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Abstract The problem of designing low-energy transfers between the Earth and the Moon
has attracted recently a major interest from the scientific community. In this paper, an indirect
optimal control approach is used to determine minimum-fuel low-thrust transfers between
a low Earth orbit and a Lunar orbit in the Sun–Earth–Moon Bicircular Restricted Four-
Body Problem. First, the optimal control problem is formulated and its necessary optimality
conditions are derived from Pontryagin’s Maximum Principle. Then, two different solution
methods are proposed to overcome the numerical difficulties arising from the huge sensitivity
of the problem’s state and costate equations. The first one consists in the use of continuation
techniques. The second one is based on a massive exploration of the set of unknown variables
appearing in the optimality conditions. The dimension of the search space is reduced by con-
sidering adapted variables leading to a reduction of the computational time. The trajectories
found are classified in several families according to their shape, transfer duration and fuel
expenditure. Finally, an analysis based on the dynamical structure provided by the invari-
ant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth–Moon
and Sun–Earth is presented leading to a physical interpretation of the different families of
trajectories.
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1 Introduction

For some years now, Moon exploration is experiencing renewed interest as an intermediate
step to explore and colonize our Solar system. Several missions like SMART-1 (Racca et al.
2002), GRAIL (Roncoli and Fujii 2010) or SELENE (Kato et al. 2008) have been launched
to the Moon.

If a manned base were to be established on the lunar surface, a low-cost transfer between
the Earth and the Moon should be considered. Two main types of low-energy transfers have
been envisioned up to now. On one side, low-energy impulsive transfers have been designed
(see Koon et al. 2001; Moore et al. 2012). On the other side, electric propulsion has emerged
as a capital technology to reduce the fuel budget of space trajectories due to its high specific
impulse. Several interplanetary missions such as Deep Space 1 (Rayman et al. 2000), DAWN
(Russell et al. 2007) and HAYABUSA (Kawaguchi et al. 2008) or the lunar mission SMART-1
have demonstrated the interest of this technology.

Both impulsive and low-thrust low-energy Earth–Moon transfers are characterized by
their long duration compared to that of the Hohmann transfer or any more energetic transfer.
This makes them inappropriate for manned missions. However, their lower cost makes them
good candidates for cargo and instrumental transport missions.

The dynamics of a spacecraft in the Earth–Moon system can be modeled in several ways.
The simplest formulations are based on the patched conics approximation (see Bate et al.
1971) or on the Circular Restricted Three-Body Problem (CR3BP), see Szebehely (1967),
which takes into account the gravitational influences of the Earth and the Moon. In Russell
(2007) the author combines optimal control theory and adjoint-control transformations to
determine low-thrust Earth–Moon transfers in the CR3BP. In Zhang et al. (2014) and Chen
(2016) the authors apply Pontryagin’s Maximum Principle (PMP), see Bryson and Ho (1975)
for a detailed description of the maximum principle, to compute low-thrust transfers in the
CR3BP. In Taheri and Abdelkhalik (2015) feasible Earth–Moon transfers are designed by
using shape-based methods in the Planar CR3BP (PCR3BP).

Although the gravitational influence of the Sun is not significant in the vicinity of the
Earth and the Moon, it has been revealed (see Koon et al. 2001) that the Sun’s perturbation
gives rise to new kind of low-energy transfers. Trajectories taking benefit from the Sun’s
perturbation partially follow the invariant manifolds of the two underlying CR3BPs. More
precisely, the invariant manifolds of Lyapunov orbits around Lagrange points of the two
CR3BPs can be matched at intermediate points leading to low-energy transfers. Thus, initial
attempts to find a low-energy Earth–Moon transfer consist in looking for cheap connections
between the two manifolds by means of impulsive maneuvers (see Koon et al. 2001; Ren and
Shan 2014; Sousa-Silva and Terra 2016).

Other authors take into account the Sun’s perturbation by considering the Bicircular
Restricted Four-Body Problem (BR4BP) (see Simó et al. 1995). For example, an exhaus-
tive list of impulsive transfers in the BR4BP and its classification in several families is given
in Topputo (2013). In Qi and Xu (2016) three-impulse low-energy Earth to Moon transfers
are computed in the bicircular model. The Sun’s influence on impulsive transfers is also
studied in Filho and da Silva Fernandes (2017). Mingotti et al. (2012) compute low-thrust
Earth–Moon transfers using the invariant manifolds of the two coupled PCR3BPs to obtain
an initial guess. Then, this first guess is transposed into the BR4BP and optimized using
direct optimal control methods. Direct methods discretize state and control variables leading
to the solution of a huge mathematical programming problem (see Betts 1998). Due to the
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high sensitivity of the dynamics with respect to the initial conditions, it may not always be
possible to convert this discrete solution into a continuous trajectory.

An alternative approach is to use indirect optimal control methods. For example, in Shen
and Casalino (2014) impulsive transfers are optimized in the Earth–Moon system using an
indirect approach. In Oshima et al. (2017) low-thrust transfers are computed in the PCR3BP
by using the PMP. However, all the necessary conditions are not satisfied in this paper.

In the present paper, the PMP is used to compute minimum-fuel trajectories in the BR4BP.
Two solution methods are proposed to satisfy all the necessary conditions arising from the
PMP, i.e., to find the zero of the associated shooting function. The first one consists in using
continuation or homotopy techniques. The other one is based on a massive exploration of the
search domain containing the unknowns of the shooting function. The output of this second
method has revealed several families of trajectories with different shapes, fuel consumptions
and times of flight fulfilling all the PMP conditions.

The spacecraft is assumed to depart from a circular Low Earth Orbit (LEO) at an altitude
H0. In addition, an initial velocity increment �v0 is provided to the spacecraft by the launcher.
From that point on, the spacecraft only relies on its low-thrust engine to complete the transfer.
The final orbit is a circular Lunar Orbit (LO) with an altitude equal to H f .

The paper is organized as follows. In Sect. 2 the problem is formulated and the dynamics
equations of the Planar BR4BP (PBR4BP) are given. Then, the optimal control problem is
stated and the necessary optimality conditions are derived from the PMP. The two solution
methods used to solve the problem are subsequently described. In Sect. 3, the results of the
massive exploration approach are presented. Several families of transfer trajectories are shown
and classified according to physical considerations. Finally, Sect. 4 provides conclusions and
future prospects.

2 Problem formulation

The transfer optimization problem is tackled considering a model that takes into account the
gravitational influences of the Earth, the Moon and the Sun. The PBR4BP (Earth–Moon–Sun)
is considered. The objective is to study the motion a spacecraft equipped with a low-thrust
propulsion system and submitted to the gravitational attraction of the three major bodies.

2.1 The Planar Circular Restricted Three-Body Problem

The problem is first modeled as a PCR3BP (see Szebehely 1967). The motions of the Earth and
the Moon are assumed planar and circular around the Earth–Moon barycenter. For homoge-
nization purposes, the units involved have been adimensionalized. Therefore, the Earth–Moon
distance is set to 1 DU (Distance Unit). The Time Unit (TU) is set in such a way that the
Moon completes a full revolution in 2π TU . Finally, let mE (resp. mM ) denotes the mass
of the Earth (resp. of the Moon), the sum mE + mM is set to 1 MU (Mass Unit). Then, the
dynamics only depends on one parameter, the mass ratio μ defined as

μ = mM

mE + mM
. (1)

Finally, a rotating frame (O, x, y) is considered in which the Earth (whose mass is equal
to 1 − μ) and the Moon (whose mass is equal to μ) are fixed at coordinates (−μ, 0) and
(1 − μ, 0), respectively.
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Under these assumptions, the potential function of the PCR3BP is defined as

Ω = x2 + y2

2
+ 1 − μ

r1
+ μ

r2
+ μ(1 − μ)

2
, (2)

where r2
1 = (x + μ)2 + y2 and r2

2 = (x + μ − 1)2 + y2. The Jacobi constant JC is a first
integral for the motion and is defined as

JC (x, y, vx , vy) = 2Ω − (v2
x + v2

y), (3)

where vx and vy denote the velocities of the spacecraft in the rotating frame.
A value equivalent to the Jacobi constant is the energy of the PCR3BP defined as

E(x, y, vx , vy) = − JC (x, y, vx , vy)/2. Thus, reducing the value of the Jacobi constant
is equivalent to increasing the energy of the spacecraft.

For a given value c of the Jacobi constant, it is possible to define the set of points in the
phase space associated with this value

H̃c = {(x, y, vx , vy)|JC (x, y, vx , vy) = c}.
The projection of H̃c into the configuration space (x − y space) gives the Hill’s region Hc,
i.e., the set of positions (x, y) ∈ R

2 for which a velocity exists such that the Jacobi constant
is equal to c. The boundary of the Hill’s region is known as the zero-velocity curve (see
Szebehely 1967).

The PCR3BP presents a rich dynamic structure. The potential function defined in Eq. (2)
shows five fixed points called Lagrange points (Li , i = 1, . . . , 5). Three of them (Li , i =
1, 2, 3) are collinear on the x axis and exhibit a saddle×center linear stability. The other
two (Li , i = 4, 5) form two equilateral triangles with the Earth and the Moon. Their linear
stability is of type center×center for typical values of the mass parameter μ given in Eq. (1).

Hill’s region Hc may exhibit three, two or one connected components depending on the
value of the Jacobi constant. Three sub-regions characterize Hill’s region. The first two
sub-regions are located around each of the primaries, Earth and Moon. The third one is
the exterior region. When JC decreases, the two sub-regions associated with the primaries
become connected through the so-called L1 neck. When JC continues to decrease, the sub-
region associated with the Moon becomes connected to the exterior sub-region through the
so-called L2 neck.

Once these connections are established, from each of the collinear Lagrange points peri-
odic orbits appear which are called Lyapunov orbits. Thanks to the saddle part of the linear
stability, from these periodic orbits emanate stable and unstable manifolds. A complete
description of the dynamic structure of the PCR3BP and missions analysis associated with
that structure can be found in Koon et al. (2011).

2.2 The controlled Planar Bicircular Restricted Four-Body Problem

The Sun is added as a perturbation to the PCR3BP model. It is considered as a mass in the
Earth–Moon plane rotating around the Earth–Moon barycenter in a circular orbit. Therefore,
its position is given by (xs, ys) = (ρs cos ω, ρs sin ω), where ρs is the Sun’s distance to the
Earth–Moon barycenter and ω = ωs t + ω0 is the phase of the Sun given by the angular
velocity of the Sun in the reference frame ωs and the initial phase ω0. Introducing Sun’s
perturbation, the potential function becomes

Ωs = Ω + ms

rs
− ms

ρ2
s

(x cos ω + y sin ω), (4)

123



Fuel optimization for low-thrust Earth–Moon transfer Page 5 of 29 21

where Ω is given in Eq. (2), r2
s = (x−ρs cos ω)2+(y−ρs sin ω)2 andms is the adimensional

mass of the Sun. This leads to the so-called PBR4BP.
Finally, the spacecraft can be controlled by means of a low-thrust engine inducing an

acceleration that can be written as

at = u
Fmax

m
, (5)

where Fmax is the maximum thrust modulus of the engine, u = (u1, u2)
� is the normalized

thrust vector satisfying ‖u‖ ≤ 1 and m is the mass of the spacecraft. This mass decreases
over time according to ṁ = −‖u‖Fmax/Ispg0, where Isp denotes the specific impulse of the
engine and g0 is the acceleration of gravity at sea level. Let us notice that, after normalization
of Eq. (5), the initial mass of the spacecraft is equal to 1 SMU (Spacecraft’s Mass Unit).

Remark 1 Two different mass units have been introduced, the first one (MU) for the massive
bodies related to the gravitational field and the other one (SMU) for the spacecraft related to
the thrust equation.

Therefore, the dynamics equations of the spacecraft are given by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = vx ,

ẏ = vy,

v̇x = 2vy + Ωs,x + u1Fmax
m ,

v̇y = −2vx + Ωs,y + u2Fmax
m ,

ṁ = −‖u‖ Fmax
Ispg0

,

(6)

where Ωs,x and Ωs,y are the derivatives of Ωs with respect to x and y, respectively. In the
following, Eq. (6) will be written as ξ̇ = ϕ(t, ξ , u), with ξ = (x, y, vx , vy,m)�. Let us
notice here that ϕ depends explicitly on time t due to the time dependency of the Sun’s phase
ω.

2.3 Problem statement

The aim of this paper is to determine transfer trajectories departing from an initial circular
Low Earth Orbit (LEO) and arriving to a circular Lunar Orbit (LO) with the minimum fuel
consumption. Thus, the goal is to maximize the mass of the spacecraft when arriving to the
Moon, or equivalently to minimize − K · m(tf ) with K > 0. Therefore, the problem can be
written under the form of an optimal control problem with free terminal time as follows

(P)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min −Km(tf )
s.t.ξ̇ = ϕ(t, ξ , u),

‖u‖ ≤ 1,

h0(ξ(t0)) = 0,

h f (ξ(tf )) = 0,

tf free ,

(7)

where h0(ξ(t0)) (resp. hf (ξ(tf ))) denotes the initial (resp. final) conditions. The initial time
t0 can be fixed to 0 with no loss of generality. Indeed, considering t̃0 �= 0 associated with an
initial Sun’s phase ω̃0 is equivalent to considering t0 = 0 associated with a new initial phase
ω0 = ω̃0 + t̃0ωs .
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The initial conditions in problem Eq. (7) can be written as follows

h0(ξ(t0)) =

⎛

⎜
⎜
⎝

h0,1(ξ(t0))
h0,2(ξ(t0))
h0,3(ξ(t0))
h0,4(ξ(t0))

⎞

⎟
⎟
⎠ = 0, (8)

where

h0,1(ξ(t0)) = (x(t0) + μ)2 + y(t0)
2 − r2

0 ,

h0,2(ξ(t0)) = (x(t0) + μ)(vx (t0) − y(t0)) + y(t0)(vy(t0) + x(t0) + μ),

h0,3(ξ(t0)) = (vx (t0) − y(t0))
2 + (vy(t0) + x(t0) + μ)2 − (v0 + �v0)

2,

h0,4(ξ(t0)) = m(t0) − 1, (9)

r0 = Re + H0 is the initial radius of the LEO, Re the Earth’s radius, H0 is the initial altitude

and v0 the velocity modulus given by v0 =
√

1−μ
r0

. Let us recall here that an initial velocity
increment �v0 ≤ �vmax is delivered by the launcher where �vmax is fixed and depends
on the launch vehicle capabilities. Let us notice that �v0 is fixed for each instance of the
problem. See also Remark 2.

The final circular LO is determined by the following relation

h f (ξ(tf )) =
⎛

⎝
h f,1(ξ(tf ))
h f,2(ξ(tf ))
h f,3(ξ(tf ))

⎞

⎠ = 0, (10)

where

h f,1(ξ(tf )) = (x(tf ) + μ − 1)2 + y(tf )
2 − r2

f ,

h f,2(ξ(tf )) = (x(tf ) + μ − 1)(vx (tf ) − y(tf )) + y(tf )(vy(tf ) + x(tf ) + μ − 1),

h f,3(ξ(tf )) = (vx (tf ) − y(tf ))
2 + (vy(tf ) + x(tf ) + μ − 1)2 − v2

f , (11)

r f = Rm + H f is the radius of the LO, Rm is the Moon’s radius and v f is the modulus of

the velocity given by v f =
√

μ
r f

.

Remark 2 In Eq. (7), ω0 and �v0 are considered as fixed parameters. That said, optimal
trajectories associated with different values of ω0 and �v0 will be presented in Sect. 3. Each
trajectory is a solution of a particular instance of problem Eq. (7).

The optimal control u must satisfy the first-order necessary optimality conditions given
by Pontryagin’s Maximum Principle (PMP) (Bryson and Ho 1975). Let the Hamiltonian of
problem Eq. (7) be defined as follows

H(t, ξ , p, u) = p�ϕ(t, ξ , u),

where p = (px , py, pvx , pvy , pm)� is the costate vector and u the control vector.
Therefore, the developed form of the Hamiltonian is

H(t, ξ , p, u) = pxvx + pyvy + pvx

(

2vy + Ωsx + u1Fmax

m

)

+ pvy

(

−2vx + Ωsy + u2Fmax

m

)

+ pm

(

−‖u‖ Fmax

Ispg0

)

. (12)
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The optimal control u must minimize the Hamiltonian H over all possible controls satisfying
‖u‖ ≤ 1. Neglecting all the terms which do not contain the control and applying the Cauchy–
Schwartz inequality we get

u = − η
pv

‖pv‖ , (13)

where pv = (pvx , pvy )
� and η determines the normalized thrust modulus and depends on

the switching function,

S(m, p) = − pm − Ispg0
‖pv‖
m

, (14)

as follows

η =
⎧
⎨

⎩

0 S(m, p) > 0
η ∈ [0, 1] S(m, p) = 0
1 S(m, p) < 0

. (15)

In addition, the PMP gives expressions for the dynamics of the costates as ṗ = −∇ξ H ,
leading to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗx = − ∂H
∂x = − pvx Ωs,xx − pvyΩs,yx ,

ṗy = − ∂H
∂y = − pvx Ωs,xy − pvyΩs,yy,

ṗvx = − ∂H
∂vx

= − px + 2pvy ,

ṗvy = − ∂H
∂vy

= − py − 2pvx ,

ṗm = − ∂H
∂m = Fmax

m2 (pvx u1 + pvy u2),

(16)

where

Ωs,xx = ∂2Ω

∂x2 , Ωs,xy = Ωs,yx = ∂2Ω

∂x∂y
, Ωs,yy = ∂2Ω

∂y2 . (17)

Finally, the transversality conditions can be obtained from the PMP. By defining
φ(ξ(t0), ξ(tf ), ν0, ν f ) = − Km(tf ) + ν0

�h0(ξ(t0)) + νf
�h f (ξ(tf )), where h0 and h f are

the initial and final conditions defined in Eqs. (8–11) and ν0 and ν f are auxiliary parameters.
Then, the transversality conditions can be written as

p(t0) = − ∂φ

∂ξ0
(ξ(t0), ξ(tf ), ν0, ν f ), p(tf ) = ∂φ

∂ξ f
(ξ(t0), ξ(tf ), ν0, νf ). (18)

Eliminating the auxiliary variables ν0 and ν f from the ten conditions Eq. (18) leads to
the following three equivalent ones

⎧
⎪⎪⎨

⎪⎪⎩

px (t0)y(t0) − py(t0)(x(t0) + μ) + pvx (t0)vy(t0) − pvy (t0)vx (t0) = 0,

px (tf )y(tf ) − py(tf )(x(tf ) + μ − 1) + pvx (tf )vy(tf ) − pvy (tf )vx (tf ) = 0,

pm(tf ) = − K .

(19)
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One can notice that there is no condition on pm(t0). Thus, pm(t0) is an unknown that has
to be determined by the solution method.

Since the final time is free, a last equation has to be satisfied according to the PMP

H(tf , ξ(tf ), p(tf ), u(tf )) + ∂φ

∂tf
(ξ(t0), ξ(tf ), ν0, νf ) = 0. (20)

The second term in Eq. (20) is null since tf does not appear in the expression of φ. Therefore,
the condition that must be satisfied is

H(tf , ξ(tf ), p(tf ), u(tf )) = 0. (21)

Now, solving Eq. (7) through the PMP reduces in determining eleven variables (the states
ξ(t0) and costates p(t0) at the initial time plus the final time tf ) such that eleven equations
are satisfied: the four boundary conditions at the initial time Eq. (8), the three boundary
conditions at the final time Eq. (10), three transversality conditions given in Eq. (19) and
condition Eq. (21).

In order to reduce the number of equations and the complexity of their resolution, a new
set of variables is introduced. First, since the initial and final orbits are circular, they can be
described by only two angles α and β and two integer parameters s0 and s f .

As a matter of fact, the initial and final conditions Eqs. (8–11) can be rewritten as follows

x(t0) = −μ − r0 sin α, x(tf ) = 1 − μ − rf sin β,

y(t0) = r0 cos α, y(tf ) = rf cos β,

vx (t0) = (s0(v0 + �v0) + r0) cos α, vx (tf ) = (s f v f + rf ) cos β,

vy(t0) = (s0(v0 + �v0) + r0) sin α, vy(tf ) = (s f v f + rf ) sin β, (22)

where s0 (resp. sf ) is the direction of rotation on the initial (resp. final) circular orbit and can
take values + 1 or − 1.

Then, the first two transversality conditions in Eq. (19) can be written under the following
form

p(t0)
�w0 = 0 and p(tf )

�wf = 0. (23)

This means that the initial (resp. final) costate vector must be orthogonal to the vector w0

(resp. w f ) defined as follows

w0 =

⎛

⎜
⎜
⎝

r0 cos α

r0 sin α

(s0(v0 + �0) + r0) sin α

− (s0(v0 + �0) + r0) cos α

⎞

⎟
⎟
⎠ , w f =

⎛

⎜
⎜
⎝

rf cos β

rf sin β

(s f v f + rf ) sin β

− (s f v f + rf ) cos β

⎞

⎟
⎟
⎠ . (24)

Now, the orthogonal space to w0 can be generated by the three following independent unit
vectors

w0
1 =

⎛

⎜
⎜
⎝

− sin α

cos α

0
0

⎞

⎟
⎟
⎠ , w0

2 =

⎛

⎜
⎜
⎝

0
0

cos α

sin α

⎞

⎟
⎟
⎠ , w0

3 =

⎛

⎜
⎜
⎝

a0 cos α

a0 sin α

b0 sin α

− b0 cos α

⎞

⎟
⎟
⎠ , (25)
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where a0 = s0(v0+�v0)+r0√

(s0(v0+�v0)+r0)2+r2
0

and b0 = − r0√

(s0(v0+�v0)+r0)2+r2
0

. Then, p(t0) can be written

as a linear combination of the three above vectors

p(t0) = γ1w0
1 + γ2w0

2 + γ3w0
3, (26)

for any (γ1, γ2, γ3) ∈ R
3.

Analogously, the value of p(tf ) is determined by a triplet (ζ1, ζ2, ζ3) ∈ R
3 and three

independent vectors (w f
1 , w f

2 , w f
3 )

p(tf ) = ζ1w f
1 + ζ2w f

2 + ζ3w f
3 , (27)

where

w f
1 =

⎛

⎜
⎜
⎝

− sin β

cos β

0
0

⎞

⎟
⎟
⎠ , w f

2 =

⎛

⎜
⎜
⎝

0
0

cos β

sin β

⎞

⎟
⎟
⎠ , w f

3 =

⎛

⎜
⎜
⎝

a f cos β

a f sin β

b f sin β

− b f cos β

⎞

⎟
⎟
⎠ , (28)

and a f = s f v f +r f√
(s f v f +r f )2+r2

f

, b f = − r f√
(s f v f +r f )2+r2

f

.

The triplet (ζ1, ζ2, ζ3) ∈ R
3 can be represented in spherical coordinates as follows

ζ1 = κ cos θ2 cos θ1,

ζ2 = κ cos θ2 sin θ1,

ζ3 = κ sin θ2, (29)

with κ > 0.

2.4 First solution: continuation methods

In order to determine variable z = (α, s0, γ1, γ2, γ3, pm(t0), tf ) that satisfies all the necessary
optimality conditions given in the previous section, a shooting function F is built. A common
technique consists in using root-finding methods to find the zeros of function F leading to
the so-called shooting methods.

2.4.1 Principles of the continuation approach

Before defining the shooting function some additional considerations must be taken into
account. On one side, it is known (Bertrand and Epenoy 2002) that function F may be non-
differentiable and that its Jacobian may be singular on a large domain due to the bang-bang
structure of the optimal control given in Eqs. (13) and (15). Thus, Newton-like methods may
fail to converge. More information on that topic can be found in Bertrand and Epenoy (2002).
The authors propose to smooth the control by adding a logarithmic term in the cost function
of Eq. (7), leading to the following problem

(Pε)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min −Km(tf ) − ε Fmax
Ispg0

∫ tf

t0

[
log ‖u(t)‖ + log(1 − ‖u(t)‖)] dt

s.t.ξ̇ = ϕ(t, ξ , u),

‖u‖ ≤ 1,

h0(ξ(t0)) = 0,

h f (ξ(tf )) = 0,

tf free,

(30)

123



21 Page 10 of 29 D. Pérez-Palau, R. Epenoy

whose Hamiltonian function is given by

Hε(t, ξ(t), p(t), u(t)) = H(t, ξ(t), p(t), u(t))

− ε
Fmax

Ispg0
(log ‖u(t)‖ + log(1 − ‖u(t)‖)) . (31)

Note that the original problem can be recovered by setting ε = 0. From the Hamiltonian Eq.
(31) any positive value of ε will determine a smooth control given by

uε(t) = − ηε

pv(t)

‖pv(t)‖ , (32)

where the normalized thrust modulus is given by

ηε = 2ε

S(m(t), p(t)) + 2ε + √
S(m(t), p(t))2 + 4ε2

, (33)

and the switching function S is defined in Eq. (14).
The dynamics equations of both the states and the costates as well as the initial, the final

and the transversality conditions do not depend on ε and remain the same as for the original
problem (ε = 0). However, Eq. (21) becomes

Hε(tf , ξ(tf ), p(tf ), uε(tf )) = 0. (34)

Moreover, in order to reduce the sensitivity of the dynamics equations at close distance
to the Moon, the final radius r f has been fixed to a large value, typically r f = 50000 km
corresponding to the final altitude H f = 48303 km. For this value of r f , the convergence
radius of Powell’s hybrid method (Powell 1970) is large enough to allow an arbitrary choice
of the initial guess. Once a first solution is found, the radius r f is reduced by means of a
continuation method.

Taking into account the previous considerations, the shooting function becomes

Fs0 : R6 −→ R
6

z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α

γ1

γ2

γ3

pm(t0)
tf

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

	→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

h f,1(ξ(tf ))
h f,2(ξ(tf ))
h f,3(ξ(tf ))

TC(ξ(tf ), p(tf ))
pm(tf ) + K

Hε(tf , ξ(tf ), p(tf ), uε(tf ))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
(35)

where

TC(ξ(tf ), p(tf )) = px (tf )y(tf ) − py(tf )(x(tf ) + μ − 1)

+ pvx (tf )vy(tf ) − pvy (tf )vx (tf ), (36)

and the value of �v0 has to be set here so as the value of ω0 and the value of K that can be
set to K = 1.

More precisely, two different shooting functions Fs0 are defined, the first one for s0 = 1
and the other one for s0 = − 1. In order to search for the optimal solution the zero of both
shooting functions Eq. (35) is computed. Notice here that the value of parameter s f disappears
thanks to the squared term in the third condition of Eq. (35).

In order to compute ξ(tf ), p(tf ) and uε(tf ) the states and costates at time t0 are first
determined from α, γ1, γ2, γ3 and pm(t0) following Eqs. (22) and (26). Then these initial
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Table 1 Physical parameters

Parameter Dimensional units Adimensional units

Mass parameter μ 0.012150664267

Earth–Moon distance 384 399 km 1 DU

Moon’s revolution period 27.321661 days 2π TU

Time unit 4.349462853 days 1 TU

Earth mass mE 5.9723 × 1024 kg μ MU

Moon’s mass mM 7.346 × 1022 kg 1 − μ MU

Earth’s radius Re 6378.1 km 1.658 × 10−2 DU

Moon’s radius Rm 1738.1 km 4.517 × 10−3 DU

Sun-(Earth–Moon)-barycenter distance ρs 149.60 × 106 km 388.97 DU

Sun’s mass ms 1.9886 × 1030 kg 3.2891 × 105 MU

Sun’s angular velocity ωs − 0.92518 TU

Sun’s initial phase ω0 0 rad

Table 2 Spacecraft parameters

Parameter Dimensional units Adimensional units

�v0 3169 m s−1 3.032757 DU TU−1

�vmax 3500 m s−1 3.420 DU TU−1

Specific impulse Isp 3000 s 8.15499 × 10−3 TU

Acceleration of gravity at see level g0 9.8 m s−2 3806.66 DU TU−2

Maximum thrust modulus Fmax 0.5 N 0.194226 SMU DU TU−2

Initial altitude around Earth H0 167 km 4.3418−4 DU

m0 1000 kg 1 SMU

conditions are propagated forward in time according to Eqs. (6) and (16) up to time tf using
Eqs. (32) and (33) for the control.

The propagation is carried out using a method of order 8 (more information on the propa-
gation method can be found in Dormand and Prince 1980). Finally, the zeros of the shooting
functions defined in Eq. (35) are computed using Powell’s hybrid method (Powell 1970).

Once the zero z(0) of Eq. (35) has been found (for a given value of s0), the radius r f is
decreased by using a continuation method introducing r f as an additional variable in the
shooting function Eq. (35) (see Allgower and Georg 1990). Then, at each step i , a zero of the
shooting function z(i) is computed and at the same time r f is decreased by a small step δr f .
Theoretically, if δr f is small enough, z(i−1) is sufficiently close to z(i) and is a good initial
guess that enables the convergence of Powell’s hybrid method at the current step i .

It turns out that the shooting function associated with s0 = 1 (that corresponds to the
optimal trajectory here) exhibits turning points, i.e., values of r f at which the gradient of
the shooting function has a null r f -component. This implies that whatever the value of δr f
the shooting function has no neighboring zero. This problem has been circumvented by
using predictor-corrector methods (also known as pseudo arc-length methods), for further
information see Allgower and Georg (1990). In this case, at each step, instead of reducing

123



21 Page 12 of 29 D. Pérez-Palau, R. Epenoy

0 1 2 3 4 5 6
x 104

0.062

0.064

0.066

0.068

0.07

0.072

0.074

0.076

rf (km)

z 1
(r

ad
)

5000 6000 7000 8000
0.0692

0.0694

0.0696

0.0698

0.07

rf (km)

z 1
(r

ad
)

Fig. 1 Continuation path z1 = α plotted as a function of the final radius r f for ε = 0.5. The green, red, cyan
and blue dots correspond to the trajectories shown in Fig. 2. The color used for each trajectory is related to
the color of the corresponding dot

the value of r f by δr f , the next value is computed using the gradient of function F . Thus,
the turning points are no longer an issue.

2.4.2 Numerical results

The numerical values for the physical constants and the spacecraft constants used in the
continuation experiments can be found in Tables 1 and 2. The parameters related to the
spacecraft have been selected according to Mingotti et al. (2012) for the sake of comparison.

Figure 1 shows the projection of the solution path of Eq. (35) for s0 = + 1 on the (r f , α)
plane. Each point on the blue curve corresponds to a zero of the shooting function. It seems
from the plot that there exist singular points. However, these points only appear on the
projection of the solution path on the plane (r f , α) that has been selected. When all the
components of z are analyzed at the same time those singular points do not exist.

In Fig. 1 one can notice that the shooting function presents several turning points. The
existence of turning points indicates that the same final circular orbit can be obtained from
different values of α. However, the final mass associated with these different transfers is not
the same. On the same figure it can be seen that as the spacecraft approaches the Moon, the
number of turning points increases. This is due to the sensitivity of the problem to the initial
conditions.

Since the maximum thrust modulus Fmax is small, as r f decreases, the number of revolu-
tions around the Moon increases. Each time an additional revolution appears a turning point
is generated as can be seen on the plot on the right that shows a zoom on the last part of the
continuation.

The continuation procedure stops at a radius equal to r f = 4580 km. Note that, at the last
step, the norm of the Jacobian matrix of the shooting function ‖DFs0=1‖ is of the order of
104 and the condition number of that matrix is of the order of 108. It can also be observed
that the shooting function on the last steps suffers from numerical cancellations that cause
the loss of some digits of precision. The combined effect of these three numerical problems
leads to the divergence of Powell’s hybrid method.

Figure 2 shows four examples of trajectories obtained at different steps of the continuation
procedure corresponding to r f = 50000 km, r f = 25000 km, r f = 18000 km and r f = 4580
km (respectively, in green, red, cyan and magenta). The right plot of the figure is a zoom
view centered at the Moon.
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Fig. 2 Sample trajectories obtained during the continuation method. Each trajectory corresponds to a different
final radius rf according to the legend. The Earth and the Moon are plotted as black circles

As a conclusion, the continuation approach on parameter r f suffers from numerical diffi-
culties when r f approaches its target value, typically r f = 5000 km, although ε has been set
to a large value here (ε = 0.5). One may think that the continuation procedure on parameter
ε will be even more difficult for this fixed value of r f . In addition, this approach does not
easily allow to generate different locally optimal trajectories. As a matter of fact, �v0 and
ω0 must be set due to the forward propagation required for computing the shooting function.

2.5 Second solution: massive exploration

The second solution consists in implementing a massive exploration of the unknown variables
of the shooting function in order to solve problem Eq. (7). In this approach, there is no need
to smooth the control as the differentiability of the shooting function is not required. As a
matter of fact, the direct exploration of the set of unknown variables avoids the use of Powell’s
hybrid method as will be seen below.

Notice that some of the tricks that are used here are similar to those used in Dixon and
Biggs (1972).

2.5.1 General description of the method

To reduce the number of cases to explore, some choices have been made and additional tricks
have been introduced.

The goal is to start at t = tf satisfying the terminal conditions Eq. (10), the transversality
conditions Eqs. (19) (those that apply at time tf ) and (21) and to integrate backwards in time
Eqs. (6) and (16) until the initial conditions Eq. (8) and the first transversality condition in Eq.
(19) are satisfied. In practice, the numerical integration is stopped when one of the following
four cases is met:
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1. Equation (8) and the first condition in Eq. (19) are satisfied at a given time t0.
2. There is a collision with the Moon (the distance between the spacecraft and the Moon’s

surface becomes too small).
3. The spacecraft exits the Earth–Moon region toward the outer planets or the Sun.
4. A given maximum time of flight is achieved before any of the previous three cases occur.

The important point is that the backward propagation ensures the fulfillment of the terminal
conditions at t = tf that are difficult to achieve via forward propagation due to the strong
sensitivity of the dynamics in the vicinity of the Moon (see Sect. 2.4).

At the opposite, thanks to the initial �v0 provided by the launcher, satisfying the initial
conditions at the end of a backward propagation is less difficult. As a matter of fact, the initial
velocity can be modified as follows:

Assuming that at some time t0 of the backward propagation the spacecraft is located at
(x(t0), y(t0), vx (t0), vy(t0)) such that the first condition in Eq. (8) is satisfied:

(x(t0) + μ)2 + y(t0)
2 = r2

0 . (37)

Then, the �v required to satisfy condition h0,3(ξ(t0)) = 0 given in Eq. (8) can be easily
computed. Let alpha be the angle on the departure orbit defined by α = arctan2(− x(t0)
− μ, y(t0))1 [see Eq. (22)], and consider the following velocity vector

vc,s0 = ((s0v0 + r0) cos α, (s0v0 + r0) sin α), (38)

where s0 = + 1 or s0 = − 1 denotes the direction of the rotation on the circular orbit. It is
possible to compute the instantaneous velocity change as follows

�v =
(

�vx
�vx

)

=
(

vx (t0)
vy(t0)

)

− vc,s0 . (39)

Finally, condition h0,3(ξ(t0)) = 0 is satisfied by choosing the value of s0 that leads to the
lowest value of �v0 = ‖�v‖.

Notice that using backward propagation the final time tf is fixed and the initial time t0 is
determined by the fulfillment of the conditions defined in case 1 above. This is equivalent to
set the initial time and let the final time free. The initial phase of the Sun ω0 is one of the
parameters that are explored in the massive exploration.

Now, assuming that ‖u(tf )‖ �= 0, the value of pm(tf ) can be determined from Eq. (21) as

pm(tf ) = Ispg0

‖u(tf )‖Fmax

(
px (tf )vx (tf ) + py(tf )vy(tf )

+ pvx (tf )

(

2vy(tf ) + Ωs,x (tf ) + u1(tf )Fmax

m(tf )

)

+ pvy (tf )

(

− 2vx (tf ) + Ωs,y(tf ) + u2(tf )Fmax

m(tf )

) )
, (40)

where u(tf ) is given by Eqs. (13) and (15). On the other side, from the last condition in Eq.
(19), pm(tf ) = − K where K is a positive number. Therefore, as long as Eq. (40) returns a
negative value, a value of K that fulfills the PMP statement can be selected.

1 arctan2(y, x) gives the angle α ∈ (− π, π ] such that cos α = x√
x2+y2

and sin α = y√
x2+y2

.
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2.5.2 Tricks to reduce the exploration set

When approaching the Moon, the spacecraft must reduce its velocity in order to reach the
final circular orbit. In order to maximize the rate of decrease of the velocity, the angle between
the thrust vector u and the velocity v = (vx , vy)

� must be close to π at t = tf . Using Eqs.
(13), (22) and (27), satisfying this condition is equivalent to set ζ3 = 0 and to choose ζ2 with
the same sign as that of s f v f + r f .

In addition, assume that the derivative of this angle is close to zero at the final time tf , or
equivalently that

d

dt

(
vx (t)pvy (t) − vy(t)pvx (t)

)

t=tf
≈ 0. (41)

This ensures that the thrust will reduce the spacecraft’s velocity during a time interval before
tf . A second benefit of satisfying these conditions is to reduce the possibility of collisions
with the Moon close to t = tf (case number 2 of the above stopping conditions). Enforcing
Eq. (41) as an equality together with the conditions above for ζ2 and ζ3 and using Eqs. (27),
(6) and (16), the triplet (ζ1, ζ2, ζ3) is obtained as

ζ 1 = κ(sin βΩs,x (tf ) − cos βΩs,y(tf )),

ζ 2 = κ(s f v f + r f ),

ζ 3 = 0, (42)

where κ > 0 is a free scale variable. Therefore, the massive exploration will be carried out
considering only values of ζ1, ζ2 and ζ3 close to those given in Eq. (42). Since the final result
is independent from the modulus of the costate vector, due to the fact that in the PMP all the
costates can be multiplied by the same factor without modifying the solution, the value of κ

can be arbitrarily set to 1.
The values obtained in Eq. (42) can be converted in the (θ1, θ2) spherical coordinates given

in Eq. (29)

θ1(β) = arctan2((s f v f + r f ),Ωs,x (tf ) sin β − Ωs,y(tf ) cos β), θ2 = 0. (43)

In summary, the variables that are considered in the massive exploration are β, s f , ω0,
m(tf ), θ1 and θ2.

Small changes in those variables may have a strong impact on the final conditions obtained
at t = t0 due to the sensitivity of the problem. For that reason, the following trick is used to
select values that satisfy Eq. (37) at a given time t0.

Variables β, ω0, m(tf ), θ1 and θ2 are sampled leading to a grid, G{i} (i = 1, . . . , N ), and
the integer parameter s f is fixed to + 1 or − 1 (a complete exploration requires that both
values be explored).

The chances to satisfy Eq. (37) by backward propagation are low. In order to increase
the number of final trajectories that arrive to the desired radius r0 the following strategy is
used. Let Gi and Gi−1 be two points of the grid G{i} corresponding to trajectories that miss
the Earth [Eq. (37) is not satisfied] from above and from below, respectively, with respect to
the y axis leading to opposite directions of rotation with respect to the Earth. By continuity,
there exists an intermediate point between Gi and Gi−1 for which there is collision with the
Earth. Therefore, there exists a point for which Eq. (37) is satisfied.
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The direction of rotation is given via the sign of the angular velocity Va of the spacecraft
computed in the inertial frame centered at the Earth that can be written as

Va = (vy(t) + x(t) + μ)(x(t) + μ) − (vx (t) − y(t))y(t)
√

(x(t) + μ)2 + y(t)2
. (44)

If the angular velocities with respect to the Earth of two neighboring grid points Gi and Gi−1

are of opposite signs, then the bisection method is used to find a trajectory satisfying Eq.
(37).

Notice that in the setting of the problem the initial �v0 is performed parallel to the velocity
on the initial circular orbit [second condition in Eq. (8)]. However, the �v computed in Eq.
(39) does not satisfy this condition in general. Now, using the last two points Gi and Gi−1,
it is possible by bisection to find two trajectories with a tangential departure from the initial
LEO. Each one corresponds to a rotation in opposite direction around the Earth (Va < 0
corresponding to s0 = 1 and Va > 0 corresponding to s0 = − 1).

The procedure described above ensures that the first three conditions in Eq. (8) are satisfied.
Now, the only conditions that remain to be satisfied in step 1 of the massive exploration
algorithm described above are h0,4(ξ(t0)) = 0 and the first transversality condition in Eq.
(19).

3 Results

In this section the results obtained through the massive exploration are presented. Several
families of transfer trajectories have been detected. The altitude of the final Lunar Orbit is
set to H f = 5000 km.

The parameters used for the massive exploration together with their respective search
intervals are given by

• β ∈ [0, 2π],
• s f = ± 1,
• ω0 ∈ [0, 2π],
• m(tf ) ∈ [0.93, 0.99],
• θ1 ∈ [θ1(β) − δθ1, θ1(β) + δθ1] and
• θ2 ∈ [θ2 − δθ2, θ2 + δθ2],

where δθ1 = 2π/1000 and δθ2 = 10−3. The physical and spacecraft parameters are given in
Tables 1 and 2, respectively, except for �v0 and ω0 that are not fixed here.

The massive exploration that has been performed led to six different families of transfer
trajectories from the initial LEO to the final LO: A, B, C, D, E and F. Each trajectory in a given
family is a local minimum of problem Eq. (7) for given values of �v0, ω0 and �t = tf − t0.
Table 3 shows the best representative of each family in terms of the total fuel consumption
�m = m0 −m(tf ). The third column shows the transfer duration in days. The fourth column
gives the initial Sun’s phase and the last one the initial �v0 provided by the launcher.

In addition, the three low-thrust trajectories obtained from Mingotti et al. (2012) are given
at the end of the table for the sake of comparison. Note that the target circular LO in that
reference is an orbit at an altitude of 100 km. In order to compare both results, the additional
mass consumption �mres and the additional transfer duration �tres required to lower the
orbit down from H f = 5000 to 100 km are estimated using Edelbaum’s formula (Edelbaum
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Table 3 Summary of the results obtained during the massive exploration classified according to the transfer
duration and the way the spacecraft approaches the Moon

Type �m (�m + �mres )
(kg)

�t (�t + �tres )
(days)

ω0 (rad) �v0 (m/s)

Short duration
transfers
through L1

Family A 34.7 (60.2) 88.3 (105.6) π 3121

Family B1 32.5 (58) 65.3 (82.6) π 3136

Family B2 36.2 (61.7) 36 (53.3) 3π/4 3119

Family B3 26.5 (52) 50 (67.3) π/3 3125

Short duration
transfers
through L2

Family C1 34.5 (60) 87.1 (104.4) π 3146

Family C2 32.1 (57.6) 71.6 (88.9) 0 3168

Family D 34.8 (60.3) 73.4 (90.7) π 3098

Long duration
transfers

Family E 11.5 (36) 142 (159.3) π/4 3195

Family F4 34.6 (60.1) 154.4 (171.7) π 3121

Family F5 36.5 (62) 154.7 (172) π 3105

Mingotti et al.
(2012)

Sol 1 – (61) – (271) – 3211

Sol 2 – (50) – (145) – 3203

Sol 3 – (46) – (103) – 3169

1961). The additional velocity increment is given by

�vres =
√

v2
f + v2

f ,100 − 2vf vf ,100 , (45)

where v f,100 is the velocity modulus of the circular orbit at an altitude of 100 km. Therefore,
Eq. (45) reduces to �vres = v f,100 −v f . Now, using the rocket equation (Tooley et al. 2009)

�vres = Ispg0 ln
m(tf )

mf ,100
, (46)

where mf ,100 is the mass obtained at the altitude of 100 km.
Assuming a continuous maximum thrust for the final reduction of the radius, the following

approximations are obtained �mres = 25.5 kg and �tres = 17.32 days. These values are
added to the results in Table 3 given in parenthesis next to the transfer duration and fuel
consumption for comparison with Mingotti et al. (2012). Observe that the solutions found
improve those of Mingotti et al. in either the fuel consumption (�m), the time duration (�t)
or the initial impulse (�v0). In addition, the method introduced is able to find other solutions
that do not follow the Sun–Earth and Earth–Moon manifolds.

Remark 3 At this altitude the gravitational influences of the Earth and the Sun are small
compared to that of the Moon. Therefore, a two-body approximation is accurate enough to
compute the additional time and fuel that are required to decrease the orbit down to a lower
altitude.

Figure 3 shows all the transfers obtained through the massive exploration in terms of the
fuel consumption �m plotted as a function of the time of flight �t (top) and the initial �v0
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Fig. 3 Gray: fuel consumption
of the optimal transfer �m as a
function of the time of flight
�t = tf − t0 (top) and the initial
�v0 (bottom). The different
colors identify each of the
families obtained. Table 3 gives
additional information for the
best representative of each family
in terms of fuel consumption �m
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(bottom). Each dot in the plot represents a local minimum of a specific instance of problem
Eq. (7) associated with a given �v0 and initial Sun’s phase ω0. As expected, the longer the
time of flight the smaller the total fuel consumption. It can be observed that the trajectories
are grouped in different families, each one being characterized by a particular shape of the
transfers. In what follows some of these families for which the fuel consumption and the
time of flight are more favorable, i.e. a low fuel consumption or a small time of flight, are
highlighted.

The classification is carried out in terms of the dynamical structure of the trajectories
analyzed in one of the two underlying PCR3BP (Earth–Moon and Sun–Earth). The main
structures that determine the shape of the transfers are the dynamical counterparts in the
PBRFBP of the invariant manifold of Lyapunov periodic orbits around the Lagrange points
Li (i = 1, 2). In all the plots that follow the thrust arcs are colored in orange while the coast
arcs are colored in blue.
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Fig. 4 Last phase of a trajectory in family B in the rotating frame and the Moon inertial frame

The first classification criterion is the transfer duration. One can distinguish between
short/medium duration transfers lasting at most 120 days and long duration transfers lasting
more than 120 days.

The second characteristic that drives the classification is the neck of the Hill’s region that
allows the entry of the spacecraft to the Moon’s vicinity, either LEM

1 or LEM
2 . Notice that,

during a coast arc, the main force acting on the spacecraft when approaching the final LO is
the gravitational attraction of the Moon followed by that of the Earth.

All the transfers that have been found contain a last phase that consists in the approach
to the final orbit, when the radius with respect to the Moon is reduced down to r f . Figure 4
shows a zoom in the Moon’s region for a sample trajectory in family B. The left plot shows
the trajectory in the synodic coordinate frame while the right one presents the same trajectory
in the inertial Moon frame. It can be observed that this decrease is based on a succession of
thrust arcs and coast arcs that lead to an increase of J EM

C up to the value of the final LO. As
can be seen from the bottom left plots in Figs. 5, 6, 7 and 8 and the middle plots in Figs. 9
and 10, the increase of the Jacobi constant occurs during the thrust arcs. Therefore, transfers
with longer thrust arcs correspond to a faster decrease of the radius. The fuel consumption
is similar in all cases. This comes from the fact that the total duration of the thrust arcs is
almost the same in all cases.

3.1 Short/medium duration transfers through LEM
1

The transfers of these different families are characterized by an approach to the Moon’s
neighborhood through the LEM

1 neck and by a short to medium time of flight.

3.1.1 Family A

Transfers in family A are characterized by two thrust arcs performed close to the Earth that
inject the spacecraft close to the stable manifold of a Lyapunov orbit around LEM

1 . Then,
the trajectory follows the unstable manifold of the same orbit and arrives to the Moon’s
neighborhood. Both manifolds, stable and unstable, are shown in Fig. 5 (top) together with
the trajectory in the Earth–Moon rotating frame.
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Fig. 5 Top: transfers of family A in the Earth–Moon rotating reference frame. Bottom left: Jacobi constant in
the Earth–Moon PCR3BP. The thrust arcs (orange) and coast arcs (blue) are highlighted. Bottom-right: Thrust
profile of a sample transfer

The fuel consumption for this family varies between 34.5 and 40.5 kg and the time of
flight is around 90 days. The initial �v0 required is around 3120 m/s.

3.1.2 Family B

Family B is split in three subfamilies B1, B2 and B3. These families are characterized by
the same Moon’s approach path. The spacecraft arrives to the Moon following the stable
manifold of a Lyapunov orbit around LEM

1 . The injection to that manifold is done by means
of a thrust arc performed when the spacecraft is close to the LEM

3 region. Now, each subfamily
differs in the way this region is reached by the spacecraft. Figure 6 shows the trajectories of
the three subfamilies in the Earth–Moon and the Sun–Earth rotating frames.

Subfamily B1 corresponds to trajectories arriving to the LEM
3 region following the inner

stable manifold of a Lyapunov orbit. More precisely, the spacecraft departs from the Earth
with a high energy value for which all the space is accessible, i.e., Hill’s region coincides
with the (x, y)-space. Two thrust arcs are performed to reduce the energy down to the energy
of the desired Lyapunov orbit. It can be seen that during the second coast arc (corresponding
to the passage through the LEM

3 region), the value of J EM
C is nearly constant. This pattern
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Fig. 6 Top: trajectories of subfamily B1 (solid), B2 (dashed) and B3 (dot-dashed) in the Earth–Moon (left)
and the Sun–Earth (right) rotating reference frames. Bottom: Jacobi constant in the Earth–Moon PCR3BP
(left), the thrust arcs (orange) and coast arcs (blue) are highlighted, and thrust profile of a sample transfer of
subfamily B1 (right)

repeats at the third thrust arc when the spacecraft enters the Moon’s region. This can be seen
in the bottom left plot in Fig. 6, where the Jacobi constant in the Earth–Moon system is
plotted. It can be appreciated that the Jacobi constant remains almost fixed in the two coast
arcs.

The fuel consumption associated with this subfamily varies from 33 to 37.5 kg. The
transfer time is between 47.7 and 65.7 days and the initial �v0 takes values between 3126
and 3156 m/s.

Transfers in subfamily B2 are based on a long thrust arc at the Earth departure in the
opposite direction of the Moon, directly to the LEM

3 region. This makes the transfer fast and
expensive.

With a time of flight between 35.7 and 55.7 days this subfamily exhibits the fastest trans-
fers. As it is expected for a fast transfer, the fuel consumption (between 44.4 and 51 kg) is
also in the high range. The initial �v0 required takes values between 3116 and 3123 m/s.

Finally, subfamily B3 consists in intermediate transfers between subfamily B1 and sub-
family B2. The spacecraft arrives to the LEM

3 region through the exterior stable manifold of
a Lyapunov orbit around LEM

3 .
These different thrust profiles lead to fuel consumptions between 26.5 and 35.5 kg. The

initial �v0 takes values between 3125 and 3185 m/s.
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3.2 Short/medium duration transfers through LEM
2

The transfers of these different families correspond to an arrival to the Moon’s neighborhood
through the LEM

2 neck with a short to medium time of flight.

3.2.1 Family C

Family C is split in two subfamilies C1 and C2. These families are characterized by a direct
arrival to the Moon’s region through the LEM

2 neck. The spacecraft departs from the Earth
with a high energy in the Earth–Moon system and the thrust is used to reduce this energy
down to the energy of LSE

2 . Small differences are noticeable between subfamily C1 and
subfamily C2.

The transfers in subfamily C1 have a longer time of flight because once the spacecraft
enters the Moon’s region it first visits the LEM

1 vicinity using the stable and unstable invariant
manifolds of a periodic orbit around that point to improve the fuel consumption. On the other
hand, in subfamily C2 the spacecraft starts the decreasing phase after arriving to the Moon’s
region.

The fuel consumption for subfamily C1 varies from 34.5 to 38.5 kg and the time of flight
is slightly longer than 90 days. The initial �v0 varies between 3146 and 3161 m/s.

Subfamily C2 contains trajectories with the second shortest times of flight ranging between
43 and 71.3 days. The fuel consumption is also reduced with respect to that of subfamily B2

and varies between 32.1 and 40.9 kg. The initial �v0 takes values between 3158 and 3170
m/s.

In both subfamilies, the energy in the Sun–Earth system is not large enough to allow the
aperture of the LSE

1 neck. Therefore, the manifolds of the Sun–Earth system do not play any
role here. However, as in the case of subfamilies B1, B2 and B3, it can be observed in the
Sun–Earth rotating frame (Fig. 7 top right) that the first thrust arc is performed when the
spacecraft is approaching the zero-velocity curve. Intuitively, one may think that the control
takes profit of the low velocity of the spacecraft to change the direction of the trajectory in
an efficient way.

3.2.2 Family D

Family D is made of a set of transfers for which the access to the Moon’s region is made
through LEM

1 . These transfers are based in a long thrust arc at the Earth departure that puts
the spacecraft on a stable invariant manifold of a large amplitude Lyapunov orbit around
LEM

1 . Then, the spacecraft departs from the periodic orbit around LEM
1 through the unstable

manifold.
The trajectories of this family are not optimal in terms of fuel consumption. Indeed, it is

possible to find transfers with the same duration and a lower fuel consumption. However, the
initial �v0 required for this family is the smallest that has been found.

Figure 8 shows the transfers of family D in the Earth–Moon rotating frame (top) as well as
the evolution of the Jacobi constant J EM

C (bottom left) and the thrust profile (bottom-right).
The fuel consumption for this family varies between 34.5 and 38.5 kg and the time of flight
is around 75 days. The initial �v0 takes values between 3100 and 3110 m/s.

3.3 Long duration transfers

The transfers of these families are characterized by a long duration time of flight.
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Fig. 7 Top: transfers of subfamily C1 (solid) and subfamily C2 (dashed) in the Earth–Moon (left) and Sun–
Earth (right) rotating reference frames. Bottom left: Jacobi constant in the Earth–Moon PCR3BP. The thrust
arcs (orange) and coast arcs (blue) are highlighted. Bottom-right: thrust profile of a sample trajectory

3.3.1 Family E

Family E corresponds to the longest time of flight and lowest fuel consumption transfers that
have been obtained. After Earth departure and a small thrust arc, the spacecraft follows the
stable manifold of a Lyapunov orbit around LSE

1 . Then, it departs from the neighborhood of
LSE

1 through the unstable manifold of another less energetic orbit in the Sun–Earth system.
This change of energy is due to the gravitational effect of the Moon. As can be seen in Fig. 9
(middle-right) J SE

C is not constant during the first coast arc. The smaller the distance between
the Moon and the spacecraft the higher are these variations of the energy. Both the stable
and unstable manifolds are plotted in Fig. 9 (top right). Finally, the unstable manifold of the
LSE

1 periodic orbit brings the spacecraft toward the Moon. The trajectory seen in the Earth–
Moon system is close to the stable manifold of a Lyapunov orbit around LEM

2 . This allows
the spacecraft to access to the Moon’s region. These kind of transfers has been identified in
Mingotti et al. (2012).

The main characteristic of family E is that it includes transfers with the lowest fuel
consumption ranging from 10.5 to 31.5 kg. However, the transfer durations are important,
typically between 126.7 and 155.7 days. The initial �v0 is also in the high range since it is
required to put the spacecraft close to the LSE

1 region. The value of �v0 varies between 3144
and 3227 m/s.
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Fig. 8 Top: trajectories of family D in the Earth–Moon rotating reference frame. Bottom: Jacobi constant in
the Earth–Moon PCR3BP (left). The thrust arcs (orange) and coast arcs (blue) are highlighted. Thrust profile
(right)

3.3.2 Family F

Family F is made of transfers that use the practical stability regions around LEM
4 and LEM

5
observed in McKenzie and Szebehely (1981), Gómez et al. (2001) and Simó et al. (2013);
Pérez-Palau et al. (2015). Those regions are regions of the space where a spacecraft may
remain for a long-time interval. One can notice that after some time in this region, a small
thrust arc is performed by the spacecraft to leave this region and arrive to the Moon through
the LEM

1 or LEM
2 necks (see Fig. 10).

The family is divided in two subfamilies, F4 and F5. Subfamily F4 consists in those
trajectories that arrive to the LEM

4 practical stability region. In this case, the spacecraft enters
the Moon’s region through the neck opened at LEM

2 . On the other side, the F5 subfamily
is made of trajectories that arrive to the LEM

5 practical stability region. In this case, the
spacecraft enters the Moon’s region through the LEM

1 neck.
A characteristic of this family of transfers is that, although the fuel consumption is not

optimal with respect to the long transfer duration, the value of �v0 is the smallest that has
been found for these transfer times.

Figure 10 shows the transfers of family F in the Earth–Moon rotating frame (top) as well
as the value of the Jacobi constant (middle) and the thrust profile (bottom). The left plots
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Fig. 9 Top: transfers of family E in the Earth–Moon (left) and the Sun–Earth (right) rotating reference frames.
Middle: Jacobi constant in the Earth–Moon PCR3BP (left) and Sun–Earth PCR3BP (right), the thrust arcs
(orange) and coast arcs (blue) are highlighted. Bottom: thrust profile (left) and trajectory in the Earth inertial
reference frame (right) of a sample transfer in the family

correspond to the F4 subfamily and the right ones to the F5 subfamily. The fuel consumption
of family F varies between 34.5 and 39.5 kg and the time of flight is around 160 days. The
initial �v0 required takes values between 3110 and 3120 m/s.

3.4 Comparison of the families obtained

Although the transfers obtained in Topputo (2013) are based on two impulsive maneuvers,
some of the transfer trajectories obtained in the present paper can be considered as an equiv-
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Fig. 10 Trajectories (top) of the F4 (left) and the F5 (right) subfamilies in the Earth–Moon rotating reference
frame. Jacobi constant in the Earth–Moon PCR3BP (middle). The thrust arcs (orange) and coast arcs (blue)
are highlighted. Thrust profile of a sample transfer of each family (bottom)

alent low-thrust version of them. Concretely, transfers in families C are direct transfers from
the Earth to the Moon corresponding to family a in the cited paper. Family D is also close
to family a in Topputo. However, due to the long thrust arc between the Earth and the Moon
the spacecraft performs a bigger spiral out to reach the Moon. Families A, B2 and B3 are the
corresponding equivalent to family b in Topputo. However, family B1 corresponds to families
c, d in Topputo’s paper. Family E in the present paper corresponds to families o and p in
Topputo’s paper as well as to the families obtained in several papers exploiting the invariant
manifolds of the Sun–Earth system. Finally, family F is completely new and does not appear
in Topputo’s paper. That happens because in the cited paper the author only considers two
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maneuvers and family F requires at least three impulses: one to reach the L4 or L5 region, a
second one to leave the region and the last one to get captured by the Moon.

The effect of the Sun has also been studied for the different trajectories. The same sampling
experiments have been performed without the Sun’s influence. The results show that families
A, B, C and F still exist when the Sun’s perturbation is neglected. Families D and E have not
been found.

4 Conclusions

In this paper, the problem of designing low-energy transfers between a LEO and a LO using
low-thrust propulsion has been considered in a bicircular model using indirect optimal control.
More precisely, the problem has been formulated as an optimal control problem and the PMP
has been applied. It has been shown that classical continuation techniques are not effective to
solve the problem. The strong sensitivity of the dynamics with respect to the initial conditions
prevents Powell’s hybrid method to converge and to find a zero of the shooting function. For
that reason, a massive exploration based on a wise choice of the variables to explore has been
implemented.

As a result of the massive exploration, a large number of local minima have been found.
These minima have been analyzed by means of dynamical system tools. The well-known
invariant manifold theory has been used to understand the different transfers and to classify
them in different families according to their shapes. Among those families, some trajectories
similar to impulsive trajectories already identified in the literature have been found. These
trajectories exploit the invariant manifold structure of both the Sun–Earth and the Earth–
Moon PCR3BPs. In that family, it has been shown that the fuel consumption can be reduced
through an increase of the transfer duration.

In addition to the transfer strategies already identified, new kind of transfers have been
found that exploit the invariant manifold structure of the Earth–Moon system perturbed by
the Sun. Those families allow faster but more expensive transfers in terms of fuel. Finally,
transfers exploiting the practical stability regions of the Earth–Moon PRC3BP have been
identified.

The thrust profile associated with the trajectories that have been found exhibit several
thrust arcs instead of a unique thrust arc at the end of the transfer as suggested by Mingotti
et al. (2012).

The following step of the study will be to compute minimum-fuel Earth–Moon transfers
in the three-dimensional BR4BP by taking into account the inclination of Moon’s orbit.

Then, it will be necessary to study how to transpose the trajectories obtained in a full
ephemeris problem.
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