of the parity relation due to the
D’Alembert rules.

Let us stress that our aim is to provide ranges of inclinations which are compatible with
the stability of the system. These intervals of values are obtained as a function of the angular
momentum deficit parameter D2. Thus it is crucial to keep D2 as a parameter in the Hamilto-
nian expansion as long as possible. We now proceed with a partial Birkhoff’s normalisation
in order to remove the degeneration of the unperturbed Hamiltonian. We can visualise the
Hamiltonian (14) as

· · ·

h(I)
4;4 . . .

h(I)
3;3 D2 h

(I)
4;3 . . .

h(I)
2;2 D2 h

(I)
3;2 D2

2 h
(I)
4;2 . . .

H (I)(I,ϕ) =
∑

ν · I D2 h
(I)
2;1 D2

2 h
(I)
3;1 D3

2 h
(I)
4;1 . . . .

(16)
This writing highlights two features of each term: the size of the perturbation in eccentricity
and inclination is determined by the columns; the degree in actions depends on the rows.
Our aim is then to remove the dependency on the angle variables up to the third column. We
determine the first two generating functions by solving the two homological equations

{
B(II)

1 , ν · I
}

− D2 h
(I)
2;1 = D2Z2;1 (17)

and {
B(II)

2 , ν · I
}

− h(I)
2;2 = Z2;2, (18)
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where Zs,l is the average of h(I)
s;l over the angles ϕ.

The transformed Hamiltonian is computed as

H (II) = expLB(II)
2

◦ expLB(II)
1

H (I). (19)

Let us stress that expLB(II)
1

H (I) does not produce any contribution to the term h(I)
2;2: this

justifies the term appearing in (18) for the generating function. At this point, all the terms up
to order 4 in eccentricity and inclination do not depend on the fast angles and the Hamiltonian
reads

H (II)(I,ϕ) = ν · I + D2 Z2;1(I) + Z2;2(I) +
∞∑
s=3

s∑
l=1

Ds−l
2 h(II)

s;l (I,ϕ). (20)

Analogously, we compute the generating functions B(III)
1 , B(III)

2 , B(III)
3 in order to eliminate

the dependency on the angle variables of the terms of order 6 in eccentricity and inclinations.
Finally, our Hamiltonian is computed as

H (III) = expLB(III)
3

◦ expLB(III)
2

◦ expLB(III)
1

H (II). (21)

The last preliminary transformation of the Hamiltonian consists in a translation of the
actions. Being the action vector I nearly constant, i.e. I(t) � I(0), we shift the origin of the
action about I(0) = I∗. This is done using a canonical transformationT (I,ϕ) = ( p+I∗, q).
The transformed Hamiltonian is given by

H (0)( p, q) = H (III) ◦ T (I,ϕ).

3.2 Formal construction of the Kolmogorov invariant tori

We will now proceed with the construction of the Kolmogorov invariant tori. Firstly, we
expand the Hamiltonian H (0), whose expansion can be visually arranged as

...
...

...
...

...

f (0,0)( p)
2 f (0,1)

2 ( p, q) . . . f (0,s)
2 ( p, q) . . .

H (0)( p, q) =
∑

ω(0) · p f (0,1)
1 ( p, q) . . . f (0,s)

1 ( p, q) . . . ,

0 f (0,1)
0 (q) . . . f (0,s)

0 (q) . . .
(22)

being the generic term f (0,s)
j ∈ P j,2s : this means that it is a homogeneous polynomial of

degree j in the actions p and a trigonometric polynomial of degree 2s in q. Therefore, it is
possible to represent such type of terms on a computer because it is finite. In order to adopt
the classical notation of the Kolmogorov theorem, we renamed the frequencies ν appearing
in Sect. 3.1 as ω. There is a striking difference between the visual schemes (16) and (22):
in the latter, we do not keep track of the expansions in powers of D2. This is due to the fact
that, in the explicit applications, we replace the parameter D2 with convenient intervals of
values. In Sect. 4, we will discuss in more detail this technical point, that is not essential for
the comprehension of the normalisation scheme.

Let us emphasise that the terms f (0,s)
j in the s-th column are of order ‖I∗‖s , as it is

discussed, e.g. in Giorgilli et al. (2017). Therefore, the parameter I∗ rules the convergence
of the series with respect to the index s; according to the definitions in the previous sections,
it is a small quantity because I∗ is quadratic in eccentricities or inclinations.
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The Kolmogorov’s normalisation algorithm requires to remove all the terms of the Hamil-
tonian (22) of degree 0 or 1 in the actions p, with the exception of the term ω · p . In order
to do that, we start by determining the generating function χ

(1)
1 such that

{
χ

(1)
1 ,ω(0) · p

}
+ f (0,1)

0 = 0, (23)

where χ
(1)
1 is a trigonometric polynomial of degree 2.

We will then obtain a new Hamiltonian

Ĥ (1) = expL
χ

(1)
1

H (0), (24)

whose generic term of the expansion is f̂ (1,s)
j ∈ P j,2s . As a consequence of Eq. (23), we

have that f̂ (1,1)
0 = 0.

We proceed in an analogous way to complete this first Kolmogorov’s normalisation step:
we compute the generating function χ

(1)
2 ( p, q) such that

{
χ

(1)
2 ,ω(0) · p

}
+ f̂ (1,1)

1 =
〈
f̂ (1,1)
1

〉
q
; (25)

then, χ
(1)
2 will be linear in p and of order 2 in q. Let us stress that it is possible to solve the

previous homological equations (23) and (25), provided that |k · ω(0)| > 0 for k ∈ Z2 with
|k| = 1, 2, being |k| = |k1| + |k2|.

Therefore, we will obtain the new Hamiltonian H (1) = expL
χ

(1)
2

Ĥ (1), whose generic term

is now f (1,s)
j ∈ P j,2s . In the following, it lies a profound difference with respect to previous

works (see for example Locatelli and Giorgilli 2000): due to the way χ
(1)
2 was determined,

we have that
f (1,1)
1 = f̂ (1,1)

1 + L
χ

(1)
2

ω(0) · p =
〈
f̂ (1,1)
1

〉
q
. (26)

Therefore, f (1,1)
1 is an homogeneous polynomial of degree 1 in p and independent from q:

hence, it shares the same functional properties of the term ω(0) · p . We then set for appropriate
values of ω(1)

ω(1) · p = ω(0) · p +
〈
f̂ (1,1)
1

〉
q
, (27)

hence changing the frequency vector associated with the searched invariant tori.
The generic r -th normalisation step is performed in the same way provided that the fol-

lowing non-resonance condition holds true:
∣∣∣k · ω(r−1)

∣∣∣ > 0, ∀ k ∈ Z2\{0} with |k| ≤ 2r. (28)

One can start from an expansion of the Hamiltonian H (r−1) of the same form as in (22),
where the upper index 0 is replaced by r − 1. Hence, the generating functions χ

(r)
1 , χ

(r)
2 are

introduced by solving the homological equations obtained by replacing the upper index 1
with r in formulas (23) and (25).

The new Hamiltonian is therefore given by

H (r) = expL
χ

(r)
2
Ĥ (r) with Ĥ (r) = expL

χ
(r)
1
H (r−1). (29)
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In order to better understand the ultimate goal of this algorithm constructing invariant tori,
let us suppose to be able to iterate it ad infinitum. We would end up with a Hamiltonian of
the form

H (∞)( p, q) = ω(∞) · p + O(‖ p‖2). (30)

Writing the equations of motion derived from the previous Hamiltonian, it appears evident
that the torus { p = 0, q ∈ T

2} is invariant.

4 Parametric study on the D2 parameter

By borrowing the techniques used in Giorgilli et al. (2014) to ensure the existence of elliptic
tori for planetary systems, one could prove the convergence of the algorithm described in the
previous section under very general conditions. In practice, this means that: (i) the pertur-
bation (ruled by I∗) is small enough; (ii) the Hessian of the main quadratic term f (0,0)

2 ( p)
is non-degenerate; (iii) the initial frequencies ω(0) belong to a suitable set having nonzero
Lebesgue measure.

Here we do not investigate theoretically the convergence of the algorithm that is instead
numerically analysed. In the spirit of a reverse KAM approach, we claim that some initial
conditions originate motions that are inside a stable region when the convergence is evident
from a numerical point of view.

We want to investigate the stability of extrasolar planetary systems for the widest possible
ranges of D2 (i.e. mutual inclinations) and we want to take into account the uncertainties
on other orbital elements due to the observational limitations. Therefore, we have found
convenient to represent the coefficients of the expansions of the Hamiltonians with intervals.
Let us emphasise that such an approach based on interval arithmetic allows us to cover
completely a set of values of the orbital elements. This provides a key advantage to the normal
form approach with respect to the explorations purely based on numerical integrations. In
fact, when dealing with numeric parametrical analysis the latter methods require to consider
grids of values of the initial conditions; moreover, the synthetic coverage provided by the
normal form approach (implemented with interval arithmetic) is not possible.

When dealing with the proof of any KAM-type statement, it is essential to establish an iter-
ative scheme of estimates producing suitable majorants. The ultimate goal of such a scheme
is proving that the norms of the two sequences of generating functions (i.e. χ

(r)
1 and χ

(r)
2 in

our settings) decrease exponentially. Therefore, when such a behaviour is met in the plot of
the norms of the generating functions, this is the clear signature of the existence of invariant
KAM tori. In the case of a forced pendulum Hamiltonian model (see Celletti et al. 2000),
the study of the behaviour of χ

(r)
2 succeeded in extrapolating a good approximation of the

breakdown of the golden ratio invariant torus. As it has been discussed in the Introduction,
the existence of KAM tori implies the long-time stability of the dynamics in a region sur-
rounding them. Therefore, this argument ensures that the stability in KAM sense is firmly
related to the convergence of the generating functions.

To fix the ideas, let us consider the specific case of the extrasolar multiplanetary system
HD 40307, whose orbital parameters are reported in Table 1. The plots of the norms of the
generating functions χ

(r)
2 are shown in Fig. 1 for two different ranges of values of the param-

eter D2 . The norm ‖χ(r)
2 ‖ is nothing but the sum of the absolute values of the coefficients

of the terms appearing in its expansion. We decide to focus on the behaviour of χ
(r)
2 instead

of the one of χ
(r)
1 because we observed that the former ones are bigger than the latters. On
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Fig. 1 Results relative to HD 40307. Behaviour of the norms of the generating functions χ
(r)
2 as a function

of the normalisation step r . On the left, for values of D2 ∈ [0.0164, 0.0564]. On the right for values of
D2 ∈ [0.0814, 0.0864]. The orbital parameters of the system are listed in Table 1

the left-hand side of Fig. 1, we can appreciate that the decrease in ‖χ(r)
2 ‖ is sharp and quite

regular; we associate this behaviour to the convergence of the algorithm. Often the algorithm
crashes because the coefficients in the expansions of the Hamiltonians inflate to the point
where the non-resonant condition (28) is not satisfied anymore. By comparison, the decrease
in the norms in the plot on the right of Fig. 1 is notably slower than the one on the left;
for instance, the norm of the last computed generating function on the right is 6 orders of
magnitude bigger than the corresponding on the left.

Obviously, we aim to automatise the identification of the converging procedures to avoid
a visual inspection for each specific instance. Having fixed the maximal normalisation order
at r̄ = 33, in our codes the non convergence is established if at least one of the following
tests is true:

1. the ratio ‖χ(r)
2 ‖ / ‖χ(1)

2 ‖ is greater than 0.9 r−1 for some r ;

2. the norm ‖χ(r̄)
2 ‖ is greater than 10−9 ‖χ(1)

2 ‖.

Otherwise, we consider that the algorithm might be iterated ad infinitum, so to ensure the
existence of the KAM tori.

5 Results

In order to explicitly apply our approach, we selected extrasolar systems where the eccen-
tricities of the two major planets are small (i.e. less than 0.1). In Table 1, we report the orbital
parameters of the systems considered: for the sake of simplicity in the following, we use as
planetary masses the minimal ones listed there.

For the sake of completeness, we define some of the parameters ruling the finite size of
the expansions of the Hamiltonians introduced in our formal algorithm (Sects. 2 and 3). In
Table 2, we list the values of the integer parameters KF and NS and of the mean motion
resonance that is considered to play the major role in the perturbation of the non-resonant
fast dynamics. Let us recall that KF gives the limitation on the generating function χ

(O2)
1

that is needed to construct the approximation of order 2 in the masses; moreover, NS fixes
the maximal order in e2 + i2 for the secular Hamiltonian H (sec) (see Sect. 2.2). The series
appearing in (14) and defining H (I) is truncated at the final value s = 15; the same limitation
is imposed on the expansions of H (II) and H (III). Finally, the maximal degree in the actions
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Table 1 Orbital parameters of the systems considered to apply the computational algorithm for the parametric
study on D2. For each column the unit of measure is reported in square brackets. The angle i refers to the
inclination of the orbital plane with respect to the line of sight

System Planet m sin i MStar a e ω

[MJ ] [M�] [AU] [◦]
HD 141399 c 1.33 1.14 0.704 0.048 ± 0.009 220 ± 40

d 1.18 2.14 0.074 ± 0.025 220 ± 30

HD 143761 b 1.045 0.99 0.228 0.037 ± 0.004 270.6 ± 6

c 0.079 0.427 0.050 ± 0.004 175 ± 125

HD 40307 c 0.0202 0.77 0.081 0.060 ± 0.005 234 ± 1

d 0.0275 0.134 0.070 ± 0.005 170 ± 10

Table 2 Nearest resonance and
values of the integer parameter
KF and NS (as described in
Sect. 2.2) for each system

System Nearest resonance KF NS

HD 141399 5:1 12 8

HD 143761 5:2 8 6

HD 40307 2:1 6 8

p is fixed at 4 for the expansions of all the Hamiltonians H (r) involved in the normalisation
up to order r̄ = 33.

In Fig. 2, we present two plots relative to HD 141399. On the left, we show the True/False
output which results from the tests on the convergence described in Sect. 4: to each value
of the parameter D2, we assign 1 if the system is convergent, 0 otherwise. On the right, we
show the plot of the mutual inclination as the function of the parameter D2 described by
relation (5). By means of the interval arithmetic, we can take into account the observational
errors on the orbital parameters of the system, e.g. the eccentricities (as shown in Table 1).
Therefore, for each value of the parameter D2, we obtain a range of values for the mutual
inclination. For this reason, in all the plots concerning the mutual inclination (right of Figs. 2
and 3) a central value with error bars is drawn on the y coordinate. In Fig. 3, we show the
results for the systems HD 143761 and HD 40307. The behaviour of the mean value of the
mutual inclinations is mainly due to relation (5). The jump observed in the thick lines of
the plots can be related to numerical reasons. As negative values of the mutual inclination
are not acceptable, the error bars are smoothed so to never include values below the zero.
The jump occurs at the first value of D2 such that the error bars do not need to be corrected
anymore.

We can summarise the results provided by our implementation of the Kolmogorov’s nor-
malisation scheme as follows: the systems HD 141399, HD 143761 and HD 40307 are stable
in the KAM sense, for mutual inclinations up to 18◦, 10◦ and 15◦, respectively. In this con-
text, if we would have taken into account the magnifying factor 1/ sin i j for the mass of
the j-th planet, we expect that the previous maximal mutual inclinations would be slightly
lower, except in the extreme case in which i j are close to zero. Indeed, the main impact of
considering larger masses would be increasing the size of the correcting terms of order two
in the masses with respect to those of order one in the secular Hamiltonian H (sec).
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Fig. 2 Results relative to HD 141399. On the left, the True/False output regarding the convergence of the
algorithm. On the right, the range of values of the mutual inclination (in radians), where the thick line represent
the mean value of the inclinations interval. Both the plots are drawn as functions of the parameter D2
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Fig. 3 Plots of the mutual inclination as function of the parameter D2. On the left, the results relative to
HD 143761. On the right, those for HD 40307

6 Conclusions and perspectives

Up to our knowledge, this is the first application to extrasolar planetary systems of an explicit
algorithm constructing KAM tori. As it is discussed in the previous sections, actually we have
not applied a statement of the KAM theorem. Instead, we have exploited a keystone of the
proof, i.e. the study of the convergence of the generating functions. In this respect, we can say
that our approach is computer aided: the norms of some of the initial generating functions are
evaluated after having explicitly calculated their expansions, instead of being analytically
estimated. The eventual convergent character of the constructing algorithm in its entirety
is inferred by the behaviour of said norms. Our results should legitimately be included in
the list of the applications of KAM theory to realistic physical models (see, e.g. Celletti
1994; Celletti and Chierchia 2007; Gabern et al. 2005). In fact, for what concerns the tori
that are invariant with respect to the secular Hamiltonian and characterised by the complete
circulation of the arguments of the pericenters, the values of the mutual inclinations for which
the Lidov–Kozai resonant region takes place can be considered as a natural upper limit.4 In

4 In the Laplace plane frame, the region of the Lidov–Kozai resonance is characterised by the libration of the
argument of the pericenter of the inner planet (see Lidov 1962). The implicit adoption of such a frame has
been essential in order to perform the reduction of the angular momentum sketched in Sect. 2.1. Therefore,
the comparison between our results and those for that resonant region is valid because also our Hamiltonian
model is written in the secular canonical coordinates with respect to the Laplace plane.
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extrasolar systems, such a critical value of the mutual inclinations is usually located at about
40◦ (see Libert and Tsiganis 2009). Therefore, for the three systems here considered, our
results about the stability in the KAM sense cover a set of values whose extension ranges
between 25 and 50% of the maximal one.

We shall now point out the weaknesses of our approach. Our constructing algorithm does
not work when the eccentricities of the planets are not small. In fact, the procedure has
generated divergent series when it has been applied to the systems HD 109271, HD 155358
and HD 4732; in all of them there is at least one of the planets whose eccentricity is between 0.1
and 0.25. Thus, it seems that our approach is limited to systems with planetary eccentricities
< 0.1. Since we are able to produce results for small inclinations of the major planets of the
systems, the ideal situation is very similar to that of our Solar system. This is not surprising,
since the whole approach has been adapted from the one described in Locatelli and Giorgilli
(2000), which in turn has been tailored to the Jovian planets. In particular, the series expansion
of the three-body planetary Hamiltonian is in power series of some coordinates and parameters
that are of the same order of the eccentricities and the inclinations.

A natural goal for the future would be to remove the limitations affecting the approach
described in this paper. We think that some of them are intrinsic in the definition of sta-
bility that we assumed. Actually, since the beginning we postulated that the motions of
the major planets are quasi-periodic and their orbits lie on KAM tori constructed with
expansions in small eccentricities and inclinations. Such a prescription is extremely strict.
In our opinion, any substantial improvement of the method will be based on a clever
weakening of the requirements. This should be done by identifying a suitable integrable
approximation of the secular dynamics that can be shown to be convergent even for large
eccentricities. In the very different context of the orbits of the Trojan bodies, this change
of attitude has been shown to produce substantial enhancements (see Páez and Locatelli
2015; Páez et al. 2016). In future works, we plan to extend this kind of ideas to the
problem of determining values of the inclinations consistent with (a suitable type of)
stability.
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